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1.4 Matrix Multiplication and A = CR✬

✫

✩

✪

1 To multiply AB we need row length for A = column length for B.

2 The number in row i, column j of AB is (row i of A) ··· (column j of B).

3 By columns : A times column j of B produces column j of AB.

4 Usually AB is different from BA. But always (AB)C = A (BC).

5 If A has r independent columns, then A = CR = (m by r) (r by n).

At this point we can multiply a matrix A times a vector x to produce Ax. Remember the
row way and the column way. The output is a vector.

Row way Dot products of x with each row of A

Column way Ax = x1a1 + · · ·+ xnan = combination of the columns of A

Now we come to the higher level operation in linear algebra : Multiply two matrices.
We can multiply AB if their shapes are right. When A has n columns, B must have n rows.

If A is m by n and B is n by p, then AB is m by p : m columns and p rows.

The rules for AB will be an extension of the rules for Ax. We can think of the vector x
as a matrix B with only one column. What we did for Ax we will now do for AB.

The columns of B are vectors
[
x y z

]
. The columns of AB are vectors

[
Ax Ay Az

]

In other words, multiply A times each column of B. There are two ways to multiply A
times a column vector, and those give two ways to multiply AB :

Dot products (row i of A) · (column j of B) goes into row i, column j of AB

Combinations of columns of A Use the numbers from each column of B

We have dot products (numbers) or linear combinations of columns of A (vectors).
For computing by hand, I would use the row way to find each number in AB. I “think” the
column way to see the big picture : Columns of AB are combinations of columns of A.

Example 1 Multiply AB =

[
1 2
3 4

] [
5 6
7 8

]
both ways. How many steps ?

The dot product (row 1 of A) · (column 1 of B) is (1,2) · (5,7) = 5 + 14 = 19↓
(Rows of A) · (columns of B) AB =

[
row 1 · col 1 row 1 · col 2
row 2 · col 1 row 2 · col 2

]
=

[
19 22
43 50

]

Ab1 and Ab2 are
combinations of
the columns of A

AB =

[
5

[
1
3

]
+ 7

[
2
4

]
6

[
1
3

]
+ 8

[
2
4

] ]
=

[
19 22
43 50

]
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Either way, AB requires 8 multiplications for 2 by 2 matrices. Multiplying Ax needed
mn multiplications for an m by n matrix. When B has p columns, we have to multiply
A times each column. Then multiplying AB uses mnp multiplications for (m by n)
times (n by p). When m = n = p = 2, we have 2 · 2 · 2 = 8 multiplications.

A difficult question : Could n by n matrices A and B be multiplied with fewer than
n3 small multiplications ? This is known to be possible (allowing extra additions).
Right now we don’t know the smallest exponent E in the multiplication count nE .
We know that E < 3 and in fact E < 2.373. But E = 2.0001 may be impossible.

Here is a challenge question about matrix multiplication. Explain why every vector

in C(AB)—every combination of the columns of AB—is also in the column space of A.

Example 2 The identity matrix I has AI = A and IB = B if matrix sizes are right.

AI =

[
a b
c d

] [
1 0
0 1

]
=

[
a b
c d

]
= A for every A

IB =

[
1 0
0 1

] [
P Q
R S

]
=

[
P Q
R S

]
= B for every B

Example 3 The matrix E =

[
0 1
1 0

]
will exchange columns or exchange rows.

AE =

[
a b
c d

] [
0 1
1 0

]
=

[
b a
d c

]
Exchange columns of A (E is on the right)

EB =

[
0 1
1 0

] [
P Q
R S

]
=

[
R S
P Q

]
Exchange rows of B (E is on the left)

Example 4 AE 6= EA for most matrices : Exchange columns or exchange rows.

A =

[
1 2
3 4

]
AE =

[
2 1
4 3

]
is not the same as EA =

[
3 4
1 2

]

This example shows an important fact : AB can easily be different from BA.
Matrix multiplication is not “commutative”. We must keep matrices AB or ABC in order.
There are certainly examples where AB = BA, but those special cases are not typical.

Example 5 Squaring the exchange matrix gives E2=

[
0 1
1 0

][
0 1
1 0

]
=I . Why is this true ?

Example 6 AB times C equals A times BC. Matrix multiplication is “associative”.

I include this here without proof, because it is so important : (AB)C = A(BC).
The order ABC of those matrices must stay the same ! But we can multiply AB first
or multiply BC first. Many many proofs in linear algebra depend on this simple fact.

