DIFFERENTIAL EQUATIONS
 AND
 LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang
 Massachusetts Institute of Technology

Book Website
Email address
Course page
OpenCourseWare
Home page
Publisher
Direct email
math.mit.edu/dela diffeqla@gmail.com
web.mit.edu/18.06 video lectures: ocw.mit.edu
math.mit.edu/~gs www.wellesleycambridge.com
gs@math.mit.edu

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 7.1, page 393

1 Suppose your pulse is measured at $b_{1}=70$ beats per minute, then $b_{2}=120$, then $b_{3}=80$. The least squares solution to three equations $v=b_{1}, v=b_{2}, v=b_{3}$ with $A^{\mathrm{T}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is $\widehat{v}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=$ \qquad . Use calculus and projections:
(a) Minimize $E=(v-70)^{2}+(v-120)^{2}+(v-80)^{2}$ by solving $d E / d v=0$.

Solution (a) $\frac{d E}{d v}=2(v-70)+2(v-120)+2(v-80)=0$ at the minimizing \widehat{v}.
Cancel the 2's: $3 v=70+120+80=270$ so $\widehat{v}=v_{\text {average }}=\mathbf{9 0}$
(b) Project $\boldsymbol{b}=(70,120,80)$ onto $\boldsymbol{a}=(1,1,1)$ to find $\widehat{v}=\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}$.

Solution (b) The projection of \boldsymbol{b} onto the line through \boldsymbol{a} is $\boldsymbol{p}=\boldsymbol{a} \widehat{v}$:

$$
\boldsymbol{b}=\left[\begin{array}{c}
70 \\
120 \\
80
\end{array}\right] \quad \boldsymbol{a}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \widehat{v}=\frac{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}}=\frac{270}{3}=\mathbf{9 0}
$$

2 Suppose $A v=\boldsymbol{b}$ has m equations $a_{i} v=b_{i}$ in one unknown v. For the sum of squares $E=\left(a_{1} v-b_{1}\right)^{2}+\cdots+\left(a_{m} v-b_{m}\right)^{2}$, find the minimizing \widehat{v} by calculus. Then form $A^{\mathrm{T}} A \widehat{v}=A^{\mathrm{T}} \boldsymbol{b}$ with one column in A, and reach the same \widehat{v}.

Solution To minimize E we solve $d E / d v=0$. For $m=3$ equations $a_{i} v=b_{i}$,
$\frac{d E}{d v}=2 a_{1}\left(a_{1} v-b_{1}\right)+2 a_{2}\left(a_{2} v-b_{2}\right)+2 a_{3}\left(a_{3} v-b_{3}\right)=0$ is zero when
$v=\widehat{v}=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}=\frac{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}}$.
When A has one column, $A^{\mathrm{T}} A \widehat{v}=A^{\mathrm{T}} \boldsymbol{b}$ is the same as $\left(\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}\right) \widehat{v}=\left(\boldsymbol{a}^{\mathbf{T}} \boldsymbol{b}\right)$.
3 With $\boldsymbol{b}=(4,1,0,1)$ at the points $x=(0,1,2,3)$ set up and solve the normal equation for the coefficients $\widehat{\boldsymbol{v}}=(C, D)$ in the nearest line $C+D x$. Start with the four equations $A \boldsymbol{v}=\boldsymbol{b}$ that would be solvable if the points fell on a line.

Solution The unsolvable equation has $m=4$ points on a line: only $n=2$ unknowns.

$$
\begin{gathered}
A \boldsymbol{v}=\boldsymbol{b} \text { is }\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
0 \\
1
\end{array}\right] \text { leading to } A^{\mathrm{T}} A \widehat{\boldsymbol{v}}=A^{\mathrm{T}} \boldsymbol{b}: \\
{\left[\begin{array}{cc}
4 & 6 \\
6 & 14
\end{array}\right]\left[\begin{array}{l}
\widehat{C} \\
\widehat{D}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right] \text { gives }\left[\begin{array}{l}
\widehat{C} \\
\widehat{D}
\end{array}\right]=\frac{1}{20}\left[\begin{array}{rr}
14 & -6 \\
-6 & 4
\end{array}\right]\left[\begin{array}{l}
6 \\
4
\end{array}\right]=\frac{1}{2 a}\left[\begin{array}{r}
60 \\
-20
\end{array}\right]=\left[\begin{array}{r}
\mathbf{3} \\
-\mathbf{1}
\end{array}\right]}
\end{gathered}
$$

The closest line to the four points is $\boldsymbol{b}=\mathbf{3 - x}$.
4 In Problem 3, find the projection $\boldsymbol{p}=A \boldsymbol{v}$. Check that those four values lie on the line $C+D x$. Compute the error $\boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}$ and verify that $A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$.

