
Convolution as a Moving Window
These pages are about networks with different architecture. An m by n matrix still connects

a layer with n neurons to the next layer with m neurons. Up to now, the layers were fully

connected : A had mn independent weights. Now we might have only E = 3 or E2 = 9
independent weights in A.

The fully connected “dense net” will be extremely inefficient for image recognition.

First, the weight matrices A will be huge. If one image has 200 by 300 pixels, then its input

layer has 60, 000 components. The weight matrix A1 for the first hidden layer has 60, 000
columns. The problem is : We are looking for connections between faraway pixels.

Almost always, the important connections in an image are local.

Music has a 1D local structure

Images have a 2D local structure (3 copies for red-green-blue)

Video has a 3D local structure : Images in a time series

More than this, the search for structure is essentially the same everywhere in the image.

There is normally no reason to process one part of a text or image or video differently

from its other parts. We can use the same weights in all parts : Share the weights. The

neural net of local connections between pixels is shift-invariant : the same everywhere.

The result is a big reduction in the number of independent weights. Suppose each

neuron is connected to only E neurons on the next layer, and those connections are the

same for all neurons. Then the matrix A between those layers has only E independent

weights x. The optimization of those weights becomes enormously faster. In reality

we have time to create several different channels with their own E or E2 weights. They

can look for edges in different directions (horizontal, vertical, and diagonal).

In one dimension, a banded shift-invariant matrix is a Toeplitz matrix or a filter.

Multiplication by that matrix A is a convolution x ∗ v. The network of connections

between the layers is a Convolutional Neural Net (CNN or ConvNet). Here E = 3.

A =









x1 x0 x
−1 0 0 0

0 x1 x0 x
−1 0 0

0 0 x1 x0 x
−1 0

0 0 0 x1 x0 x
−1









v = (v0, v1, v2, v3, v4, v5)

y = Av = (y1, y2, y3, y4)

N + 2 inputs v and N outputs y

It is valuable to see A as a combination of shift matrices L,C,R : Left, Center, Right.

Each shift has a diagonal of 1’s A = x1L + x0C + x
−1R

Then the derivatives of y = Av = x1Lv + x0Cv + x
−1Rv are exceptionally simple :

∂(output)

∂(weight)

∂y

∂x1

= Lv
∂y

∂x0

= Cv
∂y

∂x
−1

= Rv (1)

1



2 When Eigenvalues Meet Singular Values

Convolution of Vectors x ∗ v

The convolution of two vectors is written x ∗v = (2, 1, 2) ∗ (3, 3, 1). Computing the result

x ∗ v = (6, 9, 11, 7, 2) is like multiplying the numbers 212 and 331, without carrying.

3 3 1 Notice that we leave

2 1 2 6 + 3 + 2 = 11 as is (no carrying)

6 6 2 Same steps for multiplying

3 3 1 2x2 + x+ 2 times 3x2 + 3x+ 1
6 6 2 That answer would be

6 9 11 7 2 6x4 + 9x3 + 11x2 + 7x+ 2

The previous page just put the numbers (x1, x0, x−1) = (2, 1, 2) on three diagonals of A.

Then ordinary multiplication 212 times 331 converts to matrix-vector multiplication Av.

When x has length j + 1 and v has length k + 1, convolution x ∗ v has length j + k + 1.

Convolution as a Moving Window

Suppose we average each number with the next number in v = (1, 3, 5). The result is

y = (2, 4). This is a typical convolution of v with the averaging vector x =
(

1

2
, 1

2

)

:

y = Av =

[

1

2

1

2
0

0 1

2

1

2

]





1
3
5



 =

[

2
4

]

Notice the decision not to pad v with a zero at each end (and extend A to be 4 by 5).

That would lead to 4 outputs y instead of 2. It would be consistent with multiplying

numbers : 11 times 135 is 1485 and dividing by 2 gives 1

2
, 2, 4, 5

2
.

Python and MATLAB offer both versions of convolution, padded or not (and a

third option with three outputs). We will choose not to pad the input with zeros.

Each row of A is a perfect shift of the previous row, as above.

Often the convolution process Av is seen as a moving window. The window starts

at 1 3 and moves to 3 5. Averaging produces 2 in the first window and 4 in the second

window. The whole point of “shift invariance” is that a convolution does the same thing

in each window.

Windows in Two Dimensions

This approach is helpful in two dimensions where the window is a square or a rectangle.

It is easy to see 2 by 2 overlapping windows filling an n by n square. There would be

(n − 1)2 windows and an average over each window. The matrix A has (n − 1)2 outputs

from n2 inputs. Each row of A has
(

1

4
, 1
4
, 1

4
, 1

4

)

: four nonzeros to average over a 2 by 2
window.



