DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

Book Website

Email address

diffeqla@gmail.com

math.mit.edu/dela

web.mit.edu/18.06

math.mit.edu/~gs

Course page

OpenCourseWare

Home page

Publisher Direct email www.wellesleycambridge.com

video lectures: ocw.mit.edu

gs@math.mit.edu

Wellesley - Cambridge Press Box 812060

Wellesley, Massachusetts 02482

Problem Set 8.1, page 443

1 (a) To prove that $\cos nx$ is orthogonal to $\cos kx$ when $k \neq n$, use $(\cos nx) (\cos kx) = \frac{1}{2}\cos(n+k)x + \frac{1}{2}\cos(n-k)x$. Integrate from x = 0 to $x = \pi$. What is $\int \cos^2 kx \, dx$?

(b) Correction From 0 to π , cos x is not orthogonal to sin 2x (the book wrongly proposed $\int_0^{\pi} \cos x \sin x \, dx$, but this is zero). For orthogonality of all sines and cosines, the period has to be 2π .

Solution (a)

$$\int_{0}^{\pi} (\cos nx)(\cos kx)dx = \frac{1}{2} \int_{0}^{\pi} \cos(n+k)x \, dx + \frac{1}{2} \int_{0}^{\pi} \cos(n-k)x \, dx$$
$$= \left[\frac{\sin(n+k)x}{2(n+k)} + \frac{\sin(n-k)x}{2(n-k)}\right]_{0}^{\pi} = 0 + 0$$
Solution (b) $\int_{0}^{\pi} (\cos x)(\sin 2x) \, dx = \int_{0}^{\pi} (\cos x)(2\sin x \cos x) \, dx = \left[-\frac{2}{3}\cos^{3}x\right]_{0}^{\pi}$
$$= \frac{4}{3} \neq 0.$$

Non-orthogonality comes from $\int_{0}^{1} \cos mx \sin nx \, dx$ when m - n is an odd number.

2 Suppose F(x) = x for $0 \le x \le \pi$. Draw graphs for $-2\pi \le x \le 2\pi$ to show three extensions of F: a 2π -periodic even function and a 2π -periodic odd function and a π -periodic function.

3 Find the Fourier series on $-\pi \le x \le \pi$ for

(a) $f_1(x) = \sin^3 x$, an odd function (sine series, only two terms)

Solution (a) The fast way is to know the identity $\sin^3 x = \frac{3}{4} \sin x - \frac{1}{4} \sin 3x$. This must be the Fourier sine series! It has only two terms.

More slowly, use Euler's great formula to produce complex exponentials :

$$(\sin x)^3 = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 = \frac{e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix}}{8i^3} = -\frac{1}{4}\sin 3x + \frac{3}{4}\sin x.$$

Or slowly compute the usual formulas $\int \sin^3 x \sin x \, dx$ and $\int \sin^3 x \sin 3x \, dx$.

(b) $f_2(x) = |\sin x|$, an even function (cosine series) Solution (b)

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} |\sin x| \, dx = \frac{2}{\pi}$$

$$a_{k} = \frac{1}{2\pi} \int_{0}^{\pi} |\sin x| \cos kx \, dx = -\frac{1}{4\pi} \left[\frac{\cos(k-1)x}{k-1} + \frac{\cos(k+1)x}{k+1} \right]_{x=0}^{x=\pi}$$

$$= \mathbf{0} \left(\text{odd } k \right) \text{ or } -\frac{1}{4\pi} \left[\frac{-2}{k-1} + \frac{-2}{k+1} \right] = \frac{k}{\pi (k^{2}-1)} (\text{even } k)$$

$$= 0 (\operatorname{odd} k) \operatorname{or}^{-1} = \frac{1}{4\pi} \left[\frac{1}{k-1} + \frac{1}{k+1} \right] = \frac{1}{\pi(k^2 - 1)}$$
(c) $f_3(x) = x \operatorname{ for}^{-1} = x \le \pi \text{ (sine series with jump at } x = \pi)$

Solution (c)
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin kx \, dx = \left[\frac{1}{\pi k^2} \sin kx - \frac{x}{\pi k} \cos kx\right]_{-\pi}^{\pi}$$

= $-\frac{1}{k} (\cos k\pi + \cos(-k\pi)) = -\frac{2}{k} (-1)^k.$

4 Find the complex Fourier series $e^x = \sum c_k e^{ikx}$ on the interval $-\pi \le x \le \pi$. The even part of a function is $\frac{1}{2}(f(x) + f(-x))$, so that $f_{\text{even}}(x) = f_{\text{even}}(-x)$. Find the cosine series for f_{even} and the sine series for f_{odd} . Notice the jump at $x = \pi$.

Solution

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^x e^{-ikx} \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{x(1-ik)} \, dx$$
$$= \left[\frac{1}{2\pi(1-ik)} e^{x(1-ik)}\right]_{-\pi}^{\pi} = \frac{e^{\pi(1-ik)} - e^{-\pi(1-ik)}}{2\pi(1-ik)}$$

The even part of the function is : $\frac{1}{2}(e^x + e^{-x})$. The cosine coefficients are

$$a_{0} = \frac{1}{4\pi} \int_{-\pi}^{\pi} (e^{x} + e^{-x}) dx = \frac{1}{2\pi} (e^{\pi} - e^{-\pi})$$
$$a_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (e^{x} + e^{-x}) \cos kx dx = \frac{2k \cosh[\pi] \sin[k\pi] + 2 \cos[k\pi] \sinh[\pi]}{\pi + k^{2}\pi}$$

The odd part of the function is: $\frac{1}{2}(e^x - e^{-x})$. The sine series is:

$$b_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} (e^x - e^{-x}) \sin kx \, dx = \frac{2\cosh[\pi]\sin[k\pi] - 2k\cos[k\pi]\sinh[\pi]}{\pi + k^2\pi}$$

5 From the energy formula (21), the square wave sine coefficients satisfy

$$\pi(b_1^2 + b_2^2 + \dots) = \int_{-\pi}^{\pi} |SW(x)|^2 \, dx = \int_{-\pi}^{\pi} 1 \, dx = 2\pi.$$

208

8.1. Fourier Series

Substitute the numbers b_k from equation (8) to find that $\pi^2 = 8(1 + \frac{1}{9} + \frac{1}{25} + \cdots)$. Solution The sine coefficients for the odd square wave are

$$b_k = \frac{4}{\pi} \left(\frac{1 - (-1)^k}{2k} \right) = \frac{4}{\pi} \left(\frac{1}{1}, 0, \frac{1}{3}, 0, \frac{1}{5}, 0, \ldots \right)$$

Energy identity gives $\pi^2 = 8 \sum_{k=1}^{\infty} \left(\frac{1 - (-1)^k}{2k} \right)^2 = 8 \left(1 + \frac{1}{9} + \frac{1}{25} + \cdots \right)$

6 If a square pulse is centered at x = 0 to give

$$f(x) = 1$$
 for $|x| < \frac{\pi}{2}$, $f(x) = 0$ for $\frac{\pi}{2} < |x| < \pi$,

draw its graph and find its Fourier coefficients a_k and b_k .

Solution

$$a_{0} = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} dx = \frac{1}{2}$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos kx \, dx = \frac{2}{k\pi} \sin \frac{k\pi}{2} = \sin c \left(\frac{k\pi}{2}\right)$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \sin kx \, dx = 0$$

7 Plot the first three partial sums and the function $x(\pi - x)$:

$$x(\pi - x) = \frac{8}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{27} + \frac{\sin 5x}{125} + \cdots \right), 0 < x < \pi.$$

Why is $1/k^3$ the decay rate for this function? What is its second derivative?

Solution The parabola $y = x(\pi - x) = x\pi - x^2$ starts at y(0) = 0 with slope $y'(0) = \pi$ and second derivative y''(0) = -2. Its sine series makes it an odd function $x\pi + x^2$ from $-\pi$ to 0. This odd extension has **second derivative** $= \pm 2$. That jump in y'' means that the Fourier coefficients b_k will decay like $1/k^3$. (Remember 1/k for jumps in y(x) and $1/k^2$ for jumps in y'(x)—no jumps in y, y' for this example.)

8 Sketch the 2π -periodic half wave with $f(x) = \sin x$ for $0 < x < \pi$ and f(x) = 0 for $-\pi < x < 0$. Find its Fourier series.

Solution The function is not odd or even, so integrals must go from $-\pi$ to π . The function is zero from $-\pi$ to 0 leaving only these integrals for a_0, a_k, b_k :

$$a_{0} = \frac{1}{2\pi} \int_{0}^{\pi} \sin x \, dx = \frac{1}{2\pi} \left[-\cos x \right]_{0}^{\pi} = \frac{1}{\pi}$$

$$a_{k} = \frac{1}{\pi} \int_{0}^{\pi} \sin x \cos kx \, dx = -\frac{1}{2\pi} \left[\frac{\cos(1-k)x}{1-k} + \frac{\cos(1+k)x}{1+k} \right]_{0}^{\pi} = \left[k \text{ even} \right] \frac{1}{\pi} \left(\frac{1}{1-k} + \frac{1}{1+k} \right) = \frac{2}{\pi(1-k^{2})} \quad [\text{and } \mathbf{0} \text{ for } \mathbf{k} \text{ odd}]$$

$$b_{k} = \frac{1}{\pi} \int_{0}^{\pi} \sin x \sin kx \, dx \text{ gives } b_{1} = \frac{1}{2} \text{ and other } b_{k} = 0.$$

9 Suppose G(x) has period 2L instead of 2π . Then G(x + 2L) = G(x). Integrals go from -L to L or from 0 to 2L. The Fourier formulas change by a factor π/L :

The coefficients in
$$G(x) = \sum_{-\infty}^{\infty} C_k e^{ik\pi x/L}$$
 are $C_k = \frac{1}{2L} \int_{-L}^{L} G(x) e^{-ik\pi x/L} dx.$

Derive this formula for C_k : Multiply the first equation for G(x) by _____ and integrate both sides. Why is the integral on the right side equal to $2LC_k$?

