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20 Chapter 1. Vectors and Matrices

1.3 Matrices and Column Spaces✬

✫

✩

✪

1 A =




1 2
3 4
5 6


 is a 3 by 2 matrix : m = 3 rows and n = 2 columns. Rank 2.

2 The 3 components of Ax are dot products of the 3 rows of A with the vector x :

Row at a time
A times x




1 2
3 4
5 6



[

7
8

]
=




1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8


 =




23
53
83


.

3




1 2
3 4
5 6



[

7
8

]
is also a combination of the columns Ax = 7




1
3
5


+ 8




2
4
6


.

4 The column space ofA contains all combinationsAx=x1a1+x2a2 of the columns.

5 Rank one matrices : All columns of A (and all combinations Ax) lie on one line.

Sections 1.1 and 1.2 explained the mechanics of vectors—linear combinations,
dot products, lengths, and angles. We have vectors in R2 and R3 and every Rn.

Section 1.3 begins the algebra of m by n matrices : our true goal. A typical matrix A
is a rectangle of m times n numbers—m rows and n columns. If m equals n then A is a
“square matrix”. The examples below are 3 by 3 matrices.



1 0 0
0 1 0
0 0 1







2 0 0
0 4 0
0 0 5







2 1 −3
0 4 7
0 0 5







2 1 −3
1 4 7

−3 7 5




Identity
matrix

Diagonal
matrix

Triangular
matrix

Symmetric
matrix

We often think of the columns of A as vectors a1,a2, . . . ,an. Each of those n vectors
is in m-dimensional space. In this example the a’s have m = 3 components each :

m = 3 rows
n = 4 columns
3 by 4 matrix

A =


 a1 a2 a3 a4


 =




−1 1 0 0
0 −1 1 0
0 0 −1 1




This example is a “difference matrix” because multiplying A times x produces a vector
Ax of differences. How does an m by n matrix A multiply an n by 1 vector x ? There are
two ways to the same answer—we work with the rows of A or we work with the columns.

The row picture of Ax will come from dot products of x with the rows of A.

The column picture will come from linear combinations of the columns of A.
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Row picture of Ax Each row of A multiplies the column vector x. Those multiplications
row times column are dot products ! The first dot product comes from row 1 of A :

(row 1) · x = (−1, 1, 0, 0) · (x1, x2, x3, x4) = x2 − x1.

It takes m times n small multiplications to find the m = 3 dot products that go into Ax.

Three dot
products

Ax =



−1 1 0 0
0 −1 1 0
0 0 −1 1







x1

x2

x3

x4


=




row 1 · x
row 2 · x
row 3 · x


=



x2 − x1

x3 − x2

x4 − x3


 (1)

Notice well that each row of A has the same number of components as the vector x.
Four columns multiply x1 to x4. Otherwise multiplying Ax would be impossible.

Column picture of Ax The matrix A times the vector x is a combination of the
columns of A. The n columns are multiplied by the n numbers in x. Then add those
column vectors x1a1, . . . , xnan to find the vector Ax :

Ax = x1(column a1) + x2(column a2) + x3(column a3) + x4(column a4) (2)

This combination of n columns involves exactly the same multiplications as dot products
of x with the m rows. But it is higher level ! We have a vector equation instead of three
dot products. You see the same Ax in equations (1) and (3).

Combination
of columns

Ax =x1



−1
0
0


+x2




1
−1
0


+x3




0
1
−1


+x4



0
0
1


=



x2 − x1

x3 − x2

x4 − x3


 (3)

Let me admit something right away. If I have numbers in A and x, and I want to compute
Ax, then I tend to use dot products : the row picture. But if I want to understand Ax, the
column picture is better. “The column vector Ax is a combination of the columns of A.”

We are aiming for a picture of not just one combination Ax of the columns (from
a particular x). What we really want is a picture of all combinations of the columns
(from multiplying A by all vectors x). This figure shows one combination 2a1 + a2 and
then it tries to show the plane of all combinations x1a1 + x2a2 (for every x1 and x2).

