
2 Highlights of Linear Algebra

I.1 Multiplication Ax Using Columns of A

We hope you already know some linear algebra. It is a beautiful subject—more useful

to more people than calculus (in our quiet opinion). But even old-style linear algebra

courses miss basic and important facts. This first section of the book is about matrix-vector

multiplication Ax and the column space of a matrix and the rank.

We always use examples to make our point clear.

Example 1 Multiply A times x using the three rows of A. Then use the two columns :

By rows





2 3
2 4
3 7





[

x1

x2

]

=





2x1 + 3x2

2x1 + 4x2

3x1 + 7x2



 =
inner products

of the rows

with x = (x1, x2)

By columns





2 3
2 4
3 7





[

x1

x2

]

= x1





2
2
3



+ x2





3
4
7



 =
combination

of the columns

a1 and a2

You see that both ways give the same result. The first way (a row at a time) produces

three inner products. Those are also known as “dot products” because of the dot notation :

row ··· column = (2, 3) ··· (x1, x2) = 2x1 + 3x2 (1)

This is the way to find the three separate components of Ax. We use this for computing—

but not for understanding. It is low level. Understanding is higher level, using vectors.

The vector approach sees Ax as a “linear combination” of a1 and a2. This is the funda-

mental operation of linear algebra ! A linear combination of a1 and a2 includes two steps :

(1) Multiply the columns a1 and a2 by “scalars” x1 and x2

(2) Add vectors x1a1 + x2a2 = Ax.

Thus Ax is a linear combination of the columns of A. This is fundamental.

This thinking leads us to the column space of A. The key idea is to take all combina-

tions of the columns. All real numbers x1 and x2 are allowed—the space includes Ax for

all vectors x. In this way we get infinitely many output vectors Ax. And we can see those

outputs geometrically.

In our example, each Ax is a vector in 3-dimensional space. That 3D space is called

R3. (The R indicates real numbers. Vectors with three complex components lie in the

space C3.) We stay with real vectors and we ask this key question :

All combinations Ax = x1a1 + x2a2 produce what part of the full 3D space ?

Answer : Those vectors produce a plane. The plane contains the complete line in the

direction of a1 = (2, 2, 3), since every vector x1a1 is included. The plane also includes

the line of all vectors x2a2 in the direction of a2. And it includes the sum of any vector

on one line plus any vector on the other line. This addition fills out an infinite plane

containing the two lines. But it does not fill out the whole 3-dimensional space R3.
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Definition The combinations of the columns fill out the column space of A.

Here the column space is a plane. That plane includes the zero point (0, 0, 0) which is

produced when x1 = x2 = 0. The plane includes (5, 6, 10) = a1+a2 and (−1,−2,−4) =
a1 − a2. Every combination x1a1 + x2a2 is in this column space. With probability 1 it

does not include the random point rand(3, 1) ! Which points are in the plane ?

b=(b1, b2, b3) is in the column space of A exactly when Ax=b has a solution (x1, x2)

When you see that truth, you understand the column space C(A) : The solution x shows

how to express the right side b as a combination x1a1 + x2a2 of the columns. For some b

this is impossible—they are not in the column space.

Example 2 b=





1
1
1



 is not in C(A). Ax =





2x1 + 3x2

2x1 + 4x2

3x1 + 7x2



 =





1
1
1



 is unsolvable.

The first two equations force x1 = 1

2
and x2 = 0. Then equation 3 fails : 3

(

1

2

)

+7(0)=1.5

(not 1). This means that b = (1, 1, 1) is not in the column space—the plane of a1 and a2.

Example 3 What are the column spaces ofA2 =





2 3 5
2 4 6
3 7 10



 andA3 =





2 3 1
2 4 1
3 7 1



 ?

Solution. The column space of A2 is the same plane as before. The new column (5, 6, 10)
is the sum of column 1 + column 2. So a3 = column 3 is already in the plane and adds

nothing new. By including this “dependent” column we don’t go beyond the original plane.

The column space of A3 is the whole 3D space R3. Example 2 showed us that the new

third column (1, 1, 1) is not in the plane C(A). Our column space C(A3) has grown bigger.

But there is nowhere to stop between a plane and the full 3D space. Visualize the x − y

plane and a third vector (x3, y3, z3) out of the plane (meaning that z3 6= 0). They combine

to give every vector in R3.

Here is a total list of all possible column spaces inside R3. Dimensions 0, 1, 2, 3 :

Subspaces of R3 The zero vector (0, 0, 0) by itself

A line of all vectors x1a1

A plane of all vectors x1a1 + x2a2

The whole R3 with all vectors x1a1 + x2a2 + x3a3

In that list we need the vectors a1,a2,a3 to be “independent”. The only combination that

gives the zero vector is 0a1 + 0a2 + 0a3. So a1 by itself gives a line, a1 and a2 give a

plane, a1 and a2 and a3 give every vector b in R3. The zero vector is in every subspace !

In linear algebra language :

• Three independent columns in R3 produce an invertible matrix : AA−1=A−1A= I.

• Ax = 0 requires x = (0, 0, 0). Then Ax = b has exactly one solution x = A−1b.