Solution
Multiply
$$G(x) = \sum_{-\infty}^{\infty} C_k e^{ik\pi x/L}$$
 by $e^{-ik\pi x/L}$. Integrate

$$\int_{-L}^{L} G(x) e^{-ik\pi x/L} dx = \int_{-L}^{L} e^{-ik\pi x/L} \sum_{-\infty}^{\infty} C_k e^{ik\pi x/L} dx$$

$$\int_{-L}^{L} G(x) e^{-ik\pi x/L} dx = C_k \int_{-L}^{L} dx = 2LC_k \text{ (orthogonality)}$$

$$C_k = \frac{1}{2L} \int_{-L}^{L} G(x) e^{-ik\pi x/L} dx$$

10 For G_{even} , use Problem 9 to find the cosine coefficient A_k from $(C_k + C_{-k})/2$:

$$G$$
even $(x) = \sum_{0}^{\infty} A_k \cos \frac{k\pi x}{L}$ has $A_k = \frac{1}{L} \int_{0}^{L} G$ even $(x) \cos \frac{k\pi x}{L} dx$

 G_{even} is $\frac{1}{2}(G(x) + G(-x))$. Exception for $A_0 = C_0$: Divide by 2L instead of L. Solution The result comes directly from $\frac{1}{2}(C_k + C_{-k})$.

11 Problem 10 tells us that $a_k = \frac{1}{2}(c_k + c_{-k})$ on the usual interval from 0 to π . Find a similar formula for b_k from c_k and c_{-k} . In the reverse direction, find the complex coefficient c_k in $F(x) = \sum c_k e^{ikx}$ from the real coefficients a_k and b_k .

8.1. Fourier Series

Solution Solution and correction We are comparing two ways to write a Fourier series :

$$\sum_{-\infty}^{\infty} c_k e^{ikx} = a_0 + \sum_{1}^{\infty} a_k \cos kx + \sum_{1}^{\infty} b_k \sin kx$$

Pick out the terms for k and -k:

$$c_k e^{ikx} + c_{-k} e^{-ikx} = a_k \cos kx + b_k \sin kx$$

Use Euler's formula to reach cosines/sines on both sides :

$$(c_k + c_{-k})\cos kx + i(c_k - c_{-k})\sin kx = a_k\cos kx + b_k\sin kx$$

This shows that $a_k = c_k + c_{-k}$ (correction from text) and $b_k = i(c_k - c_{-k})$.

Reverse Euler's formula to reach complex exponentials on both sides :

$$c_k e^{ikx} + c_{-k} e^{-ikx} = \frac{1}{2}a_k(e^{ikx} + e^{-ikx}) + \frac{1}{2i}b_k(e^{ikx} - e^{-ikx})$$

This shows that $c_k = \frac{1}{2}a_k + \frac{1}{2i}b_k$ and $c_{-k} = \frac{1}{2}a_k - \frac{1}{2i}b_k$.

Real functions with real *a*'s and *b*'s lead to $c_{-k} = \overline{c_k}$ (complex conjugates)

12 Find the solution to Laplace's equation with $u_0 = \theta$ on the boundary. Why is this the imaginary part of $2(z - z^2/2 + z^3/3 \cdots) = 2\log(1+z)$? Confirm that on the unit circle $z = e^{i\theta}$, the imaginary part of $2\log(1+z)$ agrees with θ .

Solution The sine series of the odd function $f(\theta) = \theta$ has coefficients $b_n =$

$$\frac{2}{\pi}\int_{0}^{\pi}\theta\sin n\theta\,d\theta = \frac{2}{\pi}\left[\frac{1}{n^{2}}\sin n\theta - \frac{\theta}{n}\cos n\theta\right]_{0}^{\pi} = -\frac{2\cos n\pi}{n} = 2\left[\frac{1}{1}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \cdots\right]$$

The solution to Laplace's equation inside the circle has factors r^n :

$$u(r,\theta) = \sum \boldsymbol{b_n} \boldsymbol{r^n} \sin \boldsymbol{n\theta} = 2r \sin \theta - \frac{2}{2}r^2 \sin 2\theta + \frac{2}{3}r^3 \sin 3\theta \dots$$
$$= \operatorname{Im} \left[2z - \frac{2}{2}z^2 + \frac{2}{3}z^3 \dots \right] = \operatorname{Im} [2\log(1+z)].$$

13 If the boundary condition for Laplace's equation is u₀ = 1 for 0 < θ < π and u₀ = 0 for -π < θ < 0, find the Fourier series solution u(r, θ) inside the unit circle. What is u at the origin r = 0?

Solution This 0-1 step function $u_0(\theta)$ equals $\frac{1}{2} + \frac{1}{2}$ (square wave). Equation (8) of the text gives the Fourier sine series for the square wave :

0-1 Step Function
$$u_0(\theta) = \frac{1}{2} + \frac{2}{\pi} \left[\frac{\sin \theta}{1} + \frac{\sin 3\theta}{3} + \frac{\sin 5\theta}{5} + \cdots \right]$$

Then the solution to Laplace's equation includes factors r^n :

$$u(r,\theta) = \frac{1}{2} + \frac{2}{\pi} \left[\frac{r \sin \theta}{1} + \frac{r^3 \sin 3\theta}{3} + \frac{r^5 \sin 5\theta}{5} + \cdots \right] = \frac{1}{2} \text{ at } r = 0.$$

14 With boundary values $u_0(\theta) = 1 + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{2i\theta} + \cdots$, what is the Fourier series solution to Laplace's equation in the circle? Sum this geometric series.

Solution Inside the circle we see factors r^n (and $1 + x + x^2 + \cdots = 1/(1-x)$):

$$u(r,\theta) = 1 + \frac{1}{2}re^{i\theta} + \frac{1}{4}r^2e^{2i\theta} + \dots = 1/\left(1 - \frac{1}{2}re^{i\theta}\right).$$

15 (a) Verify that the fraction in Poisson's formula (30) satisfies Laplace's equation.

Solution (a) We could verify Laplace's equation in r, θ coordinates or recognize that every term in the sum (29) solves that equation:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

(b) Find the response $u(r, \theta)$ to an impulse at x = 0, y = 1 (where $\theta = \frac{\pi}{2}$).

Solution (b) When the source is at the point $\theta = \pi$, this replaces $r \cos \theta$ by $-r \cos \theta$ in equation (30). Then the response to a point source is infinite at $r = 1, \theta = \pi$:

$$u(r,\theta) = rac{1}{2\pi} \; rac{1-r^2}{1+r^2+2r\cos heta}$$

16 With complex exponentials in $F(x) = \sum c_k e^{ikx}$, the energy identity (21) changes to $\int_{-\pi}^{\pi} |F(x)|^2 dx = 2\pi \sum |c_k|^2$. Derive this by integrating $(\sum c_k e^{ikx})(\sum \overline{c}_k e^{-ikx})$.

Solution All products $e^{ikx}e^{-ikx}$ integrate to zero except when n = k:

$$\int_{-\pi}^{\pi} (c_k e^{ikx})(\overline{c_k} e^{-ikx}) \, dx = 2\pi c_k \overline{c_k} = 2\pi |c_k|^2.$$

The total energy is the sum over all k.

- **17** A centered square wave has F(x) = 1 for $|x| \le \pi/2$.
 - (a) Find its energy $\int |F(x)|^2 dx$ by direct integration

Solution (a)
$$\int |F(x)|^2 dx = \int_{-\pi/2}^{\pi/2} dx = \pi.$$

(b) Compute its Fourier coefficients c_k as specific numbers

Solution (b)
$$c_k = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} e^{-ikx} dx = \left[\frac{1}{2\pi} \frac{e^{-ikx}}{-ik}\right]_{-\pi/2}^{\pi/2}$$

 $= \frac{1}{2\pi ik} \left(e^{ik\pi/2} - e^{-ik\pi/2}\right) = \frac{1}{\pi k} \sin\left(\frac{k\pi}{2}\right)$

(c) Find the sum in the energy identity (Problem 8).

Solution (c)
$$\sin \frac{k\pi}{2} = 1, 0, -1, 0$$
 (repeated) so $2\pi \sum |c_k|^2 = \frac{2}{\pi} \left(\frac{1}{1} + \frac{1}{9} + \frac{1}{25} + \cdots \right) = 1.$

8.1. Fourier Series

- **18** $F(x) = 1 + (\cos x)/2 + \cdots + (\cos nx)/2^n + \cdots$ is analytic: infinitely smooth.
 - (a) If you take 10 derivatives, what is the Fourier series of $d^{10}F/dx^{10}$?
 - (b) Does that series still converge quickly? Compare n^{10} with 2^n for $n = 2^{10}$.