0 a1

2a1

2a1 + a2

=A

[
2
1

]a2

line through a1

line through a2 plane of a1 and a2

Figure 1.10: A linear combination of a1 and a2. All linear combinations fill a plane.

The next important words are independence, dependence, and column space.
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Here is a key point ! Columns of A might not contribute anything new. They might
be combinations of earlier columns (which we already included). Examples 1 and 2 show
columns that give a new direction, and columns that are combinations of previous columns.

Example 1
Independent
columns

A1 =




1 0 0
2 4 0
3 5 6


 Each column gives a new direction.

Their combinations fill 3D space R3.

If we look at all combinations of the columns, we see all vectors (b1, b2, b3) : 3D space.
The first column x1(1, 2, 3) allows us to match any number b1. Then x2(0, 4, 5) leaves b1
alone and we can match any number b2. Finally x3(0, 0, 6) doesn’t touch b1 and b2 and
allows us to match any b3. We have found x1, x2, x3 so that A1x = b.

Independence means : The only combination of columns that produces Ax = (0, 0, 0)
is x = (0, 0, 0). The columns are independent when each new column is a vector that we
don’t already have as a combination of previous columns. That word “independent” will be
important.

Example 2
Dependent
columns

A2 =




1 2 3
1 4 5
6 0 6


 Column 1+ column 2 = column 3

Their combinations don’t fill 3D space

1 + 2 = 3
1 + 4 = 5
6 + 0 = 6

The opposite of independent is “dependent”. These three columns of A2 are dependent.
Column 3 is in the plane of columns 1 and 2. Nothing new from column 3.

I usually test independence going from left to right. The column (1, 1, 6) is no problem.
Column 2 is not a multiple of column 1 and (2, 4, 0) gives a new direction.
But column 3 is the sum of columns 1 and 2. The third column vector (3, 5, 6) is not
independent of (1, 1, 6) and (2, 4, 0). We only have two independent columns.

If I went from right to left, I would start with independent columns 3 and 2. Then
column 1 is a combination (column 3 minus column 2). Either way we find that the three
columns are in the same plane : two independent columns produce a plane in 3D.

That plane is the column space of this matrix : Plane = all combinations of the columns.

Dependent columns in Example 2 column 1 + column 2 − column 3 is (0,0,0).

Example 3 A3 =




1 3 4
2 6 8
5 15 20


 Now a2 is 3 times a1. And a3 is 4 times a1.

Every pair of columns is dependent.

This example is important. You could call it an extreme case. All three columns of A3 lie on
the same line in 3-dimensional space. That line consists of all column vectors (c, 2c, 5c)—
all the multiples of (1, 2, 5). Notice that c = 0 gives the point (0, 0, 0).

That line in 3D is the column space for this matrix A3. The line contains all vectors
A3x. By allowing every vector x, we fill in the column space of A3—and here we only
filled one line. That is almost the smallest possible column space.

The column space of A is the set of all vectors Ax : All combinations of the columns.
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Thinking About the Column Space of A

“Vector spaces” are a central topic. Examples are coming unusually early. They give you
a chance to see what linear algebra is about. The combinations of all columns produce the
column space, but you only need r independent columns. So we start with column 1, and go
from left to right in identifying independent columns. Here are two examples A4 and A5.

A4 =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 A5 =




1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1




A4 has four independent columns. For example, column 4 is not a combination of
columns 1, 2, 3. There are no dependent columns in A4. Triangular matrices like A4

are easy provided the main diagonal has no zeros. Here the diagonal is 1, 1, 1, 1.

A5 is not so easy. Columns 1 and 2 and 3 are independent. The big question is whether
column 4 is independent—or is it a combination of columns 1, 2, 3 ? To match the final 1
in column 4, that combination will have to start with column 1.

