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also be decoded by the better receiver. Once both receivers have re-
moved the digital component from the received signal, the problem be-
comes that of transmitting a Gaussian source over a Gaussian broadcast
channel. For this problem, analog transmission is optimal.

III. CONCLUSION

The distortion region for joint source–channel coding over the broad-
cast channel is yet unknown. Here we derived inner and outer bounds
for this region in one special case. These bounds are asymptotically
tight. In [13], we also discuss the case of dependentB andN .

We believe that some of the ideas we used can be developed further.
For example, consider a general analog source, which is quantized by
a vector quantizer. We can regard the quantizer output as the “digital”
part of the source, and the quantization error as the “analog” part. We
can then construct an encoding scheme, similar to the one presented
here, and analyze it with similar tools [15].
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Abstract—A multiple description (MD) lattice vector quantization tech-
nique for two descriptions was recently introduced in which fine and coarse
codebooks are both lattices. The encoding begins with quantization to the
nearest point in the fine lattice. This encoding is an inherent optimization
for the decoder that receives both descriptions; performance can be im-
proved with little increase in complexity by considering all decoders in the
initial encoding step. The altered encoding relies only on the symmetries of
the coarse lattice. This allows us to further improve performance without
a significant increase in complexity by replacing the fine lattice codebook
with a nonlattice codebook that respects many of the symmetries of the
coarse lattice. Examples constructed with the two-dimensional (2-D) hexag-
onal lattice demonstrate large improvement over time sharing between pre-
viously known quantizers.

Index Terms—Codebook optimization, high-rate source coding, lattice
vector quantization.

I. INTRODUCTION

By using the additional structure of a lattice codebook, lattice vector
quantizers can be implemented much more efficiently than their more
general counterparts. By labeling the points of a lattice with ordered
pairs of points in a sublattice, Servetto, Vaishampayan, and Sloane
(SVS) create the two descriptions of amultiple description(MD) lat-
tice vector quantizer that achieves similar performance gains over un-
constrained MD vector quantizers [1], [2]. However, these quantizers
turn out to be inherently optimized for the central decoder. This corre-
spondence describes the result of modifying the encoding and decoding
used by SVS to minimize a weighted combination of central and side
distortions, while keeping the index assignments generated by their el-
egant theory. This generalization creates a continuum of quantizers for
each SVS quantizer, improving the convex hull of operating points. It
does this while retaining most of the computational advantages of lat-
tice codebooks.

A. MD Coding

In an MD coding scenario, sequences of symbols are sent separately
on two or more channels. Each sequence of channel symbols is called
a description,and decoders are designed for each nonempty subset of
the descriptions. Such a system with two channels is depicted in Fig. 1.
This is a generalization of usual “single description” source coding.

We shall focus on the case in which the encoder receives an inde-
pendent and identically distributed (i.i.d.) sequence of source symbols
fXkg

K

k=1 to communicate to three receivers over two noiseless (or
error-corrected) channels. One decoder (thecentral decoder) receives
information sent over both channels while the remaining two decoders
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Fig. 1. Scenario for MD source coding with two channels and three receivers. The general case hasM channels and2 � 1 receivers, but we limit our attention
to the two-channel case shown.

(theside decoders) receive information only over their respective chan-
nels. The transmission rate over channeli is denoted byRi, i = 1; 2,
in bits per source sample. The reconstruction sequence produced by de-
coderi is denoted byfX(i)

k
gKk=1. Using a single-letter distortion mea-

sured, there are three expected average distortions

Di = E
1

K

K

k=1

d Xk; X
(i)
k

; for i = 0; 1; 2:

There are two main situations in which one might use MD coding.
The first is in a broadcasting or multicasting scenario, where receivers
can be categorized by the subset of the channels that they receive, and
one would like to control the qualities of source approximations avail-
able to each category. In this case, the three decoders shown in Fig. 1
represent different users. The second is in a point-to-point communica-
tion system, where there are several channels that either work perfectly
or fail completely to connect the sender to the receiver. If the receiver
knows which channels are working but the sender does not, MD coding
fits nicely. The decoders shown then represent different states of the re-
ceiver.

Two-channel MD coding was introduced as a theoretical problem in
Information Theory in 1979: Given a source and distortion measure,
what is the set of achievable quintuples(R1; R2; D0; D1; D2)? The
most important Shannon theory results were obtained by El Gamal and
Cover [3], Ozarow [4], Ahlswede [5], and Zhang and Berger [6]; these
are summarized in [7] and [8]. Theoretical results for MD coding with
more than two channels have only recently been put forth [9]–[11]. The
origins of MD coding lie in the “channel splitting” problem studied at
Bell Labs in the late 1970s. This history and many practical techniques
and applications are reviewed in [12].