Certainly the matrix sizes for A,B,C must match : (m by n) × (n by p) × (p by q).
A special 2 by 2 case of this associative law would be (EA)E = E(AE). Exchange the

rows of A first, or exchange the columns of A first. The triple product EAE does both.
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Rank One Matrices and A = CR

All columns of a rank one matrix lie on the same line. That line is the column space C(A).
Examples in Section 1.3 pointed to a remarkable fact : The rows also lie on a line.
When all the columns are in the same column direction, then all the rows are in the same
row direction. Here is an example :

A =




1 2 10 100
3 6 30 300
2 4 20 200


 =

rank one matrix
one independent column
one independent row !

All columns are multiples of (1, 3, 2). All rows are multiples of
[
1 2 10 100

]
.

Only one independent row when there is only one independent column. Why is this true ?

Our approach is through matrix multiplication. We factor A into C times R. For this
special matrix, C has one column and R has one row. CR is (3 × 1) (1 × 4).

A = CR




1 2 10 100
3 6 30 300
2 4 20 200


 =




1
3
2



[
1 2 10 100

]

(1)

The dot products (row of C) · (column of R) are just multiplications like 3 times 10.
This is multiplication of thin matrices CR. Only 12 small multiplications.

The rows of A are numbers 1, 3, 2 times the (only) row
[
1 2 10 100

]
of R. By

factoring this special A into one column times one row, the conclusion jumps out :

If the column space of A is a line, the row space of A is also a line.

One column in C, one row in R. That is beautiful, but we are certainly not finished.
Our big goal is to allow r columns in C and to find r rows in R. And to see A = CR.

C Contains Independent Columns

Suppose we go from left to right, looking for independent columns in any matrix A :

If column 1 of A is not all zero, put it into the matrix C

If column 2 of A is not a multiple of column 1, put it into C

If column 3 of A is not a combination of columns 1 and 2, put it into C. Continue.

At the end C will have r columns taken from A. That number r is the rank of A. The
n columns of A might be dependent. The r columns of C will surely be independent.

Independent No column of C is a combination of previous columns

columns No combination of columns gives Cx = 0 except x = all zeros

When those independent columns combine to give all columns, we have a basis.
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Cx = 0 means that x1(column 1 of C) + x2(column 2 of C) + · · · = zero vector.
With independent columns, this only happens if all x’s are zero. Otherwise we can divide
by the last nonzero coefficient x and that column would be a combination of the earlier
columns—which our construction forbids. Therefore C has independent columns.

Example 7 A =




2 6 4
4 12 8
1 3 5


 leads to C =




2 4
4 8
1 5




Column 1 goes into C. Column 2 does not (3 times column 1). Column 3 goes into C.

Matrix Multiplication C times R

Now comes the new step to A = CR. R tells how to produce the columns of A from
the columns of C. The first column of A is actually in C, so the first column of R just
has 1 and 0. The third column of A is also in C, so the third column of R just has 0 and 1.

Rank 2
Notice I
inside R

A =




2 6 4
4 12 8
1 3 5


 =




2 4
4 8
1 5



[

1 ? 0
0 ? 1

]
= CR. (2)

Two columns of A went straight into C, so part of R is the identity matrix. The question
marks are in column 2 because column 2 of A is not in C. It was not an independent
column. Column 2 of A is 3 times column 1. That number 3 goes into R. Then R shows
how to combine the two columns of C to get all three columns of the original A.

A is m× n
C is m× r
R is r × n

A = CR is




2 6 4
4 12 8
1 3 5


 =




2 4
4 8
1 5



[

1 3 0
0 0 1

]
(3)

This completes A = CR. The magic is now seen in the rows. All the rows of A
come from the rows of R. This fact follows immediately from matrix multiplication CR :

Multiply CR

using rows of R

Row 1 of A is 2 (row 1 of R) + 4 (row 2 of R)

Row 2 of A is 4 (row 1 of R) + 8 (row 2 of R)

Row 3 of A is 1 (row 1 of R) + 5 (row 2 of R)

R has the same row space as A. Combinations of rows of R produce every row of A.
This A has only 2 independent rows, not 3. Two rows in R combine to give all rows of A.

Second example
of A = CR

from the front cover




1 2 3
4 5 6
7 8 9


 =




1 2
4 5
7 8



[

1 0 −1
0 1 2

]

(4)

When a column of A goes into C, a column of I goes into R. The “free” column −1, 2
of R tells us how to produce the dependent column of A from the independent columns
in C. Column 3 of A is −1 (1, 4, 7)+2 (2, 5, 8). And also : rows of A from rows of R.

Column j of A = C times column j of R. Row i of A = row i of C times R.
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Question If all n columns of A are independent, then C = A. What matrix is R ?

