
LINEAR ALGEBRA

and Learning

from Data

First Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

math.mit.edu/weborder.php (orders)

math.mit.edu/∼gs

www.wellesleycambridge.com

email: linearalgebrabook@gmail.com

Wellesley - Cambridge Press

Box 812060

Wellesley, Massachusetts 02482



Solutions to Exercises 1

Problem Set I.1, page 6

1 A combination of u,v, and u + v (vectors in R4) produces

u+ v − (u + v) = 0
[
u v u+ v

]



1

1

−1


= 0 Ax = 0

A is 4 by 3, x is 3 by 1, 0 is 4 by 1. Your example could use numerical vectors.

2 Suppose Ax = Ay. Then if z = c (x − y) for any number c, we have Az = 0. One

candidate is always the zero vector z = 0 (from the choice c = 0).

3 We are given vectors a1 to an in Rm with c1a1 + · · ·+ cnan = 0.

(1) At the matrix level Ac =
[
a1 . . . an

]
c = 0, with the a’s in the columns

of A, and c’s in the vector c.

(2) At the scalar level this is

n∑

j=1

aijcj = 0 for each row i = 1, 2, . . . ,m of A.

4 Two vectors x and y out of many solutions to Ax = 0 for A = ones(3, 3) are




1 1 1

1 1 1

1 1 1







1

1

−2


 =




0

0

0


 and




1 1 1

1 1 1

1 1 1







3

−3

0


 =




0

0

0




These vectors x = (1, 1,−2) and y = (3,−3, 0) are independent. But there is no 3rd

vector z with Az = 0 and independent x,y, z. (If there were, then combinations of

x,y, z would say that every vector w solves Aw = 0, which is not true.)

5 (a) The vector z = (1,−1, 1) is perpendicular to v = (1, 1, 0) and w = (0, 1, 1).

Then z is perpendicular to all combinations of v and w—a whole plane in R3.

(b) u = (1, 1, 1) is NOT a combination of v and w. And u is NOT perpendicular to

z = (1,−1, 1) : Their dot product is uTz = 1.



2 Solutions to Exercises

6 If u,v,w are corners of a parallelogram, then z = corner 4 can be u + v − w or

u − v +w or −u+ v +w. Here those 4th corners are z = (4, 0) or z = (−2, 2) or

z = (4, 4).

Reasoning : The corners A,B,C,D around a parallelogram have A+ C = B +D.

7 The column space of A =
[
v w v + 2w

]
consists of all combinations of v and w.

Case 1 v and w are independent. Then C(A) has dimension 2 (a plane). A has rank 2

and its nullspace is a line (dimension 1) in R3 : Then 2 + 1 = 3.

Case 2 w is a multiple cv (not both zero). Then C(A) is a line and the nullspace is a

plane : 1 + 2 = 3.

Case 3 v = w = 0 and the nullspace of A (= zero matrix) is all of R3 : 0 + 3 = 3.

8 A =




1 4 9

1 4 9

1 4 9


 =




1

1

1




[
1 4 9

]

= rank−1 matrix.

9 If C(A) = R3 then m = 3 and n ≥ 3 and r = 3.

10 A1=




1 3 −2

3 9 −6

2 6 −4


 has C1=




1

3

2


 A2=




1 2 3

4 5 6

7 8 9


 has C2=




1 2

4 5

7 8




11 A1 = C1R1 =




1

3

2




[
1 3 −2

]

A2 = C2R2 =




1 2

4 5

7 8





 1 0 −1

0 1 2




12 The vector (1, 3, 2) is a basis for C(A1). The vectors (1, 4, 7) and (2, 5, 8) are a basis

for C(A2). The dimensions are 1 and 2, so the ranks of the matrices are 1 and 2. Then

A1 and A2 must have 1 and 2 independent rows.

13 An example is A =




1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0




. Then C and R are 4 by 2 and 2 by 4.



Solutions to Exercises 3

14 A =


 1 0

1 0


 and B =


 0 2

0 2


 or B =


 0 2 5

0 2 5


 have the same column

spaces but different row spaces. The basic columns chosen directly from A and B are

(1, 1) and (2, 2). The rank=number of vectors in the column basis must be the same (1).

15 If A = CR, then the numbers in row 1 of C multiply the rows of R to produce row 1

of A.

16 “The rows of R are a basis for the row space of A” means : R has independent rows,

and every row of A is a combination of the rows of R.

17 A1=




0 1

0 1

1 1

1 1





 1 1 0 0

0 0 1 1




= C1R1 A2=


C1

C1



[
R1

]

A3=


C1

C1



[
R1 R1

]

18 If A = CR then


 0 A

0 A


 =


 C

C



[
0 R

]

19 A =




1 3 8

1 2 6

0 1 2


→




1 3 8

0 −1 −2

0 1 2


→




1 0 2

0 −1 −2

0 1 2


→




1 0 2

0 −1 −2

0 0 0


→




1 0 2

0 1 2

0 0 0


 =

same row

space as A.
Remove the zero row to see R in A = CR.

20 C =


 2

3


 gives CTC =

[
13

]
. R =

[
2 4

]
produces RRT =

[
20

]
.

A =


 2 4

3 6


 produces CTART =

[
130

]
. Then M = 1

13

[
130

]
1
20 =

[
1

2

]
.



4 Solutions to Exercises

21 CTC =


 1 1 0

3 2 1






1 3

1 2

0 1


 =


 2 5

5 14


 has (CTC)−1 =

1

3


 14 −5

−5 2




RRT =


 1 3 8

1 2 6







1 1

3 2

8 6


 =


 74 55

55 41


 has (RRT)−1 =

1

9


 41 −55

−55 74




CTART =


 1 1 0

3 2 1







1 3 8

1 2 6

0 1 2







1 1

3 2

8 6


 =


 2 5 14

5 14 38







1 1

3 2

8 6


 =


 129 96

351 261




M =
1

3


 14 −5

−5 2




 129 96

351 261


 1

9


 41 −55

−55 74


 = ?

22 If


 a b

c d


 =


 a ma

c mc


 then ad− bc = mac−mac = 0 : dependent columns !

23




2 4

2 4

2 4


=CR =




2

2

2




[
1 2

]

=




2

2

2




[
1
2

][
2 4

]

=
CMR

(row of R from A)

24




2 0

0 2

0 0


= CR =




2 0

0 2

0 0





 1 0

0 1



=




2 0

0 2

0 0







1
2 0

0 1
2




 2 0

0 2



= CMR



Solutions to Exercises 5

Problem Set I.2, page 13

1 A
[
x y

]
=
[
0 0

]
where B=

[
x y

]
is n by 2 and C=

[
0 0

]
is m by 2.