Solution (a) 10 derivatives of $\cos nx$ gives $-n^{10}\cos nx$:

$$\frac{d^{10}F}{dx^{10}} = -\frac{1}{2}\cos x - \frac{2^{10}}{2^2}\cos 2x - \frac{3^{10}}{2^3}\cos 3x \cdots - \frac{n^{10}}{2^n}\cos nx - \cdots$$

Solution (b) Yes, 2^n gets large much faster than n^{10} so the series easily converges.

At
$$n = 2^{10} = 1024$$
 we have $2^n = 2^{1024}$, much larger than $n^{10} = 2^{100}$

19 If f(x) = 1 for $|x| \le \pi/2$ and f(x) = 0 for $\pi/2 < |x| < \pi$, find its cosine coefficients. Can you graph and compute the Gibbs overshoot at the jumps ?

Solution $a_0 = \text{average value} = \frac{1}{2}$

$$a_{k} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \cos kx \, dx = \left[\frac{1}{\pi k} \sin kx \right]_{-\pi/2}^{\pi/2} = \frac{2}{\pi k} \sin \frac{k\pi}{2}$$

20 Find all the coefficients a_k and b_k for F, I, and D on the interval $-\pi \le x \le \pi$:

$$F(x) = \delta\left(x - \frac{\pi}{2}\right) \qquad I(x) = \int_0^x \delta\left(x - \frac{\pi}{2}\right) dx \qquad D(x) = \frac{d}{dx} \delta\left(x - \frac{\pi}{2}\right).$$

Solution (a) Integrate $\cos kx$ and $\sin kx$ against $\delta(x - \frac{\pi}{2})$ to get

$$a_0 = rac{1}{2\pi}$$
 $a_k = rac{1}{\pi} \cos rac{k\pi}{2}$ and $b_k = rac{1}{\pi} \sin rac{k\pi}{2}$

Solution (b) The integral I(x) is the unit step function $H(x - \frac{\pi}{2})$ with jump at $x = \frac{\pi}{2}$:

$$a_{0} = \frac{1}{2\pi} \int_{\pi/2}^{\pi} 1 \, dx = \frac{1}{4}$$

$$a_{k} = \frac{1}{\pi} \int_{\pi/2}^{\pi} \cos kx \, dx = \frac{1}{\pi k} \left(\sin k\pi - \sin \frac{k\pi}{2} \right) = -\frac{1}{\pi k} \sin \frac{k\pi}{2}$$

$$b_{k} = \frac{1}{\pi} \int_{\pi/2}^{\pi} \sin kx \, dx = -\frac{1}{\pi k} \left(\cos k\pi - \cos \frac{k\pi}{2} \right)$$

Solution (c) D(x) is the "doublet" = derivative of the delta function $\delta\left(x - \frac{\pi}{2}\right)$. You must integrate by parts (and $D(-\pi) = D(\pi) = 0$ fortunately).

$$\frac{1}{\pi} \int_{-\pi}^{\pi} D(x) \cos kx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \delta\left(x - \frac{\pi}{2}\right) (k \sin kx) \, dx$$

So a_k for D(x) is kb_k in part (b), and b_k for D(x) is $-ka_k$ in part (b).

21 For the one-sided tall box function in Example 4, with F = 1/h for $0 \le x \le h$, what is its odd part $\frac{1}{2}(F(x) - F(-x))$? I am surprised that the Fourier coefficients of this odd part disappear as h approaches zero and F(x) approaches $\delta(x)$.

Solution Every function has an even part and an odd part :

$$F_{\text{even}}(x) = \frac{1}{2}(F(x) + F(-x)) \quad F_{\text{odd}}(x) = \frac{1}{2}(F(x) - F(-x)) \quad F = F_{\text{even}} + F_{\text{odd}}$$

For the one-sided box function, those even and odd parts are

$$F_{\text{even}}(x) = \frac{1}{2h} \text{ for } |x| \le h \quad F_{\text{odd}}(x) = -\frac{1}{h} \text{ for } -h \le x \le 0, +\frac{1}{h} \text{ for } 0 < x \le h.$$

The Fourier coefficients of F_{odd} don't really "disappear" as $h \to 0$, because the energy $\int |F_{\text{odd}}|^2 dx$ is growing. But it is growing in the high frequencies and any particular coefficient c_k (at a fixed frequency k) approaches zero as $h \to 0$.

22 Find the series $F(x) = \sum c_k e^{ikx}$ for $F(x) = e^x$ on $-\pi \le x \le \pi$. That function e^x looks smooth, but there must be a hidden jump to get coefficients c_k proportional to 1/k. Where is the jump?

Solution When e^x is made into a periodic function there is a jump (or a drop) at $x = \pi$. The drop from e^{π} to $e^{-\pi}$ starts the next 2π -interval. That drop shows up as a factor multiplying the 1/k decay that all jump functions show in their Fourier expansion :

$$c_{k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{x} e^{-ikx} dx = \left[\frac{1}{2\pi} \frac{e^{(1-ik)x}}{1-ik} \right]_{x=-\pi}^{\pi}$$
$$= \frac{1}{2\pi} \frac{e^{\pi} - e^{-\pi}}{1-ik}.$$

23 (a) (Old particular solution) Solve $Ay'' + By' + Cy = e^{ikx}$.

(b) (New particular solution) Solve $Ay'' + By' + Cy = \sum c_k e^{ikx}$.

Solution This problem shows directly the power of **linearity** to deal with complicated forcing functions as combinations of simple forcing functions e^{ikx} :

$$\begin{split} Ay'' + By' + Cy &= e^{ikx} & \text{has } y_p = \frac{1}{(ik)^2 A + ikB + C} \ e^{ikx} = Y_k e^{ikx} \\ Ay'' + By' + Cy &= \sum c_k e^{ikx} & \text{has } y_p = \sum c_k Y_k e^{ikx}. \end{split}$$

Problem Set 8.2, page 453

1 Multiply the three matrices in equation (11) and compare with F. In which six entries do you need to know that $i^2 = -1$? This is $(w_4)^2 = w_2$. If M = N/2, why is $(w_N)^M = -1$?

Solution

2 Why is row *i* of \overline{F} the same as row N - i of F (numbered from 0 to N - 1)? Solution

8.2. The Fast Fourier Transform

3 From Problem 8, find the 4 by 4 permutation matrix P so that $F = P\overline{F}$. Check that $P^2 = I$ so that $P = P^{-1}$. Then from $\overline{F}F = 4I$ show that $F^2 = 4P$.

It is amazing that $F^4 = 16P^2 = 16I$. Four transforms of any *c* bring back **16** *c*. For all N, F^2/N is a permutation matrix P and $F^4 = N^2 I$.

Solution

- **4** Invert the three factors in equation (11) to find a fast factorization of F^{-1} .
- **5** *F* is symmetric. Transpose equation (11) to find a new Fast Fourier Transform. *Solution*
- **6** All entries in the factorization of F_6 involve powers of w = sixth root of 1:

$$F_6 = \left[\begin{array}{cc} I & D \\ I & -D \end{array} \right] \left[\begin{array}{cc} F_3 \\ F_3 \end{array} \right] \left[\begin{array}{cc} P \end{array} \right].$$

Write down these factors with $1, w, w^2$ in D and powers of w^2 in F_3 . Multiply! Solution

7 Put the vector c = (1, 0, 1, 0) through the three steps of the FFT to find y = Fc. Do the same for c = (0, 1, 0, 1).

Solution

8 Compute $y = F_8 c$ by the three FFT steps for c = (1, 0, 1, 0, 1, 0, 1, 0). Repeat the computation for c = (0, 1, 0, 1, 0, 1, 0, 1).

Solution

- **9** If $w = e^{2\pi i/64}$ then w^2 and \sqrt{w} are among the _____ and ____ roots of 1. *Solution*
- **10** *F* is a symmetric matrix. Its eigenvalues aren't real. How is this possible ? *Solution*

The three great symmetric tridiagonal matrices of applied mathematics are K, B, C. The eigenvectors of K, B, and C are discrete sines, cosines, and exponentials. The eigenvector matrices give the **DST**, **DCT**, and **DFT** — discrete transforms for signal processing. Notice that diagonals of the circulant matrix C loop around to the far corners.

$$K = \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \\ & & -1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{bmatrix}$$
$$C = \begin{bmatrix} 2 & -1 & \ddots & -1 \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \\ -1 & \ddots & -1 & 2 \end{bmatrix} \qquad K_{11} = K_{NN} = 2$$
$$B_{11} = B_{NN} = 1$$
$$C_{1N} = C_{N1} = -1$$

11 The eigenvectors of K_N and B_N are the discrete sines s_1, \ldots, s_N and the discrete cosines c_0, \ldots, c_{N-1} . Notice the eigenvector $c_0 = (1, 1, \ldots, 1)$. Here are s_k and c_k —these vectors are samples of $\sin kx$ and $\cos kx$ from 0 to π .

$$\left(\sin\frac{\pi k}{N+1}, \sin\frac{2\pi k}{N+1}, \dots, \sin\frac{N\pi k}{N+1}\right)$$
 and $\left(\cos\frac{\pi k}{2N}, \cos\frac{3\pi k}{2N}, \dots, \cos\frac{(2N-1)\pi k}{2N}\right)$

For 2 by 2 matrices K_2 and B_2 , verify that s_1 , s_2 and c_0 , c_1 are eigenvectors. Solution

12 Show that C_3 has eigenvalues $\lambda = 0, 3, 3$ with eigenvectors $e_0 = (1, 1, 1)$, $e_1 = (1, w, w^2)$, $e_2 = (1, w^2, w^4)$. You may prefer the real eigenvectors (1, 1, 1) and (1, 0, -1) and (1, -2, 1).