To cancel the 1 in the top left corner of A5, we need minus the second column. Then
we need plus column 3 so that −1 and +1 in row 2 will also cancel. Now we see what is
true about this matrix A5 :

Column 4 of A5 = Column 1 − Column 2 + Column 3. (4)

So column 4 ofA5 is a combination of columns 1, 2, 3. A5 has only 3 independent columns.

The next step is to “visualize” the column space—all combinations of the four columns.
That word is in quotes because the task may be impossible. I don’t think that drawing a
4-dimensional figure would help (possibly this is wrong). The first matrix A4 is a good
place to start, because its column space is the full 4-dimensional space R4.

Do you see why C(A4) = R4 ? If we look to algebra, we see that every vector v in R4

is a combination of the columns. By writing v as (v1, v2, v3, v4), we can literally show the
exact combination that produces every vector v from A4 :

v=




v1
v2
v3
v4


=(v1 − v2)




1
0
0
0


+ (v2 − v3)




1
1
0
0


+ (v3 − v4)




1
1
1
0


+ (v4)




1
1
1
1


 (5)

This says that v is a combination of the columns. More than that, equation (5) shows what
the combination is. We have solved the four equations A4x = v ! The four unknowns
in x = (x1, x2, x3, x4) are now known in the four parentheses of equation (5).

Geometrically, every vector v is a combination of the 4 columns of A4. Here is
one way to look at A4. The first column (1, 0, 0, 0) is responsible for a line in 4-dimensional
space. That line contains every vector (c1, 0, 0, 0). The second column is responsible for
another line, containing every vector (c2, c2, 0, 0). If you add every vector (c1, 0, 0, 0)
to every vector (c2, c2, 0, 0), you get a 2-dimensional plane inside 4-dimensional space.
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That was the first two columns. The main rule of linear algebra is keep going. The
last two columns give two more directions in R4, and they are independent of the first two.
At the end, equation (5) shows how every 4-dimensional vector is a combination of the
four columns of A4. The column space of A4 is all of R4.

If we attempt the same plan for the matrix A5, the first 3 columns cooperate. But
column 4 of A5 is a combination of columns 1, 2, 3. Those three columns combine to
give a three-dimensional subspace inside R4. Column 4 happens to be in that subspace.

That three-dimensional subspace is the whole column space C(A5). We can only solve
A2x = v when v is in C(A5). The matrix A5 only has three independent columns.

I always write C(A) for the column space of A. When A has m rows, the columns are
vectors in m-dimensional space Rm. The column space might fill all of Rm or it might not.
For m = 3, here are all four possibilities for column spaces in 3-dimensional space :

1. The whole space R3 3 independent columns

2. A plane in R3 going through (0, 0, 0) 2 independent columns

3. A line in R3 going through (0, 0, 0) 1 independent column

4. The single point (0, 0, 0) in R3 (when A is a matrix of zeros !)

Here are simple matrices to show those four possibilities for the column space C(A) :



1 0 0
0 1 0
0 0 1







1 0 0
0 1 0
0 0 0







1 0 0
0 0 0
0 0 0







0 0 0
0 0 0
0 0 0




C(A)=R3=xyz space C(A)=xy plane C(A)=x axis C(A)=one point (0, 0, 0)

Author’s note The words “column space” have not appeared in Chapter 1 of my previous
books. I thought the idea of a space was too important to come so soon. Now I think that
the best way to understand such an important idea is to see it early and often. It is examples
more than definitions that make ideas clear—in mathematics as in life.

Here is a succession of questions. With practice in the next section 1.4, you will find
the keys to the answers. They give a real understanding of any matrix A.

1. How many columns of A are independent ? That number r is the “rank” of A.

2. Which are the first r independent columns ? They are a “basis” for the column space.

3. What combinations of those r basic columns produce the remaining n− r columns ?

4. Write A as an m by r column matrix C times an r by n matrix R : A = CR.

5. (Amazing) The r rows of R are a basis for the row space of A : combinations of rows.

