
Preface and Acknowledgments

My deepest gratitude goes to Professor Raj Rao Nadakuditi ofthe University of Michigan.
On his sabbatical in2017, Raj brought his EECS551 course to MIT. He flew to Boston
every week to teach18.065. Thanks to Raj, the students could take a new course. He led
the in-class computing, he assigned homeworks, and exams were outlawed.

This was linear algebra for signals and data, and it was alive. 140 MIT students signed
up. Alan Edelman introduced the powerful languageJulia, and I explained the four funda-
mental subspaces and the Singular Value Decomposition. Thelabs from Michigan involved
rank and SVD and applications. We were asking the class forcomputational thinking.

That course worked, even the first time. It didn’t touch one big topic : Deep learning.
By this I mean the excitement of creating a learning functionon a neural net, with the
hidden layers and the nonlinear activation functions that make it so powerful. The sys-
tem trains itself on data which has been correctly classifiedin advance. The optimization
of weights discovers important features—the shape of a letter, the edges in an image, the
syntax of a sentence, the identifying details of a signal. Those features get heavier weights—
without overfitting the dataand learning everything. Then unseen test data from a similar
population can be identified by virtue of having those same features.

The algorithms to do all that are continually improving. Better if I say that they are
being improved. This is the contribution of computer scientists and engineers and
biologists and linguists and mathematicians and especially optimists—those who can
optimize weights to minimize errors, and also those who believe that deep learning
can help in our lives.

You can see why this book was written :

1. To organize central methods and ideas ofdata science.

2. To see how the language oflinear algebra gives expression to those ideas.

3. Above all, to show how toexplain and teachthose ideas—to yourself or to a class.

I certainly learned that projects are far better than exams.Students ask their own questions
and write their own programs. From now on,projects !
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Linear Algebra and Calculus

The reader will have met the two central subjects of undergraduate mathematics : Linear
algebra and calculus. For deep learning, it is linear algebra that matters most. We compute
“weights” that pick out the important features of the training data, and those weights go
into matrices. The form of the learning function is described on page iv. Then calculus
shows us thedirection to move, in order to improve the current weightsxk.

From calculus, it is partial derivatives that we need (and not integrals) :

Reduce the errorL(x) by moving from xk to xk+1 = xk − sk∇L.

That symbol∇L stands for the first derivatives ofL(x). Because of the minus sign,
xk+1 is downhill fromxk on the graph ofL(x). The stepsizesk (also called the learning
rate) decides how far to move. You see the basic idea : Reduce the loss functionL(x) by
moving in the direction of fastest decrease.∇L = 0 at the best weightsx∗.

The complication is that the vectorx represents thousands of weights. So we have
to compute thousands of partial derivatives ofL. And L itself is a complicated function
depending on several layers ofx’s as well as the data. So we need the chain rule to find∇L.

The introduction to Chapter VI will recall essential facts of multivariable calculus.

By contrast,linear algebra is everywhere in the world of learning from data. This is
the subject to know ! The first chapters of this book are essentially a course on applied
linear algebra—the basic theory and its use in computations. I can try to outline how that
approach (to the ideas we need) compares to earlier linear algebra courses. Those are
quite different, which means that there are good things to learn.

Basic course

1. Elimination to solveAx = b

2. Matrix operations and inverses and determinants

3. Vector spaces and subspaces

4. Independence, dimension, rank of a matrix

5. Eigenvalues and eigenvectors

If a course is mostly learning definitions, that is not linearalgebra in action. A stronger
course puts the algebra to use. The definitions have a purpose, and so does the book.

Stronger course

1. Ax = b in all cases : square system—too many equations—too many unknowns.

2. FactorA intoLU andQR andUΣV T andCMR : Columns times rows.

3. Four fundamental subspaces: dimensions and orthogonality and good bases.

4. DiagonalizingA by eigenvectors and by left and right singular vectors.

5. Applications : Graphs, convolutions, iterations, covariances, projections, filters,
networks, images, matrices of data.
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Linear algebra has moved to the center of machine learning, and we need to be there.

A book was needed for the18.065 course. It was started in the original2017 class,
and a first version went out to the2018 class. I happily acknowledge that this book owes its
existence to Ashley C. Fernandes. Ashley receives pages scanned from Boston and sends
back new sections from Mumbai, ready for more work. This is our seventh book together
and I am extremely grateful.

Students were generous in helping with both classes, especially William Loucks and
Claire Khodadad and Alex LeNail and Jack Strang. The projectfrom Alex led to his online
code alexlenail.me/NN – SVG/ to draw neural nets (an example appears on page v).
The project from Jack onhttp://www.teachyourmachine.com learns to recognize hand-
written numbers and letters drawn by the user : open for experiment. See Section VII.2.

MIT’s faculty and staff have given generous and much needed help :

Suvrit Sra gave a fantastic lecture on stochastic gradient descent (now an18.065 video)

Alex Postnikov explained when matrix completion can lead torank one (Section IV.8)

Tommy Poggio showed his class how deep learning generalizesto new data

Jonathan Harmon and Tom Mullaly and Liang Wang contributed to this book every day

Ideas arrived from all directions and gradually they filled this textbook.

The Content of the Book

This book aims to explain the mathematics on which data science depends :Linear algebra,
optimization, probability and statistics. The weights in the learning function go into
matrices. Those weights are optimized by “stochastic gradient descent”. That word
stochastic (= random) is a signal that success is governed by probability not certainty.
The law of large numbers extends to the law of large functions: If the architecture is
well designed and the parameters are well computed, there isa high probability of success.