Solution The projection $\boldsymbol{p}=A \widehat{\boldsymbol{v}}$ is

$$
\boldsymbol{p}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{r}
3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1 \\
0
\end{array}\right] \text { with error } \boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

The best line $C+D x=3-x$ does produce $\boldsymbol{p}=(3,2,1,0)$ at the four points $x=0,1,2,3$.
Multiply this \boldsymbol{e} by A^{T} to get $A^{\mathrm{T}} \boldsymbol{e}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ as expected.
5 (Problem 3 by calculus) Write down $E=\|\boldsymbol{b}-A \boldsymbol{v}\|^{2}$ as a sum of four squares : the last one is $(1-C-3 D)^{2}$. Find the derivative equations $\partial E / \partial C=\partial E / \partial D=0$. Divide by 2 to obtain $A^{\mathrm{T}} A \widehat{\boldsymbol{v}}=A^{\mathrm{T}} \boldsymbol{b}$.
Solution Minimize $E=(4-C)^{2}+(1-C-D)^{2}+(-C-2 D)^{2}+(1-C-3 D)^{2}$.
The partial derivatives are $\partial E / \partial C=0$ and $\partial E / \partial D=0$ at the minimum :

$$
\begin{array}{r}
-2(4-C)-2(1-C-D)-2(-C-2 D)-2(1-C-3 D)=0 \\
-2(1-C-D)-4(-C-2 D)-6(1-C-3 D)=0
\end{array}
$$

Factoring out -2 and collecting terms this is the same equation $A^{\mathrm{T}} A \widehat{\boldsymbol{v}}=A^{\mathrm{T}} \boldsymbol{b}$!

$$
\begin{array}{r}
6-4 C-6 D=0 \\
4-6 C-14 D=0
\end{array} \text { or } \quad\left[\begin{array}{rr}
4 & 6 \\
6 & 14
\end{array}\right]\left[\begin{array}{l}
\widehat{C} \\
\widehat{D}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right]
$$

6 For the closest parabola $C+D t+E t^{2}$ to the same four points, write down 4 unsolvable equations $A \boldsymbol{v}=\boldsymbol{b}$ for $\boldsymbol{v}=(C, D, E)$. Set up the normal equations for $\widehat{\boldsymbol{v}}$. If you fit the best cubic $C+D t+E t^{2}+F t^{3}$ to those four points (thought experiment), what is the error vector \boldsymbol{e} ?
Solution The parabola $C+D t+E t^{2}$ fits the 4 points exactly if $A \boldsymbol{v}=\boldsymbol{b}$:

$$
\begin{array}{rl}
t=0 & C+0 D+0 E=4 \\
t=1 & C+1 D+1 E=1 \\
t=2 & C+2 D+4 E=0 \\
t=3 & C+3 D+9 E=1
\end{array} \quad A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right] . .
$$

The cubic $C+D t+E t^{2}+F t^{3}$ can fit 4 points exactly, with error $=$ zero vector.
7 Write down three equations for the line $b=C+D t$ to go through $b=7$ at $t=-1, b=7$ at $t=1$, and $b=21$ at $t=2$. Find the least squares solution $\widehat{\boldsymbol{v}}=(C, D)$ and draw the closest line.
Solution $\left[\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}7 \\ 7 \\ 21\end{array}\right]$. The solution $\widehat{\boldsymbol{x}}=\left[\begin{array}{l}\mathbf{9} \\ \mathbf{4}\end{array}\right]$ comes from $\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right]$.
8 Find the projection $\boldsymbol{p}=A \widehat{\boldsymbol{v}}$ in Problem 7. This gives the three heights of the closest line. Show that the error vector is $\boldsymbol{e}=(2,-6,4)$.
Solution $\boldsymbol{p}=A \widehat{\boldsymbol{x}}=(5,13,17)$ gives the heights of the closest line. The error is $\boldsymbol{b}-\boldsymbol{p}=(2,-6,4)$. This error \boldsymbol{e} has $P \boldsymbol{e}=P \boldsymbol{b}-P \boldsymbol{p}=\boldsymbol{p}-\boldsymbol{p}=\mathbf{0}$.

