DIFFERENTIAL EQUATIONS
 AND
 LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang
 Massachusetts Institute of Technology

Book Website
Email address
Course page
OpenCourseWare
Home page
Publisher
Direct email
math.mit.edu/dela diffeqla@gmail.com web.mit.edu/18.06 video lectures: ocw.mit.edu math.mit.edu/~gs www.wellesleycambridge.com
gs@math.mit.edu

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 8.1, page 443

1 (a) To prove that $\cos n x$ is orthogonal to $\cos k x$ when $k \neq n$, use $(\cos n x)(\cos k x)=$ $\frac{1}{2} \cos (n+k) x+\frac{1}{2} \cos (n-k) x$. Integrate from $x=0$ to $x=\pi$. What is $\int \cos ^{2} k x d x$?
(b) Correction From 0 to $\pi, \cos \boldsymbol{x}$ is not orthogonal to $\sin 2 \boldsymbol{x}$ (the book wrongly proposed $\int_{0}^{\pi} \cos x \sin x d x$, but this is zero). For orthogonality of all sines and cosines, the period has to be 2π.
Solution (a)

$$
\begin{aligned}
\int_{0}^{\pi}(\cos n x)(\cos k x) d x & =\frac{1}{2} \int_{0}^{\pi} \cos (n+k) x d x+\frac{1}{2} \int_{0}^{\pi} \cos (n-k) x d x \\
& =\left[\frac{\sin (n+k) x}{2(n+k)}+\frac{\sin (n-k) x}{2(n-k)}\right]_{0}^{\pi}=0+0
\end{aligned}
$$

Solution

$$
\text { (b) } \begin{aligned}
\int_{0}^{\pi}(\cos x)(\sin 2 x) d x=\int_{0}^{\pi}(\cos x)(2 \sin x \cos x) d x & =\left[-\frac{2}{3} \cos ^{3} x\right]_{0}^{\pi} \\
& =\frac{\mathbf{4}}{\mathbf{3}} \neq 0
\end{aligned}
$$

Non-orthogonality comes from $\int_{0}^{\pi} \cos m x \sin n x d x$ when $m-n$ is an odd number.
2 Suppose $F(x)=x$ for $0 \leq x \leq \pi$. Draw graphs for $-2 \pi \leq x \leq 2 \pi$ to show three extensions of F : a 2π-periodic even function and a 2π-periodic odd function and a π-periodic function.

Solution

3 Find the Fourier series on $-\pi \leq x \leq \pi$ for
(a) $f_{1}(x)=\sin ^{3} x$, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identity $\sin ^{3} x=\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x$. This must be the Fourier sine series! It has only two terms.
More slowly, use Euler's great formula to produce complex exponentials :

$$
(\sin x)^{3}=\left(\frac{e^{i x}-e^{-i x}}{2 i}\right)^{3}=\frac{e^{3 i x}-3 e^{i x}+3 e^{-i x}-e^{-3 i x}}{8 i^{3}}=-\frac{1}{4} \sin 3 x+\frac{3}{4} \sin x .
$$

Or slowly compute the usual formulas $\int \sin ^{3} x \sin x d x$ and $\int \sin ^{3} x \sin 3 x d x$.
(b) $f_{2}(x)=|\sin x|$, an even function (cosine series)

Solution (b)

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi}|\sin x| d x=\frac{2}{\pi} \\
a_{k} & =\frac{1}{2 \pi} \int_{0}^{\pi}|\sin x| \cos k x d x=-\frac{1}{4 \pi}\left[\frac{\cos (k-1) x}{k-1}+\frac{\cos (k+1) x}{k+1}\right]_{x=0}^{x=\pi} \\
& =\mathbf{0}(\text { odd } k) \text { or }-\frac{1}{4 \pi}\left[\frac{-2}{k-1}+\frac{-2}{k+1}\right]=\frac{\boldsymbol{k}}{\boldsymbol{\pi}\left(\boldsymbol{k}^{2}-\mathbf{1}\right)}(\text { even } k)
\end{aligned}
$$

(c) $f_{3}(x)=x$ for $-\pi \leq x \leq \pi$ (sine series with jump at $x=\pi$)

Solution (c) $b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin k x d x=\left[\frac{1}{\pi k^{2}} \sin k x-\frac{x}{\pi k} \cos k x\right]_{-\pi}^{\pi}$

$$
=-\frac{1}{k}(\cos k \pi+\cos (-k \pi))=-\frac{2}{k}(-1)^{k} .
$$

4 Find the complex Fourier series $e^{x}=\sum c_{k} e^{i k x}$ on the interval $-\pi \leq x \leq \pi$. The even part of a function is $\frac{1}{2}(f(x)+f(-x))$, so that $f_{\text {even }}(x)=f_{\text {even }}(-x)$. Find the cosine series for $f_{\text {even }}$ and the sine series for $f_{\text {odd }}$. Notice the jump at $x=\pi$.
Solution

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{-i k x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x(1-i k)} d x \\
& =\left[\frac{1}{2 \pi(1-i k)} e^{x(1-i k)}\right]_{-\pi}^{\pi}=\frac{e^{\pi(1-i k)}-e^{-\pi(1-i k)}}{2 \pi(1-i k)}
\end{aligned}
$$

The even part of the function is : $\frac{1}{2}\left(e^{x}+e^{-x}\right)$. The cosine coefficients are

$$
\begin{aligned}
& a_{0}=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(e^{x}+e^{-x}\right) d x=\frac{1}{2 \pi}\left(e^{\pi}-e^{-\pi}\right) \\
& a_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(e^{x}+e^{-x}\right) \cos k x d x=\frac{2 k \cosh [\pi] \sin [k \pi]+2 \cos [k \pi] \sinh [\pi]}{\pi+k^{2} \pi}
\end{aligned}
$$

The odd part of the function is: $\frac{1}{2}\left(e^{x}-e^{-x}\right)$. The sine series is:

$$
b_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(e^{x}-e^{-x}\right) \sin k x d x=\frac{2 \cosh [\pi] \sin [k \pi]-2 k \cos [k \pi] \sinh [\pi]}{\pi+k^{2} \pi}
$$

5 From the energy formula (21), the square wave sine coefficients satisfy

$$
\pi\left(b_{1}^{2}+b_{2}^{2}+\cdots\right)=\int_{-\pi}^{\pi}|S W(x)|^{2} d x=\int_{-\pi}^{\pi} 1 d x=2 \pi
$$

Substitute the numbers b_{k} from equation (8) to find that $\pi^{2}=8\left(1+\frac{1}{9}+\frac{1}{25}+\cdots\right)$.
Solution The sine coefficients for the odd square wave are
$b_{k}=\frac{4}{\pi}\left(\frac{1-(-1)^{k}}{2 k}\right)=\frac{4}{\pi}\left(\frac{1}{1}, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \ldots\right)$
Energy identity gives $\boldsymbol{\pi}^{\mathbf{2}}=8 \sum_{k=1}^{\infty}\left(\frac{1-(-1)^{k}}{2 k}\right)^{2}=8\left(1+\frac{1}{9}+\frac{1}{25}+\cdots\right)$
6 If a square pulse is centered at $x=0$ to give

$$
f(x)=1 \quad \text { for } \quad|x|<\frac{\pi}{2}, \quad f(x)=0 \quad \text { for } \quad \frac{\pi}{2}<|x|<\pi
$$

draw its graph and find its Fourier coefficients a_{k} and b_{k}.
Solution

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} d x=\frac{1}{2} \\
& a_{k}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos k x d x=\frac{2}{k \pi} \sin \frac{k \pi}{2}=\sin c\left(\frac{k \pi}{2}\right) \\
& b_{k}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \sin k x d x=0
\end{aligned}
$$

7 Plot the first three partial sums and the function $x(\pi-x)$:

$$
x(\pi-x)=\frac{8}{\pi}\left(\frac{\sin x}{1}+\frac{\sin 3 x}{27}+\frac{\sin 5 x}{125}+\cdots\right), 0<x<\pi
$$

Why is $1 / k^{3}$ the decay rate for this function? What is its second derivative?
Solution The parabola $y=x(\pi-x)=x \pi-x^{2}$ starts at $y(0)=0$ with slope $y^{\prime}(0)=\pi$ and second derivative $y^{\prime \prime}(0)=-2$. Its sine series makes it an odd function $x \pi+x^{2}$ from $-\pi$ to 0 . This odd extension has second derivative $= \pm \mathbf{2}$. That jump in $y^{\prime \prime}$ means that the Fourier coefficients b_{k} will decay like $1 / k^{3}$. (Remember $1 / k$ for jumps in $y(x)$ and $1 / k^{2}$ for jumps in $y^{\prime}(x)$-no jumps in y, y^{\prime} for this example.)

8 Sketch the 2π-periodic half wave with $f(x)=\sin x$ for $0<x<\pi$ and $f(x)=0$ for $-\pi<x<0$. Find its Fourier series.

Solution The function is not odd or even, so integrals must go from $-\pi$ to π. The function is zero from $-\pi$ to 0 leaving only these integrals for a_{0}, a_{k}, b_{k} :

$$
\begin{aligned}
a_{0}= & \frac{1}{2 \pi} \int_{0}^{\pi} \sin x d x=\frac{1}{2 \pi}[-\cos x]_{0}^{\pi}=\frac{\mathbf{1}}{\boldsymbol{\pi}} \\
a_{k}= & \frac{1}{\pi} \int_{0}^{\pi} \sin x \cos k x d x=-\frac{1}{2 \pi}\left[\frac{\cos (1-k) x}{1-k}+\frac{\cos (1+k) x}{1+k}\right]_{0}^{\pi}= \\
& {\left[k \text { even } \frac{1}{\pi}\left(\frac{1}{1-k}+\frac{1}{1+k}\right)=\frac{\mathbf{2}}{\boldsymbol{\pi}\left(\mathbf{1}-\boldsymbol{k}^{2}\right)} \quad[\text { and } \mathbf{0} \text { for } \mathrm{k} \text { odd }]\right.} \\
b_{k}= & \frac{1}{\pi} \int_{0}^{\pi} \sin x \sin k x d x \text { gives } b_{1}=\frac{1}{2} \text { and other } b_{k}=0
\end{aligned}
$$