Section I.4 will explain how to multiply those matrices C and R. The result is A = CR.
C contains columns from A. Please notice that the rows of R do not come directly from A.
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Matrices of Rank One

Now we come to the building blocks for all matrices. Every matrix of rank r is the sum

of r matrices of rank one. For a rank one matrix, all column vectors lie along the same line.
That line through (0, 0, 0) is the whole column space of the rank one matrix.

Example A6 =




1 3 −2
4 12 −8
2 6 −4


 has rank r = 1. All columns : same direction !

Columns 2 and 3 are multiples of the first column a1 = (1, 4, 2). Column 2 is 3a1 and col-
umn 3 is −2a1. The column space C(A6) is only the line of all vectors ca1 = (c, 4c, 2c).

Here is a wonderful fact about any rank one matrix. You may have noticed the rows
of A6. All the rows are multiples of one row. When the column space is a single line in
m-dimensional space, the row space is a single line in n-dimensional space. All rows of
this matrix A6 are multiples of .

An example like A6 raises a basic question. If all columns are in the same direction,
why does it happen that all rows are in the same direction ? To find an answer, look
first at this 2 by 2 matrix. Column 2 is m times column 1 so the column rank is 1.

A =

[
a ma
b mb

]
Is row 2 a multiple of row 1 ?

Yes ! The second row (b,mb) is b
a times the first row (a,ma). If the column rank is 1,

then the row rank is 1. To cover every possibility we have to check the case when a = 0.
Then the first row

[
0 0

]
is 0 times row 2. So the row space is the line through row 2.

Our 2 by 2 proof is complete. Let me look next at this 3 by 3 matrix of rank 1 :

A =




a ma pa
b mb pb
c mc pc




Column 2 is m times column 1
Column 3 is p times column 1
Rows 2 and 3 are b/a and c/a times row 1

This matrix does not have two independent columns. Is it the same for the rows of A ?
Is row 2 in the same direction as row 1 ? Yes. Is row 3 in the same direction as row 1 ? Yes.
The rule still holds. The row rank of this A is also 1 (equal to the column rank).

Let me jump from rank one matrices to all matrices. At this point we could make
a guess : It looks possible that row rank equals column rank for every matrix. If A
has r independent columns, then A has r independent rows. A wonderful fact !

I believe that this is the first great theorem in linear algebra. So far we have only seen
the case of rank one matrices. The next section 1.4 will explain matrix multiplication AB
and lead us toward an understanding of “row rank = column rank” for all matrices.
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Problem Set 1.3

This chapter introduces column spaces. But we don’t yet have a computational system to
decide independence or dependence of column vectors. So these problems stay with whole
numbers and small matrices.

1 Describe the column space of these matrices : a point, a line, a plane, all of 3D.

A1 =



2 2
1 1
5 6


 A2 =



1 0 0
1 1 0
1 1 1


 A3 =



1 5
2 10
1 5


 A4 =



0 0
0 0
0 0




2 Find a combination of the columns that produces (0, 0, 0) : column space = plane.

Dependent
columns

A1 =




1 2 3
4 5 6
7 8 9


 A2 =




1 4 7
2 5 8
3 6 9




3 Describe the column spaces in R3 of B and C :

B =




1 2
2 1
3 3


 C =


 B −B


 (3 by 4 block matrix)

4 Multiply Ax and By and Iz using dot products as in (rows of A) ·x :

Ax =



2 1 2
4 2 4
0 1 0





1
2
5


 By =



1 0 0
1 1 0
1 1 1






4
4

10


 Iz =



1 0 0
0 1 0
0 0 1






z1
z2
z3




5 Multiply the same A times x and B times y and I times z using combinations of the
columns of A and B and I , as in Ax = 1(column 1) + 2(column 2) + 5(column 3).

6 In Problem 4, how many independent columns doesA have ? How many independent
columns in B ? How many independent columns in A+B ?