When Eigenvalues Meet Singular Values 3

To produce that two-dimensional averaging convolution, first average neighboring pairs

in every row. Then average every pair of neighbors in every column. The combination

will average over every square. It works because the 2D averaging matrix has rank 1 :

average over a

2 by 2 window
=

[

1

4

1

4

1

4

1

4

]

=

[

1

2

1

2

]
[

1

2

1

2

]

=
column averages

of row averages

Experiments have pointed to E = 3 as a good choice for convolutions in deep learning.

Deep learning could look for an E by E matrix like this of rank 1 — and apply the two

averages along rows and then down columns. The rank 1 matrix for 2D convolution from

an E by E = 3 by 3 matrix would have 2E − 1 = 5 instead of E2 = 9 unknown weights.

For clarity here are nine 3 by 3 windows that fill a 5 by 5 square.

3 × 3 windows in

a 5 × 5 square

1 2 3

4 5 6

7 8 9

Move this window left / right / up / down /

left up / right up / left down / right down

to produce 9 windows centered

in these nine positions

2D Convolution by One Large Matrix

When the input v is an image, convolution becomes two-dimensional. E = 3 numbers

x
−1, x0, x1 change to E2 = 32 independent weights. The inputs vij have two indices

and v represents (N + 2)2 pixels. The outputs have only N2 pixels unless we pad v with

zeros at the boundary. The 2D convolution Av is a linear combination of 9 shifts of v.

Weights

x11 x01 x
−11

x10 x00 x
−10

x1−1 x0−1 x
−1−1

Input image vij i, j from (0, 0) to (N + 1, N + 1)
Output image yij i, j from (1, 1) to (N,N)
Shifts L, C, R, U, D = Left,Center,Right,Up,Down

A=x11LU+x01CU+x
−11RU+x10L+x00C+x

−10R+x1−1LD+x0−1CD+x
−1−1RD

This expresses the convolution matrix A as a combination of 9 shifts. The derivatives

of the output y = Av are again exceptionally simple. We use the nine derivatives in (2)

to create the gradients ∇F and ∇L (learning function, loss function) that are needed

in gradient descent to improve the weights xk. The next iteration xk+1 = xk − s∇Lk

has weights that better match the correct outputs from the training data.

Backpropagation finds these 9 derivatives of y = Av with respect to 9 weights :

∂y

∂x11

= LUv
∂y

∂x01

= C Uv
∂y

∂x
−11

= RUv . . .
∂y

∂x
−1−1

= RDv (2)



4 When Eigenvalues Meet Singular Values

CNN’s can readily afford to have B parallel channels (and that number B can vary as

we go deeper into the net). The count of weights in x is so much reduced by weight sharing

and weight locality, that we don’t need and we can’t expect one set of E2 = 9 weights

to do all the work of a convolutional net. B convolutions give the next layer.

A convolution is a combination of shift matrices (producing a filter or Toeplitz matrix)

In deep learning, the coefficients in the combination will be the “weights” to be learned.

Several convolutions in parallel will extract more information from the image.

Two-dimensional Convolutional Nets

Now we come to the real success of CNN’s : Image recognition. ConvNets and deep

learning have produced a small revolution in computer vision. The applications are to

self-driving cars, drones, medical imaging, security, robotics—there is nowhere to stop.

Our interest is in the algebra and geometry and intuition that makes all this possible.

In two dimensions (for images) the matrix A is block Toeplitz. Each small block

is E by E. This is a familiar structure in computational engineering. The count E2 of

independent weights to be optimized is far smaller than for a fully connected network.

The same weights are used around all pixels (shift-invariance). The matrix A produces a

2D convolution x ∗ v. Frequently A is called a filter.

To understand an image, look to see where it changes. Find the edges. Our eyes look

for sharp cutoffs and steep gradients. The computer can do the same by creating a filter.

The difficulty with two or more dimensions is that edges can have many directions. We

will need horizontal and vertical and diagonal filters for the test images. And filters have

many purposes, including smoothing and gradient detection and edge detection.

Smoothing For functions, one smoother is convolution with a Gaussian e−x2/2σ2

.

For vectors, we could convolve v ∗G with G = 1

17
(1, 4, 7, 4, 1).

Gradient detection Image processing (as distinct from learning by a CNN) needs

filters that detect the gradient. They contain specially chosen weights. We mention some

simple filters just to indicate how they can find first derivatives of f .

One dimension

E = 3
(x1, x0, x−1) =

(

−
1

2
,0,

1

2

)

Then (Av)i =
1

2
vi+1 −

1

2
vi−1.

Two dimensions These 3× 3 Sobel operators approximate ∂/∂x and ∂/∂y :

E = 3
∂

∂x
≈

1

2





−1 0 1
−2 0 2
−1 0 1





∂

∂y
≈

1

2





−1 −2 −1
0 0 0
1 2 1



 (3)

Edge detection Those weights were created for image processing, to locate the most

important features of a typical image : its edges. These would be candidates for E by E
filters inside a 2D convolutional matrix A. But remember that in deep learning, weights

like 1

2
and −

1

2
are not chosen by the user. They are created from the training data.