9 Suppose $G(x)$ has period $2 L$ instead of 2π. Then $G(x+2 L)=G(x)$. Integrals go from $-L$ to L or from 0 to $2 L$. The Fourier formulas change by a factor π / L :
The coefficients in $G(x)=\sum_{-\infty}^{\infty} \boldsymbol{C}_{k} e^{i k \pi x / L}$ are $\boldsymbol{C}_{k}=\frac{1}{2 L} \int_{-L}^{L} G(x) e^{-i k \pi x / L} d x$.
Derive this formula for C_{k} : Multiply the first equation for $G(x)$ by \qquad and integrate both sides. Why is the integral on the right side equal to $2 L C_{k}$?
Solution

$$
\begin{aligned}
\text { Multiply } G(x) & =\sum_{-\infty}^{\infty} C_{k} e^{i k \pi x / L} \text { by } e^{-i k \pi x / L} \text {. Integrate. } \\
\int_{-L}^{L} G(x) e^{-i k \pi x / L} d x & =\int_{-L}^{L} e^{-i k \pi x / L} \sum_{-\infty}^{\infty} C_{k} e^{i k \pi x / L} d x \\
\int_{-L}^{L} G(x) e^{-i k \pi x / L} d x & =C_{k} \int_{-L}^{L} d x=2 L C_{k} \text { (orthogonality) } \\
C_{k} & =\frac{1}{2 L} \int_{-L}^{L} G(x) e^{-i k \pi x / L} d x
\end{aligned}
$$

10 For $G_{\text {even, }}$ use Problem 9 to find the cosine coefficient A_{k} from $\left(C_{k}+C_{-k}\right) / 2$:
$G_{\text {even }}(x)=\sum_{0}^{\infty} A_{k} \cos \frac{k \pi x}{L} \quad$ has $\quad A_{k}=\frac{1}{L} \int_{0}^{L} G_{\text {even }}(x) \cos \frac{k \pi x}{L} d x$.
$G_{\text {even }}$ is $\frac{1}{2}(G(x)+G(-x))$. Exception for $A_{0}=C_{0}$: Divide by $2 L$ instead of L.
Solution The result comes directly from $\frac{1}{2}\left(C_{k}+C_{-k}\right)$.
11 Problem 10 tells us that $a_{k}=\frac{\mathbf{1}}{\mathbf{2}}\left(c_{\boldsymbol{k}}+\boldsymbol{c}_{-\boldsymbol{k}}\right)$ on the usual interval from 0 to π. Find a similar formula for b_{k} from c_{k} and c_{-k}. In the reverse direction, find the complex coefficient c_{k} in $F(x)=\sum c_{k} e^{i k x}$ from the real coefficients a_{k} and b_{k}.

Solution Solution and correction We are comparing two ways to write a Fourier series:

$$
\sum_{-\infty}^{\infty} c_{k} e^{i k x}=a_{0}+\sum_{1}^{\infty} a_{k} \cos k x+\sum_{1}^{\infty} b_{k} \sin k x
$$

Pick out the terms for k and $-k$:

$$
c_{k} e^{i k x}+c_{-k} e^{-i k x}=a_{k} \cos k x+b_{k} \sin k x
$$

Use Euler's formula to reach cosines/sines on both sides :

$$
\left(c_{k}+c_{-k}\right) \cos k x+i\left(c_{k}-c_{-k}\right) \sin k x=a_{k} \cos k x+b_{k} \sin k x
$$

This shows that $a_{k}=c_{k}+c_{-k}($ correction from text $)$ and $b_{k}=i\left(c_{k}-c_{-k}\right)$.
Reverse Euler's formula to reach complex exponentials on both sides :

$$
c_{k} e^{i k x}+c_{-k} e^{-i k x}=\frac{1}{2} a_{k}\left(e^{i k x}+e^{-i k x}\right)+\frac{1}{2 i} b_{k}\left(e^{i k x}-e^{-i k x}\right)
$$

This shows that $c_{k}=\frac{1}{2} a_{k}+\frac{1}{2 i} b_{k} \quad$ and $\quad c_{-k}=\frac{1}{2} a_{k}-\frac{1}{2 i} b_{k}$.
Real functions with real a 's and b 's lead to $c_{-k}=\overline{c_{k}}$ (complex conjugates)
12 Find the solution to Laplace's equation with $u_{0}=\theta$ on the boundary. Why is this the imaginary part of $2\left(z-z^{2} / 2+z^{3} / 3 \cdots\right)=2 \log (1+z)$? Confirm that on the unit circle $z=e^{i \theta}$, the imaginary part of $2 \log (1+z)$ agrees with θ.
Solution The sine series of the odd function $f(\theta)=\theta$ has coefficients $b_{n}=$

$$
\frac{2}{\pi} \int_{0}^{\pi} \theta \sin n \theta d \theta=\frac{2}{\pi}\left[\frac{1}{n^{2}} \sin n \theta-\frac{\theta}{n} \cos n \theta\right]_{0}^{\pi}=-\frac{2 \cos n \pi}{n}=\mathbf{2}\left[\frac{\mathbf{1}}{\mathbf{1}},-\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{3}},-\frac{\mathbf{1}}{\mathbf{4}}, \cdots\right]
$$

The solution to Laplace's equation inside the circle has factors r^{n} :

$$
\begin{aligned}
u(r, \theta) & =\sum \boldsymbol{b}_{\boldsymbol{n}} \boldsymbol{r}^{\boldsymbol{n}} \sin \boldsymbol{n} \boldsymbol{\theta}=2 r \sin \theta-\frac{2}{2} r^{2} \sin 2 \theta+\frac{2}{3} r^{3} \sin 3 \theta \ldots \\
& =\operatorname{Im}\left[2 z-\frac{2}{2} z^{2}+\frac{2}{3} z^{3} \ldots\right]=\operatorname{Im}[2 \log (1+z)]
\end{aligned}
$$

13 If the boundary condition for Laplace's equation is $u_{0}=1$ for $0<\theta<\pi$ and $u_{0}=0$ for $-\pi<\theta<0$, find the Fourier series solution $u(r, \theta)$ inside the unit circle. What is u at the origin $r=0$?
Solution This $0-1$ step function $u_{0}(\theta)$ equals $\frac{1}{2}+\frac{1}{2}$ (square wave). Equation (8) of the text gives the Fourier sine series for the square wave :

$$
\text { 0-1 Step Function } u_{0}(\theta)=\frac{1}{2}+\frac{2}{\pi}\left[\frac{\sin \theta}{1}+\frac{\sin 3 \theta}{3}+\frac{\sin 5 \theta}{5}+\cdots\right]
$$

Then the solution to Laplace's equation includes factors r^{n} :

$$
u(r, \theta)=\frac{1}{2}+\frac{2}{\pi}\left[\frac{r \sin \theta}{1}+\frac{r^{3} \sin 3 \theta}{3}+\frac{r^{5} \sin 5 \theta}{5}+\cdots\right]=\frac{\mathbf{1}}{\mathbf{2}} \quad \text { at } \quad r=\mathbf{0}
$$

14 With boundary values $u_{0}(\theta)=1+\frac{1}{2} e^{i \theta}+\frac{1}{4} e^{2 i \theta}+\cdots$, what is the Fourier series solution to Laplace's equation in the circle? Sum this geometric series.
Solution Inside the circle we see factors r^{n} (and $\left.1+x+x^{2}+\cdots=1 /(1-x)\right)$:

$$
u(r, \theta)=1+\frac{1}{2} r e^{i \theta}+\frac{1}{4} r^{2} e^{2 i \theta}+\cdots=\mathbf{1} /\left(\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}} r e^{i \theta}\right) .
$$

15 (a) Verify that the fraction in Poisson's formula (30) satisfies Laplace's equation.
Solution (a) We could verify Laplace's equation in r, θ coordinates or recognize that every term in the sum (29) solves that equation:

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

(b) Find the response $u(r, \theta)$ to an impulse at $x=0, y=1$ (where $\theta=\frac{\pi}{2}$).

Solution (b) When the source is at the point $\theta=\pi$, this replaces $r \cos \theta$ by $-r \cos \theta$ in equation (30). Then the response to a point source is infinite at $r=1, \theta=\pi$:

$$
u(r, \theta)=\frac{1}{2 \pi} \frac{1-r^{2}}{1+r^{2}+2 r \cos \theta}
$$

16 With complex exponentials in $F(x)=\sum c_{k} e^{i k x}$, the energy identity (21) changes to $\int_{-\pi}^{\pi}|F(x)|^{2} d x=2 \pi \sum\left|c_{k}\right|^{2}$. Derive this by integrating $\left(\sum c_{k} e^{i k x}\right)\left(\sum \bar{c}_{k} e^{-i k x}\right)$.
Solution All products $e^{i k x} e^{-i k x}$ integrate to zero except when $n=k$:

$$
\int_{-\pi}^{\pi}\left(c_{k} e^{i k x}\right)\left(\overline{c_{k}} e^{-i k x}\right) d x=2 \pi c_{k} \overline{c_{k}}=2 \pi\left|c_{k}\right|^{2}
$$

The total energy is the sum over all k.
17 A centered square wave has $F(x)=1$ for $|x| \leq \pi / 2$.
(a) Find its energy $\int|F(x)|^{2} d x$ by direct integration

Solution (a) $\int|F(x)|^{2} d x=\int_{-\pi / 2}^{\pi / 2} d x=\pi$.
(b) Compute its Fourier coefficients c_{k} as specific numbers

Solution (b)

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} e^{-i k x} d x=\left[\frac{1}{2 \pi} \frac{e^{-i k x}}{-i k}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{2 \pi i k}\left(e^{i k \pi / 2}-e^{-i k \pi / 2}\right)=\frac{\mathbf{1}}{\boldsymbol{\pi} \boldsymbol{k}} \sin \left(\frac{\boldsymbol{k} \boldsymbol{\pi}}{\mathbf{2}}\right)
\end{aligned}
$$

(c) Find the sum in the energy identity (Problem 8).

Solution (c) $\sin \frac{k \pi}{2}=1,0,-1,0$ (repeated) so $2 \pi \sum\left|c_{k}\right|^{2}=\frac{2}{\pi}\left(\frac{1}{1}+\frac{1}{9}+\frac{1}{25}+\cdots\right)=1$.
$18 F(x)=1+(\cos x) / 2+\cdots+(\cos n x) / 2^{n}+\cdots$ is analytic : infinitely smooth.
(a) If you take 10 derivatives, what is the Fourier series of $d^{10} F / d x^{10}$?
(b) Does that series still converge quickly? Compare n^{10} with 2^{n} for $n=2^{10}$.