9 Suppose the measurements at $t=-1,1,2$ are the errors $2,-6,4$ in Problem 8. Compute $\widehat{\boldsymbol{v}}$ and the closest line to these new measurements. Explain the answer: $\boldsymbol{b}=$ $(2,-6,4)$ is perpendicular to \qquad so the projection is $\boldsymbol{p}=\mathbf{0}$.
Solution If $\boldsymbol{b}=$ previous error \boldsymbol{e} then \boldsymbol{b} is perpendicular to the column space of A. Projection of \boldsymbol{b} is $\boldsymbol{p}=\mathbf{0}$.
10 Suppose the measurements at $t=-1,1,2$ are $\boldsymbol{b}=(5,13,17)$. Compute $\widehat{\boldsymbol{v}}$ and the closest line \boldsymbol{e}. The error is $\boldsymbol{e}=\mathbf{0}$ because this \boldsymbol{b} is \qquad .

Solution If $\boldsymbol{b}=A \widehat{\boldsymbol{x}}=(5,13,17)$ then $\widehat{\boldsymbol{x}}=(9,4)$ and $\boldsymbol{e}=\mathbf{0}$ since \boldsymbol{b} is in the column space of A.
11 Find the best line $C+D t$ to fit $\boldsymbol{b}=4,2,-1,0,0$ at times $t=-2,-1,0,1,2$.
Solution The least squares equation is $\left[\begin{array}{rr}5 & \mathbf{0} \\ \mathbf{0} & 10\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}5 \\ -10\end{array}\right]$.
Solution: $C=1, D=-1$. Line $1-t$. Symmetric t 's $\Rightarrow \operatorname{diagonal} A^{\mathrm{T}} A$
12 Find the plane that gives the best fit to the 4 values $\boldsymbol{b}=(0,1,3,4)$ at the corners $(1,0)$ and $(0,1)$ and $(-1,0)$ and $(0,-1)$ of a square. At those 4 points, the equations $C+D x+E y=b$ are $A \boldsymbol{v}=\boldsymbol{b}$ with 3 unknowns $\boldsymbol{v}=(C, D, E)$.
Solution $\left[\begin{array}{rrr}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{l}C \\ D \\ E\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 4\end{array}\right]$ has $A^{\mathrm{T}} A=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$ and $A^{\mathrm{T}} \boldsymbol{b}=\left[\begin{array}{r}8 \\ -2 \\ -3\end{array}\right]$.
The solution $(C, D, E)=\left(2,-1, \frac{3}{2}\right)$ gives the best plane $2-x-\frac{3}{2} y$.
13 With $\boldsymbol{b}=0,8,8,20$ at $t=0,1,3,4$ set up and solve the normal equations $A^{\mathrm{T}} A \boldsymbol{v}=$ $A^{\mathrm{T}} \boldsymbol{b}$. For the best straight line $C+D t$, find its four heights p_{i} and four errors e_{i}. What is the minimum value $E=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}$?
Solution $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right]$ give $A^{\mathrm{T}} A=\left[\begin{array}{cc}4 & 8 \\ 8 & 26\end{array}\right]$ and $A^{\mathrm{T}} \boldsymbol{b}=\left[\begin{array}{c}36 \\ 112\end{array}\right]$.

$$
\begin{gathered}
\left.A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b} \text { gives } \quad \widehat{\boldsymbol{x}}=\left[\begin{array}{l}
1 \\
4
\end{array}\right] \text { and } \boldsymbol{p}=A \widehat{\boldsymbol{x}}=\left[\begin{array}{c}
1 \\
5 \\
13 \\
17
\end{array}\right] \text { and } \boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{r}
-1 \\
3 \\
-5 \\
3
\end{array}\right] .\right] 4 .
\end{gathered}
$$

