Counting Parameters in the Basic Factorizations

A = QR $S = Q\Lambda Q^{\mathrm{T}}$ $A = X\Lambda X^{-1}$ A = QS $A = U\Sigma V^{\mathrm{T}}$ A = LU

This is a review of key ideas in linear algebra. The ideas are expressed by those factorizations and our plan is simple: Count the parameters in each matrix. We hope to see that in each equation like A = LU, the two sides have the same number of parameters. For A = LU, both sides have n^2 parameters.

T. T.

\boldsymbol{L} : Triangular $n \times n$ matrix with 1's on the diagonal	$rac{1}{2}n(n-1)$
\boldsymbol{U} : Triangular $n \times n$ matrix with free diagonal	$rac{1}{2}n(n+1)$
$oldsymbol{Q}$: Orthogonal $n imes n$ matrix	$rac{1}{2}n(n-1)$
\boldsymbol{S} : Symmetric $n \times n$ matrix	$rac{1}{2}n(n+1)$
$\mathbf{\Lambda}$: Diagonal $n \times n$ matrix	n
$X: n \times n$ matrix of independent eigenvectors	$n^2 - n$

Comments are needed for Q. Its first column q_1 is a point on the unit sphere in \mathbb{R}^n . That sphere is an n-1-dimensional surface, just as the unit circle $x^2 + y^2 = 1$ in \mathbf{R}^2 has only one parameter (the angle θ). The requirement $||q_1|| = 1$ has used up one of the nparameters in q_1 . Then q_2 has n-2 parameters—it is a unit vector and it is orthogonal to q_1 . The sum $(n-1) + (n-2) + \cdots + 1$ equals $\frac{1}{2}n(n-1)$ free parameters in Q.

The eigenvector matrix X has only $n^2 - n$ parameters, not n^2 . If x is an eigenvector then so is cx for any $c \neq 0$. We could require the largest component of every x to be 1. This leaves n-1 parameters for each eigenvector (and no free parameters for X^{-1}).

The count for the two sides now agrees in all of the first five factorizations.

For the SVD, use the reduced form $A_{m imes n} = U_{m imes r} \Sigma_{r imes r} V_{r imes n}^{\mathrm{T}}$ (known zeros are not free parameters !) Suppose that $m \leq n$ and A is a full rank matrix with r = m. The parameter count for A is **mn**. So is the total count for U, Σ , and V. The reasoning for orthonormal columns in U and V is the same as for orthonormal columns in Q.

U has
$$\frac{1}{2}m(m-1)$$
 Σ has *m V* has $(n-1)+\cdots+(n-m) = mn - \frac{1}{2}m(m+1)$

Finally, suppose that A is an m by n matrix of rank r. How many free parameters in a rank r matrix? We can count again for $U_{m \times r} \Sigma_{r \times r} V_{r \times n}^{T}$:

U has
$$(m-1)+\dots+(m-r) = mr - \frac{1}{2}r(r+1)$$
 V has $nr - \frac{1}{2}r(r+1)$ *\Sigma* has *n*

The total parameter count for rank r is (m + n - r) r.

We reach the same total for A = CR in Section I.1. The r columns of C were taken directly from A. The row matrix R includes an r by r identity matrix (not free !). Then the count for CR agrees with the previous count for $U\Sigma V^{T}$, when the rank is r: ר ת α 1

C has
$$mr$$
 parameters R has $nr - r^2$ parameters Total $(m + n - r)r$.