Solution (a) 10 derivatives of $\cos n x$ gives $-n^{10} \cos n x$:

$$
\frac{d^{10} F}{d x^{10}}=-\frac{1}{2} \cos x-\frac{2^{10}}{2^{2}} \cos 2 x-\frac{3^{10}}{2^{3}} \cos 3 x \cdots-\frac{n^{10}}{2^{n}} \cos n x-\cdots
$$

Solution (b) Yes, 2^{n} gets large much faster than n^{10} so the series easily converges. At $n=2^{10}=1024$ we have $2^{n}=2^{1024}$, much larger than $n^{10}=2^{100}$.

19 If $f(x)=1$ for $|x| \leq \pi / 2$ and $f(x)=0$ for $\pi / 2<|x|<\pi$, find its cosine coefficients.
Can you graph and compute the Gibbs overshoot at the jumps?
Solution

$$
\begin{aligned}
& a_{0}=\text { average value }=\frac{\mathbf{1}}{\mathbf{2}} \\
& a_{k}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos k x d x=\left[\frac{1}{\pi k} \sin k x\right]_{-\pi / 2}^{\pi / 2}=\frac{\mathbf{2}}{\boldsymbol{\pi} \boldsymbol{k}} \sin \frac{\boldsymbol{k} \boldsymbol{\pi}}{\mathbf{2}}
\end{aligned}
$$

20 Find all the coefficients a_{k} and b_{k} for F, I, and D on the interval $-\pi \leq x \leq \pi$:

$$
F(x)=\delta\left(x-\frac{\pi}{2}\right) \quad I(x)=\int_{0}^{x} \delta\left(x-\frac{\pi}{2}\right) d x \quad D(x)=\frac{d}{d x} \delta\left(x-\frac{\pi}{2}\right)
$$

Solution (a) Integrate $\cos k x$ and $\sin k x$ against $\delta\left(x-\frac{\pi}{2}\right)$ to get

$$
a_{0}=\frac{1}{2 \pi} \quad a_{k}=\frac{1}{\pi} \cos \frac{k \pi}{2} \text { and } b_{k}=\frac{1}{\pi} \sin \frac{k \pi}{2}
$$

Solution (b) The integral $I(x)$ is the unit step function $H\left(x-\frac{\pi}{2}\right)$ with jump at $x=\frac{\pi}{2}$:

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{\pi / 2}^{\pi} 1 d x=\frac{1}{4} \\
& a_{k}=\frac{1}{\pi} \int_{\pi / 2}^{\pi} \cos k x d x=\frac{1}{\pi k}\left(\sin k \pi-\sin \frac{k \pi}{2}\right)=-\frac{1}{\pi k} \sin \frac{k \pi}{2} \\
& b_{k}=\frac{1}{\pi} \int_{\pi / 2}^{\pi} \sin k x d x=-\frac{1}{\pi k}\left(\cos k \pi-\cos \frac{k \pi}{2}\right)
\end{aligned}
$$

Solution (c) $D(x)$ is the "doublet" $=$ derivative of the delta function $\delta\left(x-\frac{\pi}{2}\right)$. You must integrate by parts (and $D(-\pi)=D(\pi)=0$ fortunately).

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} D(x) \cos k x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta\left(x-\frac{\pi}{2}\right)(k \sin k x) d x
$$

So a_{k} for $D(x)$ is $\boldsymbol{k} \boldsymbol{b}_{\boldsymbol{k}}$ in part (b), and b_{k} for $D(x)$ is $\boldsymbol{-} \boldsymbol{k} \boldsymbol{a}_{\boldsymbol{k}}$ in part (b).

21 For the one-sided tall box function in Example 4, with $F=1 / h$ for $0 \leq x \leq h$, what is its odd part $\frac{1}{2}(F(x)-F(-x))$? I am surprised that the Fourier coefficients of this odd part disappear as h approaches zero and $F(x)$ approaches $\delta(x)$.
Solution Every function has an even part and an odd part:
$F_{\text {even }}(x)=\frac{1}{2}(F(x)+F(-x)) \quad F_{\text {odd }}(x)=\frac{1}{2}(F(x)-F(-x)) \quad F=F_{\text {even }}+F_{\text {odd }}$
For the one-sided box function, those even and odd parts are
$F_{\text {even }}(x)=\frac{1}{2 h}$ for $|x| \leq h \quad F_{\text {odd }}(x)=-\frac{1}{h}$ for $-h \leq x \leq 0,+\frac{1}{h}$ for $0<x \leq h$.
The Fourier coefficients of $F_{\text {odd }}$ don't really "disappear" as $h \rightarrow 0$, because the energy $\int\left|F_{\text {odd }}\right|^{2} d x$ is growing. But it is growing in the high frequencies and any particular coefficient c_{k} (at a fixed frequency k) approaches zero as $h \rightarrow 0$.
22 Find the series $F(x)=\sum c_{k} e^{i k x}$ for $F(x)=e^{x}$ on $-\pi \leq x \leq \pi$. That function e^{x} looks smooth, but there must be a hidden jump to get coefficients c_{k} proportional to $1 / k$. Where is the jump?
Solution When e^{x} is made into a periodic function there is a jump (or a drop) at $x=\pi$. The drop from e^{π} to $e^{-\pi}$ starts the next 2π-interval. That drop shows up as a factor multiplying the $1 / k$ decay that all jump functions show in their Fourier expansion :

$$
\begin{aligned}
c_{k} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{-i k x} d x=\left[\frac{1}{2 \pi} \frac{e^{(1-i k) x}}{1-i k}\right]_{x=-\pi}^{\pi} \\
& =\frac{1}{2 \pi} \frac{e^{\pi}-e^{-\pi}}{1-i k} .
\end{aligned}
$$

23 (a) (Old particular solution) Solve $A y^{\prime \prime}+B y^{\prime}+C y=e^{i k x}$.
(b) (New particular solution) Solve $A y^{\prime \prime}+B y^{\prime}+C y=\sum c_{k} e^{i k x}$.

Solution This problem shows directly the power of linearity to deal with complicated forcing functions as combinations of simple forcing functions $e^{i k x}$:

$$
\begin{array}{ll}
A y^{\prime \prime}+B y^{\prime}+C y=e^{i k x} & \text { has } y_{p}=\frac{1}{(i k)^{2} A+i k B+C} e^{i k x}=Y_{k} e^{i k x} \\
A y^{\prime \prime}+B y^{\prime}+C y=\sum c_{k} e^{i k x} & \text { has } y_{p}=\sum c_{k} Y_{k} e^{i k x}
\end{array}
$$

Problem Set 8.2, page 453

1 Multiply the three matrices in equation (11) and compare with F. In which six entries do you need to know that $i^{2}=-1$? This is $\left(w_{4}\right)^{2}=w_{2}$. If $M=N / 2$, why is $\left(w_{N}\right)^{M}=-1$?
Solution
2 Why is row i of \bar{F} the same as row $N-i$ of F (numbered from 0 to $N-1$)?

Solution

3 From Problem 8, find the 4 by 4 permutation matrix P so that $F=P \bar{F}$. Check that $P^{2}=I$ so that $P=P^{-1}$. Then from $\bar{F} F=4 I$ show that $F^{2}=4 P$.

It is amazing that $F^{4}=16 P^{2}=16 I$. Four transforms of any \boldsymbol{c} bring back $16 \boldsymbol{c}$. For all $N, F^{2} / N$ is a permutation matrix P and $\boldsymbol{F}^{4}=\boldsymbol{N}^{\mathbf{2}} \boldsymbol{I}$.
Solution
4 Invert the three factors in equation (11) to find a fast factorization of F^{-1}.
$5 F$ is symmetric. Transpose equation (11) to find a new Fast Fourier Transform.

Solution

6 All entries in the factorization of F_{6} involve powers of $w=$ sixth root of 1:

$$
F_{6}=\left[\begin{array}{rr}
I & D \\
I & -D
\end{array}\right]\left[\begin{array}{ll}
F_{3} & \\
& F_{3}
\end{array}\right]\left[\begin{array}{l}
\\
\\
\end{array}\right]
$$

Write down these factors with $1, w, w^{2}$ in D and powers of w^{2} in F_{3}. Multiply!

Solution

7 Put the vector $\boldsymbol{c}=(1,0,1,0)$ through the three steps of the FFT to find $\boldsymbol{y}=F \boldsymbol{c}$. Do the same for $\boldsymbol{c}=(0,1,0,1)$.
Solution
8 Compute $\boldsymbol{y}=F_{8} \boldsymbol{c}$ by the three FFT steps for $\boldsymbol{c}=(1,0,1,0,1,0,1,0)$. Repeat the computation for $\boldsymbol{c}=(0,1,0,1,0,1,0,1)$.
Solution
9 If $w=e^{2 \pi i / 64}$ then w^{2} and \sqrt{w} are among the \qquad and \qquad roots of 1 .

Solution
$10 F$ is a symmetric matrix. Its eigenvalues aren't real. How is this possible?

Solution

The three great symmetric tridiagonal matrices of applied mathematics are K, B, C. The eigenvectors of K, B, and C are discrete sines, cosines, and exponentials. The eigenvector matrices give the DST, DCT, and DFT - discrete transforms for signal processing. Notice that diagonals of the circulant matrix C loop around to the far corners.

$$
\begin{array}{cc}
\boldsymbol{K}=\left[\begin{array}{rrrr}
\mathbf{2} & -1 & & \\
-1 & 2 & -1 & \\
& \cdot & \cdot & \cdot \\
& & -1 & \mathbf{2}
\end{array}\right] & \boldsymbol{B}=\left[\begin{array}{rrr}
\mathbf{1} & -1 & \\
-1 & 2 & -1 \\
& \cdot & \cdot \\
& & -1 \\
\mathbf{1}
\end{array}\right] \\
\boldsymbol{C}=\left[\begin{array}{rrrr}
2 & -1 & \cdot & -\mathbf{1} \\
-1 & 2 & -1 & . \\
& \cdot & \cdot & \cdot \\
\mathbf{- 1} & \cdot & -1 & 2
\end{array}\right] & \begin{array}{l}
K_{11}=K_{N N}=\mathbf{2} \\
B_{11}=B_{N N}=\mathbf{1} \\
C_{1 N}=C_{N 1}=-\mathbf{1}
\end{array}
\end{array}
$$

11 The eigenvectors of K_{N} and B_{N} are the discrete sines s_{1}, \ldots, s_{N} and the discrete cosines $\boldsymbol{c}_{0}, \ldots, \boldsymbol{c}_{N-1}$. Notice the eigenvector $\boldsymbol{c}_{0}=(1,1, \ldots, 1)$. Here are \boldsymbol{s}_{k} and \boldsymbol{c}_{k}-these vectors are samples of $\sin k x$ and $\cos k x$ from 0 to π.

$$
\left(\sin \frac{\pi k}{N+1}, \sin \frac{2 \pi k}{N+1}, \ldots, \sin \frac{N \pi k}{N+1}\right) \text { and }\left(\cos \frac{\pi k}{2 N}, \cos \frac{3 \pi k}{2 N}, \ldots, \cos \frac{(2 N-1) \pi k}{2 N}\right)
$$

For 2 by 2 matrices K_{2} and B_{2}, verify that $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ and $\boldsymbol{c}_{0}, \boldsymbol{c}_{1}$ are eigenvectors.