Solution

13 Multiply to see the eigenvectors e_k and eigenvalues λ_k of C_N . Simplify to $\lambda_k = 2 - 2 \cos(2\pi k/N)$. Explain why C_N is only semidefinite. It is not positive definite.

$$C\boldsymbol{e}_{k} = \begin{bmatrix} 2 & -1 & & -1 \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ -1 & & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ w^{k} \\ w^{2k} \\ w^{(N-1)k} \end{bmatrix} = (2 - w^{k} - w^{-k}) \begin{bmatrix} 1 \\ w^{k} \\ w^{2k} \\ w^{(N-1)k} \end{bmatrix}.$$

Solution

- 14 The eigenvectors e_k of C are automatically perpendicular because C is a ______ matrix. (To tell the truth, C has repeated eigenvalues as in Problem 12. There was a plane of eigenvectors for $\lambda = 3$ and we chose orthogonal e_1 and e_2 in that plane.) Solution
- **15** Write the 2 eigenvalues for K_2 and the 3 eigenvalues for B_3 . Always K_N and B_{N+1} have the same N eigenvalues, with the extra eigenvalue ______ for B_{N+1} . (This is because $K = A^{T}A$ and $B = AA^{T}$.) Solution

Problem Set 8.5, page 477

1 When the driving function is $f(t) = \delta(t)$, the solution starting from rest is the **impulse response**. The impulse is $\delta(t)$, the response is y(t). Transform this equation to find the **transfer function** Y(s). Invert to find the impulse response y(t). $y'' + y = \delta(t)$ with y(0) = 0 and y'(0) = 0

Solution Take the Laplace Transform of $y'' + y = \delta(t)$ with y(0) = y'(0) = 0: $a^2 V(a) = ay(0) + y'(0) + V(a) = 1$

$$s^{2}Y(s) - sy(0) - y^{2}(0) + Y(s) = 1$$

$$Y(s)(s^{2} + 1) = 1$$

$$Y(s) = \frac{1}{s^{2} + 1}$$
 is the transform of $y(t) = \sin t$.

8.5. The Laplace Transform

- 2 (Important) Find the first derivative and second derivative of $f(t) = \sin t$ for $t \ge 0$. Watch for a jump at t = 0 which produces a spike (delta function) in the derivative. Solution The first derivative of $\sin(t)$ is $\cos(t)$, and the second derivative is $-\sin(t) + \delta(t)$.
- **3** Find the Laplace transform of the unit box function $b(t) = \{1 \text{ for } 0 \le t < 1\} = H(t) H(t-1)$. The unit step function is H(t) in honor of Oliver Heaviside.

Solution The unit box function is f(t) = H(t) - H(t-1)

The transform is
$$F(s) = \frac{1}{s} - \frac{e^{-s}}{s} = \frac{1}{s}(1 - e^{-s})$$

The same result comes from $F(s) = \int_{0}^{\infty} f(t) e^{-st} dt = \int_{0}^{1} e^{-st} dt$.

4 If the Fourier transform of f(t) is defined by $\hat{f}(k) = \int f(t)e^{-ikt}dt$ and f(t) = 0 for t < 0, what is the connection between $\hat{f}(k)$ and the Laplace transform F(s)?

Solution The Fourier Transform is the Laplace Transform with s = ik: $\hat{f}(k) = F(ik)$.

5 What is the Laplace transform R(s) of the standard **ramp function** r(t) = t? For t < 0 all functions are zero. The derivative of r(t) is the unit step H(t). Then multiplying R(s) by s gives _____.

Solution The Laplace Transform R(s) of the Ramp Function r(t) = t is

$$R(s) = \int_{0}^{\infty} te^{-st} dt = -\frac{te^{-st}}{s} \Big|_{0}^{\infty} - \int_{0}^{\infty} -\frac{e^{-st}}{s} dt = -0 - \frac{e^{-st}}{s^{2}} \Big|_{0}^{\infty} = \frac{1}{s^{2}}$$

Multiplying R(s) by s gives the Laplace transform 1/s of the step function.

- **6** Find the Laplace transform F(s) of each f(t), and the poles of F(s):
 - (a) f = 1 + t (b) $f = t \cos \omega t$ (c) $f = \cos(\omega t \theta)$ (d) $f = \cos^2 t$ (e) $f = e^{-2t} \cos t$ (f) $f = te^{-t} \sin \omega t$

Solution (a) The transform of f(t) = 1 + t has a **double pole** at s = 0:

$$F(s) = \int_{0}^{\infty} (1+t)e^{-st} dt = \int_{0}^{\infty} e^{-st} dt + \int_{0}^{\infty} te^{-st} dt = \frac{1}{s} + \frac{1}{s^2} = \frac{1+s}{s^2}$$

Solution (b)

$$\begin{aligned} f(t) &= t\cos(\omega t) = t\left(\frac{e^{i\omega t} + e^{-i\omega t}}{2}\right) = \frac{te^{i\omega t}}{2} + \frac{te^{-i\omega t}}{2} \text{ transforms to} \\ F(s) &= \int_{0}^{\infty} \frac{te^{(i\omega - s)t}}{2} dt + \int_{0}^{\infty} \frac{te^{-(i\omega - s)t}}{2} dt \\ &= \left. \frac{-e^{-t(s - i\omega)}(st - it\omega + 1)}{2(s - i\omega)^2} \right|_{0}^{\infty} + \left. \frac{-e^{-t(s + i\omega)}(st + it\omega + 1)}{2(s + i\omega)^2} \right|_{0}^{\infty} \\ &= \frac{1}{2(s - i\omega)^2} + \frac{1}{2(s + i\omega)^2} = \frac{(s - i\omega)^2 + (s + i\omega)^2}{2(s - i\omega)^2(s + i\omega)^2} = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2} \end{aligned}$$

Poles occur at $s = i\omega$ and $s = -i\omega$, the two exponents of f(t).

Solution (c) $f(t) = \cos(\omega t - \theta) = \cos \omega t \cos \theta + \sin \omega t \sin \theta$ transforms to

$$F(s) = \frac{s}{s^2 + \omega^2} \cos \theta + \frac{\omega}{s^2 + \omega^2} \sin \theta$$

Poles occur at $s = \pm i\omega$.

Solution (d)

$$f(t) = \cos^2(t) = \frac{1}{4}(e^{it} + e^{-it})^2 = \frac{1}{4}(e^{2it} + 2 + e^{-2it})$$

$$F(s) = \int_0^\infty \frac{1}{4}(e^{2it} + e^{-2it} + 2)e^{-st} dt$$

$$= -\frac{1}{4(s-2i)} + \frac{1}{4(s+2i)} + \frac{1}{2s} = \frac{2s}{4(s^2+4)} + \frac{1}{2s} = \frac{s^2+2}{s(s^2+4)}$$

Poles occur at s = 0 and $s = \pm 2i$. Another way is to write $\cos^2 t = \frac{1 + \cos 2t}{2}$

Solution (e)

$$f(t) = e^{-2t} \cos t = \frac{1}{2}e^{(i-2)t} + \frac{1}{2}e^{-(i+2)t}$$

$$F(s) = \int_{0}^{\infty} \frac{1}{2}e^{(i-2)t}e^{-st} dt + \int_{0}^{\infty} \frac{1}{2}e^{-(i+2)t}e^{-st} dt$$

$$= \frac{1}{2(-i+2+s)} + \frac{1}{2(i+2+s)} = \frac{s+2}{(s+2)^2 + 1}$$

Poles occur at the exponents $s = -2 \pm i$ in f(t).

Solution (f)

$$f(t) = te^{-t} \sin \omega t = \frac{t}{2i}e^{(i\omega-1)t} - \frac{t}{2i}e^{-(i\omega+1)t}$$

$$F(s) = \int_{0}^{\infty} \left(\frac{t}{2i}e^{(i\omega-1)t} - \frac{t}{2i}e^{-(i\omega+1)t}\right)e^{-st} dt$$

$$= \int_{0}^{\infty} \frac{t}{2i}e^{(i\omega-1-s)t} dt - \int_{0}^{\infty} \frac{t}{2i}e^{-(i\omega+1+s)t} dt$$

$$= \frac{ie^{-t(s-i\omega+1)}(1+t(s-i\omega+1))}{2(s-i\omega+1)^2} - \frac{ie^{-t(s+i\omega+1)}(1+t(s+i\omega+1))}{2(s+i\omega+1)^2}\Big|_{0}^{\infty}$$

Poles of F(s) occur at $s = -1 \pm i\omega$, the exponents of f(t).

