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I.2 Matrix-Matrix Multiplication AB

Inner products (rows times columns) produce each of the numbers inAB = C :

row 2 of A
column 3 of B
givec23 in C



· · ·

a21 a22 a23
· · ·





· · b13
· · b23
· · b33


 =



· · ·
· · c23
· · ·


 (1)

That dot productc23 = (row 2 of A) ··· (column3 of B) is a sum ofa’s timesb’s :

c23 = a21 b13 + a22 b23 + a23 b33 =

3∑

k=1

a2k bk3 and cij =

n∑

k=1

aik bkj . (2)

This is how we usually compute each number inAB = C. But there is another way.

The other way to multiplyAB is columns ofA times rows ofB. We need to see this !
I start with numbers to make two key points :one columnu timesone rowvT produces a
matrix. Concentrate first on that piece ofAB. This matrixuvT is especially simple :

“Outer
product”

uvT =




2
2
1



[
3 4 6

]

=




6 8 12
6 8 12
3 4 6


 =

“rank one
matrix”

An m by 1 matrix (a columnu) times a1 by p matrix (a rowvT) gives anm by p matrix.
Notice what is special about the rank one matrixuvT :

All columns ofuvT are multiples ofu =



2
2
1


All rows are multiples ofvT =

[
3 4 6

]

The column space ofuvT is one-dimensional : the line in the direction ofu.
The dimension of the column space (the number of independentcolumns) is therank
of the matrix—a key number.All nonzero matricesuvT have rank one. They are the
perfect building blocks for every matrix.

Notice also :The row space ofuvT is the line through v. By definition, the row
space of any matrixA is the column spaceC(AT) of its transposeAT. That way we stay
with column vectors. In the example, we transposeuvT (exchange rows with columns)
to get the matrixvuT :

(uvT)T =




6 8 12
6 8 12
3 4 6



T

=




6 6 3
8 8 4
12 12 6


 =




3
4
6



[
2 2 1

]

= vuT.
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We are seeing the clearest possible example of the first greattheorem in linear algebra :

Row rank = Column rank r independent columns⇔ r independent rows

A nonzero matrixuvT has one independent column and one independent row. All columns
are multiples ofu and all rows are multiples ofvT. The rank isr = 1 for this matrix.

AB = Sum of Rank One Matrices

We turn to the full productAB, using columns ofA times rows ofB. Leta1,a2, . . . ,an

be then columns ofA. ThenB must haven rows b∗1, b
∗
2, . . . , b

∗
n. The matrixA can

multiply the matrixB. Their product AB is the sum of columnsak times rowsb∗k :

Column-row multiplication of matrices

AB =



| |
a1 . . . an

| |







—– b∗1 —–
...

—– b∗n —–


 = a1 b

∗
1 + a2 b

∗
2 + · · ·+ an b

∗
n.

sum of rank 1 matrices

(3)

Here is a2 by 2 example to show then = 2 pieces (column times row) and their sumAB :

[
1 0
3 1

] [
2 4
0 5

]
=

[
1
3

] [
2 4

]
+

[
0
1

] [
0 5

]
=

[
2 4
6 12

]
+

[
0 0
0 5

]
=

[
2 4
6 17

]
(4)

We can count the multiplications of number times number. Four multiplications to get
2, 4, 6, 12. Four more to get0, 0, 0, 5. A total of 23 = 8 multiplications. Always there
aren3 multiplications whenA andB aren by n. Andmnp multiplications whenAB =
(m by n) times(n by p) : n rank one matrices, each of those matrices ism by p.

The count is the same for the usual inner product way. Row ofA times column ofB
needsn multiplications. We do this for every number inAB : mp dot products whenAB
ism by p. The total count is againmnp when we multiply(m by n) times(n by p).

rows times columns mp inner products, n multiplications each mnp
columns times rows n outer products, mp multiplications each mnp

When you look closely, they are exactly the same multiplicationsaik bkj in different
orders. Here is the algebra proof that each numbercij in C = AB is the same by outer
products in (3) as by inner products in (2) :

Thei, j entry ofakb
∗
k is aikbkj . Add to findcij =

n∑

k=1

aik bkj = row i ··· column j.
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Insight from Column times Row

Why is the outer product approach essential in data science ?The short answer is :We are
looking for the important part of a matrixA. We don’t usually want the biggest number
in A (though that could be important). What we want more is the largest piece ofA. And
those pieces are rank one matricesuvT. A dominant theme in applied linear algebra is :

Factor A into CR and look at the piecesckr∗k of A = CR.

FactoringA into CR is the reverse of multiplyingCR = A. Factoring takes longer,
especially if the pieces involveeigenvaluesor singular values. But those numbers have
inside information about the matrixA. That information is not visible until you factor.

Here are five important factorizations, with the standard choice of letters (usuallyA)
for the original product matrix and then for its factors. This book will explain all five.

A = LU A = QR S = QΛQT A = XΛX−1 A = UΣV T

At this point we simply list key words and properties for eachof these factorizations.

1 A = LU comes fromelimination. Combinations of rows takeA to U andU back

to A. The matrixL is lower triangular andU is upper triangular as in equation (4).

2 A = QR comes fromorthogonalizing the columnsa1 toan as in “Gram-Schmidt”.

Q has orthonormal columns(QTQ = I) andR is upper triangular.

3 S = QΛQT comes from theeigenvaluesλ1, . . . , λn of a symmetric matrixS = ST.

Eigenvalues on the diagonal ofΛ. Orthonormal eigenvectorsin the columns ofQ.