14 (By calculus) Write down $E=\|\boldsymbol{b}-A \boldsymbol{v}\|^{2}$ as a sum of four squares-the last one is $(C+4 D-20)^{2}$. Find the derivative equations $\partial E / \partial C=0$ and $\partial E / \partial D=0$. Divide by 2 to obtain the normal equations $A^{\mathrm{T}} A \widehat{\boldsymbol{v}}=A^{\mathrm{T}} \boldsymbol{b}$.
Solution $E=(C+\mathbf{0} D)^{2}+(C+\mathbf{1} D-8)^{2}+(C+\mathbf{3} D-8)^{2}+(C+\mathbf{4} D-20)^{2}$. Then $\partial E / \partial C=2 C+2(C+D-8)+2(C+3 D-8)+2(C+4 D-20)=0$ and $\partial E / \partial D=1 \cdot 2(C+D-8)+3 \cdot 2(C+3 D-8)+4 \cdot 2(C+4 D-20)=0$.
These normal equations $\partial E / \partial C=0$ and $\partial E / \partial D=0$ are again $\left[\begin{array}{rr}4 & 8 \\ 8 & 26\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}36 \\ 112\end{array}\right]$.
15 Which of the four subspaces contains the error vector \boldsymbol{e} ? Which contains p ? Which contains $\widehat{\boldsymbol{v}}$?

Solution The error \boldsymbol{e} is contained in the nullspace $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$, since $A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$. The projection \boldsymbol{p} is contained in the column space $\boldsymbol{C}(A)$. The vector $\widehat{\boldsymbol{v}}$ of coefficients can be any vector in \mathbf{R}^{n}.
16 Find the height C of the best horizontal line to fit $\boldsymbol{b}=(0,8,8,20)$. An exact fit would solve the four unsolvable equations $C=0, C=8, C=8, C=20$. Find the 4 by 1 matrix A in these equations and solve $A^{\mathrm{T}} A \widehat{\boldsymbol{v}}=A^{\mathrm{T}} \boldsymbol{b}$.
Solution $E=(C-0)^{2}+(C-8)^{2}+(C-8)^{2}+(C-20)^{2}$ and $A^{\mathrm{T}}=\left[\begin{array}{lll}1 & 1 & 1\end{array} 1\right]$. $A^{\mathrm{T}} A=[4] . A^{\mathrm{T}} \boldsymbol{b}=[36]$ and $\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \boldsymbol{b}=\mathbf{9}=$ best $C . \boldsymbol{e}=(-9,-1,-1,11)$.
17 Write down three equations for the line $b=C+D t$ to go through $b=7$ at $t=-1, b=7$ at $t=1$, and $b=21$ at $t=2$. Find the least squares solution $\widehat{\boldsymbol{v}}=(C, D)$ and draw the closest line.
Solution $\left[\begin{array}{rr}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{r}7 \\ 7 \\ 21\end{array}\right]$. The solution $\widehat{\boldsymbol{x}}=\left[\begin{array}{l}\mathbf{9} \\ \mathbf{4}\end{array}\right]$ comes from $\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]\left[\begin{array}{l}C \\ D\end{array}\right]=\left[\begin{array}{l}35 \\ 42\end{array}\right]$.
18 Find the projection $\boldsymbol{p}=A \widehat{\boldsymbol{v}}$ in Problem 17. This gives the three heights of the closest line. Show that the error vector is $\boldsymbol{e}=(2,-6,4)$. Why is $P \boldsymbol{e}=\mathbf{0}$?
Solution $\boldsymbol{p}=A \widehat{\boldsymbol{x}}=(5,13,17)$ gives the heights of the closest line. The error is $\boldsymbol{b}-\boldsymbol{p}=(2,-6,4)$. This error \boldsymbol{e} has $P \boldsymbol{e}=P \boldsymbol{b}-P \boldsymbol{p}=\boldsymbol{p}-\boldsymbol{p}=\mathbf{0}$.
19 Suppose the measurements at $t=-1,1,2$ are the errors $2,-6,4$ in Problem 18. Compute $\widehat{\boldsymbol{v}}$ and the closest line to these new measurements. Explain the answer: $\boldsymbol{b}=$ $(2,-6,4)$ is perpendicular to \qquad so the projection is $\boldsymbol{p}=\mathbf{0}$.
Solution If $\boldsymbol{b}=$ error \boldsymbol{e} then \boldsymbol{b} is perpendicular to the column space of A. Projection $p=0$.
20 Suppose the measurements at $t=-1,1,2$ are $\boldsymbol{b}=(5,13,17)$. Compute $\widehat{\boldsymbol{v}}$ and the closest line and \boldsymbol{e}. The error is $\boldsymbol{e}=\mathbf{0}$ because this \boldsymbol{b} is \qquad ?
Solution If $\boldsymbol{b}=A \widehat{\boldsymbol{x}}=(5,13,17)$ then $\widehat{\boldsymbol{x}}=(9,4)$ and $\boldsymbol{e}=\mathbf{0}$ since \boldsymbol{b} is in the column space of A.