2 Yes, abT is an m by n matrix. The number aibj is in row i, column j of abT. If b = a

then aaT is a symmetric matrix.

3 (a) AB = a1b
T
1 + · · ·+ anb

T
n

(b) The i, j entry of AB is

n∑

k=1

aikbkj .

4 If B has one column
[
b1 . . . bn

]T
then AB = a1b1+ · · ·+anbn = combination

of the columns of A (as expected). Each row of B is one number bk.

5 Verify (AB)C = A (BC) forAB =


 1 a

0 1




 b1 b2

b3 b4


 =


 b1 + ab3 b2 + ab4

b3 b4




and BC =


 b1 b2

b3 b4




 1 0

c 1


 =


 b1 + cb2 b2

b3 + cb4 b4


 AB was row ops

BC was col ops

Row ops then col ops


 b1+ab3 b2+a2b4

b3 b4




 1 0

c 1


=


 b1+ab3+cb2+acb4 b2+ab4

b3+cb4 b4




Col ops then row ops


 1 a

0 1




 b1+cb2 b2

b3+cb4 b4


=


 b1+ab3+cb2+acb4 b2+ab4

b3+cb4 b4


 SAME

If A,C were both row operations, (AC)B = (CA)B would usually be false.

6 B = I has rows b1, b2, b3 = (1, 0, 0), (0, 1, 0), (0, 0, 1). The rank-1 matrices are

a1b1 =
[
a1 0 0

]
a2b2 =

[
0 a2 0

]
a3b3 =

[
0 0 a3

]
.

The sum of those rank-1 matrices is AI = A.

7 If A =


 1 2

3 4


 and B =


 0 0

1 0


 then AB =


 2 0

4 0


 has a smaller column

space than A. Note that (row space of AB) ≤ (row space of B).

8 For k = 1 to n

For i = 1 to m

For j = 1 to p



6 Solutions to Exercises

Problem Set I.3, page 20

1 If Bx=0 then ABx=0. So every x in the nullspace of B is also in the nullspace of

AB.

2 A =


 0 1

0 0


 has A2 =


 0 0

0 0


 and the rank has dropped.

But ATA =


 0 0

1 0




 0 1

0 0


=


 0 0

0 1


 has the same nullspace and rank as A.

3 If C =


 A

B


 then Cx = 0 requires both Ax = 0 and Bx = 0. So the nullspace of

C is the intersection N(A) ∩ N(B).

4 Actually row space = column space requires nullspace of A = nullspace of AT. But it

does not require symmetry. Choose any invertible matrix like A =


 1 2

3 4


.

5 r = m = n A1 is any invertible square matrix

r = m < n A2 has extra columns like A2 =


 1 0 0

0 1 1




r = n < m A3 has extra rows like AT
2

r < m, r < n A4 =


 1 0

0 0


 or


 1 2

1 2


 or


 1 2 3

1 2 3


.

6 First, if Ax = 0 then ATAx = 0. So N(ATA) contains (or equals) N(A).

Second, if ATAx = 0 then xTATAx = 0 and ||Ax||2 = 0. Then Ax= 0 and N(A)

contains (or equals) N(ATA). Altogether N(ATA) equals N(A).

7 A =


 0 1

0 0


 and A2 =


 0 0

0 0


 have different nullspaces.

8 A=


 0 1

0 0


has C(A)=N(A)=all vectors


 x1

0


. But C(A)=N(AT) is impossible.
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9

4 5

21
3

5 nodes

8 edges

Ax=0 for x=




1

1

1

1

1




Columns 1 to 5 are dependent

Columns 1 to 4 are independent

Incidence matrix A =




−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

0 −1 1 0 0

0 −1 0 0 1

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1




has rank 4

N(A) has dimension 1

N(AT) has dimension 4

8− 4 = 4 small loops

10 If N(A) = {0}, the nullspace of B =
[
A A A

]
contains all vectors




x

y

z


 with

x+ y + z = 0.

11 (i) S ∩ T has dimension 0, 1, or 2

(ii) S + T has dimension 7, 8, or 9

(iii) S⊥ = (vectors perpendicular to S) has dimension 10− 2 = 8.



8 Solutions to Exercises

Problem Set I.4, page 27

1


 2 1

6 7


 =


 1 0

3 1




 2 1

0 4







1 1 1

1 1 1

1 1 1


 =




1 0 0

1 1 0

1 0 1







1 1 1

0 0 0

0 0 0







2 −1 0

−1 2 −1

0 −1 2


 =




1 0 0

−1/2 1 0

0 −2/3 1







2 −1 0

0 3/2 −1

0 0 4/3




2 aij = ai1a1j/a11 Check A =


 2 3

4 6


 and a22 = (4)(3)/(2).

If a11 = 0 then the formula breaks down. We could still have rank 1.

3 EA = U is




1 0 0

0 1 0

−3 0 1







2 1 0

0 4 2

6 3 5


 =




2 1 0

0 4 2

0 0 5




A = LU is




2 1 0

0 4 2

6 3 5


 =




1 0 0

0 1 0

3 0 1







2 1 0

0 4 2

0 0 5


 Note L = E−1

4 E2E1 =




1 0 0

0 1 0

0 −c 1







1 0 0

−a 1 0

−b 0 1


 =




1 0 0

−a 1 0

ac− b −c 1




ac− b mixes

the multipliers

E−1
1 E−1

2 =




1 0 0

a 1 0

b 0 1







1 0 0

0 1 0

0 c 1


 =




1 0 0

a 1 0

b c 1




In this order the

multipliers fall

into place in L
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5 If zero appears in a pivot position then A = LU is not possible. We need a permutation

P to exchange rows and lead to nonzero pivots.

 0 1

2 3


 =


 1 0

ℓ 1




 d e

0 f


 leads to

0 = d (1, 1 entry)

2 = ℓd (impossible if d = 0)



1 1 0

1 1 2

1 2 1


=




1 0 0

ℓ 1 0

m n 1







d e g

0 f h

0 0 i


 leads to


 1 1

1 1


=


 1 0

ℓ 1




 d e

0 f




second pivot is zero

Then


 d e

0 f


 must be singular and




d e g

0 f h

0 0 i


 is singular. BUT




1 1 0

1 1 2

1 2 1




is invertible ! So A = LU is again impossible.

6 c = 2 makes the second pivot zero. But A is still invertible.

c = 1 makes the third pivot zero. Then A is singular.