4 A = XΛX−1 is diagonalizationwhenA isn byn with n independent eigenvectors.

Eigenvaluesof A on the diagonal ofΛ. Eigenvectorsof A in the columns ofX .

5 A = UΣV T is theSingular Value Decompositionof any matrixA (square or not).

Singular valuesσ1, . . . , σr in Σ. Orthonormalsingular vectors in U andV .

Let me pick out a favorite (number3) to illustrate the idea. This special factorization
QΛQT starts with a symmetric matrixS. That matrix has orthogonal unit eigenvectors
q1, . . . , qn. Those perpendicular eigenvectors (dot products= 0) go into the columns ofQ.

S andQ are the kings and queens of linear algebra :

Symmetric matrix S ST = S All sij = sji

Orthogonal matrix Q QT = Q−1 All qi · qj =

{
0 for i 6= j
1 for i = j
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The diagonal matrixΛ contains real eigenvaluesλ1 to λn. Every real symmetric matrix
S hasn orthonormal eigenvectorsq1 to qn. When multiplied byS, the eigenvectors keep
the same direction. They are just rescaled by the numberλ :

Eigenvectorq and eigenvalueλ Sq = λq (5)

Findingλ andq is not easy for a big matrix. Butn pairs always exist whenS is symmetric.
Our purpose here is to see howSQ = QΛ comes column by column fromSq = λq :

SQ = S


 q1 . . . qn


=


λ1q1 . . . λnqn


=


 q1 . . . qn






λ1

. . .
λn


= QΛ (6)

Multiply SQ = QΛ by Q−1 = QT to getS = QΛQT = a symmetric matrix. Each
eigenvalueλk and each eigenvectorqk contribute a rank one pieceλkqkq

T
k to S.

Rank one pieces S = (QΛ)QT = (λ1q1)q
T
1 + (λ2q2)q

T
2 + · · ·+ (λnqn)q

T
n (7)

All symmetric The transpose ofqiq
T
i is qiq

T
i (8)

Please notice that the columns ofQΛ areλ1q1 to λnqn. When you multiply a matrix on
the right by the diagonal matrixΛ, you multiply itscolumnsby theλ’s.

We close with a comment on the proof of thisSpectral Theorem S = QΛQT :
Every symmetricS hasn real eigenvalues andn orthonormal eigenvectors. Section1.6
will construct the eigenvalues as the roots of thenth degree polynomialPn(λ) = deter-
minant ofS − λI. They are real numbers whenS = ST. The delicate part of the proof
comes when an eigenvalueλi is repeated— it is a double root or anM th root from a factor
(λ − λj)

M . In this case we need to produceM independent eigenvectors. The rank of
S − λjI must ben−M . This is true whenS = ST. But it requires a proof.

Similarly the Singular Value DecompositionA = UΣV T requires extra patience when
a singular valueσ is repeatedM times in the diagonal matrixΣ. Again there areM
pairs of singular vectorsv andu with Av = σu. Again this true statement requires proof.

Notation for rows We introduced the symbolsb∗1, . . . , b
∗
n for the rows of the second

matrix inAB. You might have expectedbT1 , . . . , b
T
n and that was our original choice. But

this notation is not entirely clear—it seems to mean the transposes of the columns ofB.
Since that right hand factor could beU or R or QT or X−1 or V T, it is safer to say
definitely : we want the rows of that matrix.
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Problem Set I.2

1 SupposeAx = 0 andAy = 0 (wherex andy and0 are vectors). Put those two
statements together into one matrix equationAB = C. What are those matricesB
andC ? If the matrixA ism by n, what are the shapes ofB andC ?

2 Supposea andb are column vectors with componentsa1, . . . , am andb1, . . . , bp.
Can you multiplya timesbT (yes or no) ? What is the shape of the answerabT ?
What number is in rowi, columnj of abT ? What can you say aboutaaT ?

3 (Extension of Problem2 : Practice with subscripts) Instead of that one vectora,
suppose you haven vectorsa1 to an in the columns ofA. Suppose you haven
vectorsbT1 , . . . , b

T
n in the rows ofB.

(a) Give a “sum of rank one” formula for the matrix-matrix productAB.

(b) Give a formula for thei, j entry of that matrix-matrix productAB. Use sigma
notation to add thei, j entries of each matrixakb

T
k , found in Problem 2.

4 SupposeB has only one column (p = 1). So each row ofB just has one number.
A has columnsa1 to an as usual. Write down the column times row formula
for AB. In words, them by 1 column vectorAB is a combination of the .

5 Start with a matrixB. If we want to take combinations of its rows, we premultiply
byA to getAB. If we want to take combinations of its columns, we postmultiply by
C to getBC. For this question we will do both.

Row operations then column operations FirstAB then(AB)C

Column operations then row operations FirstBC thenA(BC)

Theassociative lawsays that we get the same final result both ways.

Verify (AB)C = A(BC) for A =

[
1 a
0 1

]
B =

[
b1 b2
b3 b4

]
C =

[
1 0
c 1

]
.

6 If A has columnsa1,a2,a3 andB = I is the identity matrix, what are the rank one
matricesa1b

∗
1 anda2b

∗
2 anda3b

∗
3 ? They should add toAI = A.

7 Fact: The columns ofAB are combinations of the columns ofA. Then the column
spaceof AB is contained inthe column space ofA. Give an example ofA andB
for whichAB has a smaller column space thanA.

8 To computeC = AB = (m by n) (n by p), what order of the same three commands
leads to columns times rows (outer products) ?

Rows times columns Columns times rows
For i = 1 tom For. . .
For j = 1 to p For. . .
Fork = 1 to n For. . .

C(i, j) = C(i, j) +A(i, k) ∗B(k, j) C =