Please note that this is not a book about computing, or coding, or software. Many books
do those parts well. One of our favorites isHands-On Machine Learning(2017)
by Aurélien Géron (published by O’Reilly). And online help,from Tensorflow and Keras
and MathWorks and Caffe and many more, is an important contribution to data science.

Linear algebra has a wonderful variety of matrices : symmetric, orthogonal, triangular,
banded, permutations and projections and circulants. In myexperience,positive definite
symmetric matricesS are the aces. They have positive eigenvaluesλ and orthogonal
eigenvectorsq. They are combinationsS = λ1q1q

T
1 + λ2q2q

T
2 + · · · of simple rank-one

projectionsqqT onto those eigenvectors. And ifλ1 ≥ λ2 ≥ . . . thenλ1q1q
T
1 is the most

informative part ofS. For a sample covariance matrix, that part has the greatest variance.
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Chapter I In our lifetimes, the most important step has been to extend those ideas from
symmetric matrices to all matrices.Now we needtwo sets of singular vectors,u’s andv’s.
Singular valuesσ replace eigenvaluesλ. The decompositionA = σ1u1v

T
1 +σ2u2v

T
2 +· · ·

remains correct (this is the SVD). With decreasingσ’s, those rank-one pieces ofA still
come in order of importance. That “Eckart-Young Theorem” aboutA complements what
we have long known about the symmetric matrixATA : For rankk, stop atσkukv

T
k .

II The ideas in Chapter I become algorithms in Chapter II. For quite large matrices, the
σ’s andu’s andv’s are computable. For very large matrices, we resort to randomization :
Sample the columns and the rows. For wide classes of big matrices this works well.

III-IV Chapter III focuses on low rank matrices, and Chapter IV on many important
examples. We are looking for properties that make the computations especially fast (in III)
or especially useful (in IV). TheFourier matrix is fundamental for every problem with
constant coefficients (not changing with position). That discrete transform is superfast
because of theFFT : the Fast Fourier Transform.

V Chapter V explains, as simply as possible, the statistics weneed. The central ideas are
alwaysmean and variance : The averageand thespreadaround that average. Usually
we can reduce the mean to zero by a simple shift. Reducing the variance (the uncertainty)
is the real problem. For random vectors and matrices and tensors, that problem becomes
deeper. It is understood that thelinear algebra of statisticsis essential to machine learning.

VI Chapter VI presents two types of optimization problems. First come the nice problems
of linear and quadratic programming and game theory. Duality and saddle points are
key ideas. But the goals of deep learning and of this book are elsewhere : Very large
problems with a structure that is as simple as possible. “Derivative equals zero” is still
the fundamental equation. The second derivatives that Newton would have used are
too numerous and too complicated to compute. Even using all the data (when we take
a descent step to reduce the loss) is often impossible. That is why we choose only
a minibatch of data, in each step of stochastic steepest descent.

The success of large scale learning comes from the wonderfulfact thatrandomization
often produces reliability—where there are thousands or millions of variables.

VII Chapter VII begins with the architecture of a neural net. An input layer is connected
to hidden layers and finally to the output layer. For the training data, input vectorsv
are known. Also the correct outputs are known (oftenw is the correct classification ofv).
We optimize the weightsx in the learning function F so that F (x, v) is close tow
for almost every training input v.

ThenF is applied totest data, drawn from the same population as the training data.
If F learned what it needs (without overfitting: we don’t want to fit100 points by99th
degree polynomials), the test error will also be low. The system recognizes images and
speech. It translates between languages. It may follow designs like ImageNet or AlexNet,
winners of major competitions. A neural net defeated the world champion at Go.
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The functionF is oftenpiecewise linear—the weights go into matrix multiplications.
Every neuron on every hidden layer also has a nonlinear “activation function”. The
ramp functionReLU(x) = (maximum of 0 and x) is now the overwhelming favorite.

There is a growing world of expertise in designing the layersthat make upF (x,v).
We start withfully connectedlayers—all neurons on layern connected to all neurons on
layern + 1. Often CNN’s are better—Convolutional neural netsrepeat the same weights
around all pixels in an image : a very important construction. Other layers are different.
A pooling layer reduces the dimension.Dropout randomly leaves out neurons.Batch
normalizationresets the mean and variance. All these steps create a function that closely
matches the training data. ThenF (x,v) is ready to use.
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THE MATRIX ALPHABET
A Any Matrix Q Orthogonal Matrix
C Circulant Matrix R Upper Triangular Matrix
C Matrix of Columns R Matrix of Rows
D Diagonal Matrix S Symmetric Matrix
F Fourier Matrix S Sample Covariance Matrix
I Identity Matrix T Tensor
L Lower Triangular Matrix U Upper Triangular Matrix
L Laplacian Matrix U Left Singular Vectors
M Mixing Matrix V Right Singular Vectors
M Markov Matrix X Eigenvector Matrix
P Probability Matrix Λ Eigenvalue Matrix
P Projection Matrix Σ Singular Value Matrix

Video lectures: OpenCourseWareocw.mit.edu and YouTube (Math 18.06 and 18.065)

Introduction to Linear Algebra (5th ed) by Gilbert Strang, Wellesley-Cambridge Press

Book websites: math.mit.edu/linearalgebra and math.mit.edu/learningfromdata




