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Abstract

In this paper, we resolve the smoothed and approxi-
mative complexity of low-rank quasi-concave minimiza-
tion, providing both upper and lower bounds. As an
upper bound, we provide the first smoothed analysis of
quasi-concave minimization. The analysis is based on a
smoothed bound for the number of extreme points of the
projection of the feasible polytope onto a k-dimensional
subspace, where k is the rank (informally, the dimen-
sion of nonconvexity) of the quasi-concave function. Our
smoothed bound is polynomial in the original dimen-
sion of the problem n and the perturbation size ρ, and
it is exponential in the rank of the function k. From
this, we obtain the first randomized fully polynomial-
time approximation scheme for low-rank quasi-concave
minimization under broad conditions. In contrast with
this, we prove logn-hardness of approximation for gen-
eral quasi-concave minimization. This shows that our
smoothed bound is essentially tight, in that no poly-
nomial smoothed bound is possible for quasi-concave
functions of general rank k.

The tools that we introduce for the smoothed anal-
ysis may be of independent interest. All previous
smoothed analyses of polytopes analyzed projections
onto two-dimensional subspaces and studied them using
trigonometry to examine the angles between vectors and
2-planes in R

n. In this paper, we provide what is, to our
knowledge, the first smoothed analysis of the projection
of polytopes onto higher-dimensional subspaces. To do
this, we replace the trigonometry with tools from random
matrix theory and differential geometry on the Grass-
mannian. Our hardness reduction is based on entirely
different proofs that may also be of independent interest:
we show that the stochastic 2-stage minimum spanning
tree problem has a supermodular objective and that su-
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permodular minimization is hard to approximate.

1. Introduction

Concave minimization is a fundamental and exten-
sively studied problem in optimization. Its applications
range from solving directly practical problems, such as
resource allocation and network design, to providing so-
lution techniques for broad classes of optimization prob-
lems, including multiplicative programming, d.c. pro-
gramming, and others [10]. However, given that the
minimization of even quadratic concave functions over
the unit hypercube is NP-hard [10], the main research
focus has been to suggest efficient heuristics or to solve
special cases of the problem. To this end, researchers
have directed their attention to low-rank concave func-
tions [13, 19, 14]. We shall define these more precisely
in the next section, but, informally, these are functions
defined on R

n whose nonconvexity lies within a low-
dimensional subspace. However, even for this more re-
stricted class of problems, no efficient approximation
algorithms exist to date, and unanalyzed heuristics are
required even for low-rank concave quadratic functions
[13]. Furthermore, nothing is known about whether this
problem can be approximated or solved in a smoothed
or average-case setting.

In this paper, we resolve the smoothed and ap-
proximative complexity of low-rank quasi-concave
minimization, providing both upper and lower bounds.
A quasi-concave function attains its minimum at an ex-
treme point of the feasible set [2]; thus an exact algo-
rithm for finding it is to evaluate the function at all ex-
treme points, which can be found via an enumeration
method. Since polytopes typically have an exponential
number of vertices, algorithms based on enumeration
invariably have a worst-case exponential running time;
on the other hand the heuristics used so far (e.g., cut-



ting plane or tabu-search methods [19, 13]) remain with
both unknown approximation guarantees as well as run-
ning time. In the case of a low-rank quasi-concave func-
tion, the set of potential minima is reduced further to the
extreme points on the projection (shadow) of the feasi-
ble set onto the low-rank subspace corresponding to the
function. In the worst case, however, the projection can
still have exponentially many vertices, even when the
polytope is integral and the subspace is two-dimensional
[8, 1].

Our main result is a bound on the expected number
of extreme points on the shadow of an integral poly-
tope that is polynomial in the original dimension n and
perturbation size ρ and exponential in the nonconvex-
ity rank k. Thus, when the rank is constant, our result
implies a smoothed polynomial-time algorithm for find-
ing the minimum of a quasi-concave function. Using
this, we also construct a fully polynomial-time approx-
imation scheme under broad conditions. Our smoothed
bound is stronger than previous smoothed analyses in
that it perturbs only the objective function (which, in
this case, amounts to perturbing the subspace onto which
we’re projecting) and not the feasible polytope. This
is crucial for applications in combinatorial optimiza-
tion [17] where the vertices of the polytope correspond
to (integer) combinatorial objects. Further, we show that
the smoothed bound is essentially tight by exhibiting
(logn)-hardness of approximation for general concave
minimization.

Ours is the first smoothed analysis of the projection of
a polytope onto a space of dimension greater than two.
In the two-dimensional case, the smoothed analyses pro-
ceeded by using trigonometry to explicitly analyze the
intersections and projections of vectors and 2-planes in
R

n. In the higher-dimensional case, this does not suf-
fice, and the explicit calculations become intractable.
Instead, one needs to apply tools from random matrix
theory and differential geometry of the Grassmannian.
We believe that the introduction of these tools is of in-
dependent interest and will aid in the further study of
high-dimensional projections of polytopes.

Quasi-concave minimization is equivalent to quasi-
convex maximization from a continuous optimiza-
tion standpoint—in each case the optima are extreme
points of the feasible set and consequently our pos-
itive smoothed results hold in both. Curiously, this
symmetry is broken on the hardness of approximation
side. In a corresponding discrete setting, supermodu-
lar maximization seems to be much harder (logn-hard)
to approximate than submodular minimization, which
has a constant-factor approximation [6]. In particular,

the hardness of approximation implies that no smoothed
polynomial bound is possible.