Questions 21-26 ask for projections onto lines. Also errors $e=b-p$ and matrices P.
21 Project the vector \boldsymbol{b} onto the line through \boldsymbol{a}. Check that \boldsymbol{e} is perpendicular to \boldsymbol{a} :
(a) $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad$ (b) $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right] \quad$ and $\quad \boldsymbol{a}=\left[\begin{array}{c}-1 \\ -3 \\ -1\end{array}\right]$.

Solution (a) The projection p is
$\boldsymbol{p}=\boldsymbol{a} \frac{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \frac{6}{3}=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right] \quad \boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ perpendicular to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Solution (b) In this case the projection is

$$
\boldsymbol{p}=\boldsymbol{a} \frac{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}}=\left[\begin{array}{c}
-1 \\
-3 \\
-1
\end{array}\right] \frac{-11}{11}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \text { and } \boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

22 Draw the projection of \boldsymbol{b} onto \boldsymbol{a} and also compute it from $\boldsymbol{p}=\widehat{v} \boldsymbol{a}$:
(a) $\boldsymbol{b}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(b) $\boldsymbol{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\boldsymbol{a}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.

Solution (a) The projection of $\boldsymbol{b}=(\cos \theta, \sin \theta)$ onto $\boldsymbol{a}=(1,0)$ is $\boldsymbol{p}=(\cos \theta, 0)$
Solution (b) The projection of $\boldsymbol{b}=(1,1)$ onto $\boldsymbol{a}=(1,-1)$ is $\boldsymbol{p}=(0,0)$ since $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}=0$.
23 In Problem 22 find the projection matrix $P=\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}$ onto each vector \boldsymbol{a}. Verify in both cases that $P^{2}=P$. Multiply $P \boldsymbol{b}$ in each case to find the projection \boldsymbol{p}.
Solution $P_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\boldsymbol{p}=P_{1} \boldsymbol{b}=\left[\begin{array}{c}\cos \theta \\ 0\end{array}\right] . P_{2}=\frac{1}{2}\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ and $\boldsymbol{p}=P_{2} \boldsymbol{b}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
24 Construct the projection matrices P_{1} and P_{2} onto the lines through the \boldsymbol{a} 's in Problem 22. Is it true that $\left(P_{1}+P_{2}\right)^{2}=P_{1}+P_{2}$? This would be true if $P_{1} P_{2}=0$.

Solution The projection matrices P_{1} and P_{2} (note correction P_{2} not $P-2$) are

$$
P_{1}=\frac{\boldsymbol{a} \boldsymbol{a}^{\mathbf{T}}}{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad P_{2}=\frac{\boldsymbol{a} \boldsymbol{a}^{\mathbf{T}}}{\boldsymbol{a}^{\mathbf{T}} \boldsymbol{a}}=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] .
$$