7 A = LU is




a a a a

a b b b

a b c c

a b c d



=




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1







a a a a

0 b− a b− a b− a

0 0 c− b c− b

0 0 0 d− c




For nonzero pivots in U , we need a 6= 0, b 6= a, c 6= b, d 6= c.

8 If A is tridiagonal and A = LU (no row exchanges in elimination) then L and U have

two diagonals. The only elimination steps subtract a pivot row from the row directly

beneath it.

A =




1 1 0

1 2 1

0 1 2


 =




1

1 1

0 1 1







1 1 0

1 1

1




A =




a a 0

a a+ b b

0 b b+ c


 =




1

1 1

0 1 1







a a 0

b b

c






10 Solutions to Exercises

9 The second pivot in elimination depends only on the upper left 2 by 2 submatrix A2

of A. The third pivot depends only on the upper left 3 by 3 submatrix (and so on).

So if the pivots (diagonal entries in U ) are 5, 9, 3, then the pivots for A2 are 5, 9.

10 Continuing Problem 9, the upper left parts of L and U come from the upper left part

of A. Then LkUk is the factorization of Ak.

A =


 Lk 0

∗ ∗




 Uk ∗

0 ∗


 so Ak = LkUk

11 The example could exchange rows of A to put the larger number 3 into the (1, 1)

position where it would become the first pivot. That would be the usual permutation in

MATLAB and other systems.

This problem also exchanges columns to put the even larger number 4 into the (1, 1)

position. A column exchange comes from a permutation multiplying on the right side

of A. So this problem works on both sides :

A =


 1 2

3 4


 leads toP1AP2 =


 4 3

2 1


 A =


 1 3

2 4


 leads toP2AP1 =


 4 2

3 1




12 With m rows and n columns and m < n, elimination normally leads from A to

U =
[
U1 U2

]
Example : U =


 1 2 4

0 3 9




m×n m×(n−m)

There must be nonzero solutions to Ux = 0. To see this, set x3 = 1 and solve


 1 2

0 3




 x1

x2


=−


 4

9


 to find

x1 = 2

x2 = −3
. So x =




2

−3

1


 solves Ax = 0.
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Problem Set I.5, page 35

1 If uTv = 0 and uTu = 1 and vTv = 1, then (u+ v)T(u− v) = 1 + 0− 0− 1 = 0

Also ||u+v||2 = uTu+ vTu+uTv+vTv = 1+0+0+1 = 2 and ||u−v||2 = 2

2 v is separated into a piece u(uTv) in the direction of u and the remaining piece

w = v − u(uTv) perpendicular to u. Check uTw = uTv − (uTu)(uTv) = 0.

3 wTw + zTz = (u + v)T(u + v) + (u − v)T(u − v) = (uTu + vTv + uTv +

vTu) + (uTu+ vTv − uTv − vTu) = 2(uTu+ vTv).

Sum of squares of 2 diagonals = Sum of squares of 4 sides.

4 Check (Qx)T(Qy) = xTQTQy = xTy : Angles are preserved when all vectors are

multiplied by Q. Remember xTy = ||x|| ||y|| cos θ = (Qx)T(Qy) : same θ !

5 If Q is orthogonal (this word assumes a square matrix) then QTQ = I and QT is Q−1.

Check (Q1Q2)
T = QT

2 Q
T
1 = Q−1

2 Q−1
1 which is (Q1Q2)

−1.

6 Every permutation matrix has unit vectors in its columns (single 1 and n − 1 zeros).

Those columns are orthogonal because their 1’s are in different positions.

7 PF =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0







1 1 1 1

1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9



=




1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9

1 1 1 1



=




1 1 1 1

1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9







1

i

i2

i3




This says thatP times the 4 columns ofF gives those same 4 columns times 1, i, i2, i3 =

λ1, λ2, λ3, λ4 = the 4 eigenvalues of P .

The columns of F/2 are orthonormal ! To check, remember that for the dot product

of two complex vectors, we take complex conjugates of the first vector : change i to −i.



12 Solutions to Exercises

8 WTW =




4

4

2

2




so that the columns of W are orthogonal but not orthonormal.

Then W−1 = (WTW )−1WT =




1/4

1/4

1/2

1/2







1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1



.
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Problem Set I.6, page 41

1 To check : λ1+λ2= trace =cos θ+cos θ and λ1λ2= determinant =cos2 θ+sin2 θ = 1

and xT
1 x2 = 0 (orthogonal matrices have complex orthogonal eigenvectors).

Q−1 = QT has eigenvalues
1

eiθ
= e−iθ and

1

e−iθ
= eiθ

2 det


 −λ 2

1 1− λ


 = λ2 −λ− 2 = (λ− 2)(λ+1) = 0 gives λ1 = 2 and λ2 = −1.

The sum 2 − 1 agrees with the trace 0 + 1. A−1 has the same eigenvectors as A, with

eigenvalues λ−1
1 = 1

2
and λ−1

2 = −1.

3 A has λ = 3 and 1, B has λ = 1 and 3, A+B has λ = 5 and 3. Eigenvalues of A+B

are generally not equal to λ(A)+λ(B). Now A and B have λ = 1 (repeated). AB and

BA both have λ2 − 4λ + 1 = 0 (leading to λ = 2 ±
√
3 by the quadratic formula).

The eigenvalues of AB and BA are the same—but not equal to λ(A) times λ(B).

4 A and B have λ1 = 1 and λ2 = 1. AB and BA have λ2 − 4λ + 1 and the quadratic

formula gives λ = 2±
√
3. Eigenvalues of AB are not equal to eigenvalues of A times

eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved at the end of

Section 6.2).

5 (a) Multiply Ax to see λx which reveals λ (b) Solve (A− λI)x = 0 to find x.

6 det(A − λI) = λ2 − 1.4λ+ 0.4 so A has λ1 = 1 and λ2 = 0.4 with x1 = (1, 2) and

x2 = (1,−1). A∞ has λ1 = 1 and λ2 = 0 (same eigenvectors). A100 has λ1 = 1 and

λ2 = (0.4)100 which is near zero. So A100 is very near A∞: same eigenvectors and

close eigenvalues.

7 Set λ = 0 in det(A− λI) = (λ1 − λ) . . . (λn − λ) to find detA = (λ1)(λ2) · · · (λn).

8 λ1 = 1
2 (a + d+

√
(a− d)2 − 4bc) and λ2 = 1

2 (a + d−
√

) add to a + d.

If A has λ1 = 3 and λ2 = 4 then det(A− λI) = (λ − 3)(λ− 4) = λ2 − 7λ+ 12.