We defer a detailed discussion of our results to the
next section.
Related Work The literature on concave minimization
is extensive; we refer the reader to the Handbook of
Global Optimization [10] for a comprehensive list of ref-
erences. As with general concave minimization, the re-
search on low-rank concave minimization has been re-
stricted primarily to heuristic algorithms with unknown
worst-case approximation guarantees though with seem-
ingly better practical performance [19, 13, 14].

The framework of smoothed analysis was started by
Spielman and Teng [20, 21] in order to explain why
some algorithms with high worst-case running times
perform well in practice. In this sense, our smoothed
analysis is a natural follow up on the experimental stud-
ies that have demonstrated a good practical performance
for low-rank concave minimization problems [19, 13].
The smoothed framework has since been applied to a
wide array of problems.

Analyzing the smoothed complexity of general low-
rank quasi-concave minimization in this paper was
prompted by the smoothed analysis for a special quasi-
concave minimization problem in the context of stochas-
tic shortest paths [17]. We refer the reader to the latter
as both a motivating example and application of our gen-
eral result. Somewhat unexpectedly the smoothed anal-
ysis techniques for solving the nonconvex problems in
this paper are inspired by the recent techniques of Kelner
and Spielman [12] for linear programming. We note that
the latter has polynomial smoothed bounds and polyno-
mial exact algorithms at the same time, while the low-
rank nonconvex setting is vastly more general and does
not have any known efficient algorithms.

2. Background and theorem statements

2.1. Concave and Quasi-concave func-
tions

In this section, we define quasi-concave functions
and extreme points, and state the problem of quasi-
concave minimization and its hardness. Let C be a con-
vex set.

Definition 2.1. A function f : C → (−∞,∞) is con-
cave if for all x, y ∈ C and α ∈ [0, 1],

f(αx+ (1 − α)y) ≥ αf(x) + (1 − α)f(y).

A function f : C → (−∞,∞) is quasi-concave if all of



its upper level sets Lγ = {x | x ∈ C, f(x) ≥ γ} are
convex.

Definition 2.2. A point x is an extreme point of the
set C if it cannot be represented as a convex combina-
tion of two other points in C, namely x = αy + (1 −
α)z for y, z ∈ C, α ∈ (0, 1) ⇒ x = y = z.

The problem of (quasi-)concave minimization asks
for the minimum of a (quasi-)concave function subject
to a set of linear constraints (which determine the feasi-
ble set for the problem).

Theorem 2.3. [11, 2] Let C ⊂ R
n be a compact convex

set. A quasi-concave function f : C → R that attains a
minimum over C, attains the minimum at some extreme
point of C.

Concave minimization is NP-hard even when re-
stricted to concave quadratic functions over the hyper-
cube [18]. In Section 3, we show that it is (logn)-hard
to approximate over the hypercube.

2.2. Low-Rank Quasi-Concave Minimiza-
tion

In this section, we define the rank of a function and
the shadow of the feasible set onto a subspace, and we
state some properties of the global minima of low-rank
quasi-concave functions.

Definition 2.4. We say that the function f : R
n → R

has rank k if it can be written in the form f(x) =
f̂(aT

1 x, a
T
2 x, ..., a

T
k x) for some function f̂ : R

k → R

and linearly independent vectors a1, ..., ak ∈ R
n.

For low-rank functions the rank k is much smaller
than n, so that the function can be thought of as living in
the lower dimensional subspace spanned by the vectors
a1, ..., ak.1 We call this subspace the rank or projection
subspace corresponding to the function f . Further, we
can project the feasible set in R

n onto the rank subspace.
We will call this projection the (k-dimensional) shadow.
The following claim is readily verified:

Claim 2.5. The minimum of f̂ over the shadow of the
polytope Q in the rank subspace R

k is the same as the
minimum of f over Q in R

n, and it is attained at an
extreme point of the shadow.

If the feasible polytopeQ is given as a polynomial set
of constraints and the quasi-concave function f is speci-
fied by oracle queries, we can find the minimum by enu-
merating the vertices of the shadow (and keeping track

1Our definition of rank may differ by 1 from other definitions that
have appeared in the literature [19].

of their corresponding vertices in Q). This can be done
for example by a depth-first search exploration of the as-
sociated shadow graph, where we can find all neighbors
of a vertex in the shadow by checking all neighbors of
the corresponding vertex in the original polytope.

We can use similar enumeration approaches for more
general models of specification of the objective function
and the feasible polytope; this is not the focus of our
work so we limit our discussion here.

2.3. Smoothed framework for Low-Rank
Quasi-concave problems

In this section, we describe our model for perturbing
low-rank functions.

2.3.1 Sampling from the Grassmannian

To properly handle our probability calculations, we shall
need to define precisely the spaces and distributions
from which we are sampling.

Definition 2.6. The Grassmannian Gr(n, k) is the set of
k-dimensional subspaces of R

n.

Rather than sampling from the Grassmannian di-
rectly, we shall draw our samples from the spaceO(n) of
orthogonaln×nmatrices and take the subspace spanned
by the first k columns.

Definition 2.7. Let Πk : R
n2 → R

nk be the map that
takes an n× n matrix to its first k columns, and let Πk :
R

n2 → Gr(n, k) be the map that takes a matrix to the
subspace spanned by its first k columns.

