Counting Parameters in the Basic Factorizations

$$
A=L U \quad A=Q R \quad S=Q \Lambda Q^{\mathrm{T}} \quad A=X \Lambda X^{-1} \quad A=Q S \quad A=U \Sigma V^{\mathrm{T}}
$$

This is a review of key ideas in linear algebra. The ideas are expressed by those factorizations and our plan is simple: Count the parameters in each matrix. We hope to see that in each equation like $A=L U$, the two sides have the same number of parameters.

For $A=L U$, both sides have n^{2} parameters.
\boldsymbol{L} : Triangular $n \times n$ matrix with 1 's on the diagonal
\boldsymbol{U} : Triangular $n \times n$ matrix with free diagonal

$$
\begin{aligned}
& \frac{1}{2} n(n-1) \\
& \frac{1}{2} n(n+1) \\
& \frac{1}{2} n(n-1) \\
& \frac{1}{2} n(n+1) \\
& n \\
& n^{2}-n
\end{aligned}
$$

Comments are needed for Q. Its first column \boldsymbol{q}_{1} is a point on the unit sphere in \mathbf{R}^{n}. That sphere is an \boldsymbol{n} - $\mathbf{1}$-dimensional surface, just as the unit circle $x^{2}+y^{2}=1$ in \mathbf{R}^{2} has only one parameter (the angle θ). The requirement $\left\|\boldsymbol{q}_{1}\right\|=1$ has used up one of the n parameters in \boldsymbol{q}_{1}. Then \boldsymbol{q}_{2} has $n-2$ parameters-it is a unit vector and it is orthogonal to \boldsymbol{q}_{1}. The sum $(n-1)+(n-2)+\cdots+1$ equals $\frac{\mathbf{1}}{2} \boldsymbol{n}(\boldsymbol{n}-\mathbf{1})$ free parameters in Q.

The eigenvector matrix X has only $n^{2}-n$ parameters, not n^{2}. If \boldsymbol{x} is an eigenvector then so is $c \boldsymbol{x}$ for any $c \neq 0$. We could require the largest component of every \boldsymbol{x} to be 1 . This leaves $n-1$ parameters for each eigenvector (and no free parameters for X^{-1}).

The count for the two sides now agrees in all of the first five factorizations.
For the SVD, use the reduced form $\boldsymbol{A}_{\boldsymbol{m} \times \boldsymbol{n}}=\boldsymbol{U}_{\boldsymbol{m} \times r} \boldsymbol{\Sigma}_{\boldsymbol{r} \times r} \boldsymbol{V}_{\boldsymbol{r} \times \boldsymbol{n}}^{\mathbf{T}}$ (known zeros are not free parameters!) Suppose that $m \leq n$ and A is a full rank matrix with $\boldsymbol{r}=\boldsymbol{m}$. The parameter count for A is $\boldsymbol{m n}$. So is the total count for U, Σ, and V. The reasoning for orthonormal columns in U and V is the same as for orthonormal columns in Q.
U has $\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}(\boldsymbol{m}-\mathbf{1}) \quad \Sigma$ has $\boldsymbol{m} \quad V$ has $(n-1)+\cdots+(n-m)=\boldsymbol{m} \boldsymbol{n}-\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{m}(\boldsymbol{m}+\mathbf{1})$
Finally, suppose that A is an m by n matrix of rank r. How many free parameters in a rank r matrix? We can count again for $U_{m \times r} \Sigma_{r \times r} V_{r \times n}^{\mathrm{T}}$:
U has $(m-1)+\cdots+(m-r)=\boldsymbol{m r}-\frac{\mathbf{1}}{\mathbf{2}} r(r+1) \quad V$ has $\boldsymbol{n r}-\frac{\mathbf{1}}{\mathbf{2}} r(r+1) \quad \Sigma$ has r
The total parameter count for rank r is $(\boldsymbol{m}+\boldsymbol{n}-\boldsymbol{r}) \boldsymbol{r}$.
We reach the same total for $A=C R$ in Section I.1. The r columns of C were taken directly from A. The row matrix R includes an r by r identity matrix (not free !). Then the count for $C R$ agrees with the previous count for $U \Sigma V^{\mathrm{T}}$, when the rank is r :
C has $\boldsymbol{m r}$ parameters $\quad R$ has $\boldsymbol{n r}-\boldsymbol{r}^{2}$ parameters \quad Total $(\boldsymbol{m}+\boldsymbol{n}-r) r$.

