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with minimal surface theory, topological dimension theory, and scalar curvature.
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1. Introduction

This essay is an introduction to systolic geometry. Rather than surveying a lot of
results, I’m going to focus on one central result, and I want to survey a lot of ways
of thinking about it.

Systolic inequality for tori. (Gromov, 1983 [10]) If (Tn, g) is an n-dimensional
torus with a Riemannian metric, then there is a non-contractible curve γ ⊂ Tn

whose length obeys the inequality

length(γ) ≤ CnV ol(T
n, g)1/n.

This inequality is very general. It holds in every dimension n, and it holds for
every metric g on Tn. (For example, there is no restriction on the curvature of g.)
Because it applies to so many metrics, the result is remarkable.

In the early 80’s, Gromov formulated several remarkable metaphors connecting
the systolic inequality to important ideas in other areas of geometry, and these
metaphors have guided most of the research in the subject. They connect the
systolic problem with ideas about minimal surfaces, topological dimension, and
scalar curvature. The main goal of this essay is to explain Gromov’s metaphors.

The systole of (Tn, g) is defined to be the length of the shortest non-contractible
curve in (Tn, g). We will denote it by Sys(Tn, g). The systole of (Tn, g) and
the volume of (Tn, g) are both ways of describing the size of (Tn, g). Size may
sound like a basic issue in Riemannian geometry, but mathematicians have not
spent much time exploring it. The proofs of the systolic inequality lead to some
interesting perspectives about size in Riemannian geometry. At the end of the
essay, I will discuss the issue of size and point out some open problems.

Acknowledgements. I would like to thank Hugo Parlier for the figure in
Section 2, and Alex Nabutovsky for helpful comments on a draft of the essay.
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2. Examples

To get a feeling for the systolic inequality, let’s consider some examples.
First, suppose that (Tn, g) is a product of circles with lengths L1, ..., Ln. The

length of the shortest non-contractible curve in this metric is minn
i=1 Li, and the

volume of the metric is
∏n

i=1 Li. Hence we see that for product metrics, there is a
non-contractible curve of length at most V ol1/n.

Next let’s consider some examples of two dimensional tori that we can visualize.
The systolic inequality for two-dimensional tori was proven by Loewner in 1949
with a sharp constant.

Loewner’s systolic inequality. (1949) If (T 2, g) is a 2-dimensional torus with
a Riemannian metric, then there is a non-contractible curve γ ⊂ (T 2, g) whose
length obeys the inequality

length(γ) ≤ CArea(T 2, g)1/2,

where C = 21/23−1/4 ∼ 1.1.

The diagram below shows four different tori.

Figure 1. Pictures of tori

The first picture is supposed to show a torus of revolution, where we take the
circle of radius 1 around the point (2, 0) is the x-z plane and revolve it around the
z-axis. It has systole 2π and area around 60, and so it obeys the systolic inequal-
ity. According to Loewner’s theorem, there is nothing we can do to dramatically
increase the systole while keeping the area the same. The second picture shows a
long skinny torus. When we make the torus skinnier and longer, the systole goes
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down and the area stays about the same. The third picture shows a torus with a
long thin spike coming out of it. When we add a long thin spike to the torus, the
systole doesn’t change and the spike adds to the area. The fourth picture shows
a ridged torus with some thick parts and some thin parts. When we put ridges
in the surface of the torus, the systole only depends on the thinnest part and the
thick parts contribute heavily to the area.

(Friendly challenge to the reader: can you think of a torus with geometry
radically different from the pictures above?)

These pictures start to give a feel for the systolic inequality in two dimensions.
In three dimensions it gets much harder to draw pictures. In fact, in three dimen-
sions, there are examples of metrics much stranger than these. We touch on them
more in the next section.

3. Why is the systolic inequality hard?

The systolic inequality has the same flavor as the isoperimetric inequality. To get a
sense of the difficulty of the systolic inequality, let’s recall the classical isoperimetric
inequality and then compare them.

Isoperimetric inequality. Suppose that U ⊂ Rn is a bounded open set. Then
the volume of the boundary ∂U and the volume of U are related by the formula

V oln(U) ≤ CnV oln−1(∂U)
n

n−1 .

From the Riemannian point of view, this domain U is a compact manifold with
boundary equipped with a flat Riemannian metric (the Euclidean metric). The
isoperimetric inequality can be considered as a theorem about flat Riemannian
metrics. By contrast, the systolic inequality is a theorem about all Riemannian
metrics on Tn. (To make the comparison tighter, the classical isoperimetric in-
equality holds for every flat metric on the n-ball. The systolic inequality does not
make sense on a ball, but we will meet below a covering inequality that holds for
every metric on the n-ball.) Now the set of flat metrics is only a tiny sliver in the
set of all metrics. Moreover, the flat metrics are probably the easiest metrics to
understand. So we see that the systolic inequality is far more general than the
classical isoperimetric inequality.

Loewner proved the systolic inequality for two-dimensional tori in 1949, but
the three-dimensional case was open for more than thirty years after Loewner’s
proof. Why is three dimensions so much harder than two? The space of Rieman-
nian metrics has many strange examples, disproving naive conjectures, and this is
especially true in dimensions three and higher. For example, let us consider the
following problem, raised by Berger and Gromov. Suppose that g is a metric on
Sn × Sn with volume 1. Can we find a non-trivial copy of Sn with controlled
n-dimensional volume? When n = 1, this is the systolic inequality for T 2. By
analogy, it seems plausible that it should hold for all n, but it turns out that there
are counterexamples for n ≥ 2.
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Gromov-Katz examples. ([28]) For each n ≥ 2, and every number B, there is a
metric on Sn×Sn with (2n-dimensional) volume 1, so that every non-contractible
n-sphere in Sn × Sn has (n-dimensional) volume at least B.

As we go from domains in Euclidean space to metrics on T 2 to metrics on T 3,
the possible geometries become more complicated. To get a perspective on this,
let me describe a naive conjecture about the sizes of level sets and trace how it
plays out in the different settings.

Naive conjecture 1. If U ⊂ Rn is a bounded open set, then there is a function
f : U → R so that the volume of every level set is controlled by the volume of U :

For every y ∈ R, V oln−1[f−1(y)] ≤ CnV oln(U)
n−1
n .

Naive conjecture 1 is true. I proved it in [18].

Naive conjecture 2. If g is a metric on T 2, then there is a function f : T 2 → R
so that the length of every level set is controlled by the area of g:

For every y ∈ R, Length[f−1(y)] ≤ CArea(T 2, g)1/2.