7 Can you find A and B (both with two independent columns) so that A+B has
(a) 1 independent column (b) No independent columns (c) 4 independent columns

8 The “column space” of a matrix contains all combinations of the columns. Describe
the column spaces in R3 of A and B and C :

A =




1 0 0
0 1 0
0 0 1


 B =




2 4
1 2
2 4


 C =




1 0 1 2
0 2 2 4
0 2 2 4




9 Find a 3 by 3 matrix A with 3 independent columns and all nine entries = 1 or 2.
(What is the maximum possible number of 1’s ?)
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10 Complete A and B so that they are rank one matrices. What are the column spaces
of A and B ? What are the row spaces of A and B ?

A =

[
3
5 15

]
B =

[
1 2 −5
4

]

11 Suppose A is a 5 by 2 matrix with columns a1 and a2. We include one more column
to produce B (5 by 3). Do A and B have the same column space if
i(a) the new column is the zero vector ? (b) the new column is (1, 1, 1) ?
i(c) the new column is the difference a2 − a1 ?

12 Explain this important sentence. It connects column spaces to linear equations.

Ax = b has a solution vector x if the vector b is in the column space of A.

The equation Ax = b looks for a combination of columns of A that produces b.
What vector will solve Ax = b for these right hand sides b ?

[
1 3
2 4

] [
x1

x2

]
=

[
4
6

]
or

[
−2
−2

]
or

[
1
1

]

13 Find two 3 by 3 matrices A and B with the same column space = the plane of
all vectors perpendicular to (1, 1, 1). What is the column space of A+B ?

14 Which numbers q would leave A with two independent columns ?

A =




1 0 2
3 1 9
5 0 q


 A =




1 4 7
2 5 8
3 6 q


 A =




1 1 2
2 2 4
0 0 q




15 Suppose A times x equals b. If you add b as an extra column of A, explain why the
rank r (number of independent columns) stays the same.

16 True or false

(a) If the 5 by 2 matrices A and B have independent columns, so does A+B.

(b) If the m by n matrix A has independent columns, then m ≥ n.

(c) A random 3 by 3 matrix almost surely has independent columns.

17 If A and B have rank 1, what are the possible ranks of A+ B ? Give an example of
each possibility.

18 Find the linear combination 3s1 + 4s2 + 5s3 = b. Then write b as a matrix-vector
multiplication Sx, with 3, 4, 5 in x. Compute the three dot products (row of S) ·x:

s1 =



1
1
1


 s2 =



0
1
1


 s3 =



0
0
1


 go into the columns of S .
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19 Solve these equations Sy = b with s1, s2, s3 in the columns of the sum matrix S :



1 0 0
1 1 0
1 1 1





y1
y2
y3


 =



1
1
1


 and



1 0 0
1 1 0
1 1 1





y1
y2
y3


 =



1
4
9


 .

The sum of the first 3 odd numbers is . The sum of the first 10 is .

20 Solve these three equations for y1, y2, y3 in terms of c1, c2, c3:

Sy = c



1 0 0
1 1 0
1 1 1





y1
y2
y3


 =



c1
c2
c3


 .

Write the solution y as a matrix A times the vector c. A is the “inverse matrix” S−1.
Are the columns of S independent or dependent ?

21 The three rows of this square matrix A are dependent. Then linear algebra says that
the three columns must also be dependent. Find x in Ax = 0 :

A =




1 2 3
3 5 6
4 7 9




Row 1 + row 2 = row 3
Two independent rows
Then only two independent columns

22 Which numbers c give dependent columns ? Then a combination of columns is zero.



1 1 0
3 2 1
7 4 c






1 0 c
1 1 0
0 1 1







c c c
2 1 5
3 3 6




[
c 1
4 c

]

23 If the columns combine into Ax = 0 then each row of A has row · x = 0 :

If


 a1 a2 a3





x1

x2

x3


 =



0
0
0


 then by rows



r1 · x
r2 · x
r3 · x


 =



0
0
0


 .

The three rows also lie in a plane. Why is that plane perpendicular to x?