The space of orthogonal matrices has a standard mea-
sure, known as the Haar measure [4], that properly en-
capsulates what we mean by a “uniformly random” or-
thogonal matrix. It is the measure induced by treating
the space of orthogonal matrices as a subset of R

n2
,

and it is the unique rotation-invariant measure on O(n).
The Haar measure and the map Πk then induce a mea-
sure on Gr(n, k). When we take integrals over O(n) or
Gr(n, k), it shall be with respect to these measures.

2.3.2 Perturbing a Low-Rank Function

We defined a function f : R
n → R to have rank k if it

can be written in the form f(x) = f̂(aT
1 x, a

T
2 x, ..., a

T
k x)

for some function f̂ : R
k → R and linearly independent

vectors a1, ..., ak ∈ R
n. Equivalently, we can define a

rank-k function as a function f̂ : R
k → R and a k-

dimensional subspace S.



Consequently, we can describe a perturbation in two
equivalent ways, as a perturbation of the subspace or of
the function. For notational simplicity, we shall choose
the former option, although our results could easily be
restated in terms of the latter. We stress again that in
previous smoothed analysis both the function and fea-
sible set are perturbed, while here we only perturb one
part of the problem and leave the other unchanged.

In order to define a perturbation of a subspace, we
shall need a notion of the distance between two matrices,
which we take to be the spectral norm of their difference:

dist(Q, T ) = max
‖x‖=1

(Q− T )x,

where ‖ · ‖ is the L2 norm.
As mentioned above, we shall sample from the space

of orthogonal matrices and then obtain elements of
the Grassmannian Gr(n, k) by keeping only the first
k columns. It will thus suffice for us to define a ρ-
perturbation of an orthogonal matrix, as this will induce
a similar notion on the Grassmannian, and thus on the
space of low-rank quasi-concave functions.

Definition 2.8. A ρ-perturbation of an orthogonal ma-
trix Q0 is an orthogonal matrix sampled from the distri-
bution on orthogonal matrices whose density at a matrix
Q is proportional to

exp{dist(Q−1Q0, Id)/ρ}.

2.4. Our results

Our main theorem states that there is an ex-
pected polynomial-time smoothed algorithm for low-
rank quasi-concave minimization over integral poly-
topes:

Theorem 2.9. Let P ⊆ R
n be a polytope with inte-

ger vertices whose coordinates are all less than some
constant γ and a polynomial number of facets, and let
f : P → R be a quasi-concave function of constant
rank k given as an oracle. There exists an algorithm
that minimizes a ρ-perturbation of f in expected time

poly(n, γ, 1/ρ),

where the degree of the polynomial depends on k.

By the enumeration techniques described in Sec-
tion 2.2, this will follow immediately from our main
technical lemma, which is a bound on the expected num-
ber of extreme points in the projection of the polytope
onto the rank subspace of the objective function; the
bound is polynomial in the perturbation size ρ and the
original dimension n, but exponential in k.

Lemma 2.10. Let P ⊆ R
n be a polytope with integer

vertices whose coordinates are all less than some con-
stant γ (and with no restriction on the number of facets),
and let Q0 ⊆ R

n be a k-dimensional vector subspace.
The expected number of vertices on the projection of P
onto a ρ-perturbation of Q0 has at most

poly(n, γ, 1/ρ)

vertices, where the degree of the polynomial depends on
k.

We also show that general concave minimization is
(logn)-hard to approximate and consequently that there
can be no smoothed expected polynomial-time algo-
rithm for arbitrary quasi-concave functions. The proof
is based on a result of independent interest that super-
modular minimization is (logn)-hard to approximate.

3. Hardness of Approximation of Concave
Minimization

In this section, we prove that minimizing a supermod-
ular function and consequently, minimizing a concave
function, is (logn)-hard to approximate. The proof is by
a gap-preserving reduction from the two-stage stochastic
Minimum Spanning Tree (MST) problem considered by
Flaxman, Frieze and Krivelevich [7], which is (logn)-
hard to approximate [7].

The two-stage stochastic MST problem is defined as
follows. Edges in the graph have given weights in the
first stage and random weights from known distributions
in the second stage. The goal is to choose an optimal set
of edges in the first stage that can be completed with
edges in the second stage to form a spanning tree of
minimum expected cost. More formally, denote the cost
of edge e in the first and second stages by C1(e) and
C(e) respectively. Note that a subset of edges S cho-
sen in the first stage uniquely determines (up to equal
cost) the set of edges TS chosen in the second stage
which complete the MST. Our problem is to compute

minS⊂E

{
h(S) = C1(S)+E[C(TS)]

}
, whereE is the

set of edges of the graph. We will show that the function
h(S) is supermodular. To simplify notation, we shall use
the shorthand S + e := S ∪ {e} and S − e := S\{e}.
We also use A ⊂ B to mean non-strict set inclusion.

Lemma 3.1. The function h(S) = C1(S) + E[C(TS)]
is supermodular.

Proof. The function h is supermodular if and only if the
marginal contribution of an edge to the function value is



bigger whenever the edge is added to a bigger set [15],
that is

h(A+ e) − h(A) ≤ h(B + e) − h(B)

for all A ⊂ B ⊂ E and e ∈ E, e /∈ A,B. Assume
without loss of generality that A,B as well as A + e,
B + e do not contain cycles. We have C1(A + e) −
C1(A) = C1(e) = C1(B+ e)−C1(B). By linearity of
expectation, it suffices to show that

C(TA+e) − C(TA) ≤ C(TB+e) − C(TB),

or equivalently

C(TB) − C(TB+e) ≤ C(TA) − C(TA+e), (1)

for every realization of the second stage costs C. With-
out loss of generality up to equality of the tree costs we
can assume that TB ⊂ TA since A ⊂ B. We now need
to consider several cases for the edge e.