7 Find the Laplace transform s of f(t) = next integer above t and $f(t) = t \,\delta(t)$.

A staircase $f(t) = [t] = H(t) + H(t-1) + H(t-2) + \cdots =$ next integer above t is a sum of step functions. The transform is $\frac{1}{s} + \frac{e^{-s}}{s} + \frac{e^{-2s}}{s} + \cdots = \frac{1}{s}(1 + e^{-s} + e^{-2s} + \cdots) = \frac{1}{s}\left(\frac{1}{1 - e^{-s}}\right).$ The differentiation rule $\mathcal{L}(tf(t)) = -F'(s)$ with $f(t) = \delta(t)$ and F(s) = 1 gives $\mathcal{L}(t\delta(t)) = -\frac{d}{ds}(1) = \mathbf{0}$ (this is correct because $t\delta(t)$ is the zero function).

8 Inverse Laplace Transform: Find the function f(t) from its transform F(s): (a) $\frac{1}{s-2\pi i}$ (b) $\frac{s+1}{s^2+1}$ (c) $\frac{1}{(s-1)(s-2)}$ (d) $1/(s^2+2s+10)$ (e) $e^{-s}/(s-a)$ (f) 2sSolution (a) $F(s) = \frac{1}{s-2\pi i}$ is the transform of $f(t) = e^{2\pi i t}$. Solution (b) $F(s) = \frac{s}{s^2+1} + \frac{1}{s^2+1}$ is the transform of $f(t) = \cos t + \sin t$. Solution (c) $F(s) = \frac{1}{(s-1)(s-2)} = \frac{1}{s-2} - \frac{1}{s-1}$ is the transform of $f(t) = e^{2t} - e^t$. Solution (d) $F(s) = \frac{1}{s^2+2s+10} = \frac{1}{(s+1+3i)(s+1-3i)}$

$$= \frac{i}{6(s+(1+3i))} - \frac{i}{6(s+(1-3i))}$$
$$= \frac{i}{6}e^{-(1+3i)t} - \frac{i}{6}e^{-(1-3i)t}$$
$$= -\frac{e^{-t}\sin(3t)}{3}$$

Solution (e)

$$\begin{split} F(s) &= \frac{e^{-s}}{s-a} \\ f(t) &= e^{a(t-1)} H(t-1) = \text{ shift of } e^{at} \end{split}$$

Solution (f)

$$F(s) = 2s$$
$$f(t) = 2 d\delta/dt$$

9 Solve y''+y = 0 from y(0) and y'(0) by expressing Y(s) as a combination of $s/(s^2+1)$ and $1/(s^2+1)$. Find the inverse transform y(t) from the table.

Solution

$$y'' + y = 0$$

$$s^{2}Y(s) - sy(0) - y'(0) + Y(s) = 0$$

$$Y(s)(s^{2} + 1) = sy(0) + y'(0)$$

$$Y(s) = y(0)\frac{s}{s^{2} + 1} + y'(0)\frac{1}{s^{2} + 1}$$

The inverse transform is $y(t) = y(0)\cos(t) + y'(0)\sin(t)$.

10 Solve $y'' + 3y' + 2y = \delta$ starting from y(0) = 0 and y'(0) = 1 by Laplace transform. Find the poles and partial fractions for Y(s) and invert to find y(t).

Solution The transform of
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = \delta(t)$$
 with $y(0) = 0$ and $y'(0) = 1$ is

$$s^{2}Y(s) - sy(0) - y'(0) + 3sY(s) - 3y(0) + 2Y(s) = 1$$

$$Y(s)(s^{2} + 3s + 2) - 1 = 1$$

$$Y(s) = \frac{2}{(s+1)(s+2)}$$

$$Y(s) = \frac{2}{s+1} - \frac{2}{s+2}$$

$$y(t) = 2e^{-t} - 2e^{-2t}$$

11 Solve these initial-value problems by Laplace transform :

(a)
$$y' + y = e^{i\omega t}, y(0) = 8$$

(b) $y'' - y = e^t, y(0) = 0, y'(0) = 0$
(c) $y' + y = e^{-t}, y(0) = 2$
(d) $y'' + y = 6t, y(0) = 0, y'(0) = 0$
(e) $y' - i\omega y = \delta(t), y(0) = 0$
(f) $my'' + cy' + ky = 0, y(0) = 1, y'(0) = 0$
Solution (a)

$$y' + y = e^{i\omega t} \text{ with } y(0) = 8$$

$$sY(s) - 8 + Y(s) = \frac{1}{s - i\omega}$$

$$Y(s)(s + 1) = \frac{1}{s - i\omega} + 8$$

$$Y(s) = \frac{1}{(s + 1)(s - i\omega)} + \frac{8}{s + 1}$$

$$Y(s) = \frac{1}{1 + i\omega} \left(\frac{1}{s - i\omega} - \frac{1}{s + 1}\right) + \frac{8}{s + 1}$$

Particular + null $y(t) = \frac{1}{1 + i\omega} (e^{i\omega t} - e^{-t}) + 8e^{-t}$
Solution (b) $y'' - y = e^t$ with $y(0) = 0$ and $y'(0) = 0$

$$s^2Y(s) - Y(s) = \frac{1}{s - 1}$$

$$Y(s) = \frac{1}{(s - 1)(s + 1)(s - 1)}$$

$$= \frac{1}{4(s + 1)} - \frac{1}{4(s - 1)} + \frac{1}{2(s - 1)^2}$$

$$y(t) = \frac{e^{-t}}{4} - \frac{e^t}{4} + \frac{te^t}{2}$$

Solution (c) $y' + y = e^{-t}$ with $y(0) = 2$

Solution (c)

$$g' + g = c \quad \text{with } g(0) = 1$$

$$sY(s) - 2 + Y(s) = \frac{1}{s+1}$$

$$Y(s) = \frac{1}{(s+1)^2} + \frac{2}{s+1}$$

$$y(t) = te^{-t} + 2e^{-t}$$

Solution (d)

8.5. The Laplace Transform

$$y'' + y = 6t \text{ with } y(0) = y'(0) = 0$$

$$s^{2}Y(s) + Y(s) = \frac{6}{s^{2}}$$

$$Y(s)(s^{2} + 1) = \frac{6}{s^{2}}$$

$$Y(s) = \frac{6}{s^{2}} - \frac{3i}{s+i} + \frac{3i}{s-i}$$

$$y(t) = 6t - 3ie^{-it} + 3ie^{it} = 6t - 6\sin t$$

$$y' - iyy = \delta(t) \text{ with } y(0) = 0$$

Solution (e)

Solution

$$y' - i\omega y = \delta(t) \text{ with } y(0) = 0$$

$$Y(s) - i\omega Y(s) = 1$$

$$Y(s) = \frac{1}{s - i\omega}$$

$$y(t) = e^{i\omega t}$$

$$' + ky = 0 \text{ with } y(0) = 1 \text{ and } y'(0) = 1$$

Solution (f) my'' + cy' + ky = 0 with y(0) = 1 and y'(0) = 0 $ms^2Y(s) - msy(0) + csY(s) - cy(0) + kY(s) = 0$ $Y(s)(ms^2 + cs + k) = ms + c$ $Y(s) = \frac{ms + c}{ms^2 + cs + k}$ has the form $\frac{a}{s - s_1} + \frac{b}{s - s_2}$

We used this *Mathematica* command to find y(t)

s

Simplify[InverseLaplaceTransform $[(m * s + c)/(m * s^2 + c * s + k), s, t]]$ $(c+\sqrt{c^2-4km})t$ $(\sqrt{\sqrt{c^2-4kmt}})$ $(\sqrt{\sqrt{c^2-4kmt}})$

$$y(t) = \frac{e^{-\frac{(c+\sqrt{c^2-4km})^t}{2m}} \left(c\left(-1+e^{\frac{\sqrt{c^2-4kmt}}{m}}\right) + \left(1+e^{\frac{\sqrt{c^2-4kmt}}{m}}\right)\sqrt{c^2-4km}\right)}{2\sqrt{c^2-4km}}$$

12 The transform of e^{At} is $(sI - A)^{-1}$. Compute that matrix (the transfer function) when $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Compare the poles of the transform to the eigenvalues of A. *Solution* When $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ we have:

$$(sI - A)^{-1} = \begin{bmatrix} s - 1 & -1 \\ -1 & s - 1 \end{bmatrix}^{-1} = \frac{1}{s^2 - 2s} \begin{bmatrix} s - 1 & 1 \\ 1 & s - 1 \end{bmatrix}.$$

The poles of the system are s = 2 and s = 0, the eigenvalues of A.