You see the picture for the columns of an n by n invertible matrix. Their combinations

fill its column space : all of Rn. We needed those ideas and that language to go further.
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Independent Columns and the Rank of A

After writing those words, I thought this short section was complete. Wrong. With

just a small effort, we can find a basis for the column space of A, we can factor A into

C times R, and we can prove the first great theorem in linear algebra. You will see the

rank of a matrix and the dimension of a subspace.

All this comes with an understanding of independence. The goal is to create a matrix C

whose columns come directly from A—but not to include any column that is a combination

of previous columns. The columns of C (as many as possible) will be “independent”.

Here is a natural construction of C from the n columns of A :

If column 1 of A is not all zero, put it into the matrix C.

If column 2 of A is not a multiple of column 1, put it into C.

If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue.

At the end C will have r columns (r ≤ n).

They will be a “basis” for the column space of A.

The left out columns are combinations of those basic columns in C.

A basis for a subspace is a full set of independent vectors : All vectors in the space are

combinations of the basis vectors. Examples will make the point.

Example 4 If A =





1 3 8
1 2 6
0 1 2



 then C =





1 3
1 2
0 1





n = 3 columns in A

r = 2 columns in C

Column 3 of A is 2 (column 1) + 2 (column 2). Leave it out of the basis in C.

Example 5 If A =





1 2 3
0 4 5
0 0 6



 then C = A.
n = 3 columns in A

r = 3 columns in C

This matrix A is invertible. Its column space is all of R3. Keep all 3 columns.

Example 6 If A =





1 2 5
1 2 5
1 2 5



 then C =





1
1
1





n = 3 columns in A

r = 1 column in C

The number r is the “rank” of A. It is also the rank of C. It counts independent columns.

Admittedly we could have moved from right to left in A, starting with its last column.

This would not change the final count r. Different basis, but always the same number of

vectors. That number r is the “dimension” of the column space of A and C (same space).

The rank of a matrix is the dimension of its column space.
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The matrix C connects to A by a third matrix R : A = CR. Their shapes are

(m by n) = (m by r) (r by n). I can show this “factorization of A” in Example 4 above :

A =





1 3 8
1 2 6
0 1 2



 =





1 3
1 2
0 1





[

1 0 2
0 1 2

]

= CR (2)

When C multiplies the first column

[

1
0

]

of R, this produces column 1 of C and A.

When C multiplies the second column

[

0
1

]

of R, we get column 2 of C and A.

When C multiplies the third column

[

2
2

]

of R, we get 2(column 1) + 2(column 2).

This matches column 3 of A. All we are doing is to put the right numbers in R.

Combinations of the columns of C produce the columns of A. Then A = CR stores this

information as a matrix multiplication. Actually R is a famous matrix in linear algebra :

R = rref(A) = row-reduced echelon form of A (without zero rows).

Example 5 has C = A and then R = I (identity matrix). Example 6 has only one

column in C, so it has one row in R :

A =





1 2 5
1 2 5
1 2 5



 =





1
1
1





[

1 2 5
]

= CR
All three matrices have rank r = 1

Column Rank = Row Rank

The number of independent columns equals the number of independent rows

This rank theorem is true for every matrix. Always columns and rows in linear algebra !

The m rows contain the same numbers aij as the n columns. But different vectors.

The theorem is proved by A = CR. Look at that differently—by rows instead of

columns. The matrix R has r rows. Multiplying by C takes combinations of those rows.

Since A = CR, we get every row of A from the r rows of R. And those r rows are

independent, so they are a basis for the row space of A. The column space and row space

of A both have dimension r, with r basis vectors—columns of C and rows of R.

One minute : Why does R have independent rows ? Look again at Example 4.

A =





1 3 8
1 2 6
0 1 2



=





1 3
1 2
0 1





[

1 0 2
0 1 2

]

← independent

← rows of R

↑ ↑

ones and zeros

It is those ones and zeros in R that tell me : No row is a combination of the other rows.

The big factorization for data science is the “SVD” of A—when the first factor C

has r orthogonal columns and the second factor R has r orthogonal rows.
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Problem Set I.1

1 Give an example where a combination of three nonzero vectors in R4 is the zero

vector. Then write your example in the form Ax = 0. What are the shapes of A and

x and 0 ?

2 Suppose a combination of the columns of A equals a different combination of those

columns. Write that as Ax = Ay. Find two combinations of the columns of A that

equal the zero vector (in matrix language, find two solutions to Az = 0).

3 (Practice with subscripts) The vectors a1,a2, . . . ,an are in m-dimensional space

Rm, and a combination c1a1 + · · · + cnan is the zero vector. That statement is at

the vector level.

(1) Write that statement at the matrix level. Use the matrix A with the a’s in its

columns and use the column vector c = (c1, . . . , cn).

(2) Write that statement at the scalar level. Use subscripts and sigma notation to

add up numbers. The column vector aj has components a1j , a2j , . . . , amj .