(i) e ∈ TA, TB . Then both sides of the inequality (1)
are zero.

(ii) e ∈ TA, e /∈ TB . Since (A+e)∪(TA−e) = A∪TA

is a valid spanning tree and (A + e) ∪ TA+e is the
minimal spanning tree corresponding to choice set
A + e from the first stage, we have C(TA+e) ≤
C(TA − e) = C(TA)−C(e). Similarly, C(TB) ≤
C(TB+e+e) sinceB∪TB is the cheapest spanning
tree which contains set B and B ∪ (TB+e + e) =
(B+e)∪TB+e is another spanning tree containing
set B. Therefore

C(TB) − C(TB+e) ≤ C(e) ≤ C(TA) − C(TA+e),

and we are done.

(iii) e /∈ TA, TB . Without loss of generality TA+e ⊂
TA and TB+e ⊂ TB. Let TA+e = TA − e′ and
TB+e = TB − e′′ where e′ and e′′ are the heavi-
est edges in the cycles formed in the spanning trees
A ∪ TA and B ∪ TB respectively when edge e is
added. (Note: this assumes that A + e, B + e do
not contain cycles so any cycles formed would be
in TA, TB.) Since TB ⊂ TA, the heaviest edge e′′

in the cycle in TB is no heavier than e′ in the cycle
in TA. Therefore,

C(TB) − C(TB+e) = C(e′′) ≤ C(e′)
= C(TA) − C(TA+e).

This completes the proof.

We emphasize that the proof of Lemma 3.1 does not
depend in any way on the distributions of the second
stage costs, in particular they can be correlated or in-
dependent. The dependency requirement is crucial in
the proof that the two-stage MST problem is (logn)-
hard to approximate [7]. The lemma thus gives the de-
sired gap-preserving reduction for supermodular mini-
mization from the two-stage MST problem;this may be
of independent interest to the study of two-stage stochas-
tic optimization, as it provides a connection between the
latter and (non-monotone) supermodular and concave
minimization.

Lemma 3.2. Supermodular minimization is (logn)-
hard to approximate, assuming P �= NP .

Next, we show that quasi-concave minimization is
also hard to approximate.

Theorem 3.3. Quasi-concave minimization is (logn)-
hard to approximate, assuming P �= NP .

Proof. Given a supermodular set function h defined on
the vertices of the unit hypercube in R

n (which we also
call 0-1-vectors), its Lovász extension f : R

n
+ → R is

defined as f(x) = h(0) +
∑n

i=1 λih(bi), where 0 is
the zero vector and x =

∑n
i=1 λibi is the unique rep-

resentation of x via a basis of increasing 0-1-vectors
b1 < b2 < ... < bn and λi ≥ 0. Lovász showed that h
is supermodular if and only if its extension f is concave
[15].

We will show that there is a gap-preserving reduc-
tion of (quasi-)concave minimization from supermodu-
lar minimization.

By Theorem 2.3, the minimum of a supermodular
set function and the minimum of its Lovász extension
over the unit hypercube will coincide. Therefore, a γ-
approximation of the minimum of a supermodular func-
tion is also a γ-approximation of the minimum of its cor-
responding Lovász extension.

Conversely, suppose we can approximate the min-
imum fmin of the Lovász extension f over the unit
hypercube within a factor of γ, namely we can find
x ∈ [0, 1]n such that f(x) ≤ γfmin. It follows by
the Caratheodory/Krein-Milman’s theorem [2] that x
is a convex combination of vertices of the hypercube,
namely x =

∑
i λixi where xi are 0-1-vectors and∑

i λi = 1, λi > 0. Since f is concave, γfmin ≥
f(x) ≥ ∑

i λif(xi), therefore for at least one hyper-
cube vertex xj , we have f(xj) ≤ γfmin. Therefore
xj would give a γ-approximation of the supermodular
function minimum, as desired.



4. Smoothed Analysis

In this section, we shall prove our main technical
lemma, Lemma 2.10. Our general method of proof is
motivated by the techniques used by Kelner and Spiel-
man to construct their polynomial-time simplex method
for linear programming. However, while the over-
all approach of bounding the combinatorial complexity
through volumetric arguments is the same, studying the
projection onto a subspace of dimension greater than
two inheres significant new technical difficulties. Re-
solving these requires us to analyze how the geometry
of the Grassmannian or the orthogonal group changes
under the change of coordinates induced by a fairly in-
tricate matrix decomposition.

As it will simplify our notation slightly, we shall
prove the lemma for the projection of a polytope onto
a (k + 1)-dimensional subspace instead of onto a k-
dimensional one.

At a high level, our proof is quite simple. We shall
begin by showing that every face of P has a fairly large
volume. We shall then show that this remains true about
the projection of P onto a ρ-perturbation of a (k + 1)-
dimensional subspace. As we have assumed that all of
P ’s coordinates are bounded above by some constant γ,
the surface area of the projection will be bounded above
by some constant depending on k and γ. Since we will
have a lower bound on the volume of each facet of the
projection, this will imply an upper bound on the total
number of facets, and thus on the total number of ver-
tices, as desired.

