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Deep Learning and Neural Nets

Linear algebra and probability/statistics and optimization are the mathematical pillars
of machine learning. Those chapters will come before the architecture of a neural net.
But we find it helpful to start with this description of the goal : To construct a function
that classifies the training data correctly, so it can generalize to unseen test data.

To make that statement meaningful, you need to know more about this learning
function. That is the purpose of these three pages—to give direction to all that follows.

The inputs to the functionF are vectors or matrices or sometimes tensors—one input
v for each training sample. For the problem of identifying handwritten digits, each input
sample will be an image—a matrix of pixels. We aim to classifyeach of those images as a
number from0 to 9. Those ten numbers are the possible outputs from the learning function.
In this example, the functionF learns what to look for in classifying the images.

The MNIST set contains70, 000 handwritten digits. We train a learning function on part
of that set. By assigning weights to different pixels in the image, we create the function.
The big problem of optimization (the heart of the calculation) is to choose weights so
that the function assigns the correct output0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. And we don’t ask
for perfection ! (One of the dangers in deep learning isoverfitting the data,)

Then we validate the function by choosing unseen MNIST samples, and applying
the function to classify this test data. Competitions over the years have led to major
improvements in the test results. Convolutional nets now gobelow 1% errors. In fact
it is competitions on known data like MNIST that have broughtbig improvements in
the structure ofF . That structure is based on the architecture of an underlying neural net.

Linear and Nonlinear Learning Functions

The inputs are the samplesv, the outputs are the computed classificationsw = F (v).
The simplest learning function would be linear :w = Av. The entries in the matrixA
are the weights to be learned : not too difficult. Frequently the function also learns a
bias vectorb, so thatF (v) = Av + b. This function is “affine”. Affine functions can be
quickly learned, but by themselves they are too simple.

iii



iv Deep Learning and Neural Nets

More exactly, linearity is a very limiting requirement. If MNIST used Roman numerals,
then II might be halfway between I and III (as linearity demands). But what would be
halfway between I and XIX ? Certainly affine functionsAv + b are not always sufficient.

Nonlinearity would come by squaring the components of the input vectorv. That step
might help to separate a circle from a point inside—which linear functions cannot do.
But the construction ofF moved toward “sigmoidal functions” withS-shaped graphs.
It is remarkable that big progress came by inserting these standard nonlinearS-shaped
functions between matricesA andB to produceA(S(Bv)). Eventually it was discovered
that the smoothly curved logistic functionsS could be replaced by the extremely simple
ramp function now calledReLU(x) = max(0, x). The graphs of these nonlinear
“activation functions” R are drawn in Section VII.1.

Neural Nets and the Structure ofF (v)

The functions that yield deep learning have the formF (v) = L(R(L(R(. . . (Lv))))).
This is acompositionof affine functionsLv = Av + b with nonlinear functionsR—
which act on each component of the vectorLv. The matricesA and the bias vectorsb
are theweights in the learning function F . It is theA’s andb’s that must be learned
from the training data, so that the outputsF (v) will be (nearly) correct. ThenF can be
applied to new samples from the same population. If the weights (A’s andb’s) are well
chosen, the outputsF (v) from the unseen test data should be accurate. More layers
in the functionF will typically produce more accuracy inF (v).

Properly speaking,F (x,v) depends on the inputv and the weightsx (all theA’s and
b’s). The outputsv1 = ReLU(A1v + b1) from the first step produce thefirst hidden
layer in our neural net. The complete net starts with the input layerv and ends with the
output layerw = F (v). The affine partLk(vk−1) = Akvk−1 + bk of each step uses the
computed weightsAk andbk.

All those weights together are chosen in the giant optimization of deep learning :

Choose weightsAk and bk to minimize the total loss over all training samples.

The total loss is the sum of individual losses on each sample.The loss function for
least squares has the familiar form||F (v) − true output||2. Often least squares is not
the best loss function for deep learning.

One input v = One outputw = 2
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Here is a picture of the neural net, to show the structure ofF (v). The input layer
contains the training samplesv = v0. The output is their classificationw = F (v).
For perfect learning,w will be a (correct) digit from0 to 9. The hidden layers
add depth to the network. It is that depth which has allowed the composite functionF
to be so successful in deep learning. In fact the number of weightsAij and bj in the
neural net is often larger than the number of inputs from the training samplesv.

This is a feed-forward fully connected network. For images,aconvolutionalneural net
(CNN) is often appropriate and weights are shared—the diagonalsof the matricesA
are constant. Deep learning works amazingly well, when the architecture is right.

Input sample Hidden Layer Hidden Layer Output

Each diagonal in this neural net represents a weight to be learned by optimization.
Edges from the squares contain bias vectorsb1, b2, b3. The other weights are inA1, A2, A3.
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