Solution

12 Show that C_{3} has eigenvalues $\lambda=0,3,3$ with eigenvectors $e_{0}=(1,1,1)$, $\boldsymbol{e}_{1}=\left(1, w, w^{2}\right), \boldsymbol{e}_{2}=\left(1, w^{2}, w^{4}\right)$. You may prefer the real eigenvectors $(1,1,1)$ and $(1,0,-1)$ and $(1,-2,1)$.

Solution

13 Multiply to see the eigenvectors \boldsymbol{e}_{k} and eigenvalues λ_{k} of C_{N}. Simplify to $\lambda_{k}=$ $2-2 \cos (2 \pi k / N)$. Explain why C_{N} is only semidefinite. It is not positive definite.

$$
C \boldsymbol{e}_{k}=\left[\begin{array}{rrrr}
2 & -1 & & -1 \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
-1 & & -1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
w^{k} \\
w^{2 k} \\
w^{(N-1) k}
\end{array}\right]=\left(2-w^{k}-w^{-k}\right)\left[\begin{array}{l}
1 \\
w^{k} \\
w^{2 k} \\
w^{(N-1) k}
\end{array}\right]
$$

Solution

14 The eigenvectors \boldsymbol{e}_{k} of C are automatically perpendicular because C is a \qquad matrix. (To tell the truth, C has repeated eigenvalues as in Problem 12. There was a plane of eigenvectors for $\lambda=3$ and we chose orthogonal e_{1} and e_{2} in that plane.)
Solution
15 Write the 2 eigenvalues for K_{2} and the 3 eigenvalues for B_{3}. Always K_{N} and B_{N+1} have the same N eigenvalues, with the extra eigenvalue \qquad for B_{N+1}. (This is because $K=A^{\mathrm{T}} A$ and $B=A A^{\mathrm{T}}$.)
Solution

Problem Set 8.5, page 477

1 When the driving function is $f(t)=\delta(t)$, the solution starting from rest is the impulse response. The impulse is $\delta(t)$, the response is $y(t)$. Transform this equation to find the transfer function $Y(s)$. Invert to find the impulse response $y(t)$.

$$
y^{\prime \prime}+y=\delta(t) \text { with } y(0)=0 \text { and } y^{\prime}(0)=0
$$

Solution Take the Laplace Transform of $y^{\prime \prime}+y=\delta(t)$ with $y(0)=y^{\prime}(0)=0$:

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=1 \\
& Y(s)\left(s^{2}+1\right)=1 \\
& Y(s)=\frac{1}{s^{2}+1} \text { is the transform of } y(t)=\sin t
\end{aligned}
$$

2 (Important) Find the first derivative and second derivative of $f(t)=\sin t$ for $t \geq 0$. Watch for a jump at $t=0$ which produces a spike (delta function) in the derivative.
Solution The first derivative of $\sin (t)$ is $\cos (t)$, and the second derivative is $-\sin (t)+\delta(t)$.
3 Find the Laplace transform of the unit box function $b(t)=\{1$ for $0 \leq t<1\}=$ $H(t)-H(t-1)$. The unit step function is $H(t)$ in honor of Oliver Heaviside.
Solution The unit box function is $f(t)=H(t)-H(t-1)$

$$
\begin{aligned}
& \text { The transform is } F(s)=\frac{1}{s}-\frac{e^{-s}}{s}=\frac{\mathbf{1}}{s}\left(\mathbf{1}-e^{-s}\right) \\
& \text { The same result comes from } F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{1} e^{-s t} d t
\end{aligned}
$$

4 If the Fourier transform of $f(t)$ is defined by $\widehat{f}(k)=\int f(t) e^{-i k t} d t$ and $f(t)=0$ for $t<0$, what is the connection between $\widehat{f}(k)$ and the Laplace transform $F(s)$?
Solution The Fourier Transform is the Laplace Transform with $s=i k: \widehat{\boldsymbol{f}}(\boldsymbol{k})=\boldsymbol{F}(i \boldsymbol{k})$.
5 What is the Laplace transform $R(s)$ of the standard ramp function $r(t)=t$? For $t<0$ all functions are zero. The derivative of $r(t)$ is the unit step $H(t)$. Then multiplying $R(s)$ by s gives \qquad -.
Solution The Laplace Transform $R(s)$ of the Ramp Function $r(t)=t$ is

$$
R(s)=\int_{0}^{\infty} t e^{-s t} d t=-\left.\frac{t e^{-s t}}{s}\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{e^{-s t}}{s} d t=0-\left.\frac{e^{-s t}}{s^{2}}\right|_{0} ^{\infty}=\frac{1}{s^{2}}
$$

Multiplying $R(s)$ by s gives the Laplace transform $1 / s$ of the step function.
6 Find the Laplace transform $F(s)$ of each $f(t)$, and the poles of $F(s)$:
(a) $f=1+t$
(b) $f=t \cos \omega t$
(c) $f=\cos (\omega t-\theta)$
(d) $f=\cos ^{2} t$
(e) $f=e^{-2 t} \cos t$
(f) $f=t e^{-t} \sin \omega t$

Solution (a) The transform of $f(t)=1+t$ has a double pole at $s=0$:

$$
F(s)=\int_{0}^{\infty}(1+t) e^{-s t} d t=\int_{0}^{\infty} e^{-s t} d t+\int_{0}^{\infty} t e^{-s t} d t=\frac{1}{s}+\frac{1}{s^{2}}=\frac{\mathbf{1}+s}{s^{2}}
$$

Solution (b)

$$
\begin{aligned}
f(t) & =t \cos (\omega t)=t\left(\frac{e^{i \omega t}+e^{-i \omega t}}{2}\right)=\frac{t e^{i \omega t}}{2}+\frac{t e^{-i \omega t}}{2} \text { transforms to } \\
F(s) & =\int_{0}^{\infty} \frac{t e^{(i \omega-s) t}}{2} d t+\int_{0}^{\infty} \frac{t e^{-(i \omega-s) t}}{2} d t \\
& =\left.\frac{-e^{-t(s-i \omega)}(s t-i t \omega+1)}{2(s-i \omega)^{2}}\right|_{0} ^{\infty}+\left.\frac{-e^{-t(s+i \omega)}(s t+i t \omega+1)}{2(s+i \omega)^{2}}\right|_{0} ^{\infty} \\
& =\frac{1}{2(s-i \omega)^{2}}+\frac{1}{2(s+i \omega)^{2}}=\frac{(s-i \omega)^{2}+(s+i \omega)^{2}}{2(s-i \omega)^{2}(s+i \omega)^{2}}=\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}
\end{aligned}
$$

Poles occur at $s=i \omega$ and $s=-i \omega$, the two exponents of $f(t)$.

Solution (c) $f(t)=\cos (\omega t-\theta)=\cos \omega t \cos \theta+\sin \omega t \sin \theta$ transforms to

$$
F(s)=\frac{s}{s^{2}+\omega^{2}} \cos \theta+\frac{\omega}{s^{2}+\omega^{2}} \sin \theta
$$

Poles occur at $s= \pm i \omega$.
Solution (d)

$$
\begin{aligned}
\text { on (d) } & \begin{aligned}
f(t) & =\cos ^{2}(t)=\frac{1}{4}\left(e^{i t}+e^{-i t}\right)^{2}=\frac{1}{4}\left(e^{2 i t}+2+e^{-2 i t}\right) \\
F(s) & =\int_{0}^{\infty} \frac{1}{4}\left(e^{2 i t}+e^{-2 i t}+2\right) e^{-s t} d t \\
& =-\frac{1}{4(s-2 i)}+\frac{1}{4(s+2 i)}+\frac{1}{2 s}=\frac{2 s}{4\left(s^{2}+4\right)}+\frac{1}{2 s}=\frac{s^{2}+2}{s\left(s^{2}+4\right)}
\end{aligned}
\end{aligned}
$$

Poles occur at $s=0$ and $s= \pm 2 i$. Another way is to write $\cos ^{2} t=\frac{1+\cos 2 t}{2}$
Solution (e)

$$
\begin{aligned}
f(t) & =e^{-2 t} \cos t=\frac{1}{2} e^{(i-2) t}+\frac{1}{2} e^{-(i+2) t} \\
F(s) & =\int_{0}^{\infty} \frac{1}{2} e^{(i-2) t} e^{-s t} d t+\int_{0}^{\infty} \frac{1}{2} e^{-(i+2) t} e^{-s t} d t \\
& =\frac{1}{2(-i+2+s)}+\frac{1}{2(i+2+s)}=\frac{s+2}{(s+2)^{2}+1}
\end{aligned}
$$

Poles occur at the exponents $s=-2 \pm i$ in $f(t)$.

$$
\begin{aligned}
& \text { Solution (f) } \\
& \qquad \begin{aligned}
f(t) & =t e^{-t} \sin \omega t=\frac{t}{2 i} e^{(i \omega-1) t}-\frac{t}{2 i} e^{-(i \omega+1) t} \\
F(s) & =\int_{0}^{\infty}\left(\frac{t}{2 i} e^{(i \omega-1) t}-\frac{t}{2 i} e^{-(i \omega+1) t}\right) e^{-s t} d t \\
& =\int_{0}^{\infty} \frac{t}{2 i} e^{(i \omega-1-s) t} d t-\int_{0}^{\infty} \frac{t}{2 i} e^{-(i \omega+1+s) t} d t \\
& =\frac{i e^{-t(s-i \omega+1)}(1+t(s-i \omega+1))}{2(s-i \omega+1)^{2}}-\left.\frac{i e^{-t(s+i \omega+1)}(1+t(s+i \omega+1))}{2(s+i \omega+1)^{2}}\right|_{0} ^{\infty}
\end{aligned}
\end{aligned}
$$