The present work is more practical—it concerns generating MD
codes for continuous-valued sources in blocks of lengthK (K-dimen-
sional vector quantizers) that can be designed and implemented easily.
Entropy-coding of quantizer outputs is assumed, as is a moderate to
high rate and squared error distortion. Under these assumptions, the
MD lattice vector quantization (MDLVQ) technique of SVS [1] is a
very attractive way to produce two descriptions. The encoder does
a nearest neighbor search in a lattice� and then applies an index
assignment mapping̀ to get an ordered pair of descriptions in a
sublattice�0. The index assignment is constrained to make abundant
use of the symmetries of the system. The nearest neighbor search is
simple because of the lattice structure, and the index assignment` is
simple because of its many symmetries.

The techniques introduced in this correspondence are seemingly
minor modifications of the SVS technique; in fact, the mapping`—the
key to the SVS construction—is unchanged. However, by introducing
greater flexibility in the encoder (not necessarily encoding to the
nearest element of�) and codebook (keeping�0 a lattice but reducing
restrictions on�), more potential operating points are created. These
changes increase the encoding and design complexities, but these

complexities remain much lower than if no lattices are used, as in [13].
With the slight increase in complexity, the convex hull of the operating
points is improved. Attention here is limited to two channels, but
the modifications could be applied to MDLVQ for any number of
channels. Some examples of index assignments for three channels are
given in [14].

The remainder of this correspondence is organized as follows.
Section II describes how lattice codebooks simplify vector quantiza-
tion (VQ) encoding and reviews the SVS technique for two-channel
MDLVQ. The effects of changing the encoder without changing the
codebooks are explored in Section III. The improvements afforded
by altering only the encoding motivate the iterative improvement of
the codebooks discussed in Section IV. In all cases, the alterations
are demonstrated with two-dimensional (2-D) MDLVQs based on the
hexagonal lattice. This makes it possible not only to show numerical
improvements, but to visualize the changing encoder partitions. As in
the work of SVS, the analyses and computations are based on a high
rate assumption. Applying MDLVQ at low rates revealed advantages
to the modified encoding, which are discussed in Section VI. This
should not be overemphasized, however, because lattice constraints are
less beneficial at low rates. Section VII summarizes the contributions.

II. MD L ATTICE VQ

The complexity of source coders—even single description ones—
can grow very quickly with the dimensionK. Assume for the moment
fixed-rate source coding at rateR bits per component. Handling vectors
of dimensionK all at once implies having a codebook with2RK en-
tries. An exhaustive search through such a codebook to find the nearest
codeword has complexity exponential inK andR. Methods that re-
duce the number of operations needed to find the nearest codeword re-
quire more storage [15]. To reduce complexity, it is common to either
constrain the codebook so that searching for the nearest codeword is
much simpler or use a search technique that does not necessarily find
the nearest codeword.

Using a codebook that is a lattice or a large subset of a lattice is called
lattice VQ(LVQ). LVQ greatly simplifies optimal encoding; for the lat-
tices considered in [16], the complexity of encoding is proportional to
K,K logK, orK2 logK—much better than exponential complexity.

For moderate- or high-rate, entropy-constrained VQ, LVQ is attrac-
tive even without invoking complexity issues. Using high-resolution
analysis, it can be shown that the optimal quantizer point density is
constant.1 For scalar quantization, this gives the optimality of uniform
quantization first observed by Gish and Pierce [18]. Evenly spaced
(scalar) codewords give the only one-dimensional (1-D) lattice. For
vectors, constant point density leaves room for lattice and nonlattice
solutions. Gersho [19] conjectured that at high rates, the optimal quan-
tizer for a uniformly distributed random variable induces a partition that
is a tessellation. This conjecture, which remains open, suggests there
is no performance loss in limiting attention to LVQ.

1For details, see [17].
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For our purposes, it is sufficient to understand that the distortion of
entropy-constrained LVQ with lattice codebook�, under high-resolu-
tion assumptions, can be approximated as

D(R) = G(�)22h(X)2�2R (1)

whereh(X) is the differential entropy of the source. In this formula

G(�) =
1

K
V
kxk2 dx

V
dx

(K+2)=K

is called thedimensionless second momentof the lattice and

V0 = fx 2 K : kx� �k � kxk for all � 2 �g

is the Voronoi cell of the origin. The importance of (1) is that it sepa-
rates the influences of rate, source, and lattice.