It is not true that $\left(P_{1}+P_{2}\right)^{2}=P_{1}+P_{2}$. The sum of projection matrices is not usually a projection matrix.
25 Compute the projection matrices $\boldsymbol{a} \boldsymbol{a}^{\mathrm{T}} / \boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}$ onto the lines through $\boldsymbol{a}_{1}=(-1,2,2)$ and $\boldsymbol{a}_{2}=(2,2,-1)$. Multiply those two matrices $P_{1} P_{2}$ and explain the answer.
Solution $\quad P_{1}=\frac{1}{9}\left[\begin{array}{rrr}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right], P_{2}=\frac{1}{9}\left[\begin{array}{rrr}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right]$.
$P_{1} P_{2}=$ zero matrix because \boldsymbol{a}_{1} is perpendicular to \boldsymbol{a}_{2}.
26 Continuing Problem 25 , find the projection matrix P_{3} onto $\boldsymbol{a}_{3}=(2,-1,2)$. Verify that $P_{1}+P_{2}+P_{3}=I$. The basis $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$ is orthogonal!
Solution $P_{1}+P_{2}+P_{3}=\frac{1}{9}\left[\begin{array}{rrr}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right]+\frac{1}{9}\left[\begin{array}{rrr}4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4\end{array}\right]=I$.
We can add projections onto orthogonal vectors. This is important.
27 Project the vector $\boldsymbol{b}=(1,1)$ onto the lines through $\boldsymbol{a}_{1}=(1,0)$ and $\boldsymbol{a}_{2}=(1,2)$. Draw the projections \boldsymbol{p}_{1} and \boldsymbol{p}_{2} and add $\boldsymbol{p}_{1}+\boldsymbol{p}_{2}$. The projections do not add to \boldsymbol{b} because the \boldsymbol{a} 's are not orthogonal.
Solution The projections of $(1,1)$ onto the lines through $(1,0)$ and $(1,2)$ are $\boldsymbol{p}_{1}=$ $(1,0)$ and $\boldsymbol{p}_{2}=(3 / 5,6 / 5)=(0.6,1.2)$. Then $\boldsymbol{p}_{1}+\boldsymbol{p}_{2} \neq \boldsymbol{b}$.
28 (Quick and recommended) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3 . Project $\boldsymbol{b}=(1,2,3,4)$ onto the column space of A. What shape is the projection matrix P and what is P ?
Solution $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right], P=$ square matrix $=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], \boldsymbol{p}=P\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}\mathbf{1} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{0}\end{array}\right]$.

29 If A is doubled, then $P=2 A\left(4 A^{\mathrm{T}} A\right)^{-1} 2 A^{\mathrm{T}}$. This is the same as $A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$. The column space of $2 A$ is the same as \qquad . Is \widehat{v} the same for A and $2 A$?
Solution $2 A$ has the same column space as A. Same \boldsymbol{p}. But $\widehat{\boldsymbol{x}}$ for $2 A$ is half of $\widehat{\boldsymbol{x}}$ for A.
30 What linear combination of $(1,2,-1)$ and $(1,0,1)$ is closest to $\boldsymbol{b}=(2,1,1)$?
Solution $\frac{1}{2}(1,2,-1)+\frac{3}{2}(1,0,1)=(2,1,1)$. So \boldsymbol{b} is in the plane: no error \boldsymbol{e}. Projection shows $P \boldsymbol{b}=\boldsymbol{b}$.
31 (Important) If $P^{2}=P$ show that $(I-P)^{2}=I-P$. When P projects onto the column space of $A, I-P$ projects onto which fundamental subspace ?
Solution If $P^{2}=P$ then $(\boldsymbol{I}-\boldsymbol{P})^{\mathbf{2}}=(I-P)(I-P)=I-P I-I P+P^{2}=\boldsymbol{I}-\boldsymbol{P}$. When P projects onto the column space, $I-P$ projects onto the left nullspace.

32 If P is the 3 by 3 projection matrix onto the line through $(1,1,1)$, then $I-P$ is the projection matrix onto \qquad —.

Solution $I-P$ is the projection onto the plane $x_{1}+x_{2}+x_{3}=0$, perpendicular to the direction $(1,1,1)$:

$$
I-P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] .
$$

33 Multiply the matrix $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ by itself. Cancel to prove that $P^{2}=P$. Explain why $P(P \boldsymbol{b})$ always equals $P \boldsymbol{b}$: The vector $P \boldsymbol{b}$ is in the column space so its projection is \qquad .