4.1. The Volume of Faces of P

We begin by providing a lower bound on the volume
of any face of P .

Lemma 4.1. Let P ⊂ R
n be a polytope with inte-

ger vertices. The (k-dimensional) volume of every k-
dimensional face of P is at least 1/k!.

Proof. Let F be the face in question, and suppose that
F is the convex hull of the vertices v1, . . . , vs ∈ R

n.
Since F is k-dimensional, there exists some set of
of (k + 1) of these vertices that does not lie in any
(k − 1)-dimensional affine subspace. Without loss of
generality, let this set consist of v1, . . . , vk+1. Since
conv(v1, . . . , vk+1) ⊆ conv(v1, . . . , vs), it suffices to
show that Volk(conv(v1, . . . , vk+1)) ≥ 1/k!.

We thus aim to bound the volume of a k-dimensional
simplex Σ with integer vertices. Translating the entire
simplex if necessary, we can also assume that vk+1 is

the origin. If V is the n × k matrix whose ith column
comprises the coordinates of vi, we have that

Volk(Σ) =
1
k!

√
det(V TV ).

We have assumed that Σ has nonzero volume, so
det(V TV ) �= 0. Since V TV is an integer matrix, its
determinant is an integer. Its absolute value is thus at
least 1, so Volk(Σ) ≥ 1/k!, as desired.

4.2. The Volume of Faces of the Projec-
tion

We now aim to show that the projection of a given
k-dimensional face F of an n-dimensional polytope P
onto a perturbed (k + 1)-dimensional subspace has a
sufficiently large volume, contingent upon F appearing
on the boundary of the projection. Conditioning on F
appearing on the boundary of the projection is a rather
subtle operation and will require quite a bit of work. In
order to do so, we shall require some fairly intricate ma-
chinery from random matrix theory.

The proof of this result is rather technical. In order
to provide some geometric intuition for why it should be
true, we shall begin by considering some simpler vari-
ants of the problem. In the first such variant, we shall
replace our perturbed subspace by a uniformly random
one, and we shall remove the conditioning constraint
that F appears on the boundary of the projection. We
shall then add our conditioning constraint back in but
still consider a uniformly random subspace. After that,
we shall progress to our final, most general version.

4.2.1 Projecting onto a Uniform Subspace with no
Conditioning

We begin with the following problem: we are given
some k-dimensional face F embedded in R

n, and we
choose a uniformly random (k + 1)-dimensional sub-
space S. The goal is to show that the ratio

Volk(πS(F ))
Volk(F )

is unlikely to be less than some inverse polynomial
bound, where πS denotes orthogonal projection onto S.

In this case, all that matters about F is the k-
dimensional affine subspace T that it spans, and we are
just trying to provide lower bounds on the determinant
of the projection map from T onto S. When k equals 1,
this amounts to understanding the length of the projec-
tion of a uniformly random unit vector onto some fixed



unit vector, which is a very well-analyzed question. In
this case, the expected length grows asymptotically like
1/

√
n. In the higher dimensional case at hand, this is a

well-studied question in random matrix theory (see [16],
for example) whose answer is given by

Γ
(

d+1
2

)
Γ

(
n−d+1

2

)
√
πΓ

(
n+1

2

) ≈ C(d)
1

nd/2
.

4.2.2 Projecting onto a Uniform Subspace with
Conditioning

When we project our polytope onto a lower-dimensional
subspace, not all of the faces appear on the boundary of
the projection. In order to analyze the expected volumes
of the faces that do appear, we must therefore condition
our probability estimates on the event that a given face
appears on the boundary of the projection. It is here that
we must deviate from previous smoothed analyses and
introduce more involved methods from geometry and
random matrix theory.

Let P ⊆ R
n be the set of points that satisfy a collec-

tion of m linear constraints,

P = {x | ai · x ≤ 1, i = 1, . . . ,m}.
For a k-dimensional face F of P and a (k + 1)-
dimensional subspace S, let AF (S) be the event that F
appears as a facet of the projection of P onto S. The fol-
lowing theorem provides a geometric criterion for when
AF (S) occurs:

Theorem 4.2. Let ai1 , . . . , ais be the constraints that
are satisfied with equality at all points of F , and let
C = pos(ai1 , . . . , aik

) be their positive hull. The event
AF (S) occurs if and only if the intersection C ∩ S �= ∅.

Proof. This follows from standard convex geometry,
contained for example in [3].

We note that for a generic polytope, there will be
s = n − k constraints that are tight at a k-dimensional
face, so the cone C will be (n − k)-dimensional. The
(n − k)-dimensional subspace spanned by C will thus
generically intersect the random (k + 1)-dimensional
subspace S in a 1-dimensional ray, and the question is
whether this ray lies in C. This will occur with a posi-
tive probability that is proportional to the k-dimensional
volume of the intersection of C with the unit sphere. In
order to condition on AF (S), we must therefore only
consider subspaces S that intersect C. In all that fol-
lows, we shall assume that n > 2k + 2. Since we are
assuming k is a constant and studying the asymptotics
as n gets large, this inheres no loss of generality.

Our goal is to bound the probability

Pr
S∈Gr(n,k+1)

[
Volk(πS(F ))

Volk(F )
≤ ε |AF (S)

]
.