We will be concerned only with how the lattice and variations thereof
affect distortion. We consider only the distortion in one representa-
tive cell assuming a uniformly distributed source. (Having an approx-
imately uniform distribution over any single small cell is part of the
high-resolution assumption.) The assignment of binary strings to code-
words (entropy coding) is ignored, as it affects only the rate.

A. The SVS Technique

Single description LVQ with a lattice� is described by an encoder
mapping�: K ! � such that� = �(x) = argminy2� kx� yk. In
order to produce two descriptions, SVS introduce two new elements.

1) A sublattice�0 of� that is geometrically similar to�. Geometric
similarity means that�0 = c�U for some positive scalarc and
some orthogonal matrixU . In addition, no elements of� should
lie on the boundaries of Voronoi regions of�0. Examples of ad-
missible sublattices are shown in Fig. 2.�0 is called thecoarse
latticeand� thefine lattice.An important parameter of the con-
struction is theindexN = j�=�0j of the sublattice. The index
is the number of elements of the fine lattice in each Voronoi cell
of the coarse lattice. Note also that the points in the Voronoi cell
are classified into orbits; any two points in an orbit are related by
an automorphism of�0.

2) An injective index assignment mapping`: � ! �0 � �0. The
generation of̀ exploits symmetries of�0, so ` can be imple-
mented efficiently.

An ordered pair of descriptions is generated by composing the two
mappings

(�01; �
0

2) = `(�) = `(�(x)):

Becausè is injective, the central decoder can compute

x̂(0) = `�1(�01; �
0

2) = �

which is the element of the fine lattice� closest tox. The side decoders
are identity mappings, so thatx̂(i) = �0i, i = 1; 2.

As long as the index assignment is an injection, the central distortion
is fixed by the fine lattice. The side distortions, however, depend on the
index assignment. Of course, since the side distortionDi depends on
the distance betweenx and�0i, the goal should be to make�01 and�02
as close to� as possible.

(a)

(b)

(c)

Fig. 2. Examples of geometrically similar sublattices. All the marked points
are in the lattice�, and the heavier points are also in the sublattice� . (a)
lattice and index-5 sublattice. Each Voronoi cell of� has one four-point orbit
of elements of�. (b) A (hexagonal) lattice and index-7 sublattice. There is
one six-point orbit. (c)A (hexagonal) lattice and index-13 sublattice. There
are two orbits with six points each.

A first guess may be to make�01 and�02 the elements of�0 closest
to �. This will not work, except with indexN = 1 (�0 = �), because
` will not be invertible. In general, the side distortion with the best
assignment̀ increases monotonically with the indexN . Examples of
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(a)

(b)

(c)

Fig. 3. Examples of optimal index assignments. The neighborhood of the
origin is shown, and only points relevant to the encoding of points in the
Voronoi cell (with respect to� ) of the origin are labeled. Singlet and doublet
labels give names to points of� and �, respectively. (a) lattice and
index-5 sublattice. (b)A (hexagonal) lattice and index-7 sublattice [1]. (c)
A (hexagonal) lattice and index-13 sublattice.

optimal assignments are shown in Fig. 3. All further examples are based
on theA2 lattice and index-7 or index-13 sublattice with the assignment
shown in Fig. 3(b) or (c). For details on the optimization of`, the reader
is referred to [1], [2].

The original SVS work considers only the design of index assign-
ments that produce equal side distortions from equal-rate channels (the
balancedcase). The unbalanced case was explored by Diggavi, Sloane,
and Vaishampayan [20]. Only the balanced case is considered explic-
itly here, though the principles apply equally well to the unbalanced
case.

Let us now use the index assignment in Fig. 3(b) to reiterate the
steps in MDLVQ. The first step is to quantize a source vectorx to the
nearest element of�, which we call�. For example, the nearest fine
lattice point may be the one labeledca . This label is an ordered pair of
names of points of�0. The labelc is sent on Channel 1 anda is sent
on Channel 2. The central decoder usesc anda, known in their proper
order, to determine�. The first and second side decoders reconstruct
to c anda, respectively, which are nearby points in the coarse lattice.