Poles of $F(s)$ occur at $s=\mathbf{- 1} \pm \boldsymbol{i} \boldsymbol{\omega}$, the exponents of $f(t)$.
7 Find the Laplace transform s of $f(t)=$ next integer above t and $f(t)=t \delta(t)$.
A staircase $f(t)=[t]=H(t)+H(t-1)+H(t-2)+\cdots=$ next integer above t is a sum of step functions. The transform is

$$
\frac{1}{s}+\frac{e^{-s}}{s}+\frac{e^{-2 s}}{s}+\cdots=\frac{1}{s}\left(1+e^{-s}+e^{-2 s}+\cdots\right)=\frac{1}{s}\left(\frac{1}{1-e^{-s}}\right)
$$

The differentiation rule $\mathcal{L}(t f(t))=-F^{\prime}(s)$ with $f(t)=\delta(t)$ and $F(s)=1$ gives

$$
\mathcal{L}(t \delta(t))=-\frac{d}{d s}(1)=\mathbf{0} \text { (this is correct because } t \delta(t) \text { is the zero function). }
$$

8 Inverse Laplace Transform: Find the function $f(t)$ from its transform $F(s)$:
(a) $\frac{1}{s-2 \pi i}$
(b) $\frac{s+1}{s^{2}+1}$
(c) $\frac{1}{(s-1)(s-2)}$
(d) $1 /\left(s^{2}+2 s+10\right)$
(e) $e^{-s} /(s-a)$
(f) $2 s$

Solution (a) $F(s)=\frac{1}{s-2 \pi i}$ is the transform of $f(t)=e^{2 \pi i t}$.
Solution (b) $F(s)=\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}$ is the transform of $f(t)=\boldsymbol{\operatorname { c o s }} \boldsymbol{t}+\sin \boldsymbol{t}$.
Solution (c) $F(s)=\frac{1}{(s-1)(s-2)}=\frac{1}{s-2}-\frac{1}{s-1}$ is the transform of $f(t)=$ $e^{2 t}-e^{t}$.

Solution (d)

$$
\begin{aligned}
F(s) & =\frac{1}{s^{2}+2 s+10}=\frac{1}{(s+1+3 i)(s+1-3 i)} \\
& =\frac{i}{6(s+(1+3 i))}-\frac{i}{6(s+(1-3 i))} \\
f(t) & =\frac{i}{6} e^{-(1+3 i) t}-\frac{i}{6} e^{-(1-3 i) t} \\
& =-\frac{e^{-t} \sin (3 t)}{\mathbf{3}}
\end{aligned}
$$

Solution (e)

$$
\begin{aligned}
F(s) & =\frac{e^{-s}}{s-a} \\
f(t) & =e^{a(t-1)} H(t-1)=\text { shift of } e^{a t}
\end{aligned}
$$

Solution (f)

$$
\begin{aligned}
F(s) & =2 s \\
f(t) & =\mathbf{2} \boldsymbol{d} \boldsymbol{\delta} / \boldsymbol{d} t
\end{aligned}
$$

9 Solve $y^{\prime \prime}+y=0$ from $y(0)$ and $y^{\prime}(0)$ by expressing $Y(s)$ as a combination of $s /\left(s^{2}+1\right)$ and $1 /\left(s^{2}+1\right)$. Find the inverse transform $y(t)$ from the table.
Solution

$$
\begin{gathered}
y^{\prime \prime}+y=0 \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+Y(s)=0 \\
Y(s)\left(s^{2}+1\right)=s y(0)+y^{\prime}(0) \\
Y(s)=y(0) \frac{s}{s^{2}+1}+y^{\prime}(0) \frac{1}{s^{2}+1}
\end{gathered}
$$

The inverse transform is $y(t)=\boldsymbol{y}(0) \cos (\boldsymbol{t})+\boldsymbol{y}^{\prime}(0) \sin (\boldsymbol{t})$.
10 Solve $y^{\prime \prime}+3 y^{\prime}+2 y=\delta$ starting from $y(0)=0$ and $y^{\prime}(0)=1$ by Laplace transform.
Find the poles and partial fractions for $Y(s)$ and invert to find $y(t)$.
Solution The transform of $\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=\delta(t)$ with $y(0)=0$ and $y^{\prime}(0)=1$ is

$$
\begin{aligned}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+3 s Y(s)-3 y(0)+2 Y(s) & =1 \\
Y(s)\left(s^{2}+3 s+2\right)-1 & =1 \\
Y(s) & =\frac{2}{(s+1)(s+2)} \\
Y(s) & =\frac{2}{s+1}-\frac{2}{s+2} \\
y(t) & =\mathbf{2} e^{-t}-\mathbf{2} e^{-\mathbf{2 t}}
\end{aligned}
$$

11 Solve these initial-value problems by Laplace transform :
(a) $y^{\prime}+y=e^{i \omega t}, y(0)=8$
(b) $y^{\prime \prime}-y=e^{t}, y(0)=0, y^{\prime}(0)=0$
(c) $y^{\prime}+y=e^{-t}, y(0)=2$
(d) $y^{\prime \prime}+y=6 t, y(0)=0, y^{\prime}(0)=0$
(e) $y^{\prime}-i \omega y=\delta(t), y(0)=0$
(f) $m y^{\prime \prime}+c y^{\prime}+k y=0, y(0)=1, y^{\prime}(0)=0$

Solution (a)

$$
\begin{aligned}
y^{\prime}+y & =e^{i \omega t} \text { with } y(0)=8 \\
s Y(s)-8+Y(s) & =\frac{1}{s-i \omega} \\
Y(s)(s+1) & =\frac{1}{s-i \omega}+8 \\
Y(s) & =\frac{1}{(s+1)(s-i \omega)}+\frac{8}{s+1} \\
Y(s) & =\frac{1}{1+i \omega}\left(\frac{1}{s-i \omega}-\frac{1}{s+1}\right)+\frac{8}{s+1} \\
\text { Particular }+ \text { null } y(t) & =\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{i} \boldsymbol{\omega}}\left(\boldsymbol{e}^{\boldsymbol{i} \boldsymbol{t}}-\boldsymbol{e}^{-\boldsymbol{t}}\right)+\mathbf{8} \boldsymbol{e}^{-\boldsymbol{t}}
\end{aligned}
$$

Solution (b)

$$
y^{\prime \prime}-y=e^{t} \text { with } y(0)=0 \text { and } y^{\prime}(0)=0
$$

$$
\begin{aligned}
s^{2} Y(s)-Y(s) & =\frac{1}{s-1} \\
Y(s) & =\frac{1}{(s-1)(s+1)(s-1)} \\
& =\frac{1}{4(s+1)}-\frac{1}{4(s-1)}+\frac{1}{2(s-1)^{2}} \\
y(t) & =\frac{e^{-t}}{4}-\frac{e^{t}}{4}+\frac{t e^{t}}{2}
\end{aligned}
$$

Solution (c)

$$
y^{\prime}+y=e^{-t} \text { with } y(0)=2
$$

$$
s Y(s)-2+Y(s)=\frac{1}{s+1}
$$

$$
Y(s)=\frac{1}{(s+1)^{2}}+\frac{2}{s+1}
$$

$$
y(t)=t e^{-t}+2 e^{-t}
$$

Solution (d)

$$
\begin{aligned}
& y^{\prime \prime}+y=6 t \text { with } y(0)=y^{\prime}(0)=0 \\
& s^{2} Y(s)+Y(s)=\frac{6}{s^{2}} \\
& Y(s)\left(s^{2}+1\right)=\frac{6}{s^{2}} \\
& Y(s)=\frac{6}{s^{2}}-\frac{3 i}{s+i}+\frac{3 i}{s-i} \\
& y(t)=6 t-3 i e^{-i t}+3 i e^{i t}=\mathbf{6 t}-\mathbf{6} \sin t \\
& y^{\prime}-i \omega y=\delta(t) \text { with } y(0)=0 \\
& s Y(s)-i \omega Y(s)=1 \\
& Y(s)=\frac{1}{s-i \omega} \\
& y(t)=e^{i \omega t}
\end{aligned}
$$

Solution (e)

Solution (f) $m y^{\prime \prime}+c y^{\prime}+k y=0$ with $y(0)=1$ and $y^{\prime}(0)=0$
$m s^{2} Y(s)-m s y(0)+c s Y(s)-c y(0)+k Y(s)=0$
$Y(s)\left(m s^{2}+c s+k\right)=m s+c$
$Y(s)=\frac{m s+c}{m s^{2}+c s+k}$ has the form $\frac{a}{s-s_{1}}+\frac{b}{s-s_{2}}$
We used this Mathematica command to find $y(t)$
Simplify[InverseLaplaceTransform $\left.\left[(m * s+c) /\left(m * s^{\wedge} 2+c * s+k\right), s, t\right]\right]$
$y(t)=\frac{e^{-\frac{\left(c+\sqrt{c^{2}-4 k m}\right) t}{2 m}}\left(c\left(-1+e^{\frac{\sqrt{c^{2}-4 k m t}}{m}}\right)+\left(1+e^{\frac{\sqrt{c^{2}-4 k m t}}{m}}\right) \sqrt{c^{2}-4 k m}\right)}{2 \sqrt{c^{2}-4 k m}}$
12 The transform of $e^{A t}$ is $(s I-A)^{-1}$. Compute that matrix (the transfer function) when $A=\left[\begin{array}{llll}1 & 1 ; & 1 & 1\end{array}\right]$. Compare the poles of the transform to the eigenvalues of A.
Solution When $A=\left[\begin{array}{lll}1 & 1 ; 1 & 1\end{array}\right]$ we have :

$$
(s I-A)^{-1}=\left[\begin{array}{cc}
s-1 & -1 \\
-1 & s-1
\end{array}\right]^{-1}=\frac{\mathbf{1}}{s^{2}-\mathbf{2 s}}\left[\begin{array}{cc}
s-\mathbf{1} & \mathbf{1} \\
\mathbf{1} & s-\mathbf{1}
\end{array}\right]
$$

The poles of the system are $s=2$ and $s=0$, the eigenvalues of A.
13 If $d y / d t$ decays exponentially, show that $s Y(s) \rightarrow y(0)$ as $s \rightarrow \infty$.
Solution

$$
\begin{aligned}
s Y(s) & =\int_{0}^{\infty} s e^{-s t} y(t) d t \text { (integrate by parts) } \\
& =\int_{0}^{\infty} e^{-s t} \frac{d y}{d t} d t-\left[e^{-s t} y(t)\right]_{0}^{\infty} \\
& =\int_{0}^{\infty} e^{-s t} \frac{d y}{d t} d t+y(0) \rightarrow y(0) \text { as } s \rightarrow \infty
\end{aligned}
$$