9 These 3 matrices have λ = 4 and 5, trace 9, det 20:


4 0

0 5


 ,


 3 2

−1 6


 ,


 2 2

−3 7


.
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10 A =


 0 1

−28 11


 has trace 11 and determinant 28, so λ = 4 and 7. Moving to a 3 by

3 companion matrix, for eigenvalues 1, 2, 3 we want det(C − λI) = (1 − λ)(2 − λ)

(3 − λ). Multiply out to get −λ3 + 6λ2 − 11λ + 6. To get those numbers 6,−11, 6

from a companion matrix you just put them into the last row:

C =




0 1 0

0 0 1

6 −11 6


 Notice the trace 6 = 1 + 2 + 3 and determinant 6 = (1)(2)(3).

11 (A − λI) has the same determinant as (A − λI)T because every square matrix has

detM = detMT. Pick M = A− λI .


1 0

1 0


 and


1 1

0 0


 have different

eigenvectors.

12 λ = 0, 0, 6 (notice rank 1 and trace 6). Two eigenvectors of uvT are perpendicular to

v and the third eigenvector is u : x1=(0,−2, 1), x2=(1,−2, 0), x3=(1, 2, 1).

13 When A and B have the same n λ’s and x’s, look at any combination v = c1x1 +

· · · + cnxn. Multiply by A and B : Av = c1λ1x1 + · · · + cnλnxn equals Bv =

c1λ1x1 + · · ·+ cnλnxn for all vectors v. So A = B.

14 (a) u is a basis for the nullspace (we know Au = 0u); v and w give a basis for the

column space (we know Av and Aw are in the column space).

(b) A(v/3 + w/5) = 3v/3 + 5w/5 = v + w. So x = v/3 + w/5 is a particular

solution to Ax = v +w. Add any cu from the nullspace

(c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.

15 Eigenvectors in X and eigenvalues in Λ. Then A = XΛX−1 is given below.

The second matrix has λ = 0 (rank 1) and λ = 4 (trace = 4). A new A = XΛX−1 :


1 2

0 3


 =


1 1

0 1




1 0

0 3




1 −1

0 1


.


1 1

3 3


 =


 1 1

−1 3




0 0

0 4







3
4 − 1

4

1
4

1
4


.
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16 If A = XΛX−1 then the eigenvalue matrix for A + 2I is Λ + 2I and the eigenvector

matrix is still X . So A+ 2I = X(Λ + 2I)X−1 = XΛX−1 +X(2I)X−1 = A+ 2I .

17 (a) False: We are not given the λ’s (b) True (c) True (d) False: For this we

would need the eigenvectors of X .

18 A = XΛX−1 =


1 1

1 −1




λ1

λ2




1 1

1 −1


 /2 =


λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2


 /2.

These are the matrices


a b

b a


, their eigenvectors are (1, 1) and (1,−1).

19 (a) True (no zero eigenvalues) (b) False (repeated λ = 2 may have only one line of

eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)

20 (a) False: don’t know if λ = 0 or not.

(b) True: an eigenvector is missing, which can only happen for a repeated eigenvalue.

(c) True: We know there is only one line of eigenvectors.

21 Ak = XΛkX−1 approaches zero if and only if every |λ| < 1; A1 is a Markov matrix

so λmax = 1 and Ak
1 → A∞

1 , A2 has λ = .6± .3 so Ak
2 → 0.

22


 2 −1

−1 2


 = XΛX−1 =

1

2


1 −1

1 1




1 0

0 3




 1 1

−1 1


 and

Ak = XΛkX−1 =
1

2


1 −1

1 1




1 0

0 3k




 1 1

−1 1


.

Multiply those last three matrices to get Ak =
1

2


1 + 3k 1− 3k

1− 3k 1 + 3k


.

23 R=X
√
ΛX−1 =


1 1

1 −1




3

1




1 1

1 −1


 /2 =


2 1

1 2


 has R2=A.



16 Solutions to Exercises

√
B needs λ =

√
9 and

√
−1, trace (their sum) is not real so

√
B cannot be real. Note

that


−1 0

0 −1


 has two imaginary eigenvalues

√
−1 = i and −i, real trace 0, real

square root


 0 1

−1 0


.

24 A = XΛ1X
−1 and B = XΛ2X

−1. Diagonal matrices always give Λ1Λ2 = Λ2Λ1.

Then AB = BA from

XΛ1X
−1XΛ2X

−1 = XΛ1Λ2X
−1 = XΛ2Λ1X

−1 = XΛ2X
−1XΛ1X

−1 = BA.

25 Multiply columns of X times rows of ΛX−1.

26 To have A = BΛB−1 requires A to have a full set of n independent eigenvectors. Then

B is the eigenvector matrix and it is invertible.
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Problem Set I.7, page 52

1 The key is to form yTSx in two ways, using ST = S to make them agree. One way

starts with Sx = λx : multiply by yT. The other way starts with Sy = αy and then

yTST = αyT.

The final step finds 0 = (λ− α)yTx which forces yTx = 0.

2 Only S4 =


 1 10

10 101


 has two positive eigenvalues since 101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example when x1 = 4 and x2 = −3:

A1 is not positive definite as its determinant confirms; S2 has trace c0; S3 has det = 0.

3 i Positive definite

for −3 < b < 3


1 0

b 1




1 b

0 9− b2


=


1 0

b 1




1 0

0 9− b2




1 b

0 1


=LDLT

Positive definite

for c > 8


1 0

2 1




2 4

0 c− 8


 =


1 0

2 1




2 0

0 c− 8




1 2

0 1


=LDLT.

Positive definite

for c2 > b
L =


 1 0

−b/c 1


 D =


 c 0

0 c− b/c


 S = LDLT.

4 If x is not real then λ=xTAx/xTx is not always real. Can’t assume real eigenvectors!

5


3 1

1 3


 = 2




1
2 − 1

2

− 1
2

1
2


+4




1
2

1
2

1
2

1
2


;


 9 12

12 16


 = 0


 .64 −.48

−.48 .36


+25


.36 .48

.48 .64




6 M is skew-symmetric and orthogonal; λ’s must be i, i, −i, −i to have trace 0, |λ| = 1.

7 A =


 i 1

1 −i


 has λ = 0, 0 and only one independent eigenvector x = (i, 1). The

good property for complex matrices is not AT = A (symmetric) but A
T

= A

(Hermitian with real eigenvalues and orthogonal eigenvectors: see Problem 22 and

Section 9.2).