The sublattice index fixes the resolution of�0 relative to the reso-
lution of�. The index assignment then determines the maximum dis-
tance between�0

1 and�0

2 when(�0

1; �
0

2) = `(�). It is desirable for
this maximum distance to be small because it reflects the quality of the
side reconstructions. For example, with the index-7 sublattice labeling
shown in Fig. 3(b), each side decoder finds, at worst, the sublattice
point second closest to� (at worst third closest tox); in the index-13
case shown in Fig. 3(c), a side reconstruction can be as bad as the fourth
closest to� (fifth closest tox).

B. Choosing the Scaling and Sublattice Index

As initially presented, the fine lattice� and, hence, the central dis-
tortionD0 are fixed. The choice of�0 and` determine the rates and
side distortions. We could equally well require the rates to remain con-
stant and study the tradeoff between central and side distortions. Since
the sublattice indexes are sent independently over the two channels,
the rates are given byRi = H(�0

i). To keep the rates constant asN
is varied, we may assume that� and�0 are scaled to maintain a fixed
distance between neighbors in�0.

Starting with theA2 lattice, SVS have computed optimal index as-
signments for all admissible sublattice indexes up to127. Keeping the
rates fixed and normalizing the distortions in a manner discussed below
gives the operating points shown in Fig. 4. Added to the SVS data is
a point labeled “N = 1” which represents repeating the same infor-
mation over both channels. The distortions are normalized to 0 dB for
N = 1. In this log–log plot, the SVS operating points lie approximately
on a straight line, confirming that the productD0D1 is approximately
constant. Repeating information on both channels is several decibels
worse.

The relative importance of central and side distortions depends on
the application. Yet we assert thatgenerally it is the low indexes that are
important.As demonstrated in Fig. 4, the gap between central andside
distortions grows quickly as the index is increased. At index13, the
central and side distortions differ by 16.8 dB. With a larger gap, it seems
unlikely that central and side distortions can both be low enough for
a useful representation yet neither so low that rate has been wasted.
When the sublattice index is low, the modifications proposed here do
not greatly increase encoding complexity.

One reasonable way to choose the sublattice index is to minimize a
weighted average of central and side distortions. Let

Dp =
1� p

1 + p
D0 +

p

1 + p
(D1 +D2) (2)
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Fig. 4. Operating points of MDLVQ for theA (hexagonal) lattice.
Distortions are normalized to 0 dB when a description is repeated over both
channels. Marked points, taken from [1, Fig. 4], are optimal for the given
indexN . (N = 1 is not allowed in [1], but simply indicates the repetition of
information on both channels.) The modified encoding of Section III, applied
with N = 7 andN = 13, gives the two indicated continuums of operating
points; these are improved by the optimizations of Section IV.

Fig. 5. The sublattice index that minimizesD as a function of the parameter
p for the 2-D hexagonal lattice.

with p 2 [0; 1]. The form of (2) is inspired by the interpretation that
if descriptions are lost independently with probabilityp thenDp is the
expected distortion conditioned on receiving at least one description.
Fig. 5 shows the best index (for a sublattice ofA2) among the range of
indexes considered in [1] as a function ofp. Note the transition from
N = 13 to N = 7 at p � 0:0185. Index7 and index1 (repetition)
are optimal for allp > 0:0185, confirming that the low indexes are the
interesting ones.

III. A LTERING THE ENCODING: MORE AND BETTER

OPERATING POINTS

By optimizing the sublattice index, we have done all we can to mini-
mizeDp within the constraints of MDLVQ. However, allowing greater
flexibility in the encoder and decoder makes it possible to reduceDp.

First, we keep�, �0, `, and the decoder unchanged and change only
the encoding rule.

Once the possibility of change is raised, the optimal encoder is ob-
vious. The SVS encoder first finds the nearest fine lattice point� 2 �;
i.e., it minimizeskx � �k2 = kx � x̂(0)k2 for every samplex. The
optimal encoder minimizes

1� p

1 + p
x� x̂

(0)
2

+
p

1 + p
x� x̂

(1)
2

+ x� x̂
(2)

2

for every samplex. Introducing the notatioǹ(�) = (`1(�); `2(�)),
the optimal encoder is

�p(x) = argmin
�2�

1� p

1 + p
kx� �k2

+
p

1 + p
(kx� `1(�)k

2 + kx� `2(�)k
2) : (3)

Similar optimal encoders can be found for objective functions other
thanDp.