13 If dy/dt decays exponentially, show that $sY(s) \to y(0)$ as $s \to \infty$.

$$sY(s) = \int_{0}^{\infty} se^{-st}y(t) dt \text{ (integrate by parts)}$$
$$= \int_{0}^{\infty} e^{-st} \frac{dy}{dt} dt - [e^{-st}y(t)]_{0}^{\infty}$$
$$= \int_{0}^{\infty} e^{-st} \frac{dy}{dt} dt + y(0) \to y(0) \text{ as } s \to \infty$$
Example: $\frac{dy}{dt} = e^{0}at$ has $sY(s) - y(0) = \frac{1}{s+a} \to 0$ as $s \to \infty$

14 Transform Bessel's time-varying equation ty'' + y' + ty = 0 using $\mathscr{L}[ty] = -dY/ds$ to find a first-order equation for Y. By separating variables or by substituting $Y(s) = C/\sqrt{1+s^2}$, find the Laplace transform of the Bessel function $y = J_0$. Solution The transform of ty'' applies the $\mathscr{L}(t, y)$ rule to y'' instead of y: $\mathscr{L}(t, y'') = -\frac{d}{ds}(\text{transform of } y'') = -\frac{d}{ds}(s^2Y(s) - sy(0) - y'(0)).$ Apply this to the transform of $t\frac{d^2y}{dt^2} + \frac{dy}{dt} + ty = 0$ $-2sY(s) - s^2\frac{dY}{ds} + y(0) + sY(s) - y(0) - \frac{dY}{ds} = 0$ $-sY(s) - s^2\frac{dY}{ds} - \frac{dY}{ds} = 0$ $sY(s) = -(s^2 + 1)\frac{dY}{ds}$ $\frac{dY}{Y(s)} = -\frac{s \, ds}{s^2 + 1}$ $\log Y(s) = \log\left(\frac{1}{\sqrt{s^2 + 1}}\right)$

The transform of the Bessel solution $y = J_0$ is $Y(s) = \frac{1}{\sqrt{s^2 + 1}}$ **15** Find the Laplace transform of a single arch of $f(t) = \sin \pi t$.

Solution A single arch of $\sin \pi t$ extends from t = 0 to t = 1:

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt = \int_{0}^{1} \sin(\pi t)e^{-st}dt = \int_{0}^{1} \frac{e^{i\pi t - st}}{2i}dt - \int_{0}^{1} \frac{e^{-i\pi t - st}}{2i}dt$$
$$= \left[\frac{e^{i\pi t - st}}{2i(i\pi - s)} + \frac{e^{-i\pi t - st}}{2i(i\pi + s)}\right]_{t=0}^{t=1}$$
$$= \frac{e^{i\pi - s} - 1}{2i(i\pi - s)} + \frac{e^{-i\pi - s} - 1}{2i(i\pi + s)}$$
$$= \left(\frac{-e^{-s} - 1}{2i}\right) \left(\frac{1}{i\pi - s} - \frac{1}{i\pi + s}\right) = \left(\frac{e^{-s} + 1}{i}\right) \left(\frac{s}{\pi^2 + s^2}\right)$$

A faster and more direct approach: One arch of the sine curve agrees with $\sin \pi t$ + unit shift of $\sin \pi t$, because those cancel after one arch.

 $\sin \pi t + \sin \pi (t - 1) = \sin \pi t + \sin \pi t \cos \pi = \sin \pi t - \sin \pi t = 0.$

16 Your acceleration $v' = c(v^* - v)$ depends on the velocity v^* of the car ahead :

(a) Find the ratio of Laplace transforms $V^*(s)/V(s)$.

(b) If that car has $v^* = t$ find your velocity v(t) starting from v(0) = 0.

Solution (a) Take the Laplace Transform of $\frac{dv}{dt} = c(v^* - v)$ assuming v(0) = 0;

$$sV(s) - v(0) = cV^*(s) - cV(s)$$
$$V(s)(s+c) = cV^*(s)$$
$$\frac{V^*(s)}{V(s)} = \frac{s+c}{c}$$

Solution (b) If $v^*(t) = t$ then $V^*(s) = \frac{1}{s^2}$. Therefore

$$V(s)(s+c) = \frac{c}{s^2}$$
$$V(s) = \frac{c}{s^3 + cs^2}$$
$$= \frac{1}{c(s+c)} - \frac{1}{cs} + \frac{1}{s^2}$$
$$v(t) = \frac{e^{-ct}}{c} - \frac{1}{c} + t$$

- 17 A line of cars has v'_n = c[v_{n-1}(t T) v_n(t T)] with v_0(t) = cos ωt in front.
 (a) Find the growth factor A = 1/(1 + iωe^{iωT}/c) in oscillation v_n = Aⁿe^{iωt}.
 (b) Show that |A| < 1 and the amplitudes are safely decreasing if cT < ¹/₂.
 - (c) If $cT > \frac{1}{2}$ show that |A| > 1 (dangerous) for small ω . (Use $\sin \theta < \theta$.)

Human reaction time is $T \ge 1$ sec and human aggressiveness is c = 0.4/sec. Danger is pretty close. Probably drivers adjust to be barely safe.

Solution (a)
$$\frac{dv_n}{dt} = c(v_{n-1}(t-T) - v_n(t-T))$$
 with $v_n = A^n e^{i\omega t}$

$$i\omega A^{n}e^{i\omega t} = cA^{n-1}e^{i\omega(t-T)} - cA^{n}e^{i\omega(t-T)}$$
$$A\frac{i\omega e^{i\omega T}}{c} = 1 - A$$
$$A\left(1 + \frac{i\omega e^{i\omega T}}{c}\right) = 1$$

Solution (b)

For
$$|A| < 1$$
 we need $\left| 1 + \frac{i\omega}{c} e^{i\omega T} \right| > 1$
 $\left| 1 - \frac{\omega}{c} \sin(\omega T) + \frac{\omega}{c} \cos(\omega T) \right| > 1$
 $\left(1 - \frac{\omega}{c} \sin(\omega T) \right)^2 + \frac{\omega^2}{c^2} \cos^2(\omega T) > 1$
 $1 - \frac{2\omega}{c} \sin(\omega T) + \frac{\omega^2}{c^2} \sin^2(\omega T) + \frac{\omega^2}{c^2} \cos^2(\omega T) > 1$
 $1 - \frac{2\omega}{c} \sin(\omega T) + \frac{\omega^2}{c^2} > 1$
 $\frac{\omega^2}{c^2} > \frac{2\omega}{c} \sin(\omega T)$
Since $\sin \omega T < \omega T$, we are safe if $\frac{\omega^2}{c^2} > \frac{2\omega}{c} \omega T$ which is $cT < \omega^2$

Since $\sin \omega T < \omega T$, we are safe if $\frac{\omega^2}{c^2} > \frac{2\omega}{c}\omega T$ which is $cT < \frac{1}{2}$ Solution (c) $\sin \omega T \approx \omega T$ when this number is small. Then the same steps show |A| > 1 when $cT > \frac{1}{2}$.

18 For $f(t) = \delta(t)$, the transform F(s) = 1 is the limit of transforms of tall thin box functions b(t). The boxes have width $\epsilon \to 0$ and height $1/\epsilon$ and area 1.

Inside integrals,
$$b(t) = \left\{ \begin{array}{cc} 1/\epsilon & \text{for } 0 \leq t < \epsilon \\ 0 & \text{otherwise} \end{array} \right\}$$
 approaches $\delta(t)$.

Find the transform B(s), depending on ϵ . Compute the limit of B(s) as $\epsilon \to 0$. Solution We begin by finding the transform of the box :

$$B(s) = \int_{0}^{c} \frac{1}{\epsilon} e^{-st} dt = \left. \frac{-1}{s\epsilon} e^{-st} \right|_{0}^{\epsilon} = \frac{1 - e^{-s\epsilon}}{s\epsilon}$$

We take the limit as $\epsilon \to 0$ —the box approaches a delta function !

$$B_{\epsilon}(s) = \lim_{\epsilon \to 0} \frac{1 - e^{-s\epsilon}}{s\epsilon}$$
$$= \lim_{\epsilon \to 0} \frac{1 - (1 - s\epsilon + \frac{1}{2}s^{2}\epsilon^{2} - \cdots)}{s\epsilon} = 1$$

19 The transform 1/s of the unit step function $H({}^{\$}t)$ comes from the limit of the transforms of short steep ramp functions $r_{\epsilon}(t)$. These ramps have slope $1/\epsilon$:

$$r_{\epsilon} = t/\epsilon \qquad r_{\epsilon} = 1$$
Compute $R_{\epsilon}(s) = \int_{0}^{\epsilon} \frac{t}{\epsilon} e^{-st} dt + \int_{\epsilon}^{\infty} e^{-st} dt$. Let $\epsilon \to 0$.
Solution $R_{\epsilon}(s) = \int_{0}^{\epsilon} \frac{t}{\epsilon} e^{-st} dt + \int_{\epsilon}^{\infty} e^{-st} dt = \left[\frac{e^{-st}(-st-1)}{\epsilon s^{2}}\right]_{t=0}^{t=\epsilon} + \left[\frac{e^{-st}}{-s}\right]_{t=\epsilon}^{t=\infty}$
 $= \frac{e^{-s\epsilon}(-s\epsilon-1)+1}{\epsilon s^{2}} + \frac{e^{-s\epsilon}}{s} = \frac{1-e^{-s\epsilon}}{\epsilon s^{2}}$
 $\lim R_{\epsilon}(s) = \lim \frac{1-(1-s\epsilon+\frac{1}{2}s^{2}\epsilon^{2}-\cdots)}{\epsilon s^{2}} = \frac{1}{s}$.

20 In Problems 18 and 19, show that the derivative of the ramp function $r_{\epsilon}(t)$ is the box function b(t). The "generalized derivative" of a step is the _____ function.