Naive conjecture 2 is also true. This result is more surprising than the first one.
The problem was open for a long time. It was proven by Balacheff and Sabourau
in [5].

Naive conjecture 3. If g is a metric on T 3, then there is a function f : T 3 → R
so that the area of every level set is controlled by the volume of (T 3, g):

For every y ∈ R, Area[f−1(y)] ≤ CV ol(T 3, g)2/3.

Naive conjecture 3 is wrong. (There are many counterexamples. I think that
historically the first examples came from work of Brooks.)

This story is typical for naive conjectures in metric geometry. The space of all
the metrics on T 3 is huge. There is a substantial zoo of strange examples, and
there are probably many other strange metrics yet to be discovered. Universal
statements about all metrics on T 3 are rare and significant.

4. The role of metaphors in systolic geometry

Reminiscing about his work in systolic geometry, Gromov wrote, “Since the setting
was so plain and transparent, I expected rather straightforward proofs.” (See the
end of Chapter 4 in [11] for Gromov’s recollections of working on the systolic prob-
lem.) But in spite of the plain and transparent setting, the result is difficult, and
in particular, it’s hard to see how to get started. In the early 1980’s, he formulated
several remarkable metaphors connecting the systolic inequality to important ideas
in other areas of geometry. Guided by these metaphors, he proved the systolic in-
equality. We now have three independent proofs of the systolic inequality for the
n-dimensional torus, each based on a different metaphor.
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The goal of this essay is to explain Gromov’s metaphors. In doing that, I hope
to describe the flavor of this branch of geometry and put it into a broad context.
The metaphors connect the systolic inequality to the following areas:

1. Minimal surface theory.
2. Topological dimension theory.
3. Scalar curvature.
Each metaphor gives a valuable perspective about the systolic problem and

suggests an outline of the proof. It still takes substantial work to fill in the details
of the proofs. Up to the present, every proof of the systolic inequality is based on
one of these metaphors.

5. Minimal surface theory

In the early 1970’s, Bombieri and Simon [6] proved the following sharp inequality
about the geometry of minimal surfaces in Euclidean space.

Bombieri-Simon radius inequality. Suppose that Zn is a closed submanifold
of RN , and that Y n+1 is a minimal surface with ∂Y = Z. Suppose that Z has the
same volume as a round n-sphere of radius R. Then for each point y ∈ Y , the
distance from y to Z is at most R.

This inequality is sharp when Z is a round sphere of radius R and Y is the
corresponding ball of radius R.

Using this inequality, Bombieri and Simon proved the Gehring link conjecture.
If Zn and WN−n−1 are disjoint closed surfaces in RN , then the linking number of
Z with W is defined as follows. Let Y n+1 be a surface with ∂Y = Z. Put Y in
general position, and consider Y ∩W , which will be a finite set of points. If we
count these points with multiplicity we get the linking number of Z with W . This
linking number doesn’t depend on the choice of Y . If the number is non-zero, we
say that Z and W are linked.

Gehring link conjecture. Suppose that Zn and WN−n−1 are linked submanifolds
of RN . If Z has the same volume as a round n-sphere of radius R, then the distance
from Z to W is at most R. In other words, there are points z ∈ Z and w ∈ W
with |z − w| ≤ R.

Proof. By the solution of the Plateau problem, there is a minimal surface Y with
∂Y = Z. Since Z and W are linked, Y must intersect W in some point y ∈ W .
But by the radius inequality, the distance from y to Z is at most R.

Gromov built an analogy between the Gehring link conjecture and the systolic
problem. On the one hand, such an analogy sounds promising because both in-
equalities bound a 1-dimensional length (or distance) in terms of an n-dimensional
volume.

Dist(Zn,WN−n−1) ≤ CnV ol(Z)1/n. (Gehring link inequality)
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Sys(Tn, g) ≤ CnV ol(T
n, g)1/n. (Systolic inequality)

On the other hand, the analogy sounds far-fetched because the systolic problem
is about an abstract Riemannian manifold, and the Gehring link conjecture is about
a submanifold of Euclidean space RN .

Every closed Riemannian manifold admits a canonical embedding into a Banach
space.

Kuratowski embedding. Define the map K : (Mn, g)→ L∞(M) by letting K(p)
be the distance function distp. The map K is an isometry in the strong sense that

dist(M,g)(p, q) = ‖K(p)−K(q)‖L∞ .

The Kuratowski embedding is canonical and respects the geometry of (M, g). The
target space L∞(M) is infinite-dimensional, but we can approximate this embed-
ding using a finite-dimensional Banach space. For each (M, g) there is a finite
dimension N and an embedding K0 : (M, g)→ (RN , l∞) which is nearly isometric
in the sense that

99

100
‖K0(p)−K0(q)‖l∞ ≤ dist(M,g)(p, q) ≤

100

99
‖K0(p)−K0(q)‖l∞ .

The following striking observation relates the systole problem and the linking
problem.

Linking observation. ([?])0 Let (Tn, g) be any Riemannian metric on Tn. Let
Zn be the image K0(Tn) ⊂ (RN , l∞). Then Z is linked with a surface WN−n−1

with dist(Z,W ) ≥ (1/8)Sys(Tn, g).

We know that Z is linked with a faraway surface W , and we wish to conclude
that Z has a large volume. This is a version of the Gehring link problem in
(RN , l∞).

Metaphor 1. The systolic inequality is like the Gehring link problem in the Ba-
nach space (RN , l∞).

The method of Bombieri-Simon does not work in Banach spaces. In effect,
their method uses the symmetry of Euclidean space. To get estimates for linked
surfaces in (RN , l∞), Gromov proved the following inequality.

Filling radius inequality. ([?]) If Zn ⊂ (RN , l∞) is a closed surface, then there
exists a surface Y n+1 with ∂Y = Z such that for each y ∈ Y ,

dist(y, Z) ≤ CnV oln(Z)1/n.

The filling radius inequality implies a linking inequality in (RN , l∞): if Zn and
WN−n−1 are linked in (RN , l∞), then dist(Z,W ) ≤ CnV ol(Z)1/n. To prove the
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systolic inequality, we let Z = K0(Tn, g) and we let W be the surface mentioned
in the linking observation above. Then we observe that

(1/8)Sys(Tn, g) ≤ dist(Z,W ) ≤ CnV ol(Z)1/n ∼ CnV ol(T
n, g)1/n.