8 Eigenvectors (1, 0) and (1,1) give a 45◦ angle even with AT very close to A.
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9 (a) ST = S and STS = I lead to S2 = I .

(b) The only possible eigenvalues of S are 1 and −1.

(c) Λ =


 I 0

0 −I


 so S=

[
Q1 Q2

]
Λ


QT

1

QT
2


= Q1Q

T
1 −Q2Q

T
2 with QT

1 Q2 = 0.

10 Eigenvalues of ATSA are different from eigenvalues of S but the signs are the same :

the Law of Inertia gives the same number of plus-minus-zero eigenvalues.

11 det(S − aI) =

∣∣∣∣∣∣
0 b

b c− a

∣∣∣∣∣∣
= −b2 is negative. So the point x = a is between the

two eigenvalues where det(S − λ1I) = 0 and det(S − λ2I) = 0. This λ1 ≤ a ≤ λ2

is a general rule for larger matrices too (Section II.2) : Eigenvalues of the submatrix of

size n− 1 interlace eigenvalues of the n by n symmetric matrix.

12 xTSx = 2x1x2 comes from
[
x1 x2

]

 0 1

1 0




 x1

x2


. That matrix has eigenvalues

1 and −1. Conclusion : Saddle points are associated with eigenvalues of both signs.

13 ATA =


1 2

2 13


 and ATA =


6 5

5 6


 are positive definite; ATA =




2 3 3

3 5 4

3 4 5


 is

singular (and positive semidefinite). The first two A’s have independent columns. The

2 by 3 A cannot have full column rank 3, with only 2 rows; ATA is singular.

14 S =




4 −4 8

−4 4 −8

8 −8 16




has only one pivot = 4, rank S = 1,

eigenvalues are 24, 0, 0, detS = 0.

15 Corner determinants |S1| = 2, |S2| = 6, |S3| = 30. The pivots are 2/1, 6/2, 30/6.

16 S is positive definite for c > 1; determinants c, c2 − 1, and (c − 1)2(c + 2) > 0.

T is never positive definite (determinants d− 4 and −4d+ 12 are never both positive).

17 S =


1 5

5 10


 is an example with a+ c > 2b but ac < b2, so not positive definite.

18 xTSx is zero when (x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal. Actu-

ally xTSx goes negative for x = (1,−10, 0) because the second pivot is negative.
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19 If ajj were smaller than all λ’s, S − ajjI would have all eigenvalues > 0 (positive

definite). But S − ajjI has a zero in the (j, j) position; impossible by Problem 18.

20 A =











1 −1

1 1











√
2











√
9

√
1





















1 1

−1 1











√
2

=


2 1

1 2


; A = Q


4 0

0 2


QT =


3 1

1 3


.

21 The ellipse x2 + xy + y2 = 1 has axes with half-lengths 1/
√
λ =

√
2 and

√
2/3.

22 The Cholesky factors A =
(
L
√
D
)T

=




3 0 0

0 1 2

0 0 2


 and A =




1 1 1

0 1 1

0 0
√
5


 have

square roots of the pivots from D. Note again ATA = LDLT = S.

23 The energy test givesxT(ATCA)x = (Ax)TC(Ax) = yTCy > 0 sinceC is positive

definite and y = Ax is only zero if x is zero. (A was assumed to have independent

columns.)

This is just like the ATA discussion, but now with a positive definite C in ATCA.

24 S1 =


6x2 2x

2x 2


 is semidefinite; f1 = (12x

2 + y)2 = 0 on the curve 1
2x

2 + y = 0;

S2 =


6x 1

1 0


 =


0 1

1 0


 is indefinite at (0, 1) where first derivatives = 0. Then

x = 0, y = 1 is a saddle point of the function f2(x, y).

25 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the

graph of z = (2x+ 3y)2 is a “trough” staying at zero along the line 2x+ 3y = 0.

26 detS = (1)(10)(1) = 10; λ = 2 and 5; x1 = (cos θ, sin θ), x2 = (− sin θ, cos θ); the

λ’s are positive. So S is positive definite.

27 EnergyxTSx = a (x1+x2+x3)
2+c (x2−x3)

2 ≥ 0 if a ≥ 0 and c ≥ 0 : semidefinite.

S has rank ≤ 2 and determinant = 0; cannot be positive definite for any a and c.
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28 (a) The eigenvalues of λ1I − S are λ1 − λ1, λ1 − λ2, . . . , λ1 − λn. Those are ≥ 0;

λ1I − S is semidefinite.

(b) Semidefinite matrices have energy xT (λ1I − S)x ≥ 0. Then λ1x
Tx ≥ xTSx.

(c) Part (b) says xTSx/xTx ≤ λ1 for all x. Equality holds at the leading eigenvector

with Sx = λ1x.

(Note that the maximum is λ1—the first printing missed the subscript “one”).
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Problem Set I.8, page 68

1 (c1v
T
1 +· · ·+cnv

T
n ) (c1v1+· · ·+cnvn) = c21+· · ·+c2n because the v’s are orthonormal.

(c1v
T
1 + · · ·+cnv

T
n )S (c1v1+ · · ·+cnvn) = ( ) (c1λ1v1+ · · ·+cnλnvn)

= c21λ1 + · · ·+ c2nλn.

2 Remember that λ1 ≥ λ2 ≥ . . . ≥ λn. Then λ1c
2
1 + · · ·+ λnc

2
n ≤ (c21 + · · ·+ c2n).

Therefore the ratio R(x) is ≤ λ1. It equals λ1 when x = v1.

3 Notice that xTv1 = (c1v
T
1 + · · ·+ cnv

T
n )v1 = c1. Then xTv1 = 0 means c1 = 0.

Now R(x) =
λ2c

2
2 + · · ·+ λnc

2
n

c22 + · · ·+ c2n
is a maximum when x = v2 and c2 = 1 and other

c’s = 0.

4 The maximum of R(x)= xTSx/xTx is λ3 when x is restricted by xTv1=xTv2=0.

5 If A = UΣV T then AT = VΣTUT (singular vectors u and v are reversed but the

numbers σ1, . . . , σr do not change. Then Av = σu and ATu = σv for each pair of

singular vectors.

For example A =


 0 5

0 0


 has σ1 = 5 and so does AT =


 0 0

5 0


. But ||Ax|| 6=

||ATx|| for most x.

6 Exchange u’s and v’s (and keep σ =
√
45 and σ =

√
5) in equation (12) = the SVD

of


 3 0

4 5


.