Solution The generalized derivative of the short ramp $r_{\epsilon}(t)$ is the thin box $b(t)/\epsilon$. We say "generalized" because this is not a true derivative at t = 0: the ramp has zero slope left of t = 0 and nonzero slope right of t = 0. But the transforms of r_{ϵ} and b_{ϵ} follow the rule for derivatives.

The generalized derivative of a step function is a **delta** function.

21 What is the Laplace transform of y''(t) when you are given Y(s) and y(0), y'(0), y''(0)?

Solution The Laplace Transform of y'''(t) is $s^{3}Y(s) - s^{2}y(0) - sy'(0) - y''(0)$

22 The Pontryagin maximum principle says that the optimal control is "bang-bang"it only takes on the extreme values permitted by the constraints. To go from rest at x = 0 to rest at x = 1 in minimum time, use maximum acceleration A and deceleration -B. At what time t do you change from the accelerator to the brake? (This is the fastest driving between two red lights.)

Solution The maximum principle requires full acceleration A to an unknown time t_0 and then full deceleration -B to reach x = 1 with zero velocity. The velocities are

$$\begin{aligned} v &= At \ \ \text{for} \ t \leq t_0 \\ v &= At_0 - B(t-t_0) \ \ \text{for} \ t > t_0 \end{aligned}$$
 Integrating the velocity $v &= dx/dt$ gives the distance $x(t)$:
$$x &= \frac{1}{2}At^2 \ \ \text{for} \ t < t_0 \end{aligned}$$

$$\begin{aligned} x &= \frac{1}{2}At^2 \text{ for } t < t_0 \\ x &= \frac{1}{2}At_0^2 \text{ at } t = t_0 \\ x &= \frac{1}{2}At_0^2 + At_0(t - t_0) - \frac{1}{2}B(t - t_0)^2 \text{ for } t > t_0 \end{aligned}$$

At the final time T we reach x = 1 with velocity v = 0. This gives two equations for t_0 and T:

$$v = At_0 - B(T - t_0) = 0$$

$$x = At_0 T - \frac{1}{2}At_0^2 - \frac{1}{2}B(T - t_0)^2 = 1$$

Substitute $T = \frac{1}{B}t_0(A+B)$ from the first equation into the second equation. This leaves an ordinary quadratic equation to solve for t_0 .

Problem Set 8.6, page 453

(a)

1 Find the convolution v * w and also the cyclic convolution $v \circledast w$:

(a)
$$\boldsymbol{v} = (1, 2)$$
 and $\boldsymbol{w} = (2, 1)$
Solution (a)
Convolution: $(1, 2) * (2, 1)$
Cyclic Convolution: $\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix}$
Cyclic Convolution: $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$

(b) v = (1, 2, 3) and w = (4, 5, 6).

Solution (b)

(1,2,3)*(4,5,6)	$ \begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$	$\left[\begin{array}{c}4\\5\\6\end{array}\right] =$	$\begin{bmatrix} 13\\28\\27\\18\end{bmatrix}$
Cyclic Convolution:	$\begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix}$	$\left[\begin{array}{c}4\\5\\6\end{array}\right] =$	$\begin{bmatrix} 31\\31\\28 \end{bmatrix}$

2 Compute the convolution (1,3,1) * (2,2,3) = (a, b, c, d, e). To check your answer, add a + b + c + d + e. That total should be 35 since 1 + 3 + 1 = 5 and 2 + 2 + 3 = 7 and $5 \times 7 = 35$.

Solution

Γ1	0	0 -			[2]
3	1	0	[[2]		8
1	3	1	2	=	11
0	1	3	3		11
0	0	1			3
L .		-			

1 + 3 + 1 times 2 + 2 + 3 is 2 + 8 + 11 + 11 + 3 : (5)(7) = (35).

3 Multiply $1 + 3x + x^2$ times $2 + 2x + 3x^2$ to find $a + bx + cx^2 + dx^3 + ex^4$. Your multiplication was the same as the convolution (1, 3, 1) * (2, 2, 3) in Problem 8. When x = 1, your multiplication shows why 1 + 3 + 1 = 5 times 2 + 2 + 3 = 7 agrees with a + b + c + d + e = 35.

Solution

$$(1+3x+x^2) \times (2+2x+3x^2) = 2+2x+3x^2+6x+6x^2+9x^3+2x^2+2x^3+3x^4$$
$$= 2+8x+11x^2+11x^3+3x^4$$

At x = 1 this is again $(5) \times (7) = (35)$.

4 (Deconvolution) Which vector \boldsymbol{v} would you convolve with $\boldsymbol{w} = (1,2,3)$ to get $\boldsymbol{v} * \boldsymbol{w} = (0,1,2,3,0)$? Which \boldsymbol{v} gives $\boldsymbol{v} \circledast \boldsymbol{w} = (3,1,2)$?

Solution

v_0	0	0		[0]
v_1	v_0	0	ן 1 ך	1
v_2	v_1	v_0	2 =	2
0	v_2	v_1		3
0	0	v_2		

The first and last equation give $v_0 = v_2 = 0$. Substituting into the second, third, fourth equation gives $v_1 = 1$. Therefore v = (0, 1, 0).

For cyclic convolution
$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_0 & v_2 & v_1 \\ v_1 & v_0 & v_2 \\ v_2 & v_1 & v_0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
gives
$$\begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

226

5 (a) For the periodic functions f(x) = 4 and $g(x) = 2\cos x$, show that f * g is zero (the zero function)!

Solution (a) From equation (4) we have

$$(f * g)(x) = \int_{0}^{2\pi} g(y)f(x - y) \, dy = 4 \int_{0}^{2\pi} 2\cos y \, dy = 4 \cdot 0 = 0 \text{ for all } x.$$

(b) In frequency space (k-space) you are multiplying the Fourier coefficients of 4 and $2\cos x$. Those coefficients are $c_0 = 4$ and $d_1 = d_{-1} = 1$. Therefore every product $c_k d_k$ is _____.

Solution (b) In frequency space (k-space) you are multiplying the Fourier coefficients of 4 and $2 \cos x$. Those coefficients are $c_0 = 4$ and $d_1 = d_{-1} = 1$. Therefore every product $c_k d_k$ is zero. These are the coefficients of the zero function.

6 For periodic functions $f = \sum c_k e^{ikx}$ and $g = \sum d_k e^{ikx}$, the Fourier coefficients of f * g are $2\pi c_k d_k$. Test this factor 2π when f(x) = 1 and g(x) = 1 by computing f * g from its definition (6.4).

Solution From equation (4):

$$(f * g)(x) = \int_{0}^{2\pi} f(y)g(x - y) \, dy = \int_{0}^{2\pi} 1 \cdot 1 \, dy = 2\pi$$

The same convolution in k-space has $c_0 = 1$ and $d_0 = 1$ (all other $c_k = d_k = 0$). Then $2\pi c_k d_k$ gives the correct coefficients $(2\pi \text{ and } 0)$ of the convolution f * g (which equals 2π).

7 Show by integration that the periodic convolution $\int_{0}^{2\pi} \cos x \cos(t-x) dx$ is $\pi \cos t$. In k-space you are squaring Fourier coefficients $c_1 = c_{-1} = \frac{1}{2}$ to get $\frac{1}{4}$ and $\frac{1}{4}$; these are the coefficients of $\frac{1}{2} \cos t$. The 2π in Problem 8 makes $\pi \cos t$ correct. Solution

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \cos x \cos(t-x) \, dx = \int_{0}^{2\pi} \cos x (\cos t \cos x + \sin t \sin x) \, dx = \pi \cos t + 0.$$

8 Explain why f * g is the same as g * f (periodic or infinite convolution).

Solution In Fourier space convolution f * g or $f \circledast g$ leads to multiplication $c_k d_k$, which is certainly the same as $d_k c_k$. So $f \circledast g = g \circledast f$ in x-space.

9 What 3 by 3 circulant matrix C produces cyclic convolution with the vector c = (1, 2, 3)? Then Cd equals $c \circledast d$ for every vector d. Compute $c \circledast d$ for d = (0, 1, 0).

Solution The circulant matrix $C = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ gives cyclic convolution with (1, 2, 3).

When
$$d = (0, 1, 0)$$
 we have $c \circledast d = Cd = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.

- **10** What 2 by 2 circulant matrix C produces cyclic convolution with c = (1,1)? Show in four ways that this C is not invertible. Deconvolution is impossible.
 - (1) Find the determinant of C. (2) Find the eigenvalues of C.
 - (3) Find d so that $Cd = c \otimes d$ is zero. (4) Fc has a zero component.
 - Solution The 2 by 2 circulant matrix $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ gives $(1,1) \circledast d = Cd$.
 - (1) The determinant of this matrix is zero.

(2) The eigenvalues of C come from det $\begin{bmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{bmatrix} = (1-\lambda)^2 - 1 = 0$. Then $(1-\lambda)^2 = 1$ and $\lambda = 0, 2$. That zero eigenvalue means that the matrix C is singular.

- (3) $Cd = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so C is not invertible : $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ in nullspace.
- (4) The Fourier matrix F gives $Fc = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. This again shows $\lambda = 2$ and 0.
- **11** (a) Change $b(x) * \delta(x-1)$ to a multiplication $\hat{b}(k) \hat{d}(k)$:

The box
$$b(x) = \{1 \text{ for } 0 \le x \le 1\}$$
 transforms to $\widehat{b}(k) = \int_{0}^{1} e^{-ikx} dx$.