By rotating our coordinate system if necessary, we
can take F parallel to the subspace span(e1, . . . , ek),
where the ei are our unit basis vectors. If V is an n ×
(k+1) matrix whose columns form an orthonormal basis

for S, and F =
[

Idk

0n−k

]
, then

Volk(πS(F ))
Volk(F )

=
√

det ((FTV )(FTV )T ),

and therefore

Pr
S∈Gr(n,k+1)

[
Volk(πS(F ))

Volk(F )
≤ ε |AF (S)

]
(2)

=

∫
Q∈O(n), Πk+1(Q)∩C �=∅√

det((FT Πk+1(Q))(FT Πk+1(Q))T )≤ε

1 dQ

∫
Q∈O(n), Πk+1(Q)∩C �=∅,

1 dQ
,

where C is defined as in the statement of Theorem 4.2,
and dQ denotes the Haar measure on O(n).

Right now, Q is being represented as an n × n ma-
trix. In this representation, it is rather difficult to de-
scribe which matrices meet the other conditions of inte-
gration, which makes it difficult to evaluate the integrals.
To remedy this, we shall change to a new coordinate sys-
tem on O(n) that is more conducive to this task. To do
so, we shall make use of a matrix decomposition known
as the generalized cosine-sine (CS) decomposition.

Theorem-Definition 4.3 ([9]). Let

Q =




[sizes k n−k

k+1 Q11 Q12

n−k−1 Q21 Q22

]


be an n× n orthogonal matrix. For any k ≤ n/2, there
exists a unique decomposition:

Q =




[sizes k+1 n−k−1

k+1 U 0
n−k−1 0 V

]


×







sizes k 1 k n−2k−1

k C 0 −S 0
1 0 1 0 0
k S 0 C 0

n−2k−1 0 0 0 Idn−2k−1









×




[sizes k n−k

k WT 0
n−k 0 ZT

]


where

• U , V , W , and Z are orthogonal matrices,

• S and C are positive diagonal matrices,

• the diagonal elements c1, . . . , cp of C are nonde-
creasing, and

• C2 + S2 = Idk.

We call this decomposition the generalized CS decompo-
sition ofQ. The angles θ1, . . . , θk such that cos(θi) = ci
are called the principal angles between the subspace
Πk+1(Q) and the subspace Πk(F).

Let

λi = cos2(θi).

We shall change coordinates so that our variables com-
prise λ1, . . . , λk along with the orthogonal matrices U ,
V , W , and Z .

Theorem 4.4. The Jacobian of the change of variables
described above is given by:2

dQ =
∏
i<j

(λj − λi)
k∏

i=1

(1 − λi)(n−2k−2)/2

× dλ1 . . . dλp dU dV dW dZ,

where dU , dV , dW , and dZ are the Haar measures on
the appropriate-dimensional spaces of orthogonal ma-
trices.

It is not difficult to see that

det
((FT Πk+1(Q)

) (FT Πk+1(Q)
)T

)
=

k∏
i=1

λi.

This allows us to reexpress the right-hand side of equa-

2We do not believe that this calculation has previously occurred in
the literature. Dumitriu asserted a value for it in her thesis [5], but the
claimed Jacobian stated there was incorrect. Due to space constraints,
we defer the proper computation to the full version of this abstract.

tion (2) as

∫
Π1(Z)∈C,
Q

i λi≤ε2

∏
i<j

(λj − λi)
k∏

i=1

(1 − λi)(n−2k−2)/2

× dλ1 . . . dλp dUdV dWdZ

∫
Π1(Z)∈C

∏
i<j

(λj − λi)
k∏

i=1

λi(1 − λi)(n−2k−2)/2

× dλ1 . . . dλp dUdV dWdZ

∫
Q

i λi≤ε2

∏
i<j

(λj − λi)
k∏

i=1

(1 − λi)(n−2k−2)/2

× dλ1 . . . dλp

= ∫ ∏
i<j

(λj − λi)
k∏

i=1

(1 − λi)(n−2k−2)/2

× dλ1 . . . dλp.

Let ζi = 1 − λi and write 	ζ = (ζ1, . . . , ζk) and 	ζ′ =
(ζ1, . . . , ζk−1) for brevity. By expanding the products in
the numerator and denominator and collecting terms, we
can rewrite the last expression in the string of equations
above as∫

Q
i(1−ζi)≤ε2

∑
t≥0

ζ
t+(n−2k−2)/2
k pt(	ζ′)d	ζ

∫ ∑
t≥0

ζ
t+(n−2k−2)/2
k pt(	ζ′)d	ζ

for some multivariate functions pt(	ζ′). Interchanging
the summation with the integration yields:

∑
t≥0

∫
Q

i(1−ζi)≤ε2
ζ

t+(n−2k−2)/2
k pt(	ζ′)d	ζ∑

t≥0

∫
ζ

t+(n−2k−2)/2
k pt(	ζ′)d	ζ

≤ max
t≥0

∫
Q

i(1−ζi)≤ε2
ζ

t+(n−2k−2)/2
k pt(	ζ′)d	ζ∫

ζ
t+(n−2k−2)/2
k pt(	ζ′)d	ζ

≤ max
t≥0

∫
(1−ζk)≤ε2/k ζ

t+(n−2k−2)/2
k pt(	ζ′)d	ζ∫

ζ
t+(n−2k−2)/2
k pt(	ζ′)d	ζ

= max
t≥0

∫ 1

ζk=1−ε2/k ζ
t+(n−2k−2)/2
k dζk∫ 1

ζk=0 ζ
t+(n−2k−2)/2
k dζk

≤ 1 − (1 − ε2/k)(n−2k)/2

≤ n− 2k
2

ε2/k,

where the maxima are taken over all t for which pt �= 0.