7 This question should have told us which matrix norm to use ! If we use ||A|| = σ1

then removing σ1u1v
T
1 will leave the norm as σ2. If we use the Frobenius norm

(σ2
1 + · · ·+ σ2

r )
1/2, then removing σ1u1v

T
1 will leave (σ2

2 + · · ·+ σ2
r )

1/2.

8




0 2 0

0 0 3

0 0 0







0 1 0

1 0 0

0 0 1







3 0 0

0 2 0

0 0 0







0 0 1

0 1 0

1 0 0


= UΣV T
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9 (Correction to first printing) Remove both factors 1
2 that multiply xTSx. Then max-

imizing xTSx with xTx = 1 is the same as maximizing their ratio R(x).

Now the gradient of L = xTSx + λ(xTx − 1) is 2Sx − 2λx. This gives gradient

= 0 at all eigenvectors v1 to vn. Testing R(x) at each eigenvector gives R(vk) = λk

so x = v1 maximizes R(x).

10 If you remove columns of a matrix, this cannot increase the norm. Reason : We still

have norm = max ||Av||/||v|| but we are only keeping the v’s with zeros in the posi-

tions corresponding to removed columns. So the maximum can only move down and

never up.

Then removing columns of the transpose (rows of the original matrix) can only reduce

the norm further. So a submatrix of A cannot have larger norm than A.

11 The trace of S =
[
0 A ; AT 0

]
is zero. The eigenvalues of S come in plus-

minus pairs so they add to zero. If A = diag (1, 2, . . . , n) is diagonal, these 2n eigen-

values of S are 1 to n and −1 to −n. The 2n eigenvectors of S have 1 in positions 1 to

n with all +1 or all −1 in positions n+ 1 to 2n.

12 A =


 2 4

1 2


=


 2

1



[
1 2

]

means that A =


 2 −1

1 2




√
5


 5 0

0 0




 1 2

2 −1




√
5

=UΣV T.

13 The homemade proof depends on this step : If Λ is diagonal and ΣΛ = ΛΣ then Σ is

also diagonal. That step fails when Λ = I because ΣI = IΣ for all Σ. The step fails

unless the numbers λ1, . . . , λn are all different (which is usually true—but not always,

and we want a proof that always works).

Note : If λ1 6= λ2 then comparing the (1, 2) entries ofΣΛ andΛΣ gives λ2σ12 = λ1σ12

which forces σ12 = 0. Similarly, all the other off-diagonal σ’s will be zero. Repeated

eigenvalues λ1 = λ2 or singular values always bring extra steps.

14 For a 2 by 3 matrix A = UΣV T, U has 1 parameter (angle θ) and Σ has 2 parameters

(σ1 and σ2) and V has 3 parameters (3 angles like roll, pitch, and yaw for an aircraft in

3D flight). Total 6 parameters in UΣV T agrees with 6 in the 2 by 3 matrix A.
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15 For 3 by 3 matrices, U and Σ and V have 3 parameters each. For 4 by 4, Σ has 4

singular values and U and V involve 6 angles each : 6 + 4 + 6 = 16 parameters in A.

(See also the last Appendix.)

16 4 numbers give a direction in R5. A unit vector orthogonal to that direction has 3

parameters. The remaining columns of Q have 2, 1, 0 parameters (not counting +/−
decisions). Total 4 + 3 + 2 + 1 + 0 = 10 parameters in Q.

17 If ATAv = λv with λ 6= 0, multiply by A : (AAT)Av = λAv with eigenvector Av.

18 A = UΣV T gives A−1 = V Σ−1UT when A is invertible. The singular values of

ATA are σ2
1 , . . . , σ

2
r (squares of singular values of A).

19 (Correction to 1st printing : Change S to A : not symmetric !) If A has orthogonal

columns of lengths 2, 3, 4 then ATA = diag (4, 9, 16) and Σ = diag (2, 3, 4). We can

choose V = identity matrix and U = AΣ−1 has orthogonal unit vectors : the original

columns divided by 2, 3, 4.

21 We know that AATA = (UΣV T) (V ΣTUT) (UΣV T) = U (ΣΣTΣ)V T. So the

singular values from ΣΣTΣ are σ3
1 to σ3

r .

22 To go from the reduced form AVr = UrΣr to A = UrΣrV
T
r , we cannot just multiply

both sides by V T
r (Since Vr only has r columns and rank r, possibly a small number,

and then VrV
T
r is not the identity matrix). But the result A = UrΣrV

T
r is still correct,

since both sides give the zero vector when they multiply the basis vectors vr+1, . . . ,vn

in the nullspace of A.

23 This problem is solved in the final appendix of the book. Note for r = 1 those rank-one

matrices have m + n− 1 free parameters : vectors u1 and v1 have m+ n parameters

but there is freedom to make one of them a unit vector : A = (u1/||u1||) (||u1||vT).
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Problem Set I.9, page 80

1 The singular values of A − Ak are σk+1 ≥ σk+2 ≥ . . . ≥ σr (the smallest r − k

singular values of A).

2 The closest rank 1 approximations areA=




3 0 0

0 0 0

0 0 0


 A=


 0 3

0 0


 A=

3

2


 1 1

1 1




3 Since this A is orthogonal, its singular values are σ1 = σ2 = 1. So we cannot reduce

its spectral norm σmax by subtracting a rank-one matrix. On the other hand, we can

reduce its Frobenius norm from ||A||F =
√
2 to ||A− u1σ1v

T
1 ||F =

√
1.

4 A − A1 =
1

2


 3 −3

−1 1


 has ||A − A1||∞ = max row sum = 3. But in this “∞

norm” (which is not determined by the singular values) we can find a rank-one matrix

B that is closer to A than A1 is.

B =


 1 .75

4 3


 has A−B =


 2 −.75

0 2


 and ||A−B||∞ = 2.75.

5 If A =


 1 0

0 0


 then QA =


 cos θ 0

sin θ 0


. Those matrices have ||A||∞ = 1

different from ||QA||∞ = | cos θ|.

6 S = QΛQT = λ1q1q
T
1 + · · · is the eigenvalue decomposition and also the singular

value decomposition of S. So the Eckart-Young theorem applied to λ1q1q
T
1 is the

nearest rank-one matrix.

7 Express E = ||A− CR||2F as E =
∑

i,j

(Aij −
∑

k

CikRkj)
2. Take the derivative with

respect to each particular CIK .

∂E

∂CIK
= 2

∑

j

(AIj − CIKRKj)RKj

The (1, 1) entry of A−CR is a11−c11r11−c12r21. The (1, 1) entry of A−(C+∆C)R

is a11 − c11r11 − c12r21 −∆c11r11 −∆c12r21. TO COMPLETE
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Squaring and subtracting, the leading terms (first-order) are 2(a11−c11r11−c12r21) (∆c11r11+

∆c12r12).