Example : $\frac{d y}{d t}=e^{0 . a t}$ has $s Y(s)-y(0)=\frac{1}{s+a} \rightarrow 0$ as $s \rightarrow \infty$

14 Transform Bessel's time-varying equation $t y^{\prime \prime}+y^{\prime}+t y=0$ using $\mathscr{L}[t y]=-d Y / d s$ to find a first-order equation for Y. By separating variables or by substituting $Y(s)=C / \sqrt{1+s^{2}}$, find the Laplace transform of the Bessel function $y=J_{0}$.
Solution The transform of $t y^{\prime \prime}$ applies the $\mathscr{L}\left(t, y_{2}\right)$ rule to $y^{\prime \prime}$ instead of y :

$$
\mathscr{L}\left(t, y^{\prime \prime}\right)=-\frac{d}{d s}\left(\text { transform of } y^{\prime \prime}\right)=-\frac{d}{d s}\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)
$$

Apply this to the transform of $t \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+t y=0$

$$
\begin{aligned}
-2 s Y(s)-s^{2} \frac{d Y}{d s}+y(0)+s Y(s)-y(0)-\frac{d Y}{d s} & =0 \\
-s Y(s)-s^{2} \frac{d Y}{d s}-\frac{d Y}{d s} & =0 \\
s Y(s) & =-\left(s^{2}+1\right) \frac{d Y}{d s} \\
\frac{d Y}{Y(s)}=-\frac{s d s}{s^{2}+1} & \\
\log Y(s) & =\log \left(\frac{1}{\sqrt{s^{2}+1}}\right)
\end{aligned}
$$

The transform of the Bessel solution $y=J_{0}$ is $\mathrm{Y}(\mathrm{s})=\frac{\mathbf{1}}{\sqrt{s^{2}+1}}$
15 Find the Laplace transform of a single arch of $f(t)=\sin \pi t$.
Solution A single arch of $\sin \pi t$ extends from $t=0$ to $t=1$:

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{1} \sin (\pi t) e^{-s t} d t=\int_{0}^{1} \frac{e^{i \pi t-s t}}{2 i} d t-\int_{0}^{1} \frac{e^{-i \pi t-s t}}{2 i} d t \\
& =\left[\frac{e^{i \pi t-s t}}{2 i(i \pi-s)}+\frac{e^{-i \pi t-s t}}{2 i(i \pi+s)}\right]_{t=0}^{t=1} \\
& =\frac{e^{i \pi-s}-1}{2 i(i \pi-s)}+\frac{e^{-i \pi-s}-1}{2 i(i \pi+s)} \\
& =\left(\frac{-e^{-s}-1}{2 i}\right)\left(\frac{1}{i \pi-s}-\frac{1}{i \pi+s}\right)=\left(\frac{e^{-s}+1}{i}\right)\left(\frac{s}{\pi^{2}+s^{2}}\right)
\end{aligned}
$$

A faster and more direct approach: One arch of the sine curve agrees with $\sin \pi t+$ unit shift of $\sin \pi t$, because those cancel after one arch.

$$
\sin \pi t+\sin \pi(t-1)=\sin \pi t+\sin \pi t \cos \pi=\sin \pi t-\sin \pi t=0
$$

16 Your acceleration $v^{\prime}=c\left(v^{*}-v\right)$ depends on the velocity v^{*} of the car ahead:
(a) Find the ratio of Laplace transforms $V^{*}(s) / V(s)$.
(b) If that car has $v^{*}=t$ find your velocity $v(t)$ starting from $v(0)=0$.

Solution (a) Take the Laplace Transform of $\frac{d v}{d t}=c\left(v^{*}-v\right)$ assuming $v(0)=0$;

$$
\begin{aligned}
s V(s)-v(0) & =c V^{*}(s)-c V(s) \\
V(s)(s+c) & =c V^{*}(s) \\
\frac{V^{*}(s)}{V(s)} & =\frac{s+\boldsymbol{c}}{\boldsymbol{c}}
\end{aligned}
$$

Solution (b) If $v^{*}(t)=t$ then $V^{*}(s)=\frac{1}{s^{2}}$. Therefore

$$
\begin{aligned}
V(s)(s+c) & =\frac{c}{s^{2}} \\
V(s) & =\frac{c}{s^{3}+c s^{2}} \\
& =\frac{1}{c(s+c)}-\frac{1}{c s}+\frac{1}{s^{2}} \\
v(t) & =\frac{\boldsymbol{e}^{-c t}}{\boldsymbol{c}}-\frac{\mathbf{1}}{\boldsymbol{c}}+\boldsymbol{t}
\end{aligned}
$$

17 A line of cars has $v_{n}^{\prime}=c\left[v_{n-1}(t-T)-v_{n}(t-T)\right]$ with $v_{0}(t)=\cos \omega t$ in front.
(a) Find the growth factor $A=1 /\left(1+i \omega e^{i \omega T} / c\right)$ in oscillation $v_{n}=A^{n} e^{i \omega t}$.
(b) Show that $|A|<1$ and the amplitudes are safely decreasing if $c T<\frac{1}{2}$.
(c) If $c T>\frac{1}{2}$ show that $|A|>1$ (dangerous) for small ω. (Use $\sin \theta<\theta$.)

Human reaction time is $T \geq 1 \mathrm{sec}$ and human aggressiveness is $c=0.4 / \mathrm{sec}$.
Danger is pretty close. Probably drivers adjust to be barely safe.
Solution (a) $\frac{d v_{n}}{d t}=c\left(v_{n-1}(t-T)-v_{n}(t-T)\right)$ with $v_{n}=A^{n} e^{i \omega t}$

$$
\begin{aligned}
i \omega A^{n} e^{i \omega t} & =c A^{n-1} e^{i \omega(t-T)}-c A^{n} e^{i \omega(t-T)} \\
A \frac{i \omega e^{i \omega T}}{c} & =1-A \\
A\left(1+\frac{i \omega e^{i \omega T}}{c}\right) & =1
\end{aligned}
$$

Solution (b)

$$
\begin{aligned}
\text { For }|A|<1 \text { we need }\left|1+\frac{i \omega}{c} e^{i \omega T}\right| & >1 \\
\left|1-\frac{\omega}{c} \sin (\omega T)+\frac{\omega}{c} \cos (\omega T)\right| & >1 \\
\left(1-\frac{\omega}{c} \sin (\omega T)\right)^{2}+\frac{\omega^{2}}{c^{2}} \cos ^{2}(\omega T) & >1 \\
1-\frac{2 \omega}{c} \sin (\omega T)+\frac{\omega^{2}}{c^{2}} \sin ^{2}(\omega T)+\frac{\omega^{2}}{c^{2}} \cos ^{2}(\omega T) & >1 \\
1-\frac{2 \omega}{c} \sin (\omega T)+\frac{\omega^{2}}{c^{2}} & >1 \\
\frac{\omega^{2}}{c^{2}} & >\frac{2 \omega}{c} \sin (\omega T)
\end{aligned}
$$

Since $\sin \omega T<\omega T$, we are safe if $\frac{\omega^{2}}{c^{2}}>\frac{2 \omega}{c} \omega T$ which is $c T<\frac{1}{2}$
Solution (c) $\sin \omega T \approx \omega T$ when this number is small. Then the same steps show $|A|>1$ when $c T>\frac{1}{2}$.
18 For $f(t)=\delta(t)$, the transform $F(s)=1$ is the limit of transforms of tall thin box functions $b(t)$. The boxes have width $\epsilon \rightarrow 0$ and height $1 / \epsilon$ and area 1 .

$$
\text { Inside integrals, } b(t)=\left\{\begin{array}{ll}
1 / \epsilon & \text { for } 0 \leq t<\epsilon \\
0 & \text { otherwise }
\end{array}\right\} \text { approaches } \delta(t)
$$

Find the transform $B(s)$, depending on ϵ. Compute the limit of $B(s)$ as $\epsilon \rightarrow 0$.
Solution We begin by finding the transform of the box:

$$
B(s)=\int_{0}^{\epsilon} \frac{1}{\epsilon} e^{-s t} d t=\left.\frac{-1}{s \epsilon} e^{-s t}\right|_{0} ^{\epsilon}=\frac{1-e^{-s \epsilon}}{s \epsilon}
$$

We take the limit as $\epsilon \rightarrow 0$-the box approaches a delta function!

$$
\begin{aligned}
B_{\epsilon}(s) & =\lim _{\epsilon \rightarrow 0} \frac{1-e^{-s \epsilon}}{s \epsilon} \\
& =\lim \frac{1-\left(1-s \epsilon+\frac{1}{2} s^{2} \epsilon^{2}-\cdots\right)}{=\mathbf{1}}
\end{aligned}
$$

19 The transform $1 / s$ of the unit step function $H(t)$ comes from the limit of the transforms of short steep ramp functions $r_{\epsilon}(t)$. These ramps have slope $1 / \epsilon$:

Solution $R_{\epsilon}(s)=\int_{0}^{\epsilon} \frac{t}{\epsilon} e^{-s t} d t+\int_{\epsilon}^{\infty} e^{-s t} d t=\left[\frac{e^{-s t}(-s t-1)}{\epsilon s^{2}}\right]_{t=0}^{t=\epsilon}+\left[\frac{e^{-s t}}{-s}\right]_{t=\epsilon}^{t=\infty}$ $=\frac{e^{-s \epsilon}(-s \epsilon-1)+1}{\epsilon s^{2}}+\frac{e^{-s \epsilon}}{s}=\frac{1-e^{-s \epsilon}}{\epsilon s^{2}}$ $\lim R_{\epsilon}(s)=\lim \frac{1-\left(1-s \epsilon+\frac{1}{2} s^{2} \epsilon^{2}-\cdots\right)}{\epsilon s^{2}}=\frac{\mathbf{1}}{\boldsymbol{s}}$.

20 In Problems 18 and 19, show that the derivative of the ramp function $r_{\epsilon}(t)$ is the box function $b(t)$. The "generalized derivative" of a step is the \qquad function.