Remark 4.5. For simplicity of exposition, we have pro-
vided crude bounds on this integral that suffice to prove
Lemma 2.10. We defer more precise bounds to the full
version of this abstract.

4.3. The General Case

We now consider the fully general case described in
Lemma 2.10, where we examine the projection of P
onto a ρ-perturbation of an arbitrary (k+1)-dimensional
subspace, and we take ρ < 1/(n − 2k). This results in
a nonuniform probability density over the space of or-
thogonal matrices from which we draw Q; let µ be this
probability density. We aim to compute

Pr
S∈Gr(n,k+1)

[
Volk(πS(F ))

Volk(F )
≤ ε |AF (S)

]

=

∫

Q∈O(n), Πk+1(Q)∩C �=∅,√
det((FT Πk+1(Q))(FT Πk+1(Q))T )≤ε

µ(Q) dQ

∫
Q∈O(n), Πk+1(Q)∩C �=∅

µ(Q) dQ

=

∫
Π1(Z)∈C,
Q

i λi≤ε2

∏
i<j

(λj − λi)
k∏

i=1

(1 − λi)(n−2k−2)/2

× µ(λ1, . . . , λk, U, V,W,Z)
× dλ1 . . . dλp dUdV dWdZ∫

Π1(Z)∈C

∏
i<j

(λj − λi)
k∏

i=1

λi(1 − λi)(n−2k−2)/2

× µ(λ1, . . . , λk, U, V,W,Z)
× dλ1 . . . dλp dUdV dWdZ

.

We shall fix U , V , W , and Z arbitrarily and bound the
resulting ratio of integrals over the λi. Once we fix U ,
V , W , and Z , our density depends only on the λi, and
our expression becomes (in the notation of the previous
section):

∫
Q

i λi≤ε2

∏
i<j

(λj − λi)
k∏

i=1

(1 − λi)(n−2k−2)/2

× µ(λ1, . . . , λk) dλ1 . . . dλp∫ ∏
i<j

(λj − λi)
k∏

i=1

λi(1 − λi)(n−2k−2)/2

× µ(λ1, . . . , λk) dλ1 . . . dλp

=

∫
Q

i(1−ζi)≤ε2

∑
t≥0 ζ

t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ∫ ∑

t≥0 ζ
t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ

=

∑
t≥0

∫
Q

i(1−ζi)≤ε2 ζ
t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ∑

t≥0

∫
ζ

t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ

≤ max
t≥0

∫
Q

i(1−ζi)≤ε2
ζ

t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ∫

ζ
t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ

≤ max
t≥0

∫
(1−ζk)≤ε2/k ζ

t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ∫

(1−ζk)≤ρ ζ
t+(n−2k−2)/2
k pt(	ζ′)µ(	ζ)d	ζ

.

Suppose that µ is the density for a ρ-perturbation of
some fixed subspace S, given as the span of the first (k+
1) columns of an orthogonal matrixQ0. For fixed values
of ζ1, . . . , ζk−1, U , V , W , and Z , changing ζk by φ
causes dist(Q−1Q0, Id) to change by at most φ. By our
definition of a ρ-perturbation, this implies that

µ(ζ1, . . . , ζk−1, ζk) ≥ µ(ζ1, . . . , ζk−1, ζk + φ)/e

for any φ < ρ. Consequently there exists some density
µ′(ζ1, . . . , ζk−1) dependent only on the first k−1 of the
ζi such that

µ′(	ζ′)/e ≤ µ(	ζ) ≤ µ′(	ζ′).

This allows us to bound our probability by

max
t≥0

e
∫
(1−ζk)≤ε2/k ζ

t+(n−2k−2)/2
k pt(	ζ′)µ′(	ζ′)d	ζ∫

(1−ζk)≤ρ
ζ

t+(n−2k−2)/2
k pt(	ζ′)µ′(	ζ′)d	ζ

= max
t≥0

e
∫
(1−ζk)≤ε2/k ζ

t+(n−2k−2)/2
k dζk∫

(1−ζk)≤ρ
ζ

t+(n−2k−2)/2
k dζk

= emax
t≥0

ζ
t+(n−2k)/2
k

∣∣1
ζk=1−ε2/k

ζ
t+(n−2k)/2
k

∣∣1
ζk=1−ρ

≤ e
1 − (1 − ε2/k)(n−2k)/2

1 − (1 − ρ/2)(n−2k)/2

≤ O(1)
(n− 2k)ε2/k

(n− 2k)ρ
, as ρ < 1/(n− 2k)

= O(1)
ε2/k

ρ
,

where the maxima in all of the above expressions are
taken over the set of t for which pt �= 0.

4.4. Putting the Steps Together

In Section 4.1, we showed that every k-dimensional
facet of P has volume at least 1/k!. We then showed in
Section 4.3 that

Pr
S∈Gr(n,k+1)

[
Volk(πS(F ))

Volk(F )
≤ ε

∣∣∣∣AF (S)
]
≤O(1)

ε2/k

ρ
.



If Q is the projection of P onto S, combining the
two results above shows that the probability that any
given k-face of Q has volume less than ε/k!, contin-
gent upon this face appearing, is bounded above by
O(1)ε2/k/ρ. This implies that the expected volume of
any such face, contingent upon it appearing, is at least
(1/k!)(ρ/O(1))k/2.