8 ||A−A1||2 = σ2(A) and ||A−A2||2 = σ3(A). (The 2-norm for a matrix is its largest

singular value.) So those norms are equal when σ2 = σ3.

9 Our matrix has 1’s below the parabola y = 1 − x2 and 0’s above that parabola. The

parabola has slope dy/dx = −2x = −1 where x = 1
2 and y = 3

4 . Remove the

rectangle (filled with 1’s and therefore rank = 1) below y = 3
4 and to the left of x = 1

2 .

Above that rectangle, between y = 3
4 and y = 1, the rows of A are independent.

Beyond that rectangle, between x = 1
2 and x = 1, the columns of A are independent.

Since 1
4 + 1

2 = 3
4 , the rank of A is approximately 3

4N .

10 A is invertible so A−1 = V Σ−1UT has singular values 1/σ1 and 1/σ2. Then ||A−1||2 =

max singular value = 1/σ2. And ||A−1||2F = (1/σ1)
2 + (1/σ2)

2.
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Problem Set I.10, page 87

1 H = M−1/2SM−1/2 =


 1 0

0 1/2




 5 4

4 5




 1 0

0 1/2


 =


 5 4/2

4/2 5/4




det(S − λM) = det


 5− λ 4

4 5− 4λ


= 4λ2 − 25λ+ 9 = 0

det(H − λI) = det


 5− λ 2

2
5

4
− λ


= λ2 − 25

4
λ+

9

4
= 0

By the quadratic formula, d =
25±

√
252 − 144

8
=

25±
√
481

8

The first equation agrees with the second equation (times 4). The eigenvectors will be

too complicated for convenient computation by hand.
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Problem Set I.11, page 96

1 ||v||22 = v21 + · · ·+ v2n ≤ (max|vi|) (|v1|+ · · ·+ |vn|) = ||v||∞||v||1

2 (Length)2 is never negative. We have to simplify that (length)2 :
(
v − vTw

wTw
w

)T(
v − vTw

wTw
w

)
=vTv−2

(vTw)2

wTw
+
(vTw)2

wTw
= vTv− (vTw)2

wTw
≥ 0.

Multiply by wTw.

3 ||v||22 = v21 + · · ·+ v2n ≤ n max|vi|2 so ||v||2 ≤ √
n max|vi|.

For the second part, choose w = (1, 1, . . . , 1) and use Cauchy-Schwarz :

||v||1 = |v1|w1 + · · ·+ |vn|wn ≤ ||v||2 ||w||2 =
√
n ||v||2

4 For p = 1 and q = ∞, Hölder’s inequality says that

|vTw| ≤ ||v||1 ||w||∞ = (|v1|+ · · ·+ |vn|) max |wi|
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Problem Set I.12, page 109

1 The v1 derivative of (a−v1u1)
2+(b−v1u2)

2 is −2u1(a−v1u1)−2u2(b−v1u2) = 0.

Dividing by 2 gives (u2
1+u2)

2v1 = u1a+u2b. In II.2, this will be the normal equation

for the best solution v1 to the 1D least squares problem uv1 = a1.

2 Same problem as 1, stated in vector notation.

3 This is the same question but now for the second component v2. Together with 1, the

combined problem is to find the minimizing numbers (v1, v2) for ||a − vu||2 when u

is fixed.

4 The combined problem when U is fixed is to choose V to minimize ||A− UV ||2F . The

best V solves (UTU)V = UTA.

5 This alternating algorithm is important ! Here the matrices are small and convergence

can be tested and seen computationally.

6 Rank 1 requiresA = uuT. All columns of A must be multiples of one nonzero column.

(Then all rows will automatically be multiples of one nonzero row.)

7 For the fibers of T in each of the three directions, all slices must be in multiples of one

nonzero fiber. (Question : If this holds in two directions, does it automatically hold in

the third direction ?)

9 (a) The sum of all row sums must equal the sum of all column sums.

(b) In each separate direction, add the totals for all slices in that direction. For each

direction, the sum of those totals must be the total sum of all entries in the tensor.
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Problem Set II.2, page 135

1 The step from ATAx = 0 to Ax = 0 is proved in the problem statement. The opposite

statement (if Ax = 0 then ATAx = 0) is the easier direction. So N(ATA) = N(A).

Orthogonal to that subspace is the row space of ATA = row space of A.

2 The link from A = UΣV T to A+ = V Σ+UT shows that A and A+ have the same

number (the rank r) of nonzero singular values. If A is square and Ax = λx with

λ 6= 0, then A+x = 1
λx. Eigenvectors are the same for A and A+, eigenvalues are λ

and 1/N (except that λ = 0 for A produces λ = 0 for A+ !).

3 Note that (viu
T
i /σi) (σjujv

T
j ) is zero if i 6= j (because uT

i uj = 0) and it is viv
T
i if

i = j. Then the product (Σviu
T
i /σi) (Σσjujv

T
j ) just adds up the results viv

T
i to get

the matrix V V T = I .

Problems 12–22 use four data points b = (0, 8, 8, 20) to bring out the key ideas.

b = C + Dt

Figure 1: Problems 12–22: The closest line C +Dt matches Ca1 +Da2 in R4.

12 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations

ATAx̂ = ATb. For the best straight line in Figure 1, find its four heights pi and

four errors ei. What is the minimum value E = e21 + e22 + e23 + e24?
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13 (Line C + Dt does go through p’s) With b = 0, 8, 8, 20 at times t = 0, 1, 3, 4, write

down the four equations Ax = b (unsolvable). Change the measurements to p =

1, 5, 13, 17 and find an exact solution to Ax̂ = p.

14 Check that e = b − p = (−1, 3,−5, 3) is perpendicular to both columns of the

same matrix A. What is the shortest distance ‖e‖ from b to the column space of A?

15 (By calculus) Write down E = ‖Ax − b‖2 as a sum of four squares—the last one is

(C + 4D − 20)2. Find the derivative equations ∂E/∂C = 0 and ∂E/∂D = 0. Divide

by 2 to obtain the normal equations ATAx̂ = ATb.

16 Find the height C of the best horizontal line to fit b = (0, 8, 8, 20). An exact fit would

solve the unsolvable equations C = 0, C = 8, C = 8, C = 20. Find the 4 by 1 ma-

trix A in these equations and solve ATAx̂ = ATb. Draw the horizontal line at height

x̂ = C and the four errors in e.

