Preface and Acknowledgments

My deepest gratitude goes to Professor Raj Rao Nadakuditedfniversity of Michigan.

On his sabbatical 2017, Raj brought his EECS51 course to MIT. He flew to Boston
every week to teach8.065. Thanks to Raj, the students could take a new course. He led
the in-class computing, he assigned homeworks, and exanesoudawed.

This was linear algebra for signals and data, and it was.ali@MIT students signed
up. Alan Edelman introduced the powerful langudgka, and | explained the four funda-
mental subspaces and the Singular Value Decompositionlabeérom Michigan involved
rank and SVD and applications. We were asking the classdomputational thinking

That course worked, even the first time. It didn’t touch orgetbpic : Deep learning
By this | mean the excitement of creating a learning functiona neural net, with the
hidden layers and the nonlinear activation functions thakenit so powerful. The sys-
tem trains itself on data which has been correctly classifiextivance. The optimization
of weights discovers important features—the shape of aerldtie edges in an image, the
syntax of a sentence, the identifying details of a signabsEfeatures get heavier weights—
without overfitting the datand learning everything. Then unseen test data from a simila
population can be identified by virtue of having those saméufes.

The algorithms to do all that are continually improving. tetif | say that they are
being improved This is the contribution of computer scientists and engiigeand
biologists and linguists and mathematicians and espgc@itimists—those who can
optimize weights to minimize errors, and also those whoepelithat deep learning
can help in our lives.

You can see why this book was written :
1. To organize central methods and ideaslaffa science
2. To see how the language liriear algebra gives expression to those ideas.
3. Above all, to show how t@xplain and teachthose ideas—to yourself or to a class.

| certainly learned that projects are far better than ex&thslents ask their own questions
and write their own programs. From now gprojects !

Vi



Preface and Acknowledgments Vii

Linear Algebra and Calculus

The reader will have met the two central subjects of undegate mathematics: Linear
algebra and calculus. For deep learning, it is linear akyéat matters most. We compute
“weights” that pick out the important features of the tragidata, and those weights go
into matrices. The form of the learning function is desadiile® page iv. Then calculus
shows us thelirection to movein order to improve the current weights .

From calculus, it is partial derivatives that we need (andmegrals) :

Reduce the error L(x) by moving from xx t0 zg4+1 = xr — sk VL.

That symbolV L stands for the first derivatives df(x). Because of the minus sign,
@41 is downhill fromxy, on the graph of.(x). The stepsizey (also called the learning
rate) decides how far to move. You see the basic idea: Retiededs functiorl (x) by
moving in the direction of fastest decrea%eL = 0 at the best weights™.

The complication is that the vectar represents thousands of weights. So we have
to compute thousands of partial derivativesiof And L itself is a complicated function
depending on several layers@§ as well as the data. So we need the chain rule toVidd

The introduction to Chapter VI will recall essential factsmultivariable calculus.

By contrast/linear algebra is everywhere in the world of learning fromtalaThis is
the subject to know! The first chapters of this book are egdgna course on applied
linear algebra—the basic theory and its use in computatibcan try to outline how that
approach (to the ideas we need) compares to earlier lingabia courses. Those are
quite different, which means that there are good thingsamle

Basic course

1. Elimination to solvedx = b

Matrix operations and inverses and determinants
Vector spaces and subspaces

Independence, dimension, rank of a matrix

a bk~ v

Eigenvalues and eigenvectors

If a course is mostly learning definitions, that is not linaégebra in action. A stronger
course puts the algebra to use. The definitions have a pyrpadeso does the book.

Stronger course

1. Az = bin all cases: square system—to0o many equations—too mamowris.
Factord into LU andQR andUXV T andC M R : Columns times rows
Four fundamental subspacedimensions and orthogonality and good bases.
Diagonalizing4 by eigenvectors and by left and right singular vectors.

a bk~ DN

Applications: Graphs, convolutions, iterations, cimaces, projections, filters,
networks, images, matrices of data.
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Linear algebra has moved to the center of machine learnimhywe need to be there.

A book was needed for th&s.065 course. It was started in the origir)17 class,
and a first version went out to ti2818 class. | happily acknowledge that this book owes its
existence to Ashley C. Fernandes. Ashley receives pagasaddrom Boston and sends
back new sections from Mumbai, ready for more work. This issmventh book together
and | am extremely grateful.

Students were generous in helping with both classes, edlyedilliam Loucks and
Claire Khodadad and Alex LeNail and Jack Strang. The prdijeat Alex led to his online
code alexlenail.me/NN —SVG/ to draw neural nets (an example appears on page V).
The project from Jack ohttp://www.teachyourmachine.com  learns to recognize hand-
written numbers and letters drawn by the user: open for éxgeit. See Section VII.2.

MIT’s faculty and staff have given generous and much nee@égual:h
Suvrit Sra gave a fantastic lecture on stochastic gradiesteht (now an8.065 video)
Alex Postnikov explained when matrix completion can leadhttk one (Section 1V.8)
Tommy Poggio showed his class how deep learning generatizesw data
Jonathan Harmon and Tom Mullaly and Liang Wang contributettiis book every day

Ideas arrived from all directions and gradually they fillatttextbook.

The Content of the Book

This book aims to explain the mathematics on which data seidependsLinear algebra,
optimization, probability and statistics The weights in the learning function go into
matrices. Those weights are optimized by “stochastic graddescent”. That word
stochastic € random) is a signal that success is governed by probabititycartainty.
The law of large numbers extends to the law of large functiolighe architecture is
well designed and the parameters are well computed, tharkigh probability of success.

Please note that this is not a book about computing, or codirgpftware. Many books
do those parts well. One of our favorites dands-On Machine Learning2017)
by Aurélien Géron (published by O'Reilly). And online hefppm Tensorflow and Keras
and MathWorks and Caffe and many more, is an important darttan to data science.