There is an important story about the constant Cn in Gromov’s filling radius
inequality. It’s comparatively easy to prove an inequality of the form dist(y, Z) ≤
CNV oln(Z)1/n with a constant CN depending on the ambient dimension N . This
inequality does not imply the systolic inequality. We can find a nearly isometric
embedding from (Tn, g) into some (RN , l∞), but the dimension N depends on the
metric g. Roughly speaking, if g is complicated, then N will be large. To prove
the systolic inequality for all g, we need a filling radius estimate for all N with a
uniform constant. We discuss this issue more in Section 8 below.

(A note on vocabulary: I’ve been using the word surface a little bit loosely.
For readers with background in geometric measure theory, surface means Lipschitz
chain and closed surface means Lipschitz cycle. For readers with less background,
surfaces (or Lipschitz chains) include smooth submanifolds and they are a little
bit more general. A surface is a submanifold with mild singularities. For example,
suppose that Z is a submanifold diffeomorphic to CP2. By the cobordism theory,
CP2 is not the boundary of any 5-dimensional manifold. In this case, Y may be
homeomorphic to a cone over CP2, which is a manifold except for one singularity
at the cone point.)

6. Topological dimension theory

In the 1870’s, Cantor discovered that Rq and Rn have the same cardinality even if
q < n. This discovery surprised and disturbed him. He and Dedekind formulated
the question whether Rq and Rn are homeomorphic for q < n. This question
turned out to be quite difficult. It was settled by Brouwer in 1909.

Topological Invariance of Dimension. (Brouwer 1909) If q < n, then there is
no homeomorphism from Rn to Rq.

Cantor and Dedekind certainly knew that Rq and Rn were not linearly isomor-
phic. Linear algebra gives us two stronger statements:

Linear algebra lemma 1. If q < n, then there is no surjective linear map from
Rq to Rn.

Linear algebra lemma 2. If q < n, then there is no injective linear map from
Rn to Rq.

It seems reasonable to try to prove topological invariance of dimension by gen-
eralizing these lemmas. A priori, it’s not clear which lemma is more promising.
Cantor spent a long time trying to generalize Lemma 1 to continuous maps. (At
one point, Cantor even believed he had succeeded [27].) In fact, Lemma 1 does
not generalize to continuous maps.
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Space-filling curve. (Peano, 1890) For any q < n, there is a surjective continu-
ous map from Rq to Rn.

In his important paper on topological invariance of dimension, Brouwer proved
that Lemma 2 does generalize to continuous maps.

Brouwer non-embedding theorem. If n > q, then there is no injective contin-
uous map from Rn to Rq.

So it turns out that Lemma 2 is more robust than Lemma 1. A smaller-
dimensional space may be stretched to cover a higher-dimensional space. But
a higher-dimensional space may not be squeezed to fit into a lower-dimensional
space. This fact is not obvious a priori - it is an important piece of acquired
wisdom in topology. In this section, we’re going to talk about the geometric
consequences/cousins of this fundamental discovery of topology.

Shortly after Brouwer, Lebesgue introduced a nice approach to Brouwer’s non-
embedding theorem in terms of coverings. If Ui is an open cover of some set
X ⊂ Rn, we say that the multiplicity of the cover is at most µ if each point x ∈ X
is contained in at most µ open sets Ui. We say the diameter of a cover is at most D
if each open set Ui has diameter at most D. For any ε > 0, Lebesgue constructed
an open cover of Rn with multiplicity ≤ n + 1 and diameter at most ε. He then
proposed the following lemma.

Lebesgue covering lemma. If Ui are open sets that cover the unit n-cube, and
each Ui has diameter less than 1, then some point of the n-cube lies in at least
n+ 1 different Ui.

(Brouwer gave the first proof of the Lebesgue covering lemma in 1913. See the
interesting essay “The emergence of topological dimension theory” [27] for more
information on the history.)

To see how the Lebesgue covering lemma implies the non-embedding theorem,
suppose that we have a continuous map f from the unit n-cube to Rq for some
q < n. Lebesgue constructed an open cover Ui of Rq with multiplicity q + 1 and
diameter < ε. The preimages f−1(Ui) form an open cover of the unit n-cube with
multiplicity q + 1. Since q + 1 < n+ 1, the Lebesgue covering lemma implies that
some set f−1(Ui) must have diameter at least 1. On the other hand, the diameters
of the sets Ui are as small as we like. By taking a limit as ε → 0, we can find a
point y ∈ Rq such that the fiber f−1(y) has diameter at least 1. So the Lebesgue
covering lemma implies the following large fiber lemma:

Large fiber lemma. Suppose q < n. If f is a continuous map from the unit
n-cube to Rq, then one of the fibers of f has diameter at least 1. In other words,
there exist points p, q in the unit n-cube with |p− q| ≥ 1 and f(p) = f(q).

The large fiber lemma is a precise quantitative theorem saying that an n-dimensional
cube cannot be squeezed into a lower-dimensional space.

What is it about the unit n-cube which makes it hard to cover with multiplicity
n? Roughly speaking, the key point is that the unit n-cube is “fairly big in all
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directions”. If every non-contractible curve in (Tn, g) has length at least 1, then in
some sense, (Tn, g) is fairly big in all directions too. Gromov was able to make this
precise and proved the following generalization of the Lebesgue covering lemma.

Generalized Lebesgue covering lemma. ([?]) Suppose that g is a Riemannian
metric on the n-dimensional torus Tn with systole at least 1. In other words, every
non-contractible loop in (Mn, g) has length at least 1.

If Ui is an open cover of (Mn, g) with diameter at most 1/10, then some point
of M lies in at least n+1 different sets Ui.

Topologists following Lebesgue used the covering lemma as a basis for defining
the dimension of metric spaces [26]. They said that the Lebesgue covering dimen-
sion of a metric space X is at most n if X admits open covers with multiplicity at
most n + 1 and arbitrarily small diameters. Different notions of dimension were
intensively studied in the first half of the twentieth century. The most well-known
is the Hausdorff dimension of a metric space. The Hausdorff dimension and the
Lebesgue covering dimension may be different. For example, the Cantor set has
Lebesgue dimension zero and Hausdorff dimension strictly greater than zero. In
1937, Szpilrajn proved that LebDim(X) ≤ HausDim(X) for any compact metric
space X. To do so, he constructed coverings of metric spaces with small diameters
and bounded multiplicities.