Solution The generalized derivative of the short $\operatorname{ramp} r_{\epsilon}(t)$ is the thin box $b(t) / \epsilon$. We say "generalized" because this is not a true derivative at $t=0$: the ramp has zero slope left of $t=0$ and nonzero slope right of $t=0$. But the transforms of r_{ϵ} and b_{ϵ} follow the rule for derivatives.
The generalized derivative of a step function is a delta function.
21 What is the Laplace transform of $y^{\prime \prime \prime}(t)$ when you are given $Y(s)$ and $y(0), y^{\prime}(0), y^{\prime \prime}(0)$?
Solution The Laplace Transform of $y^{\prime \prime \prime}(t)$ is $s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)$
22 The Pontryagin maximum principle says that the optimal control is "bang-bang"it only takes on the extreme values permitted by the constraints. To go from rest at $x=0$ to rest at $x=1$ in minimum time, use maximum acceleration A and deceleration $-B$. At what time t do you change from the accelerator to the brake ? (This is the fastest driving between two red lights.)
Solution The maximum principle requires full acceleration A to an unknown time t_{0} and then full deceleration $-B$ to reach $x=1$ with zero velocity. The velocities are

$$
\begin{aligned}
& v=A t \text { for } t \leq t_{0} \\
& v=A t_{0}-B\left(t-t_{0}\right) \text { for } t>t_{0}
\end{aligned}
$$

Integrating the velocity $v=d x / d t$ gives the distance $x(t)$:

$$
\begin{aligned}
& x=\frac{1}{2} A t^{2} \text { for } t<t_{0} \\
& x=\frac{1}{2} A t_{0}^{2} \text { at } t=t_{0} \\
& x=\frac{1}{2} A t_{0}^{2}+A t_{0}\left(t-t_{0}\right)-\frac{1}{2} B\left(t-t_{0}\right)^{2} \text { for } t>t_{0}
\end{aligned}
$$

At the final time T we reach $x=1$ with velocity $v=0$. This gives two equations for t_{0} and T :

$$
\begin{aligned}
& v=A t_{0}-B\left(T-t_{0}\right)=0 \\
& x=A t_{0} T-\frac{1}{2} A t_{0}^{2}-\frac{1}{2} B\left(T-t_{0}\right)^{2}=1
\end{aligned}
$$

Substitute $T=\frac{1}{B} t_{0}(A+B)$ from the first equation into the second equation. This leaves an ordinary quadratic equation to solve for t_{0}.

Problem Set 8.6, page 453

1 Find the convolution $\boldsymbol{v} * \boldsymbol{w}$ and also the cyclic convolution $\boldsymbol{v} \circledast \boldsymbol{w}$:
(a) $\boldsymbol{v}=(1,2)$ and $\boldsymbol{w}=(2,1)$

Solution (a)

$$
\text { Convolution: }(1,2) *(2,1)
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
2
\end{array}\right]
$$

Cyclic Convolution:

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

(b) $\boldsymbol{v}=(1,2,3)$ and $\boldsymbol{w}=(4,5,6)$.

Solution (b)

$$
\begin{array}{cc}
(1,2,3) *(4,5,6) & {\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1 \\
0 & 3 & 2 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{c}
4 \\
13 \\
28 \\
27 \\
18
\end{array}\right]} \\
\text { Cyclic Convolution: } & {\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
31 \\
31 \\
28
\end{array}\right]}
\end{array}
$$

2 Compute the convolution $(1,3,1) *(2,2,3)=(a, b, c, d, e)$. To check your answer, add $a+b+c+d+e$. That total should be 35 since $1+3+1=5$ and $2+2+3=7$ and $5 \times 7=35$.
Solution

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
2 \\
8 \\
11 \\
11 \\
3
\end{array}\right]
$$

$1+3+1$ times $2+2+3$ is $2+8+11+11+3:(5)(7)=(35)$.
3 Multiply $1+3 x+x^{2}$ times $2+2 x+3 x^{2}$ to find $a+b x+c x^{2}+d x^{3}+e x^{4}$. Your multiplication was the same as the convolution $(1,3,1) *(2,2,3)$ in Problem 8. When $x=1$, your multiplication shows why $1+3+1=5$ times $2+2+3=7$ agrees with $a+b+c+d+e=35$.

Solution

$$
\begin{aligned}
\left(1+3 x+x^{2}\right) \times\left(2+2 x+3 x^{2}\right) & =2+2 x+3 x^{2}+6 x+6 x^{2}+9 x^{3}+2 x^{2}+2 x^{3}+3 x^{4} \\
& =\mathbf{2}+\mathbf{8} \boldsymbol{x}+\mathbf{1 1} \boldsymbol{x}^{\mathbf{2}}+\mathbf{1 1} \boldsymbol{x}^{\mathbf{3}}+\mathbf{3} \boldsymbol{x}^{\mathbf{4}}
\end{aligned}
$$

At $x=1$ this is again $(5) \times(7)=(35)$.
4 (Deconvolution) Which vector \boldsymbol{v} would you convolve with $\boldsymbol{w}=(1,2,3)$ to get $\boldsymbol{v} * \boldsymbol{w}=(0,1,2,3,0)$? Which \boldsymbol{v} gives $\boldsymbol{v} \circledast \boldsymbol{w}=(3,1,2)$?
Solution

$$
\left[\begin{array}{lll}
v_{0} & 0 & 0 \\
v_{1} & v_{0} & 0 \\
v_{2} & v_{1} & v_{0} \\
0 & v_{2} & v_{1} \\
0 & 0 & v_{2}
\end{array}\right]\left[\begin{array}{l}
\mathbf{1} \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3 \\
0
\end{array}\right]
$$

The first and last equation give $v_{0}=v_{2}=0$. Substituting into the second, third, fourth equation gives $v_{1}=1$. Therefore $v=(\mathbf{0}, \mathbf{1}, \mathbf{0})$.

For cyclic convolution $\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}v_{0} \\ v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{lll}v_{0} & v_{2} & v_{1} \\ v_{1} & v_{0} & v_{2} \\ v_{2} & v_{1} & v_{0}\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$

$$
\text { gives }\left[\begin{array}{l}
v_{0} \\
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

5 (a) For the periodic functions $f(x)=4$ and $g(x)=2 \cos x$, show that $f * g$ is zero (the zero function)!
Solution (a) From equation (4) we have

$$
(f * g)(x)=\int_{0}^{2 \pi} g(y) f(x-y) d y=4 \int_{0}^{2 \pi} 2 \cos y d y=4 \cdot 0=0 \text { for all } x
$$

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of 4 and $2 \cos x$. Those coefficients are $c_{0}=4$ and $d_{1}=d_{-1}=1$. Therefore every product $c_{k} d_{k}$ is \qquad _.
Solution (b) In frequency space (k-space) you are multiplying the Fourier coefficients of 4 and $2 \cos x$. Those coefficients are $c_{0}=4$ and $d_{1}=d_{-1}=1$. Therefore every product $c_{\boldsymbol{k}} \boldsymbol{d}_{\boldsymbol{k}}$ is zero. These are the coefficients of the zero function.
6 For periodic functions $f=\sum c_{k} e^{i k x}$ and $g=\sum d_{k} e^{i k x}$, the Fourier coefficients of $f * g$ are $2 \boldsymbol{\pi} \boldsymbol{c}_{\boldsymbol{k}} \boldsymbol{d}_{\boldsymbol{k}}$. Test this factor 2π when $f(x)=1$ and $g(x)=1$ by computing $f * g$ from its definition (6.4).
Solution From equation (4) :

$$
(f * g)(x)=\int_{0}^{2 \pi} f(y) g(x-y) d y=\int_{0}^{2 \pi} 1 \cdot 1 d y=2 \pi
$$

The same convolution in k-space has $c_{0}=1$ and $d_{0}=1$ (all other $c_{k}=d_{k}=0$). Then $2 \pi c_{k} d_{k}$ gives the correct coefficients (2π and 0) of the convolution $f * g$ (which equals 2π).
7 Show by integration that the periodic convolution $\int_{0}^{2 \pi} \cos x \cos (t-x) d x$ is $\pi \cos t$. In k space you are squaring Fourier coefficients $c_{1}=c_{-1}=\frac{1}{2}$ to get $\frac{1}{4}$ and $\frac{1}{4}$; these are the coefficients of $\frac{1}{2} \cos t$. The 2π in Problem 8 makes $\pi \cos t$ correct.

Solution

$$
\int_{0}^{2 \pi} \cos x \cos (t-x) d x=\int_{0}^{2 \pi} \cos x(\cos t \cos x+\sin t \sin x) d x=\pi \cos t+0
$$

8 Explain why $f * g$ is the same as $g * f$ (periodic or infinite convolution).
Solution In Fourier space convolution $f * g$ or $f \circledast g$ leads to multiplication $c_{k} d_{k}$, which is certainly the same as $d_{k} c_{k}$. So $f \circledast g=g \circledast f$ in x-space.
9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector $\boldsymbol{c}=(1,2,3)$? Then $C \boldsymbol{d}$ equals $\boldsymbol{c} \circledast \boldsymbol{d}$ for every vector \boldsymbol{d}. Compute $\boldsymbol{c} \circledast \boldsymbol{d}$ for $\boldsymbol{d}=(0,1,0)$.
$\boldsymbol{d}=(0,1,0)$
Solution The circulant matrix $C=\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]$ gives cyclic convolution with $(1,2,3)$.. .
When $d=(0,1,0)$ we have $\boldsymbol{c} \circledast \boldsymbol{d}=C \boldsymbol{d}=\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.

10 What 2 by 2 circulant matrix C produces cyclic convolution with $\boldsymbol{c}=(1,1)$? Show in four ways that this C is not invertible. Deconvolution is impossible.
(1) Find the determinant of C.
(2) Find the eigenvalues of C.
(3) Find \boldsymbol{d} so that $C \boldsymbol{d}=\boldsymbol{c} \circledast \boldsymbol{d}$ is zero.
(4) $F \boldsymbol{c}$ has a zero component.