Answer This case of n independent columns has R = I (identity matrix). The rank is n.

How to find R. Start with r independent columns of A going into C.

If column 3 of A = 2nd independent column in C, then column 3 of R is
0
1

A =

[
1 2 3 4
1 2 4 5

]
=

[
1 3
1 4

] [
1 2 0 1
0 0 1 1

]
= CR All three ranks = 2

Dependent : If column 4 of A = columns 1 + 2 of C, then column 4 of R is
1
1

R tells how to recover all columns of A from the independent columns in C .

Here is an informal proof that row rank of A equals column rank of A

1. The r columns of C are independent (by their construction)

2. Every column of A is a combination of those r columns of C (because A = CR)

3. The r rows of R are independent (they contain the r by r matrix I)

4. Every row of A is a combination of those r rows of R (because A = CR)

Key facts The r columns of C are a basis for the column space of A : dimension r

The r rows of R are a basis for the row space of A : dimension r

Those words “basis” and “dimension” are properly defined in Section 3.4 ! Section 3.2
will show how the same row matrix R can be constructed directly from the “reduced row
echelon form” of A, by deleting any zero rows. Chapter 1 starts with independent columns
of A, placed in C. Chapter 3 starts with rows of A, and combines them into R.

We are emphasizing CR because both matrices are important. C contains r indepen-
dent columns of A. R tells how to combine those columns to give all columns of A.
(R contains I , when columns of A are already in C.) Chapter 3 will produce R directly
from A by elimination, the most used algorithm in computational mathematics. This will
be the key to a fundamental problem : solving linear equations Ax = b.

Why is Matrix Multiplication AB Defined This Way ?

The definition of AB was chosen to produce this crucial equation : (AB) times x
is equal to A times Bx. This leads to the all-important law (AB)C = A(BC). We
had no other reasonable choice for AB ! Linear algebra will use these laws over and over.
Let me show in three steps why that crucial equation (AB)x = A(Bx) is correct :

Bx is a combination x1b1 + x2b2 + · · ·+ xnbn of the columns of B.

Matrix-vector multiplication is linear : A(Bx) = x1Ab1 + x2Ab2 + · · ·+ xn(Abn).

We want this to agree with (AB)x = x1(column 1 of AB) + · · ·+ xn(column n of AB).

Compare lines 2 and 3. Column 1 of AB absolutely must equal A times column 1 of B.
This is our rule : When B =

[
x y z

]
the columns of AB are

[
Ax Ay Az

]
.
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Example 8 A =

[
1 2
3 4

]
B =

[
5 6
7 8

]
x =

[
1
0

]
(AB)x = A(Bx)

When we show that (AB)x = A(Bx), that fact will allow us to erase the parentheses.
We can just write ABx. For three matrices we can just write ABC.

To compare (AB)x with A(Bx), remember that Example 1 computed AB :

(AB)x =

[
19 22
43 50

] [
1
0

]
=

[
19
43

]

A(Bx) =

[
1 2
3 4

] [
5 6
7 8

] [
1
0

]
=

[
1 2
3 4

] [
5
7

]
=

[
19
43

]

The parentheses don’t matter but the order ABC certainly does matter. The multiplications

BAC and ACB almost always give different answers. In fact BAC may be impossible.

Columns of A times Rows of B

Before this chapter ends, I want to add this message. There is another way to multiply
matrices (producing the same matrix AB as always). This way is not so well known, but it
is powerful. It multiplies columns of A times rows of B. We will see it again and use it.

AB =


a1 · · · an






b∗1
...
b∗n


 = a1b

∗
1 + a2b

∗
2 + · · ·+ anb

∗
n.

columns ak rows b∗k columns ak times rows b∗k

(5)

Those matrices akb
∗
k are called outer products. We recognize that they have rank one :

column times row. They are entirely different from dot products (rows times columns,
also known as inner products). If A is an m by n matrix and B is an n by p matrix,
adding columns times rows gives the same answer AB as rows times columns.

Actually they involve the same mnp small multiplications but in a different order !

(Row) · (Column) mp dot products, n multiplications each total mnp

(Column) (Row) n rank one matrices, mp multiplications each total mnp

Columns××× Rows
for A times B



1 4
2 5
3 6



[
7 8 9
10 11 12

]

=



1
2
3



[
7 8 9

]

+



4
5
6



[
10 11 12

]

Rank 1
+Rank 1

=




7 8 9
14 16 18
21 24 27


+



40 44 48
50 55 60
60 66 72


 =



47 52 57
64 71 78
81 90 99


 (6)

This example has mnp = (3) (2) (3) = 18. At the start of the second line you see the
18 multiplications (in two 3 by 3 matrices). Then 9 additions give the correct answer AB.