Szpilrajn covering construction. (1937) If X is a (compact) metric space with
n-dimensional Hausdorff measure 0, and ε > 0 is any number, then there is a
covering of X with multiplicity at most n and diameter at most ε. Hence X has
Lebesgue dimension ≤ n− 1.

Gromov asked whether Szpilrajn’s theorem is stable in the following sense: If
X has very small n-dimensional Hausdorff measure, is there a covering of X with
multiplicity at most n and small diameter? In 2008, I constructed such coverings
for Riemannian manifolds.

Covering construction for Riemannian manifolds. (Guth 2008, [19]) If
(Mn, g) is an n-dimensional Riemannian manifold with volume V , then there is
an open cover of (Mn, g) with multiplicity n and diameter at most CnV

1/n.

Combining this covering construction with the generalized Lebesgue covering
lemma, we get a second proof of the systolic inequality. The second proof is
summarized in the following metaphor.

Metaphor 2. The systolic inequality is like topological dimension theory. In par-
ticular, it follows from robust versions of the Lebesgue covering lemma and the
Szpilrajn covering construction.

The inequality in my covering construction above and Gromov’s filling radius
inequality are actually quite similar to each other. The covering inequality implies
the filling radius inequality, but the results are equally useful in practice. The
methods of proof are quite different though. The proof of the covering construction
uses ideas from topological dimension theory: we begin by choosing an open cover
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of (M, g) and mapping to the nerve of the cover. The main difficulty is that we need
quantitative estimates that don’t appear in topological dimension theory. We need
to estimate the multiplicity the cover, the sizes of the open sets and their overlaps,
etc. Taking classical ideas from topology and modifying them to get quantitative
estimates is a developing area of research connecting geometry and topology. See
Gromov’s essay ‘Quantitative topology’ [15] for an introduction.

7. Scalar curvature

The Geroch conjecture was one of the guiding problems in the history of scalar
curvature.

Geroch conjecture. The n-torus does not admit a metric of positive scalar cur-
vature.

In the late 1970’s, there were two breakthroughs in the field of scalar curvature.
Schoen and Yau invented the minimal hypersurface method, and used it to prove
the Geroch conjecture for n ≤ 7 (see [33] and [34]). We will discuss the minimal
hypersurface method more below. Shortly afterwards, Gromov and Lawson used
the Dirac operator method to prove the Geroch conjecture for all n.

Gromov’s third metaphor connects the Geroch conjecture to the systolic in-
equality. The metaphor is based on the description of scalar curvature in terms of
the volumes of small balls.

Scalar curvature and volumes of balls. If (Mn, g) is a Riemannian manifold
and p is a point in M , then the volumes of small balls in M obey the following
asymptotic:

V olB(p, r) = ωnr
n − cnSc(p)rn+2 +O(rn+3). (∗)

In this equation, ωn is the volume of the unit n-ball in Euclidean space, and
cn > 0 is a dimensional constant. So we see that if Sc(p) > 0, then the volumes of
tiny balls B(p, r) are a bit less than Euclidean, and if Sc(p) < 0 then the volumes
of tiny balls are a bit more than Euclidean.

The scalar curvature measures the asymptotic behavior of volumes of tiny balls
as the radius goes to zero. We will consider something analogous to scalar curvature
but based on the volumes of balls with finite radius - we call it the “macroscopic
scalar curvature at scale r”. We define the macroscopic scalar curvature as follows.
Let p be a point in (Mn, g). We let V (p, r) be the volume of the ball of radius
r around p. Then we let Ṽ (p, r) be the volume of the ball of radius r around
p in the universal cover of M . (We’ll come back in a minute to discuss why it
makes sense to use the universal cover here.) Now we compare the volume Ṽ (p, r)
with the volumes of balls of radius r in spaces of constant curvature. We let ṼS(r)
denote the volume of the ball of radius r in a simply connected space with constant
curvature and scalar curvature S. If we fix r, then ṼS(r) is a decreasing function
of S; as S → +∞, ṼS(r) goes to zero, and as S → −∞, ṼS(r) goes to infinity. We
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define the “macroscopic scalar curvature at scale r at p” to be the number S so
that Ṽ (p, r) = ṼS(r).

We denote the macroscopic scalar curvature at scale r at p by Scr(p). In
particular, if Ṽ (p, r) is more than ωnr

n, then Scr(p) < 0, and if Ṽ (p, r) < ωnr
n,

then Scr(p) > 0.
By formula (∗), it’s straightforward to check that limr→0 Scr(p) = Sc(p).
Let’s work out a simple example. Suppose that g is a flat metric on the n-

dimensional torus Tn. In this case, the universal cover of (Tn, g) is Euclidean
space. Therefore, we have Ṽ (p, r) = ωnr

n for each p ∈ Tn and each r > 0. Hence
Scr(p) = 0 for every r and p. If we had used volumes of balls in (Tn, g) instead
of in the universal cover, then we would have Scr(p) > 0 for all r bigger than the
diameter of (Tn, g). By using the universal cover, we arrange that flat metrics
have Scr = 0 at every scale r.

Metaphor 3. The macroscopic scalar curvature is like the scalar curvature.

This metaphor leads to some deep, elementary, and wide open conjectures in
Riemannian geometry.

Generalized Geroch conjecture. (Gromov 1985) Fix r > 0. The n-dimensional
torus does not admit a metric with Scr > 0. Equivalently, if g is any metric on
Tn, then the universal cover (Tn, g) contains a ball of radius r and volume at least
ωnr

n.

The generalized Geroch conjecture is very powerful (if it’s true). Since the
scalar curvature is the limit of Scr as r → 0, the generalized Geroch conjecture
implies the original Geroch conjecture. The generalized Geroch conjecture also
implies the systolic inequality, which we can see as follows. Suppose that (Tn, g)
has systole at least 1. The generalized Geroch conjecture implies that the universal
cover of (Tn, g) contains a ball of radius (1/2) and volume ≥ ωn(1/2)n. Since the
systole of (Tn, g) is at least 1, the covering projection T̃n → Tn is injective on
this ball. Therefore, (Tn, g) contains a ball of radius (1/2) and volume at least
ωn(1/2)n. In particular, the total volume of (Tn, g) must be at least ωn(1/2)n.

The generalized Geroch conjecture really appeals to me because it’s so strong
and so elementary to state, but I don’t see any plausible tool for approaching the
problem.

Now we return to the Schoen-Yau proof of the Geroch conjecture, and we
discuss how to adapt it to systolic geometry. The key idea in the Schoen-Yau
proof is an inequality for stable minimal hypersurfaces in a manifold of positive
scalar curvature.