17 Project b = (0, 8, 8, 20) onto the line through a = (1, 1, 1, 1). Find x̂ = aTb/aTa

and the projection p = x̂a. Check that e = b − p is perpendicular to a, and find the

shortest distance ‖e‖ from b to the line through a.

18 Find the closest line b = Dt, through the origin, to the same four points. An exact fit

would solve D · 0 = 0, D · 1 = 8, D · 3 = 8, D · 4 = 20. Find the 4 by 1 matrix

and solve ATAx̂ = ATb. Redraw Figure 1a showing the best line b = Dt and the

e’s.

19 Project b = (0, 8, 8, 20) onto the line through a = (0, 1, 3, 4). Find x̂ = D and

p = x̂a. The best C in Problems 16–17 and the best D in Problems 18–19 do not agree

with the best (C,D) in Problems 12–15. That is because (1, 1, 1, 1) and (0, 1, 3, 4) are

perpendicular.

20 For the closest parabola b = C + Dt + Et2 to the same four points, write down the

unsolvable equations Ax = b in three unknowns x = (C,D,E). Set up the three nor-

mal equations ATAx̂ = ATb (solution not required). In Figure 1a you are now fitting

a parabola to 4 points—what is happening in Figure 1b?
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21 For the closest cubic b = C +Dt+Et2 +Ft3 to the same four points, write down the

four equations Ax = b. Solve them by elimination. In Figure 1a this cubic now goes

exactly through the points. What are p and e?

22 The average of the four times is t̂ = 1
4 (0 + 1+ 3 + 4) = 2. The average of the four b’s

is b̂ = 1
4 (0 + 8 + 8 + 20) = 9.

(a) Verify that the best line goes through the center point (t̂, b̂) = (2, 9).

(b) Explain why C +Dt̂ = b̂ comes from the first equation in ATAx̂ = ATb.
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Problem Set IV.1, page 212

1 Warning : References to the complex dot product should be removed. This is just

multiplication of the matrices FΩ. Off the diagonal of FΩ we have i 6= j and the sum

S has powers of wi ωj = wi−j .

S = 1 + wi−j + w2(i−j) + · · · = 0 in equation (5) when i 6= j.

2 If M = N/2 then (wN )M = e2πiM/N = eπi = −1.

3 F3=




1 1 1

1 w w2

1 w2 w4


 Ω3=




1 1 1

1 ω ω2

1 ω2 ω4


=




1 1 1

1 w2 w

1 w4 w2




because w=ω2

when N=3

The permutation matrix to exchange columns in Ω3 = F3P is P =




1 0 0

0 0 1

0 1 0




Notice that multiplying by P on the right exchanges columns.

4 C =
1

N
F−1f =

1

4




1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9







0

1

0

0



=

1

4




1

−i

(−i)2

(−i)3




5 F6 =


 I D

I −D




 F3 0

0 F3




 P


 with D =




1

w

w2


 and w = e2πi/6

The even-odd permutation matrix is P =




1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1
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6 N = 6 means that w3 = e2πi3/6 = eπi = −1. Then 1 + w3 = 0 and w + w4 = 0 and

w2 + w5 = 0.

7 2πa0 =

∫ π

−π

f(x) dx =

∫ π/2

−π/2

1 dx = π so a0 = (the average of f(x)).

a1

∫ π

−π

cos2 x dx =

∫ π

−π

cosx f(x) dx =

∫ π/2

−π/2

cosx dx = sin
π

2
− sin

(
−π

2

)
= 2

so a1 = 2/(π/2) =
π

4
.

8 If A = Q then the rank-one pieces have (qi q
T
i ) (qj q

T
j ) = 0 since qT

i qj = 0 for i 6= j.

9 The vector x is
1

4




1

1

1

1



+

1

4




1

−1

1

−1



=

1

2




1

0

1

0




and y =
1

4




1

ω3

ω6

ω9




with ω = −i.
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Problem Set IV.2, page 220

1 (2, 1, 3)
∗
(3, 1, 2) = (6, 5, 14, 5, 6) Not cyclic

(2, 1, 3)
∗©

(3, 1, 2) = (6 + 5, 5 + 6, 14) = (11, 11, 14)

Check by adding coefficients of c,d, and c
∗©

b : (6) (6) = (36). See Problem 3.

2 The question asks for a direct proof by comparing all 9 terms on both sides.

Left (c0d0+c1d−1+c2d−2)+wk(c0d1+c1d0+c2d−1)+w2k(c0d2+c1d1+c2d0)

Right (c0 + wkc1 + w2kc2) (d0 + wkd1 + w2kd2). USE w3 = 1.

3 In c
∗

d, every number ci multiplies every number dj . So when we add up all terms,

we get
∑

ci times
∑

dj .

4 Cqk = λk(C) times qk and Dqk = λk(D) times qk. Therefore

CDqk = C(λk(D)qk) = λk(C)λk(D)qkand similarly for DCqk.

5 This 4 × 4 circulant matrix C is all ones (rank 1). So it has 3 zero eigenvalues and

λ1 = trace of C = 4. Those numbers 4, 0, 0, 0 are exactly the components of Fc for

c = (1, 1, 1, 1) because the 3 last rows of F4 add to zero. The sum 1+ z+ z2+ z3 = 0

for z = i, z = i2, and z = i3 (i and −1 and −i).

6 The “frequency response” uses the angle θ in C(eiθ) =
∑

cj e
ijθ . At the special angles

θ = 2π/N, 4π/N, . . . , 2πN/N , those numbers eijθ are exactly w,w2, . . . , wN = 1.

Then the sums of cje
ijθ are the sums of cjw

j . Those sums are the components of Fc,

which are also the eigenvalues of C.

So Problem 6 says : C is invertible when all its eigenvalues are not zero. True !

7 c
∗©

d = e means that the cyclic convolution matrices (circulants) have CD = E.

Their eigenvalues have λk(C)λk(D) = λk(E). Suppose we know C and E. Then

the eigenvalue λk(D) is λk(E) divided by λk(C). This tells us all the eigenvalues

of D, which are the components of Fd. By inverting that DFT matrix we learn the

components of d, which tell us the matrix D.
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8 This problem uses the Schwarz (or Cauchy-Schwarz) inequality |fTg| ≤ ||f || ||g||.
The vectors f and g are c and Snc, which have the same norm because S is just a

shift. So ||Snc|| = ||c|| (in other words ||f || = ||g||) and the inequality says that

f
T
g = cTSnc is not greater than ||c|| ||Snc|| = ||c||2 = cTc.

This is the zeroth component of the autocorrelation of c.