4 Suppose A is the 3 by 3 matrix ones(3, 3) of all ones. Find two independent vec-

tors x and y that solve Ax = 0 and Ay = 0. Write that first equation Ax = 0
(with numbers) as a combination of the columns of A. Why don’t I ask for a third

independent vector with Az = 0 ?

5 The linear combinations of v = (1, 1, 0) and w = (0, 1, 1) fill a plane in R3.

(a) Find a vector z that is perpendicular to v and w. Then z is perpendicular to

every vector cv + dw on the plane : (cv + dw)Tz = cvTz + dwTz = 0 + 0.

(b) Find a vector u that is not on the plane. Check that uTz 6= 0.

6 If three corners of a parallelogram are (1, 1), (4, 2), and (1, 3), what are all three of

the possible fourth corners? Draw two of them.

7 Describe the column space of A = [v w v + 2w]. Describe the nullspace of A :

all vectors x = (x1, x2, x3) that solve Ax = 0. Add the “dimensions” of that plane

(the column space of A) and that line (the nullspace of A) :

dimension of column space +++ dimension of nullspace === number of columns

8 A = CR is a representation of the columns of A in the basis formed by the columns

of C with coefficients in R. If Aij = j2 is 3 by 3, write down A and C and R.

9 Suppose the column space of an m by n matrix is all of R3. What can you say about

m ? What can you say about n ? What can you say about the rank r ?



I.1. Multiplication Ax Using Columns of A 7

10 Find the matrices C1 and C2 containing independent columns of A1 and A2 :

A1 =





1 3 −2
3 9 −6
2 6 −4



 A2 =





1 2 3
4 5 6
7 8 9





11 Factor each of those matrices into A = CR. The matrix R will contain the numbers

that multiply columns of C to recover columns of A.

This is one way to look at matrix multiplication : C times each column of R.

12 Produce a basis for the column spaces of A1 and A2. What are the dimensions of

those column spaces—the number of independent vectors ? What are the ranks of

A1 and A2 ? How many independent rows in A1 and A2 ?

13 Create a 4 by 4 matrix A of rank 2. What shapes are C and R ?

14 Suppose two matrices A and B have the same column space.

(a) Show that their row spaces can be different.

(b) Show that the matrices C (basic columns) can be different.

(c) What number will be the same for A and B ?

15 If A = CR, the first row of A is a combination of the rows of R. Which part of

which matrix holds the coefficients in that combination—the numbers that multiply

the rows of R to produce row 1 of A ?

16 The rows of R are a basis for the row space of A. What does that sentence mean ?

17 For these matrices with square blocks, find A = CR. What ranks ?

A1 =

[

zeros ones

ones ones

]

4 × 4

A2 =

[

A1

A1

]

8 × 4

A3 =

[

A1 A1

A1 A1

]

8 × 8

18 If A = CR, what are the CR factors of the matrix

[

0 A

0 A

]

?

19 “Elimination” subtracts a number ℓij times row j from row i : a “row operation.”

Show how those steps can reduce the matrix A in Example 4 to R (except that

this row echelon form R has a row of zeros). The rank won’t change !

A =





1 3 8
1 2 6
0 1 2



 → → R =





1 0 2
0 1 2
0 0 0



 = rref (A).
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This page is about the factorization A = CR and its close relative A = CMR.

C has the same r independent columns taken from A. The new matrix R has r

independent rows, also taken directly from A. The r by r “mixing matrix” is M .

This invertible matrix makes A = CMR a true equation. Here is an example :





1 2 3
2 4 6
3 5 8



 =





1 2
2 4
3 5





[

−5 2
3 −1

] [

1 2 3
3 5 8

]

= CMR

How did we find that mixing matrix M ? We realized that the matrix

[

1 2
3 5

]

is in bothC and R. It is the overlap of the independent columns 1, 2 and independent

rows 1, 3. Then the correct mixing matrix M is the inverse of this 2 by 2 overlap

matrix M−1 :

MM−1 =

[

−5 2
3 −1

] [

1 2
3 5

]

=

[

1 0
0 1

]

.

Here are extra problems to give practice with all these rectangular matrices of rank r.

20 Find A = CR (R contains I) and also A = C M R for these matrices.

A =

[

2 4
3 6

]

(M is 1 by 1) A =





1 2 1
2 4 4
3 6 5



 (M is 2 by 2)

21 To find a general formula for M , multiply A = CMR by CT on the left and RT on

the right. Then multiply by (CTC)−1 on the left and (RRT)−1 on the right. This

leaves the formula for M that was in earlier printings of this book.

Inverse of a 2 by 2 matrix

No inverse if ad = bc

[

a b

c d

]

−1

=
1

ad− bc

[

d −b

−c a

]

(∗∗)

22 Show that this formula (∗∗) breaks down if

[

b

d

]

= m

[

a

c

]

: dependent columns.

The reason for this page is that the factorizations A = CR and A = CMR have

jumped forward in importance for large matrices. When C takes columns directly

from A, and R takes rows directly from A, those matrices preserve properties

that are lost in the more famous QR and SVD factorizations. Where A = QR and

A = UΣV T involve orthogonalizing the vectors, C and R keep the original data :

If A is nonnegative, so are C and R. If A is sparse, so are C and R.