Stability inequality for scalar curvature. If (Mn, g) is a Riemannian manifold
with Sc > 0, and Σn−1 ⊂ M is a stable minimal hypersurface, then Σ has - on
average - positive scalar curvature also.

To see how to apply this observation, suppose that (M3, g) has positive scalar
curvature. Then a stable minimal hypersurface Σ ⊂ M3 is 2-dimensional, and it
has (on average) positive scalar curvature. In two dimensions, the scalar curvature
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is much better understood, and it’s not so hard to get topological and geometric
information about Σ. Now we know topological and geometric information about
every minimal surface Σ in M , and we can use this to learn topological and ge-
ometric information about M itself. With this tool, Schoen and Yau proved the
Geroch conjecture.

I proved an analogue of the Schoen-Yau stability inequality using volumes of
balls instead of scalar curvature. Informally, the lemma says that if a Riemannian
manifold has balls of small volume then an absolutely minimizing hypersurface
also has balls of small volume.

Stability inequality for volumes of balls. (Guth, 2009, [20]) Suppose that
(Mn, g) is a Riemannian manifold where every ball of radius 1 has volume at most
α, and suppose that (M, g) has systole at least 2. If Σn−1 ⊂ M is an embedded
surface which is absolutely minimizing in its homology class, then every ball in Σ
of radius 1/2 has (n-1)-volume at most 2α.

Using this lemma, I proved a weak version of the generalized Geroch conjecture
with a non-sharp constant.

Non-sharp generalized Geroch. (Guth, 2009, [20]) For any metric g on Tn,
the universal cover of Tn contains a ball of radius 1 and volume at least c(n) > 0.
Therefore, if (Tn, g) has systole at least 2, then it contains a ball of radius 1 with
volume at least c(n) > 0.

It’s unknown whether there is any systolic analogue of the Dirac operator
method for positive scalar curvature.

The results of Schoen-Yau and Gromov-Lawson remain today the main theo-
rems about scalar curvature. Now we turn to an open question in the field of scalar
curvature, and we consider it from the viewpoint of systolic geometry.

Schoen conjecture. Suppose that (Mn, hyp) is a closed hyperbolic manifold. Sup-
pose that g is any metric on M obeying the scalar curvature estimate Sc(g) ≥
Sc(hyp). Then V ol(M, g) ≥ V ol(M,hyp).

This elegant conjecture appears in connection with the Yamabe problem in
conformal geometry [32], and it is also beautiful in its own right. In two dimensions,
the conjecture follows from the Gauss-Bonnet formula. In three dimensions, it was
proven by Perelman as a byproduct of the Ricci flow proof of geometrization.
In four dimensions, the conjecture is open, but LeBrun proved a cousin of this
conjecture for complex hyperbolic manifolds [31]. LeBrun’s proof uses Seiberg-
Witten theory. In dimensions n ≥ 5, the problem is wide open. According to a deep
theorem of Besson, Courtois, and Gallot, if Ric(g) ≥ Ric(hyp), then V ol(M, g) ≥
V ol(M,hyp) [4]. This theorem of Besson, Courtois, and Gallot is much weaker than
the Schoen conjecture, but it is still a landmark result in comparison geometry.
In dimensions n ≥ 5 we don’t have any lower bound at all for V ol(Mn, g) with
Scal(g) ≥ Scal(hyp).

The Schoen conjecture can be generalized to the macroscopic scalar curvature,
producing an even more general and daunting conjecture.
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Generalized Schoen conjecture. Let r > 0 be any number. Suppose that
(Mn, hyp) is a closed hyperbolic manifold. Suppose that g is any metric on M
obeying the estimate Scr(g) ≥ Scr(hyp). Then V ol(M, g) ≥ V ol(M,hyp).

Needless to say, this conjecture is far out of reach. But using methods from
systolic geometry, I proved a weak version of this conjecture with a non-sharp
constant.

Non-sharp generalized Schoen conjecture. (Guth, [22]) Suppose that (Mn, hyp)
is a hyperbolic manifold. Suppose that g is any metric on M obeying the esti-
mate Sc1(g) ≥ Sc1(hyp). In other words, every unit ball in the universal cover of
(Mn, g) has volume at most the volume of a hyperbolic unit ball. Then V ol(M, g) ≥
c(n)V ol(M,hyp).

The generalized Schoen conjecture implies the original Schoen conjecture by
taking the limit as r → 0, but my inequality is not sharp enough to give any
information about scalar curvature.

The minimal hypersurface approach to scalar curvature is not enough to resolve
the Schoen conjecture. Similarly, the minimal hypersurface approach to systolic
geometry is not enough to prove the volume estimate above. The proof of this
volume estimate uses the techniques coming from topological dimension theory.

8. The Federer-Fleming averaging argument

The three metaphors we have been discussing provide large-scale perspective on
the systolic problem. They provide guidance about how the outline of the proof
should go, but they usually don’t provide guidance about how the details of the
proof should go. One crucial idea that makes the details work is the Federer-
Fleming averaging argument. It is the one ingredient which appears in some form
in all three proofs of the systolic inequality.

Here is the first example of the Federer-Fleming averaging argument, coming
from their 1959 paper [9] on the Plateau problem.

Deformation lemma. Suppose that zk is a k-dimensional surface in the unit N-
ball BN , and that z has a boundary ∂z lying in ∂BN . If k < N , then there is a
map Φ : z → ∂BN which fixes ∂z and obeys the volume estimate

V olk[Φ(z)] ≤ C(k,N)V olk[z].

Informally, the proposition says that we can push z into the boundary of the
ball without stretching it too much.

The simplest way one could think to map z into ∂BN is to project z radially
outward to the boundary. Let Φ0 denote the radial projection outward from zero.
In polar coordinates, Φ0(r, θ) = (1, θ). This map Φ0 is undefined at the point 0, but
we can first put z into general position so that it avoids 0, and this operation has a
negligible effect on the volume of z. But the radial projection Φ0 may not obey the
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volume estimate. If a large fraction of z is concentrated near to 0, then the radial
projection may badly stretch this portion of z leading to an image with a huge
volume. Instead of projecting from 0, one can instead project outward from any
point p ∈ BN . We let Φp : BN \ {p} → ∂BN denote the radial projection outward
from the point p. Federer and Fleming discovered that for any fixed surface z, most
projections Φp obey the volume estimate. To do that, they estimated the average
volume of a projection, proving the inequality

1

V olBN

∫
BN

V olk[Φpz]dp ≤ C(k,N)V olkz.