Except in the trivial case, whereN = 1, � = �0, and` is the diag-
onal map, encoder (3) is more complex than the SVS encoder. However,
the increase in complexity depends on the indexN and, as we have ar-
gued, small indexes are very often best. In theA2 lattice, index-7 ex-
ample,�p can be implemented by quantizing to the nearest point in�0

and searching among 13 possibilities. The search itself is very simple.
Furthermore, this search procedure can be made even more efficient for
largeN by using the symmetries of the system [21].

The first and fourth columns in Fig. 6 are the partitions induced by�p
for a few values ofp. With p = 0, the encoder is precisely the SVS en-
coder and the partition is into Voronoi cells of�. Asp increases, certain
“central” cells emerge that are larger than the others. These are the cells
of fine lattice points that also lie on the sublattice. The change in shape
is intuitive: as more weight is placed on the side reconstructions, it be-
comes advantageous to quantize to the points with`1(�) = `2(�) = �;
the remaining points (those in�n�0) have either largekx� `1(�)k or
largekx � `2(�)k. Forp = 1, the encoder uses the Voronoi partition
of �0.

Sincep can be chosen independently of all the other components of
the system, encoding with (3) gives a continuum of operating points
for each SVS quantizer. ForA2 in the index-7 and -13 cases, these
operating points are given by the curves in Fig. 4. They are repeated
on a linear scale in Fig. 7. (They are the top curves in each graph.)
Note that the performance is much better than time sharing between
the SVS points and repetition. In addition to minimizingDp over a
wider class of quantizers, the convex hull of(D0; D1) operating points
is improved; thus, almost any objective function of interest should be
reduced including the productD0D1 by which MD systems are often
measured.

IV. A LTERING THE DECODING: FURTHERIMPROVEDPERFORMANCE

Once we have replaced the SVS encoder� with slightly more com-
plicated encoding, performance can be improved further with almost no
change in encoding and decoding complexity. The encoder is optimal
given the decoders, but all the decoders are not optimal. As demon-
strated by the first and fourth columns of partition diagrams in Fig. 6,
the side decoders are optimal but the central decoder is not.

The points in� n �0 are not at the centroids of their corresponding
cells. The central decoder should be adjusted to reconstruct these cells
to their centroids. This requires only a single displacement to be stored
for each orbit. ForA2 in the index-7 and -13 cases, the improvement
is shown by the middle curves of Fig. 7.
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Fig. 6. Partitions created by MDLVQ and the three modified versions proposed in this correspondence for various values of the parameterp. Underlying all the
partitions is the hexagonal lattice and the optimal index assignments of SVS. For each value of the sublattice indexN , the left column shows the partitioning
with modified encoding, the middle column gives the same partition with centroid reconstructions marked, and the right column shows the result of an iterative
optimization of the points in� n� . In each diagram, a dotted hexagon demarkates a fundamental cell that tiles. An animated version of this figure, with many
more values ofp, can be found at http://lcavwww.epfl.ch/~goyal/MDVQ/.

Of course, altering the central decoder necessitates a corresponding
alteration of the encoder. We are lead to an iterative design as is typical
in VQ. Note that the steps of the iteration are very simple; because of
symmetries, there is just a single displacement to be tracked for each

orbit. In theA2 index-7 and -13 cases, the convergence is very fast.
The performance is shown by the bottom curves in Fig. 7 and a few
sample encoder partitions are shown in the third and sixth columns of
Fig. 6. Note in particular that the index-13 quantizers are identical to
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(a)

(b)

Fig. 7. Demonstrations of improved performance with theA lattice and (a)
N = 7 or (b)N = 13. As in Fig. 4, distortions are normalized to 0 dB when a
description is repeated over both channels. The top (worst) curves arise from
using only the improved encoding with the original lattice (minimization of
D ). The middle curves are obtained by also improving the central decoder.
Iteratively optimizing the points in� n � and the central decoder gives the
bottom (best) curves.

the index-7 quantizers forp > 0:047; outer orbit cells, labeledha , ai ,
ja , etc., in Fig. 3(c), become empty because the corresponding coarse
lattice points are far.

Because the sublattice points are not altered, the encoding com-
plexity is hardly changed. For example, in theA2, index-7 case, the
encoder can again quantize to the nearest element of�0 and then
search among 13 possibilities.