As we learned in this section, the rank of AB is 2. Two independent columns, not three.

Two independent rows, not three. The next chapter will use different words. AB has no

inverse matrix : it is not invertible. And later in the book : The determinant of AB is zero.
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Note about the “echelon matrices” R and R0

We were amazed to learn that the row matrix R in A = CR is already a famous matrix
in linear algebra ! It is essentially the “reduced row echelon form” of the original A.
MATLAB calls it rref (A) and includes m− r zero rows. With the zero rows, we call it R0.

The factorization A = CR is a big step in linear algebra. The Problem Set will look
closely at the matrix R, its form is remarkable. R has the identity matrix in r columns.
Then C multiplies each column of R to produce a column of A. R0 comes in Chapter 3.

Example 9 A =

[
a1 a2 3a1 + 4a2

]
=

[
a1 a2

] [
1 0 3
0 1 4

]
= CR.

Here a1 and a2 are the independent columns of A. The third column is dependent—
a combination of a1 and a2. Therefore it is in the plane produced by columns 1 and 2.
All three matrices A,C,R have rank r = 2.

We can try that new way (columns × rows) to quickly multiply CR in Example 9 :

Columns of C
times rows of R

CR = a1

[
1 0 3

]
+a2

[
0 1 4

]
=
[
a1 a2 3a1 + 4a2

]
=A

Four Ways to Multiply AB = C


X X
x x
x x



[
X x x x
X x x x

]
(Row i of A) · (Column k of B)

i = 1 to 3 k = 1 to 4
= Number Cik

12 numbers



X X
X X
X X



[
X x x x
X x x x

]
A times (Column k of B)

k = 1 to 4
= Column k of C

4 columns



X X
x x
x x



[
X X X X
X X X X

]
(Row i of A) times B

i = 1 to 3
= Row i of C

3 rows



X x
X x
X x



[
X X X X
x x x x

]
(Column j of A) (Row j of B)

j = 1 to 2
= Rank 1 Matrix

2 matrices

Problem Set 1.4

1 Construct this four-way table when A is m by n and B is n by p. How many dot
products and columns and rows and rank one matrices go into AB ? In all four cases
the total count of small multiplications is mnp.

2 If all columns of A =
[
a a a

]
contain the same a 6= 0, what are C and R ?
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3 Multiply A times B (3 examples) using dot products : each row times each column.



1 0 0
1 1 0
1 1 1






1 0 0
−1 1 0
1 −1 1




[
1 2 3

]


4
5
6







4
5
6



[
1 2 3

]

4 Test the truth of the associative law (AB)C = A(BC).

(a) (b)
[
1 1

][
1
1

][
1 1 1

] [
1 2
0 1

] [
1 3
0 1

] [
1 4
0 1

]

5 Why is it impossible for a matrix A with 7 columns and 4 rows to have 5 independent
columns ? This is not a trivial or useless question.

6 Going from left to right, put each column of A into the matrix C if that column is
not a combination of earlier columns :

A =




2 −2 1 6 0
1 −1 0 2 0
3 −3 0 6 1


 C =




2
1
3




7 Find R in Problem 6 so that A = CR. If your C has r columns, then R has r rows.
The 5 columns of R tell how to produce the 5 columns of A from the columns in C.

8 This matrix A has 3 independent columns. So C has the same 3 columns as A.
What is the 3 by 3 matrix R so that A = CR ? What is different about B ?

Upper triangular A =




2 2 2
0 4 4
0 0 6


 B =




2 2 2
0 0 4
0 0 6




9 Suppose A is a random 4 by 4 matrix. The probability is 1 that the columns of A are
“independent”. In that case, what are the matrices C and R in A = CR ?

Note Random matrix theory has become an important part of applied linear algebra—
especially for very large matrices when even multiplication AB is too expensive.
An example of “probability 1” is choosing two whole numbers at random. The
probability is 1 that they are different. But they could be the same ! Problem 10
is another example of this type.

10 Suppose A is a random 4 by 5 matrix. With probability 1, what can you say about C
and R in A = CR ? In particular, which columns of A (going into C) are probably
independent of previous columns, going from left to right ?

11 Create your own example of a 4 by 4 matrix A of rank r = 2. Then factor A into
CR = (4 by 2) (2 by 4).

12 Factor these matrices into A = CR = (m by r) (r by n) : all ranks equal to r.

A1=

[
1 2 3
1 3 4

]
A2=

[
0 1 2 3
0 1 3 5

]
A3=

[
2 1 3
6 3 9

]
A4=

[
1 0 0 4
0 2 2 0

]
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13 Starting from C=

[
1
3

]
and R=

[
2 4

]
compute CR and RC and CRC and RCR.