This inequality follows in a couple lines using Fubini’s theorem.
This simple averaging method tells us something fundamental about surface

areas. By using the averaging method many times, one can prove a surprising
range of geometric estimates about surface areas. This approach to geometry
problems originates with Federer and Fleming in 1959, but Gromov’s proof of the
systolic inequality really showed how powerful it is, starting a stream of results
proven by using the averaging trick many times. Let’s trace the history of this
method.

1. (Isoperimetric inequalities) The method begins with Federer and Fleming
who used the deformation lemma to prove a general isoperimetric inequality
[9].

Federer-Fleming isoperimetric inequality. If Z is a k-dimensional closed
surface in RN , then there is a (k+1)-dimensional surface Y with ∂Y = Z
obeying the volume estimate

V olk+1(Y ) ≤ C(k,N)V olk(Z)
k+1
k .

Their proof also gives a filling radius estimate.

Federer-Fleming filling radius inequality. If Z is a k-dimensional closed
surface in RN , then there is a (k+1)-dimensional surface Y with ∂Y = Z so
that every point y ∈ Y obeys the distance estimate

dist(y, Z) ≤ C(k,N)V olk(Z)
1
k .

2. (Isoperimetric inequalities in high dimensions) The constants in the Federer-
Fleming estimates above are not sharp. They are particularly bad in large
ambient dimensions N . As N → ∞, the constant c(k,N) → ∞. The sharp
constants were found using geometric measure theory, and they occur when
Z is a round sphere. (The sharp radius estimate is due to Bombieri-Simon [6]
and the sharp isoperimetric inequality is due to Almgren [1].) In particular,
the sharp constants do not depend on the ambient dimension N .

Let us contrast the Federer-Fleming approach with the minimal surface ap-
proach. In the minimal surface approach to the filling radius inequality, one
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takes Y to be an absolutely minimizing chain with boundary Z. The ex-
istence of such a minimizer is a deep theorem (the solution of the Plateau
problem). The variational method really doesn’t tell us how to construct Y
or even how to approximate Y . Next one proves that Y is smooth at most
points. Finally, minimal surfaces enjoy special geometric properties such as
the monotonicity formula, which then imply estimates about the radius or
volume of Y . By contrast, Federer and Fleming construct the filling Y “by
hand”, using the deformation lemma repeatedly. This construction is crude
compared to the minimal surface filling, and hence it does not give sharp
constants.

In the early 80’s, one might have guessed that a direct construction of Y
would be too crude to prove good isoperimetric estimates when the ambient
dimension N → ∞. Surprisingly, Gromov was able to adapt the Federer-
Fleming method to prove isoperimetric and filling radius estimates with con-
stants independent of the ambient dimension [11]. Moreover, the method was
flexible enough to work in Banach spaces such as (RN , l∞), where minimal
surface techniques do not work. The main new idea in Gromov’s proof was
to use induction on k. The proof was further simplified and generalized by
Wenger in [35]. His proof is only a couple pages long.

Isoperimetric inequality in Banach spaces. Let B be a Banach space.
Suppose that Z is a k-dimensional closed surface in B. Then there is a
(k+1)-dimensional surface Y with ∂Y = Z obeying the volume inequaliy

V olk+1(Y ) ≤ C(k)V olk(Z)
k+1
k .

3. (Sweep out inequalities) In an appendix to [11], Gromov used the Federer-
Fleming method to approach the Almgren sweepout inequality.

Sweep out inequality. (Almgren, 1962 [2]) Suppose that Φ : Sk×Sn−k →
Sn is a map of non-zero degree. Equip the target Sn with the standard unit
sphere metric. Then there exists some θ ∈ Sn−k so that Φ(Sk × {θ}) has
k-volume at least the volume of the unit k-sphere.

This is a deep result based on the variational theory of minimal surfaces.
For a reader without a strong background in geometric measure theory, the
proof is hundreds of pages long. Gromov proved a slightly weaker result by
using the Federer-Fleming averaging lemma repeatedly. The lower bound on
volume in Gromov’s result is a non-sharp constant c(k, n) > 0, but the proof
is only a few pages long.

4. (Isoperimetric inequalities on Lie groups) Gromov adapted the Federer-Fleming
method to Lie groups such as the Heisenberg group. In [16] he proved an
analogue of the filling radius inequality for surfaces in the Heisenberg group.

Building on Gromov’s work, Young proved an isoperimetric inequality in the
Heisenberg group as follows.



16 Larry Guth

Isoperimetric inequality in the Heisenberg group. (Young, 2008, [36])
Let (H2n+1, g) be a left-invariant metric on the Heisenberg group H2n+1. If
Z is a k-dimensional closed surface in H2n+1 and k < n, then there is a
(k+1)-dimensional surface Y with ∂Y = Z obeying the volume estimate

V olk+1(Y ) ≤ C(k, n, g)V olk(Z)
k+1
k .

Young’s main new idea was to use the averaging lemma at many scales.

5. (Area-expanding embeddings) I applied the Federer-Fleming method to the
problem of area-expanding embeddings. If U, V ⊂ Rn are open sets, an
embedding Ψ : U → V is called k-expanding if it increases the k-dimensional
area of each k-dimensional surface. I studied when there is a k-expanding
embedding from one n-dimensional rectangle into another, and I answered
the question up to a constant factor [23]. This problem turns out to be fairly
“rigid” in the sense that the optimal strategy for embedding one rectangle
in another is simple. The difficult part of the problem is to prove that there
are no k-expanding embeddings between certain rectangles.

Area-expanding embeddings of rectangles. If R is an n-dimensional
rectangle with side lengths R1 ≤ ... ≤ Rn, and R′ is an n-dimensional rectan-
gle with side lengths R′1 ≤ ... ≤ R′n, and if there is a k-expanding embedding
from R into R′, then the following inequalities hold

R1...Rj(Rj+1...Rl)
k−j
l−j ≤ C(n)R′1...R

′
j(R
′
j+1...R

′
l)

k−j
l−j ,

for each 1 ≤ j ≤ k and k ≤ l ≤ n.

Up to a constant factor, this list of inequalities is necessary and sufficient to
find a k-expanding from R into R′.

6. (Point selection theorem in combinatorics) Gromov applied the Federer-
Fleming method to give a new proof of the point selection theorem in com-
binatorics.