Solution The 2 by 2 circulant matrix $C=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ gives $(1,1) \circledast \boldsymbol{d}=C \boldsymbol{d}$.
(1) The determinant of this matrix is zero.
(2) The eigenvalues of C come from det $\left[\begin{array}{cc}1-\lambda & 1 \\ 1 & 1-\lambda\end{array}\right]=(1-\lambda)^{2}-1=0$. Then $(1-\lambda)^{2}=1$ and $\lambda=0,2$. That zero eigenvalue means that the matrix C is singular.
(3) $C \boldsymbol{d}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{r}-1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ so C is not invertible: $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ in nullspace.
(4) The Fourier matrix F gives $F \boldsymbol{c}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. This again shows $\lambda=2$ and 0 .
11 (a) Change $b(x) * \delta(x-1)$ to a multiplication $\widehat{b}(k) \widehat{d}(k)$:
The box $b(x)=\{1$ for $0 \leq x \leq 1\}$ transforms to $\widehat{b}(k)=\int_{0}^{1} e^{-i k x} d x$.
The shifted delta transforms to $\widehat{d}(k)=\int \delta(x-1) e^{-i k x} d x$.
(b) Show that your result $\hat{b} \widehat{d}$ is the transform of a shifted box function. This shows how convolution with $\delta(x-1)$ shifts the box.
Solution This question shows that continuous convolution with $\delta(x-1)$ produces a shift in the box function $b(x)$, just like discrete convolution with the shifted delta vector $(\ldots, 0,0,1, \ldots)$ produces a one-step shift.
We compute $\delta(x-1) * b(x)$ in x-space to find $b(x-1)$, or in k-space to see the effect on the coefficients :

$$
\begin{gathered}
\widehat{b}(k)=\int_{0}^{1} e^{-i k x} d x=\left[\frac{e^{-i k x}}{-i k}\right]_{x=0}^{x=1}=\frac{1-e^{-i k}}{i k} \\
\text { Shifted box } e^{-i k}\left(\frac{1-e^{-i k}}{i k}\right) \text { agrees with } \int_{1}^{2} e^{-i k x} d x=\left[\frac{e^{-i k x}}{-i k}\right]_{x=1}^{x=2} .
\end{gathered}
$$

12 Take the Laplace transform of these equations to find the transfer function $G(s)$:
(a) $A y^{\prime \prime}+B y^{\prime}+C y=\delta(t)$
(b) $y^{\prime}-5 y=\delta(t)$
(c) $2 y(t)-y(t-1)=\delta(t)$

Solution (a) $A s^{2} Y(s)+B s Y(s)+C Y(s)=1$ gives the transfer function $\frac{1}{A s^{2}+B s+C}$
Solution (b) $s Y(s)-5 Y(s)=1$ gives the transfer function $Y(s)=\frac{1}{s-5}$

Solution (c) $2 Y(s)-Y(s) e^{-s}=1$ gives the transfer function $Y(s)=\frac{1}{2-e^{-s}}$
13 Take the Laplace transform of $y^{\prime \prime \prime \prime}=\delta(t)$ to find $Y(s)$. From the Transform Table in Section 8.5 find $y(t)$. You will see $y^{\prime \prime \prime}=1$ and $y^{\prime \prime \prime \prime}=0$. But $y(t)=0$ for negative t, so your $y^{\prime \prime \prime}$ is actually a unit step function and your $y^{\prime \prime \prime \prime}$ is actually $\delta(t)$.
Solution $\quad y^{\prime \prime \prime \prime}=\delta$ transforms to $s^{4} Y(s)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=1$
Assume zero initial values to get $s^{4} Y(s)=1$ and $Y(s)=\frac{1}{s^{4}}$ and $y^{3}=\frac{t^{3}}{6}$.
This is also the solution to $y^{\prime \prime \prime \prime}=0$ with initial values $y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}=\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1}$.
14 Solve these equations by Laplace transform to find $Y(s)$. Invert that transform with the Table in Section 8.5 to recognize $y(t)$.
(a) $y^{\prime}-6 y=e^{-t}, y(0)=2$
(b) $y^{\prime \prime}+9 y=1, y(0)=y^{\prime}(0)=0$.

Solution (a) The transform of $y^{\prime}-6 y=e^{-t}$ with $y(0)=2$ is

$$
\begin{aligned}
s Y(s)-2-6 Y(s) & =\frac{1}{s+1} \\
Y(s) & =\frac{2}{s-6}+\frac{1}{(s+1)(s-6)} \\
& =\frac{2}{s-6}+\frac{1}{7(s-6)}-\frac{1}{7(s+1)} \\
& =\frac{15}{7(s-6)}-\frac{1}{7(s+1)}
\end{aligned}
$$

The inverse transform is $y(t)=\frac{15}{7} e^{6 t}-\frac{1}{7} e^{-t}$
Solution (b) The transform of $y^{\prime \prime}+9 y=1$ with $y(0)=y^{\prime}(0)=0$ is

$$
\begin{aligned}
s^{2} Y(s)+9 Y(s) & =\frac{1}{s} \\
Y(s) & =\frac{1}{s\left(s^{2}+9\right)} \\
& =\frac{1}{9 s}-\frac{1}{18(-3 i+s)}-\frac{1}{18(3 i+s)}
\end{aligned}
$$

The inverse transform is $y(t)=\frac{1}{9}-\frac{1}{18} e^{3 i t}-\frac{1}{18} e^{-3 i t}=\boldsymbol{y}_{\boldsymbol{p}}+\boldsymbol{y}_{\boldsymbol{n}}$.
15 Find the Laplace transform of the shifted step $H(t-3)$ that jumps from 0 to 1 at $t=3$. Solve $y^{\prime}-a y=H(t-3)$ with $y(0)=0$ by finding the Laplace transform $Y(s)$ and then its inverse transform $y(t):$ one part for $t<3$, second part for $t \geq 3$.
Solution The transform of $H(t-3)$ multiplies $e^{-3 s}$ by the transform $\frac{1}{s}$ of $H(t)$.

$$
\begin{aligned}
y^{\prime}-a y & =H(t-3) \quad y(0)=0 \\
s Y(s)-a Y(s) & =\frac{e^{-3 s}}{s} \\
Y(s) & =\frac{e^{-3 s}}{s(s-3)}=\frac{e^{-3 x}}{3}\left(\frac{1}{s-3}-\frac{1}{s}\right) .
\end{aligned}
$$

The inverse transform $y(t)$ is the shift of $\frac{1}{3}\left(e^{-3 t}-1\right)$: zero until $t=3$.

16 Solve $y^{\prime}=1$ with $y(0)=4 —$ a trivial question. Then solve this problem the slow way by finding $Y(s)$ and inverting that transform.
Solution The trivial solution is : $y=t+4$. The transform method gives

$$
\begin{aligned}
s Y(s)-4 & =\frac{1}{s} \\
Y(s) & =\frac{1}{s^{2}}+\frac{4}{s} \\
y(t) & =t+4
\end{aligned}
$$

17 The solution $y(t)$ is the convolution of the input $f(t)$ with what function $g(t)$?
(a) $y^{\prime}-a y=f(t)$ with $y(0)=3$

Solution (a)

$$
\begin{aligned}
y^{\prime}-a y & =f(t) \quad \text { with } y(0)=3 \\
s Y(s)-3-a Y(s) & =F(s) \\
Y(s) & =\frac{3+F(s)}{s-a} \\
y(t) & =\mathbf{3} \boldsymbol{e}^{-\boldsymbol{t}}+\boldsymbol{f}(\boldsymbol{t}) * \boldsymbol{e}^{-\boldsymbol{a t}}
\end{aligned}
$$

(b) $y^{\prime}-($ integral of $y)=f(t)$.

Solution (b) The transform of $y^{\prime}-($ integral of $y)=f(t)$ is $s Y(s)-\frac{Y(s)}{s}=F(s)$, if $y(0)=0$.
The inverse transform of $\frac{1}{s-\frac{1}{s}}=\frac{s}{s^{2}-1}$ is $\cos (i t)$.
Then $Y(s)=\frac{F(s)}{s-\frac{1}{s}}$ is the transform of the convolution $f(t) * \cos (i t)$.
18 For $y^{\prime}-a y=f(t)$ with $y(0)=3$, we could replace that initial value by adding $3 \delta(t)$ to the forcing function $f(t)$. Explain that sentence.
Solution For a first order equation, an initial condition $y(0)$ is equivalent to adding $y(0) \delta(t)$ to the equation and starting that new equation at zero.
19 What is $\delta(t) * \delta(t)$? What is $\delta(t-1) * \delta(t-2)$? What is $\delta(t-1)$ times $\delta(t-2)$?
Solution $\quad \delta(t) * \delta(t)=\delta(t)$
$\delta(t-1) * \delta(t-2)=\delta(t-3)$
$\delta(t-1)$ times $\delta(t-2)$ equals the zero function.
20 By Laplace transform, solve $y^{\prime}=y$ with $y(0)=1$ to find a very familiar $y(t)$.
Solution

$$
\begin{aligned}
y^{\prime} & =y \quad y(0)=1 \\
s Y(s)-1 & =Y(s) \\
Y(s) & =\frac{1}{s-1} \text { gives } y(t)=\boldsymbol{e}^{t} .
\end{aligned}
$$

21 By Fourier transform as in (9), solve $-y^{\prime \prime}+y=$ box function $b(x)$ on $0 \leq x \leq 1$.
Solution The Fourier transform of $-y^{\prime \prime}+y=b(x)$ is

$$
\begin{gathered}
\left(k^{2}+1\right) \widehat{y}(k)=\widehat{b}(k)=\int_{0}^{1} e^{-i k x} d x=\frac{1-e^{-i k}}{i k} \\
\widehat{y}(k)=\frac{1-e^{-i k}}{\left(k^{2}+1\right)(i k)}
\end{gathered}
$$

This transform must be inverted to find $\boldsymbol{y}(\boldsymbol{x})$. In reality I would solve separately on $x \leq 0$ and $0 \leq x \leq 1$ and $x \geq 1$. Then matching at the breakpoints $x=0$ and $x=1$ determines the free constants in the separate solutions.
22 There is a big difference in the solutions to $y^{\prime \prime}+B y^{\prime}+C y=f(x)$, between the cases $B^{2}<4 C$ and $B^{2}>4 C$. Solve $y^{\prime \prime}+y=\delta$ and $y^{\prime \prime}-y=\delta$ with $y(\pm \infty)=0$.
Solution (a) The delta function produces a unit jump in y^{\prime} at $x=0$:
$y^{\prime \prime}+y=0$ has $y=c_{1} \cos x+c_{2} \sin x$ for $x<0, y=C_{1} \sin x$ for $x>0$.
The jump in y^{\prime} gives $C_{2}-c_{2}=1$. The condition on $y(\pm \infty)$ does not apply to this first equation.
$y^{\prime \prime}-y=0$ has $y=c e^{x}$ for $x<0$ and $y=C e^{-x}$ for $x>0$; then $y(\pm \infty)=0$.
Matching y at $x=0$ gives $c=C$.
Jump in y^{\prime} at $x=0$ gives $-C-c=1$ so $c=C=-\frac{1}{2}$
Solution $y(x)=-\frac{1}{2} e^{x}$ for $x \leq 0$ and $y(x)=-\frac{1}{2} e^{-x}$ for $x \geq 0$
23 (Review) Why do the constant $f(t)=1$ and the unit step $H(t)$ have the same Laplace transform $1 / s$? Answer: Because the transform does not notice \qquad -
Solution The Laplace Transform does not notice any values of $\boldsymbol{f}(\boldsymbol{t})$ for $\boldsymbol{t}<\mathbf{0}$.

