
1

The Functions of Deep Learning
Gilbert Strang

Suppose we draw one of the digits 0, 1, . . . , 9. How does a human recognize which
digit it is ? That neuroscience question is not answered here. How can a computer
recognize which digit it is ? This is a machine learning question. Probably both
answers begin with the same idea : Learn from examples.

So we start with M different images (the training set). An image is a set of
p small pixels—or a vector v =(v1, . . . , vp). The component vi tells us the “grayscale”
of the ith pixel in the image : how dark or light it is. So we have M images each
with p features : M vectors v in p-dimensional space. For every v in that training
set we know the digit it represents.

In a way, we know a function. We have M inputs in Rp each with an output
from 0 to 9. But we don’t have a “rule”. We are helpless with a new input. Machine
learning proposes to create a rule that succeeds on (most of) the training images.
But “succeed” means much more than that : The rule should give the correct digit
for a much wider set of test images, taken from the same population. This essential
requirement is called generalization.

What form shall the rule take ? Here we meet the fundamental question. Our
first answer might be : F (v) could be a linear function from Rp to R10 (a 10 by p
matrix). The 10 outputs would be probabilities of each number 0 to 9. We would
have 10p entries in the matrix and M training samples to get mostly right.

The difficulty is : Linearity is far too limited. Artistically, two zeros can make
an 8. One and zero could combine into a handwritten 9 or possibly 6. Images don’t
add. Recognizing faces instead of numbers requires a great many pixels—and the
input-output rule is nowhere near linear.

Artificial intelligence languished for a generation, waiting for new ideas. There
is no claim that the absolutely best class of functions has now been found. That
class needs to allow a great many parameters (called weights). And it must remain
feasible to compute all those weights (in a reasonable time) from knowledge of the
training set.

The choice that has succeeded beyond expectation—and has transformed shal-
low learning into deep learning—is Continuous Piecewise Linear (CPL) functions.
Linear to preserve simplicity, continuous to model an unknown but reasonable
rule, and piecewise to achieve the nonlinearity that is an absolute requirement for
real images and data.

This leaves the crucial question of computability. What parameters will quickly
describe a large family of CPL functions ? Linear finite elements start with a
triangular mesh. But specifying many individual nodes in Rp is expensive. It
will be better if those nodes are the intersections of a smaller number of lines (or
hyperplanes). Please know that a regular grid is too simple.

Figure 1 is a first construction of a piecewise linear function of the data vector v.
Choose a matrix A and vector b. Then set to zero (this is the nonlinear step) all
negative components of Av+b. Then multiply by a matrix C to produce the output
w = F (v) = C(Av + b)+. That vector (Av + b)+ forms a “hidden layer” between
the input v and the output w.



2

vp

v1

(Av)q [(Av + b)q]+

(Av)1 [(Av + b)1]+

pq + 2q = 20 weights

C[Av + b]+ = wInputs

r(4, 3) = 15 flat pieces

in w = F (v)

The nonlinear function called ReLU (x) = x+ = max (x, 0) was originally smoot-
hed into a logistic curve like 1/(1+e−x). It was reasonable to think that continuous
derivatives would help in optimizing the weights A, b, C. That proved to be wrong.

The graph of each component of (Av+ b)+ has two halfplanes (one is flat, from
the zeros where Av + b is negative). If A is q by p, the input space Rp is sliced by
q hyperplanes into r pieces. We can count those pieces ! This measures the
“expressivity” of the overall function F (v). The formula from combinatorics is :

r(q, p) =

(

q

0

)

+

(

q

1

)

+ · · ·+

(

q

p

)

This number gives an impression of the graph of F . But our function is not yet
sufficiently expressive, and one more idea is needed.

Here is the indispensable ingredient in the learning function F . The best way
to create complex functions from simple functions is by composition. Each Fi is
linear (or affine) followed by the nonlinear ReLU : Fi(v) = (Aiv + bi)+. Their
composition is F (v) = FL(FL−1(. . . F2(F1(v)))). We now have L− 1 hidden layers
before the final output layer. The network becomes deeper as L increases. That
depth can grow quickly for convolutional nets (with banded Toeplitz matrices A).

The great optimization problem of deep learning is to compute weights Ai and
bi that will make the outputs F (v) nearly correct—close to the digit w(v) that the
image v represents. This problem of minimizing some measure of F (v) − w(v) is
solved by following a gradient downhill. The gradient of this complicated function
is computed by backpropagation—the workhorse of deep learning that executes the
chain rule.

A historic competition in 2012 was to identify the 1.2 million images collected
in ImageNet. The breakthrough neural network in AlexNet had 60 million weights
in eight layers. Its accuracy (after five days of stochastic gradient descent) cut in
half the next best error rate. Deep learning had arrived.

Our goal here was to identify continuous piecewise linear functions as powerful
approximators. That family is also convenient—closed under addition and max-
imization and composition. The magic is that the learning function F (Ai, bi,v)
gives accurate results on images v that F has never seen.

——————– ——————– ——————–——————– ——————– ——————–——————– ——————– ——————–

Gilbert Strang teaches linear algebra at MIT. His lectures for 18.06 and now
18.065 are on YouTube and ocw.mit.edu. The January 2019 textbook “Linear Al-
gebra and Learning from Data” is described on math.mit.edu/learningfromdata.



3

References

19 Caffe : arXiv:1408.5093

5 Keras : http://keras.io/

33 MatConvNet : www.vlfeat.org/matconvnet

1 TensorFlow : www.tensorflow.org

2 Theano : arXiv : 1605.02688

6 Torch : torch.ch