The shifted delta transforms to $\hat{d}(k) = \int \delta(x-1)e^{-ikx}dx$.

(b) Show that your result $\hat{b} \hat{d}$ is the transform of a shifted box function. This shows how convolution with $\delta(x-1)$ shifts the box.

Solution This question shows that continuous convolution with $\delta(x-1)$ produces a shift in the box function b(x), just like discrete convolution with the shifted delta vector $(\ldots, 0, 0, 1, \ldots)$ produces a one-step shift.

We compute $\delta(x-1) * b(x)$ in x-space to find b(x-1), or in k-space to see the effect on the coefficients :

$$\widehat{b}(k) = \int_{0}^{1} e^{-ikx} dx = \left[\frac{e^{-ikx}}{-ik}\right]_{x=0}^{x=1} = \frac{1 - e^{-ik}}{ik}$$

Shifted box $e^{-ik} \left(\frac{1 - e^{-ik}}{ik}\right)$ agrees with $\int_{1}^{2} e^{-ikx} dx = \left[\frac{e^{-ikx}}{-ik}\right]_{x=1}^{x=2}$.

12 Take the Laplace transform of these equations to find the transfer function G(s):

(a) $Ay'' + By' + Cy = \delta(t)$ (b) $y' - 5y = \delta(t)$ (c) $2y(t) - y(t - 1) = \delta(t)$ Solution (a) $As^2Y(s) + BsY(s) + CY(s) = 1$ gives the transfer function $\frac{1}{As^2 + Bs + C}$ Solution (b) sY(s) - 5Y(s) = 1 gives the transfer function $Y(s) = \frac{1}{s - 5}$

8.6. Convolution (Fourier and Laplace)

Solution (c) $2Y(s) - Y(s)e^{-s} = 1$ gives the transfer function $Y(s) = \frac{1}{2 - e^{-s}}$

13 Take the Laplace transform of $y''' = \delta(t)$ to find Y(s). From the Transform Table in Section 8.5 find y(t). You will see y'' = 1 and y''' = 0. But y(t) = 0 for negative t, so your y''' is actually a unit step function and your y'''' is actually $\delta(t)$. Solution $y''' = \delta$ transforms to $s^4Y(s) - s^3y(0) - s^2y'(0) - sy''(0) - y'''(0) = 1$ Assume zero initial values to get $s^4Y(s) = 1$ and $Y(s) = \frac{1}{s^4}$ and $y^3 = \frac{t^3}{6}$.

This is also the solution to y'''' = 0 with initial values y, y', y'', y''' = 0, 0, 0, 1.

14 Solve these equations by Laplace transform to find Y(s). Invert that transform with the Table in Section 8.5 to recognize y(t).

(a)
$$y' - 6y = e^{-t}$$
, $y(0) = 2$ (b) $y'' + 9y = 1$, $y(0) = y'(0) = 0$.
Solution (a) The transform of $y' - 6y = e^{-t}$ with $y(0) = 2$ is

$$sY(s) - 2 - 6Y(s) = \frac{1}{s+1}$$

$$Y(s) = \frac{2}{s-6} + \frac{1}{(s+1)(s-6)}$$

$$= \frac{2}{s-6} + \frac{1}{7(s-6)} - \frac{1}{7(s+1)}$$

$$= \frac{15}{7(s-6)} - \frac{1}{7(s+1)}$$

The inverse transform is $y(t) = \frac{15}{7}e^{6t} - \frac{1}{7}e^{-t}$

Solution (b) The transform of y'' + 9y = 1 with y(0) = y'(0) = 0 is

$$s^{2}Y(s) + 9Y(s) = \frac{1}{s}$$

$$Y(s) = \frac{1}{s(s^{2} + 9)}$$

$$= \frac{1}{9s} - \frac{1}{18(-3i + s)} - \frac{1}{18(3i + s)}$$
The inverse transform is $y(t) = \frac{1}{9} - \frac{1}{18}e^{3it} - \frac{1}{18}e^{-3it} = y_{p} + y_{n}$.

15 Find the Laplace transform of the shifted step H(t-3) that jumps from 0 to 1 at t = 3. Solve y' - ay = H(t-3) with y(0) = 0 by finding the Laplace transform Y(s) and then its inverse transform y(t): one part for t < 3, second part for $t \ge 3$.

Solution The transform of H(t-3) multiplies e^{-3s} by the transform $\frac{1}{s}$ of H(t).

$$y' - ay = H(t - 3) \qquad y(0) = 0$$

$$sY(s) - aY(s) = \frac{e^{-3s}}{s}$$

$$Y(s) = \frac{e^{-3s}}{s(s - 3)} = \frac{e^{-3x}}{3} \left(\frac{1}{s - 3} - \frac{1}{s}\right)$$

sform $u(t)$ is the shift of $\frac{1}{s} \left(e^{-3t} - 1\right)$; zero until $t = 0$

The inverse transform y(t) is the shift of $\frac{1}{3}(e^{-3t}-1)$: zero until t=3.

16 Solve y' = 1 with y(0) = 4—a trivial question. Then solve this problem the slow way by finding Y(s) and inverting that transform.

Solution The trivial solution is : y = t + 4. The transform method gives

$$sY(s) - 4 = \frac{1}{s}$$
$$Y(s) = \frac{1}{s^2} + \frac{4}{s}$$
$$u(t) = t + 4$$

17 The solution y(t) is the convolution of the input f(t) with what function g(t)?
(a) y' - ay = f(t) with y(0) = 3

Solution (a)

$$y' - ay = f(t) \quad \text{with } y(0) = 3$$
$$sY(s) - 3 - aY(s) = F(s)$$
$$Y(s) = \frac{3 + F(s)}{s - a}$$
$$y(t) = 3e^{-t} + f(t) * e^{-at}$$

(b) y' - (integral of y) = f(t).

Solution (b) The transform of y' – (integral of y) = f(t) is $sY(s) - \frac{Y(s)}{s} = F(s)$, if y(0) = 0.

The inverse transform of $\frac{1}{s - \frac{1}{s}} = \frac{s}{s^2 - 1}$ is $\cos(it)$.

Then $Y(s) = \frac{F(s)}{s - \frac{1}{s}}$ is the transform of the convolution $f(t) * \cos(it)$.

18 For y' - ay = f(t) with y(0) = 3, we could replace that initial value by adding $3\delta(t)$ to the forcing function f(t). Explain that sentence.

Solution For a first order equation, an initial condition y(0) is equivalent to adding $y(0)\delta(t)$ to the equation and starting that new equation at zero.

19 What is $\delta(t) * \delta(t)$? What is $\delta(t-1) * \delta(t-2)$? What is $\delta(t-1)$ times $\delta(t-2)$? Solution $\delta(t) * \delta(t) = \delta(t)$ $\delta(t-1) * \delta(t-2) = \delta(t-3)$

 $\delta(t-1)$ times $\delta(t-2)$ equals the zero function.

20 By Laplace transform, solve y' = y with y(0) = 1 to find a very familiar y(t). Solution u' = u y(0) = 1

$$y = y \qquad y(0) = 1$$

$$sY(s) - 1 = Y(s)$$

$$Y(s) = \frac{1}{s-1} \text{ gives } y(t) = e^{t}$$

- 8.6. Convolution (Fourier and Laplace)
- 21 By Fourier transform as in (9), solve -y" + y = box function b(x) on 0 ≤ x ≤ 1.
 Solution The Fourier transform of -y" + y = b(x) is

$$(k^{2} + 1)\,\widehat{y}\,(k) = \widehat{b}(k) = \int_{0}^{1} e^{-ikx} dx = \frac{1 - e^{-ik}}{ik}$$
$$\widehat{y}(k) = \frac{1 - e^{-ik}}{(k^{2} + 1)(ik)}$$

This transform must be inverted to find y(x). In reality I would solve separately on $x \le 0$ and $0 \le x \le 1$ and $x \ge 1$. Then matching at the breakpoints x = 0 and x = 1 determines the free constants in the separate solutions.

22 There is a big difference in the solutions to y" + By' + Cy = f(x), between the cases B² < 4C and B² > 4C. Solve y" + y = δ and y" - y = δ with y(±∞) = 0. Solution (a) The delta function produces a unit jump in y' at x = 0:

y'' + y = 0 has $y = c_1 \cos x + c_2 \sin x$ for x < 0, $y = C_1 \sin x$ for x > 0. The jump in y' gives $C_2 - c_2 = 1$. The condition on $y(\pm \infty)$ does not apply to this first equation.

y'' - y = 0 has $y = ce^x$ for x < 0 and $y = Ce^{-x}$ for x > 0; then $y(\pm \infty) = 0$.

Matching y at x = 0 gives c = C.

Jump in y' at x = 0 gives -C - c = 1 so $c = C = -\frac{1}{2}$

Solution $y(x) = -\frac{1}{2}e^x$ for $x \le 0$ and $y(x) = -\frac{1}{2}e^{-x}$ for $x \ge 0$

23 (*Review*) Why do the constant f(t) = 1 and the unit step H(t) have the same Laplace transform 1/s? Answer: Because the transform does not notice _____.

Solution The Laplace Transform does not notice any values of f(t) for t < 0.