V. ASSESSING THEIMPROVEMENT

Thus far, we have explored one method for obtaining a variety of
MDLVQs: Start with a lattice� and vary the index of the sublattice
�0. (Given�0, there is nothing to be gained from looking at suboptimal
index assignments mappings.) From each of these discrete MDLVQs,
the methods of Sections III and IV generate a continuum of MD VQs

Fig. 8. Estimating the improvement in distortion productD D from the
optimization of� n � in Section IV. Since distortions are plotted in decibels,
straight lines with slope�1 have constantD D . The dotted line passes
through the SVS index-7 point and the solid line is tangent to the operating
points obtained in Section IV. The improvement is approximately 0.33 dB.

that are superior to time sharing between the given MDLVQ and repe-
tition of one description over both channels. (Repetition can be put in
the notation of MDLVQ with�0 = � and`(�) = (�; �).)

An alternative to our modifications is to choose a different starting
lattice�2. This will give another set of MDLVQs. If the dimension-
less second moment of the new lattice is lower than that of the old lat-
tice, most of the new operating points will be better than corresponding
points in the convex hull of the original operating points. In fact, the
decrease in the distortion productD0D1 is approximately the ratio of
the dimensionless second momentsG(�2)=G(�) [2]. The weakness of
this approach is that reducing the dimensionless second moment will
generally require an increase in vector dimension, which will increase
the complexities of designing̀and encoding. Furthermore, the reduc-
tion of the dimensionless second moment with increasing vector di-
mension is slow [17], [22].

Between increasing the lattice dimension and straying from lattice
encoding, which will improve performance with a lesser increase in
complexity? Since we have no way to relate the improvements obtained
in Sections III and IV toG(�) or the dimensionK, it is hard to come
to any conclusions without designing and implementing both.

Since a complete understanding of the complexity–performance
tradeoff continues to elude us, we conclude this section with an
observation based on theA2 lattice examples. Fig. 8 reveals the
reduction in distortion productD0D1 obtained in Section IV.2 The
peak reduction is about 0.33 dB, and it appears that it would increase
and hold valid for a larger range of operating points if index-19
quantizers were generated. To crudely relate this improvement to an
equivalent increase in dimension, note thatG(E6) is approximately
0.33 dB lower thanG(A2) [22]; i.e., the improvement is roughly the
same as that of changing� to the best known six-dimensional lattice.

VI. L OW-RATE PERFORMANCE

At low rates, (1) does not accurately estimate the performance of
LVQ and, likewise, MD quantization systems cannot be analyzed on
the basis of second moments alone. Rate and distortion computations

2This figure puts the data from Fig. 7 on a log–log scale so that lines with
slope�1 have constantD D . Compare to Fig. 4 to see the improvement from
Section III to IV.
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are difficult because they require integrations involving the source den-
sity over each partition cell. Thus, one must usually be satisfied with
simulations.

In work reported in [21] and [23], MDLVQ and the modified ver-
sion proposed in this correspondence were applied to psychoacousti-
cally prefiltered audio signals. Although the lattice scale relative to the
variance of the source was not very fine, the central and side distor-
tions varied with the parameterp as predicted by the high-resolution
theory. In addition, the actual rates decreased relative to the predicted
rates asp was increased. Thus, the advantage of the proposed method
over the original SVS method was greater than predicted by high-res-
olution analysis.

This phenomenon is explained by Fig. 6, assuming the source density
is peaked at the origin and the partition diagrams are centered at the
origin. As p is increased, the probability of the central cell increases.
Thus, the densities of the descriptions (the discrete variables`i(�p(x)),
i = 1; 2) become more peaked and the rates decrease.

VII. CONCLUSION

This correspondence introduces a method for two-channel MD
coding that generalizes the MDLVQs developed by Servetto, Vaisham-
payan, and Sloane (SVS) [1]. SVS use a fine lattice� and a coarse
sublattice�0. The new method uses the index assignments of SVS and
a coarse lattice�0, but allows the finer codebook� to deviate from a
lattice. The overall result is a continuum of operating points to replace
each discrete operating point of SVS and an improved convex hull of
operating points.

The increase in complexity is not at all comparable to the increase
that would be incurred by doing away with lattices altogether. Uncon-
strained techniques like those in [13] have complexity exponential in
dimension and rate. As in the cases of LVQ and MDLVQ, the com-
plexity of the proposed techniques does not depend at all on the rate.
Using fast encoding techniques of LVQ, the dependence on dimension
becomes much milder as well.

The principles applied in generalizing the SVS technique apply to
unbalanced two-channel MD quantizers, as in [20], and to any number
of channels.
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