Solution $\left(A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}\right)^{2}=A\left(A^{\mathrm{T}} A\right)^{-1}\left(A^{\mathrm{T}} A\right)\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$. So $P^{2}=P$. Geometric reason: Pb is in the column space (where P projects). Then its projection $P(P \boldsymbol{b})$ is $P \boldsymbol{b}$ for every \boldsymbol{b}. So $P^{2}=P$.
34 If A is square and invertible, the warning against splitting $\left(A^{\mathrm{T}} A\right)^{-1}$ does not apply. Then $A A^{-1}\left(A^{\mathrm{T}}\right)^{-1} A^{\mathrm{T}}=I$ is true. When A is invertible, why is $P=I$ and $\boldsymbol{e}=\mathbf{0}$?
Solution If A is invertible then its column space is all of \mathbf{R}^{n}. So $P=I$ and $\boldsymbol{e}=\mathbf{0}$.
35 An important fact about $A^{\mathrm{T}} A$ is this: If $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A x}=\mathbf{0}$ then $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$. New proof: The vector $A \boldsymbol{x}$ is in the nullspace of \qquad . $A \boldsymbol{x}$ is always in the column space of
\qquad . To be in both of those perpendicular spaces, $A \boldsymbol{x}$ must be zero.
Solution If $A^{\mathrm{T}} A \boldsymbol{x}=\mathbf{0}$ then $A \boldsymbol{x}$ is in the nullspace of A^{T}. But $A \boldsymbol{x}$ is always in the column space of A. To be in both of those perpendicular spaces, $A \boldsymbol{x}$ must be zero. So A and $A^{T} A$ have the same nullspace.

Notes on mean and variance and test grades

If all grades on a test are 90 , the mean is $m=90$ and the variance is $\sigma^{2}=0$. Suppose the expected grades are g_{1}, \ldots, g_{N}. Then σ^{2} comes from squaring distances to the mean :

$$
\text { Mean } m=\frac{g_{1}+\cdots+g_{N}}{N} \quad \text { Variance } \sigma^{2}=\frac{\left(g_{1}-m\right)^{2}+\cdots+\left(g_{N}-m\right)^{2}}{N}
$$

After every test my class wants to know m and σ. My expectations are usually way off.

36 Show that σ^{2} also equals $\frac{1}{N}\left(g_{1}^{2}+\cdots+g_{N}^{2}\right)-m^{2}$.
Solution Each term $\left(g_{i}-m\right)^{2}$ equals $g_{i}^{2}-2 g_{i} m+m^{2}$, so

$$
\begin{aligned}
\sigma^{2} & =\frac{\left(\text { sum of } g_{i}^{2}\right)-2 m\left(\text { sum of } g_{i}\right)+N m^{2}}{N}=\frac{\left(\text { sum of } g_{i}^{2}\right)-2 m N m+N m^{2}}{N} \\
& =\frac{\left(\text { sum of } g_{i}^{2}\right)}{N}-m^{2} .
\end{aligned}
$$

37 If you flip a fair coin N times (1 for heads, 0 for tails) what is the expected number m of heads? What is the variance σ^{2} ?
Solution For a fair coin you expect $\boldsymbol{N} / \mathbf{2}$ heads in N flips. The variance σ^{2} turns out to be $N / 4$.

Problem Set 7.2, page 402

1 For a 2 by 2 matrix, suppose the 1 by 1 and 2 by 2 determinants a and $a c-b^{2}$ are positive. Then $c>b^{2} / a$ is also positive.
(i) λ_{1} and λ_{2} have the same sign because their product $\lambda_{1} \lambda_{2}$ equals \qquad .
(i) That sign is positive because $\lambda_{1}+\lambda_{2}$ equals \qquad _.

Conclusion: The tests $a>0, a c-b^{2}>0$ guarantee positive eigenvalues λ_{1}, λ_{2}.
Solution Suppose $a>0$ and $a c>b^{2}$ so that also $c>b^{2} / a>0$.
(i) The eigenvalues have the same sign because $\lambda_{1} \lambda_{2}=\operatorname{det}=a c-b^{2}>0$.
(ii) That sign is positive because $\lambda_{1}+\lambda_{2}>0$ (it equals the trace $a+c>0$).