Point selection. (Barany [3]) If p1, ..., pN are points in Rn, consider the(
N

n+1

)
n-dimensional simplices with vertices among these points. Then there

is a point y ∈ Rn which lies in at least c(n)
(

N
n+1

)
of the

(
N

n+1

)
n-simplices,

for a universal constant c(n) ≥ (n+ 1)−(n+1).

Gromov reproved this theorem and generalized it. Given N points in Rn, we
get a linear map L from the (N-1)-simplex ∆N−1 to Rn, given by mapping
the N vertices of the simplex to p1, ..., pN . The point selection theorem says
that y lies in the image of at least c(n)

(
N

n+1

)
of the n-faces of ∆N−1. It turns

out that this holds for all continuous maps, not only for linear maps.
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Topological simplex inequality. (Gromov, 2009, [14]) Suppose that F is
a continuous map from ∆N−1 to Rn. Then there is a point y ∈ Rn which
lies in the image of at least c(n)

(
N

n+1

)
n-faces of ∆N−1.

Gromov’s proof of this combinatorial theorem is closely based on his proof
of the sweepout inequality, using a combinatorial analogue of the Federer-
Fleming averaging argument.

In each of these theorems, using the Federer-Fleming averaging trick over and
over is essentially the entire proof.

I want to end this section with a philosophical discussion of the Federer-Fleming
averaging method.

The fundamental idea is that the average value of some function may be easier
to understand than the function itself. This idea is certainly older than Federer
and Fleming. As a dramatic example, Erdos used a similar averaging trick to prove
that there are colorings of a graph with no cliques. Given appropriate bounds on
the size of the graph and the size of the cliques, he proved that the average number
of cliques in a coloring is less than 1. Hence colorings with no cliques exist, even
though it is difficult to produce an explicit example. Federer and Fleming borrowed
this idea and used it to prove inequalities in geometry. (It would be interesting to
know more about the history of this averaging trick.)

The wonderful thing about the averaging trick is that it’s so flexible. As we
have seen, some of the results in the above list can also be approached by minimal
surface theory, and the minimal surface techniques lead to the sharp constants.
Using the averaging lemma repeatedly is not as precise but it’s more flexible. It
can be adapted to Banach spaces. It can be adapted to the Heisenberg group.
It can be adapted to the geometry of surfaces inside a rectangle - measuring how
the dimensions of the rectangle influence the isoperimetric inequalities. It can be
adapted to the combinatorics of an N-dimensional simplex with N →∞.

In the small field of metric geometry, the Federer-Fleming averaging trick is the
most common tool. When the averaging trick doesn’t work, we often get stuck.
Intuitively, we can only use the averaging trick to find a geometric object if the
objects we are looking for are pretty common. Are there any geometric theorems
about the existence of rare objects? What tools could we use to find those objects?

I think these issues may be related to the open problems at the end of this
essay. Those problems have to do with notions of size in Riemannian geometry,
and I need to lay a little groundwork before we get to them.

9. Notions of size in Riemannian geometry

Many of the arguments in systolic geometry have to do with various ways of mea-
suring the ‘size’ of a Riemannian manifold.

Size invariants. Let M be a smooth manifold. A size invariant for metrics on M
is a function S which assigns a positive number to each metric on M , and which
obeys the following axioms.
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1. If g and g′ are isometric, then S(g) = S(g′).
2. If g ≤ g′, then S(g) ≤ S(g′).

(We say that g ≤ g′ if for each point x and each tangent vector v in TxM ,
g(v, v) ≤ g′(v, v).)

The volume and diameter are two fundamental size invariants. Many Rie-
mannian invariants are not size invariants. For example, anything related to the
curvature is not a size invariant. The injectivity radius is not a size invariant, and
neither are the eigenvalues of the Laplacian or the lengths of closed geodesics. But
the systole is a size invariant.

The most interesting size invariants I know came out of the proofs of the systolic
inequality. We met these invariants implicitly in the discussion above, and now we
turn our attention to them.

Filling radius. If (Mn, g) is a closed Riemannian manifold, then we define its
filling radius to be the smallest radius R so that the Kuratowski embedding of (M, g)
into L∞ bounds a chain inside its R-neighborhood.

Uryson width. If X is any metric space, such as a Riemannian manifold, and
q ≥ 0 is an integer, then we say that X has q-dimensional Uryson width at most
W if there is an open cover of X with diameter ≤W and multiplicity ≤ q+ 1. We
denote the q-dimensional Uryson width of X by UWq(X).

Among the size invariants that I know, the Uryson width seems like the most
useful one, so I will try to give a little intuition about it. In some sense, the
definition goes back to topologists working on dimension theory, including Uryson.
Gromov returned to the the definition and applied it to Riemannian geometry. He
gives a long discussion of it in [17]. Recall that Rn has open covers of multiplicity
n+1 with arbitrarily small diameters, so UWn(Rn, geuclid) = 0. More generally, the
Uryson n-width of any n-dimensional simplicial complex is equal to zero. Roughly
speaking, X has a small Uryson q-width if it “looks q-dimensional”. If X has
an open cover with multiplicity q + 1, then the nerve of the cover is a simplicial
complex of dimension q. There is a continuous map Φ from X to the nerve so that
each fiber of the map is contained in one of the open sets. Thus a metric space
X with small q-dimensional Uryson width may be mapped into a q-dimensional
complex and each fiber of the map will have small diameter. If the Uryson q-width
of X is < ε, then we can informally say, “when we look at X from far away and
cannot distinguish points of distance < ε, X appears to be q-dimensional”.

So far in this essay, we have seen three universal inequalities about size func-
tions.

1. The systolic inequality: Sys(g) ≤ C(n)V ol(g)1/n for all metrics on Tn.
2. The filling radius inequality: FillRad(g) ≤ C(n)V ol(g)1/n for all metrics on

closed n-manifolds.
3. The Uryson width inequality: UWn−1(g) ≤ C(n)V ol(g)1/n for all metrics

on n-manifolds.
These inequalities are closely related. The Uryson width inequality implies the

filling radius inequality which implies the systolic inequality, but they all come
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from the same circle of ideas. Twenty-five years ago, Gromov proved 1 and 2 and
conjectured 3. Since then, we have not found any really new universal inequality
about sizes of Riemannian metrics. The inequalities we have proven since are either
much easier than the filling radius inequality or else they are closely related to the
filling radius inequality.

Are there other interesting universal inequalities about the sizes of Riemannian
manifolds?