Linear algebra has a wonderful variety of matrices: symimetrthogonal, triangular,
banded, permutations and projections and circulants. Irexperiencepositive definite
symmetric matricess' are the aces. They have positive eigenvaldesnd orthogonal
eigenvectorg. They are combinationS = \;q,q1 + \2g.q4 + --- of simple rank-one
projectionsgq™ onto those eigenvectors. Andif > X\, > ...then\;q,q{ is the most
informative part ofS. For a sample covariance matrix, that part has the greaesince.
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Chapter | In our lifetimes, the most important step has been to exteosd ideas from
symmetric matrices to all matrices. Now we néed sets of singular vectorsu's and v’s.
Singular values replace eigenvalues The decompositiod = oy uiv] +oausvd +- - -
remains correct (this is the SVD). With decreasirig, those rank-one pieces df still
come in order of importance. That “Eckart-Young Theorem3w@A complements what
we have long known about the symmetric matdX A: For rankk, stop atoujv; .

Il The ideas in Chapter | become algorithms in Chapter Il. Fitedarge matrices, the
o’'s andwu’s andv’s are computable. For very large matrices, we resort togamzation :
Sample the columns and the rows. For wide classes of bigeeattinis works well.

llI-1IV  Chapter Il focuses on low rank matrices, and Chapter IV omyrienportant
examples. We are looking for properties that make the coatiouts especially fast (in I11)
or especially useful (in 1V). Thé&ourier matrix is fundamental for every problem with
constant coefficients (not changing with position). Thacdite transform is superfast
because of theFT : the Fast Fourier Transform.

V Chapter V explains, as simply as possible, the statisticeeeel. The central ideas are
alwaysmean and variance : The averageand thespreadaround that average. Usually
we can reduce the mean to zero by a simple shift. Reducinggiti@nce (the uncertainty)

is the real problem. For random vectors and matrices anatgnthat problem becomes
deeper. Itis understood that tlreear algebra of statisticts essential to machine learning.

VI Chapter VI presents two types of optimization problemsstieiome the nice problems
of linear and quadratic programming and game theory. Dualitd saddle points are
key ideas. But the goals of deep learning and of this book Eewbere : Very large
problems with a structure that is as simple as possilf@erivative equals zero” is still
the fundamental equation. The second derivatives that diewtould have used are
too numerous and too complicated to compute. Even usindhaltdata (when we take
a descent step to reduce the loss) is often impossible. Fhathy we choose only
a minibatch of data, in each step of stochastic steepestdesc

The success of large scale learning comes from the wondadithatrandomization
often produces reliability-where there are thousands or millions of variables.

VIl Chapter VII begins with the architecture of a neural net. #ut layer is connected
to hidden layers and finally to the output layer. For the frajndata, input vector®s
are known. Also the correct outputs are known (ofters the correct classification af).
We optimize the weightsz in the learning function F so that F(x, v) is close tow
for almost every training input v.

Then F' is applied totest data drawn from the same population as the training data.
If F' learned what it needsvithout overfitting we don’t want to fit100 points by99th
degree polynomials), the test error will also be low. The@ysrecognizes images and
speech. It translates between languages. It may follovgdedike ImageNet or AlexNet,
winners of major competitions. A neural net defeated thddwciiampion at Go.
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The functionF is oftenpiecewise linearthe weights go into matrix multiplications.
Every neuron on every hidden layer also has a nonlinearvatatn function”. The
ramp functionReLU(z) = (maximum of 0 and ) is now the overwhelming favorite.

There is a growing world of expertise in designing the laytaet make upF'(x, v).
We start withfully connectedayers—all neurons on layer connected to all neurons on
layern 4 1. Often CNN's are better-Sonvolutional neural neteepeat the same weights
around all pixels in an image: a very important constructi@ther layers are different.
A pooling layerreduces the dimensionDropout randomly leaves out neurondBatch
normalizationresets the mean and variance. All these steps create admitictit closely
matches the training data. Thél{x, v) is ready to use.

Acknowledgments
Above all, | welcome this chance to thank so many generougaoduraging friends:

Pawan Kumar and Leonard Barrado and Mike Giles and Nick Threfein Oxford
Ding-Xuan Zhou and Yunwen Lei in Hong Kong

Alex Townsend and Heather Wilber at Cornell

Nati Srebro and Srinadh Bhojanapalli in Chicago

Tammy Kolda and Thomas Strohmer and Trevor Hastie and Jayirk@alifornia
Bill Hager and Mark Embree and Wotao Yin, for help with Chaptie

Stephen Boyd and Lieven Vandenberghe, for great books

Alex Strang, for creating the best figures

Ben Recht in Berkeley, especially.

Your papers and emails and lectures and advice were worderfu

THE MATRIX ALPHABET

Any Matrix Orthogonal Matrix
Circulant Matrix Upper Triangular Matrix
Matrix of Columns Matrix of Rows
Diagonal Matrix Symmetric Matrix
Fourier Matrix Sample Covariance Matrix
Identity Matrix Tensor

Lower Triangular Matrix Upper Triangular Matrix
Laplacian Matrix Left Singular Vectors
Mixing Matrix Right Singular Vectors
Markov Matrix Eigenvector Matrix
Probability Matrix Eigenvalue Matrix
Projection Matrix Singular Value Matrix
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Video lectures: OpenCourseWarecw.mit.edu and YouTubeath 18.06 and 18.065)
Introduction to Linear Algebra (5th ed) by Gilbert Strang, Wellesley-Cambridge Press
Book websites math.mit.edu/linearalgebra  and math.mit.edu/learningfromdata