The polytope Q is contained in a ball of radius γ
√
k.

Its surface area is therefore bounded above by the sur-
face area of this ball, which equals

2
π(k+1)/2

Γ((k + 1)/2)
(γ
√
k)k.

The surface area of Q equals the sum of the areas of its
facets, so we obtain:

2
π(k+1)/2

Γ((k + 1)/2)
(γ
√
k)k

≥
∑
F

E[Volk(πS(F ))|AF (S)] · Pr[AF (S)]

≥ (1/k!)(ρ/O(1))k/2
∑
F

Pr[AF (S)]

= (1/k!)(ρ/O(1))k/2 E[number of facets of Q].

Combining this with the fact that each facet of Q con-
tains only polynomially many vertices (since k is a con-
stant) yields Lemma 2.10.

5. Approximating low-rank concave mini-
mization

Here we show that the polynomial smoothed bounds
from Section 4 can be used to obtain a randomized fully-
polynomial additive approximation scheme for mini-
mizing low-rank concave functions under certain con-
ditions. Since the objective function may have a zero
minimum, the concept of multiplicative approximation
is not so meaningful. On the other hand the additive
approximation implies an arbitrarily good multiplicative
approximation for functions bounded below by a con-
stant or inverse polynomial. We also show that no poly-
nomial smoothed bounds are possible for general con-
cave minimization.

Theorem 5.1. There is a randomized fully-polynomial
time algorithm with additive approximation ε for any
ε > 0, for low-rank quasi-concave minimization over
a polynomially-bounded polytope, when the objective
function satisfies a Lipschitz condition with respect to

theL1-norm3 with a polynomially bounded Lipschitz co-
efficient ϕ(n).

Proof. Denote the given function f , then the Lipschitz
condition implies

|f(x) − f(y)| ≤ ϕ(n)|x− y|1 ∀x, y.

Further, the points in the feasible set satisfy |x|1 ≤ ψ(n)
some polynomial ψ, where |.|1 denotes the L1-norm.

Consider the following randomized polynomial-time
algorithm for minimizing f .

Repeat n times:
Perturb the function f to a new function f̄ and
run an algorithm for finding the minimum of f̄
for 2∆ steps, where ∆ is the expected smoothed
polynomial bound for finding the minimum of f .
If the algorithm terminates, return the minimum
of f̄ .

With probability at least 1−1/2n, this algorithm will
output f̄min = f̄(y) = f(Ry), which we will show
is very close to fmin. By definition of the perturbation
matrix R and the Lipschitz condition,

|f̄(x) − f(x)| = |f(Rx) − f(x)| ≤ ϕ(n)|(R − I)x|1
≤ ϕ(n)dist(R, I)|x|1 ≤ ϕ(n)ψ(n)ρ,

for every x in the feasible set, where dist(R, I) ≤ ρ
is the perturbation size. Thus for a perturbation ρ ≤
1/nl, where l is equal to the degree of the polynomial
ϕ(n)ψ(n) plus log(1/ε)

log n , we have that |f̄(x)− f(x)| ≤ ε

for all x and in particular, f̄min ≤ fmin + ε.

Note that for functions bounded below by 1, the
above theorem at once implies a randomized fully-
polynomial approximation scheme (with multiplicative
approximation factor 1 + ε).

Corollary 5.2. There is no smoothed polynomial-time
algorithm for general quasi-concave minimization, as-
suming RP �= NP .

Proof. Suppose contrarily that there is a smoothed ex-
pected polynomial-time algorithm. We will show that
this implies the existence of a randomized fully polyno-
mial approximation scheme for finding the minimum of
f , the Lovász extension of the objective function h from
Lemma 3.1, thereby contradicting theorem 3.3.

3We use the L1-norm to facilitate the corollary below, however the
theorem holds for more general metrics.



More precisely, we will work with the specific objec-
tive function h which is used in showing that the ran-
dom 2-stage MST problem is (logn)-hard to approxi-
mate [7]. We note that a modified version of the edge
costs in which infinite edge costs are replaced by costs
of n3 does not alter the proof of hardness of the 2-stage
MST, and thus the important property of the expected
spanning tree cost h for our purpose is that it takes val-
ues in a polynomially bounded interval: 1 ≤ h(x) ≤ n4

for all 0-1-vectors x.
Next, we show that the Lovász extension f of h sat-

isfies the Lipschitz condition

f(x) − f(y) ≤ 2n4|x− y|1,

where |.|1 is the L1 norm. By the definition of Lovász
extension, f is piecewise linear, thus the ratio

f(x) − f(y)
|x− y|1

is maximized when x, y are both on one of the linear
segments f0(x) =

∑
i cixi. Again from the definition

of f , we have c1 = f(bj1) and ci = f(bji) − f(bji−1)
for i = 2, ..., nwhere {bj1 , ..., bjn} is the basis for repre-
senting x in the Lovász extension definition. Therefore
|ci| ≤ 2n4.

Finally,

f(x) − f(y)
|x− y|1 =

∑
i cixi −

∑
i ciyi∑

i |xi − yi| ≤ max
i

|ci| ≤ 2n4.

Now applying Theorem 5.1 implies the result and we
get the desired contradiction.

The last corollary implies that our smoothed bounds
are tight, namely no polynomial smoothed bounds for
general concave minimization are possible.
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