There may well be, but let me try to describe why it hasn’t been easy to find
any. It is easy to define size invariants of Riemannian manifolds. I know ten or
twenty different kinds of size invariants for Riemannian manifolds. But it’s often
hard to evaluate these invariants, even roughly. For example, here is a simple size
invariant for metrics on S3.

Covering radius. The covering radius of (S3, g) is the smallest radius R so that
we can find a degree 1 contracting map from the 3-sphere of radius R to (S3, g).

(A contracting map is a map that decreases distances.) The manifold S3 is diffeo-
morphic to the Lie group SU(2). The left-invariant metrics on SU(2) are some of
the simplest metrics on S3. Gromov raised the problem of estimating the covering
radius of left-invariant metrics on SU(2). There is a huge gap between the best
known upper and lower bounds, and the problem has been open for more than
twenty five years.

There are lots of size invariants, and they are often hard to evaluate. I don’t
know any good perspective to organize the information. As we’ve seen, the space
of Riemannian metrics is huge, so there are counterexamples for many naive con-
jectures about size invariants. And after defining ten or twenty size invariants it
gets hard to see what’s significant.

I want to end by putting forward two questions about sizes of Riemannian
manifolds. I think that whether the answers are yes or no, some interesting new
geometry will be involved.

The first question is about the geometry of high-genus surfaces. My main point
is that we really don’t have a good understanding of the geometry of high-genus
Riemannian surfaces.

Question 1. (Buser) If (Σ2, g) is a closed Riemannian surface of arbitrary genus,
is there a continuous map F from Σ to a graph Γ obeying the following inequality:

for every y in Γ, Length[F−1(y)] ≤ CArea(Σ, g)1/2?

(This question is a small variation on Buser’s question about the sharp value
of the Bers constant — see [7].)

This question connects to topics we’ve seen above in a couple ways. First of
all, the Uryson width inequality tells us that we can find a map F from (Σ, g) to a
graph so that each fiber has diameter at most CArea(Σ, g)1/2. This estimate does
not imply the length estimate at all, because a fiber may be a very long curve which
wiggles a lot and therefore has a small diameter. The most interesting examples
of high genus Riemannian surfaces are probably the arithmetic hyperbolic surfaces
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studied by Buser and Sarnak in [8]. These surfaces have genus G, area around G,
and diameter around logG. Since the entire surface has diameter around logG,
any curve in it has diameter at most around logG. When G is large, the diameters
are much smaller than the square root of the area. So any map from an arithmetic
hyperbolic surface to a graph has fibers of diameter at most Area1/2, but it’s not
at all clear how small we can make the lengths of the fibers.

This question also fits in with the naive conjectures in Section 3 of this essay.
In particular, if Σ is a small genus surface, then Balacheff and Sabourau proved
that the answer to the question is yes. In a bit more generality, here is their result.

Balacheff-Sabourau inequality. ([5]) If (Σ2, g) is a closed surface of genus G,
then there is a function f : Σ2 → R so that for every y ∈ R, the length of the level
set f−1(y) obeys the inequality

Length[f−1(y)] ≤ C
√
G+ 1Area(Σ2, g)1/2.

For large genus, the right-hand side grows like
√
G, and this behavior is sharp.

But if we allow maps to a 1-dimensional complex Γ instead of maps to R, we may
get a better estimate for lengths. If the answer to Question 1 is yes, then we can
look for similar inequalities in higher dimensions. Can every 3-manifold of volume
1 be mapped to a 2-dimensional complex with fibers of length ≤ C? Can every
3-manifold of volume 1 be mapped to R2 with fibers of length ≤ C?? Can every
3-manifold of volume 1 be mapped to a 1-dimensional complex with fibers of area
≤ C?

The second problem is about Uryson widths. Recall the Uryson width inequal-
ity, UWn−1(Mn, g) ≤ C(n)V ol(Mn, g)1/n, which says that an n-manifold of tiny
n-dimensional volume looks (n-1)-dimensional. What conditions on g would force
(Mn, g) to look (n-2)-dimensional?

This is an open-ended question that could go in many directions. For in-
stance, Gromov has a conjecture that if the scalar curvature of g is at least 1, then
UWn−2(Mn, g) ≤ C(n).

Here is another direction suggested by the geometry of area-contracting maps.
Suppose that Mn is just the standard unit n-ball, and we have the metric gij
written in coordinates. What do we need to know pointwise about gij to control
UWn−2(Bn, g)?

Question 2. Let Bn denote the standard (unit) n-ball in Rn, and let g0 denote the
standard Euclidean metric. Suppose that g is another metric obeying Λkg ≤ Λkg0.
This means that for every k-dimensional surface Σk ⊂ Bn, the g-volume of Σ
is at most the Euclidean volume of Σ. Suppose that n/k ≥ d. Is it true that
UWn−d(Bn, g) ≤ C(n)?

To get a sense of this question, let us first imagine that the metric gij(x) is
constant in x. In this case, (Bn, gij) is isometric to a Euclidean ellipsoid. If g is a
constant metric and Λkg ≤ Λkg0, then linear algebra implies that UWk−1(Bn, g) ≤
1. At this point, one might naively conjecture that all metrics g with Λkg ≤ Λkg0
obey UWk−1(Bn, g) ≤ C(n). Moreover, the Uryson width inequality implies that
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if Λng ≤ Λng0, then UWn−1(Bn, g) ≤ C(n). So the naive conjecture is true
when k = n. But the naive conjecture is false for other values of k because of a
counterexample coming from work of Zel’dovitch in astrophysics and Gehring in
conformal geometry. Zel’dovitch’s work has to do with the internal geometry of a
neutron star. I think that this counterexample is the worst case, and the question
asks whether this is true. See my paper [24] on area-contracting maps and topology
for more context.

10. Reading guide

For the reader who would like to learn more about this area of geometry, here are
some resources.

Gromov wrote about systolic geometry in several places. The key research
paper is “Filling Riemannian manifolds” [10]. His expository writing about systoles
includes Chapter 4 of Metric Structures [11], and the essay “Systoles and isosystolic
inqualities” [13].

Katz’s expository work on systoles includes the book Systolic Geometry and
Topology [29] and his website on systoles [30]. The website contains a lot of inter-
esting stuff, including a list of open problems in the field.

I wrote a set of notes on the systolic inequality [21] which explains the original
proof in detail in 14 pages. This talk is based on my essay [25], which includes
several topics we didn’t have time to discuss here: hyperbolic geometry, symmetry,
calibrations, and Nabutovsky’s work on the complexity of the space of metrics.
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