14 Complete these 2 by 2 matrices to meet the requirements printed underneath :
[

3 6
5

] [
6
7

] [
2
3 6

] [
3 4
−3

]

rank one orthogonal columns rank 2 A2 = I

15 Suppose A = CR with independent columns in C and independent rows in R.
Explain how each of these logical steps follows from A = CR = (m by r) (r by n).

1. Every column of A is a combination of columns of C.

2. Every row of A is a combination of rows of R. What combination is row 1 ?

3. The number of columns of C = the number of rows of R (needed for CR ?).

4. Column rank equals row rank. The number of independent columns ofA equals
the number of independent rows in A.

16 (a) The vectors ABx produce the column space of AB. Show why this vector
ABx is also in the column space of A. (Is ABx = Ay for some vector y ?)
Conclusion : The column space of A contains the column space of AB.

(b) Choose nonzero matrices A and B so the column space of AB contains only
the zero vector. This is the smallest possible column space.

17 True or false, with a reason (not easy) :

(a) If 3 by 3 matrices A and B have rank 1, then AB will always have rank 1.

(b) If 3 by 3 matrices A and B have rank 3, then AB will always have rank 3.

(c) Suppose AB = BA for every 2 by 2 matrix B. Then A =

[
c 0
0 c

]
= cI

for some number c. Only those matrices A commute with every B.

18 Example 6 in this section mentioned a special case of the law (AB)C = A(BC).

A = C = exchange matrix

[
0 1
1 0

]
B =

[
1 2
3 4

]
.

(a) First compute AB (row exchange) and also BC (column exchange).

(b) Now compute the double exchanges : (AB)C with rows first and A(BC) with
columns first. Verify that those double exchanges produce the same ABC.

19 Test the column-row multiplication in equation (5) to find AB and BA :

AB =




1 0 0
1 1 0
1 1 1






1 1 1
0 1 1
0 0 1


 BA =




1 1 1
0 1 1
0 0 1






1 0 0
1 1 0
1 1 1




20 How many small multiplications for (AB)C and A(BC) if those matrices have sizes
ABC = (4 × 3) (3 × 2) (2 × 1) ? That choice affects the operation count.
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Thoughts on Chapter 1

Most textbooks don’t have a place for the author’s thoughts. But a lot of decisions go into
starting a new textbook. This chapter has intentionally jumped right into the subject, with
discussion of independence and rank. There are so many good ideas ahead, and they take
time to absorb, so why not get started ? Here are two questions that influenced the writing.

What makes this subject easy ? All the equations are linear.

What makes this subject hard ? So many equations and unknowns and ideas.

Book examples are small size. But if we want the temperature at many points of an engine,
there is an equation at every point : easily n = 1000 unknowns.

I believe the key is to work right away with matrices. Ax = b is a perfect format to
accept problems of all sizes. The linearity is built into the symbols Ax and the rule is
A(x + y) = Ax + Ay. Each of the m equations in Ax = b represents a flat surface :

2x+ 5y − 4z = 6 is a plane in three-dimensional space

2x+ 5y − 4z + 7w = 9 is a 3D plane (hyperplane?) in four-dimensional space

Linearity is on our side, but there is a serious problem in visualizing 10 planes meeting
in 11-dimensional space. Hopefully they meet along a line : dimension 11 − 10 = 1.
An 11th plane should cut through that line at one point (which solves all 11 equations).
What the textbook and the notation must do is to keep the counting simple

Here is what we expect for a random m by n matrix A :

m < n Many solutions or no solutions to the m equations Ax = b

m = n Probably one solution to the n equations Ax = b

m > n Probably no solution : too many equations with only n unknowns in x

But this count is not necessarily what we get ! Columns of A can be combinations of
previous columns : nothing new. An equation can be a combination of previous equations.
The rank r tells us the real size of our problem, from independent columns and rows.
The beautiful formula is A = CR = (m× r) (r × n) : three matrices of rank r.

Notice : The columns of A that go into C must produce the matrix I inside R.

We end with the great associative law (AB)C = A (BC). SupposeC has 1 column :

AB has columns Ab1, . . . , Abn and then (AB)c equals c1Ab1 + · · · + cnAbn.

Bc has one column c1b1 + · · ·+ cnbn and A(Bc) = A (c1b1 + · · ·+ cnbn).

Linearity gives equality of those two sums. This proves (AB) c = A (Bc).

The same is true for every column of C. Therefore (AB)C = A (BC).