2 Which of $S_{1}, S_{2}, S_{3}, S_{4}$ has two positive eigenvalues? Use a and $a c-b^{2}$, don't compute the λ 's. Find an \boldsymbol{x} with $\boldsymbol{x}^{\mathrm{T}} S_{1} \boldsymbol{x}<0$, confirming that A_{1} fails the test.

$$
S_{1}=\left[\begin{array}{ll}
5 & 6 \\
6 & 7
\end{array}\right] \quad S_{2}=\left[\begin{array}{ll}
-1 & -2 \\
-2 & -5
\end{array}\right] \quad S_{3}=\left[\begin{array}{rr}
1 & 10 \\
10 & 100
\end{array}\right] \quad S_{4}=\left[\begin{array}{rr}
1 & 10 \\
10 & 101
\end{array}\right]
$$

Solution Only $S_{4}=\left[\begin{array}{rr}1 & 10 \\ 10 & 101\end{array}\right]$ has two positive eigenvalues since $101>10^{2}$.
$\boldsymbol{x}^{\mathrm{T}} S_{1} \boldsymbol{x}=5 x_{1}^{2}+12 x_{1} x_{2}+7 x_{2}^{2}$ is negative for example when $x_{1}=4$ and $x_{2}=-3$: A_{1} is not positive definite as its determinant confirms; S_{2} has trace $c_{0} ; S_{3}$ has det $=0$.

3 For which numbers b and c are these matrices positive definite?

$$
S=\left[\begin{array}{cc}
1 & b \\
b & 9
\end{array}\right] \quad S=\left[\begin{array}{ll}
2 & 4 \\
4 & c
\end{array}\right] \quad S=\left[\begin{array}{cc}
c & b \\
b & c
\end{array}\right]
$$

Solution
$\begin{aligned} & \text { Positive definite } \\ & \text { for }-3<b<3\end{aligned} \quad\left[\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right]\left[\begin{array}{cc}1 & b \\ 0 & 9-b^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ b & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & 9-b^{2}\end{array}\right]\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]=L D L^{\mathrm{T}}$
$\begin{aligned} & \text { Positive definite } \\ & \text { for } c>8\end{aligned} \quad\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 4 \\ 0 & c-8\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & c-8\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=L D L^{\mathrm{T}}$.
Positive definite for $c>b$

$$
L=\left[\begin{array}{cc}
1 & 1 \\
-b / c & 0
\end{array}\right] \quad D=\left[\begin{array}{cc}
c & 0 \\
0 & c-b / c
\end{array}\right] \quad S=L D L^{\mathrm{T}}
$$

4 What is the energy $q=a x^{2}+2 b x y+c y^{2}=\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ for each of these matrices? Complete the square to write q as a sum of squares $d_{1}(\quad)^{2}+d_{2}()^{2}$.

$$
S=\left[\begin{array}{ll}
1 & 2 \\
2 & 9
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{cc}
1 & 3 \\
3 & 9
\end{array}\right]
$$

Solution $f(x, y)=x^{2}+4 x y+9 y^{2}=(x+2 y)^{2}+5 y^{2} ; x^{2}+6 x y+9 y^{2}=(x+3 y)^{2}$.
$5 \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=2 x_{1} x_{2}$ certainly has a saddle point and not a minimum at $(0,0)$. What symmetric matrix S produces this energy? What are its eigenvalues?
Solution $\quad \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=2 x_{1} x_{2}$ comes from $S=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ which has eigenvalues 1 and $-1: S$ is indefinite.

6 Test to see if $A^{\mathrm{T}} A$ is positive definite in each case:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 1
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Solution The first and second matrices have independent columns in A, so $A^{\mathrm{T}} A$ is positive definite. The third matrix has dependent columns so $A^{\mathrm{T}} A$ is only positive semidefinite.

7 Which 3 by 3 symmetric matrices S and T produce these quadratic energies ?

$$
\begin{aligned}
& \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{2} x_{3}\right) . \quad \text { Why is } S \text { positive definite } ? \\
& \boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{3}\right) . \quad \text { Why is } T \text { semidefinite ? }
\end{aligned}
$$

Solution

$$
S=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad \begin{aligned}
& \text { is positive definite-its } \\
& \text { determinants are } D_{1}=2, D_{2}=3, D_{3}=4
\end{aligned}
$$

$T=\left[\begin{array}{rrr}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right] \quad \begin{aligned} & \text { is positive semidefinite } \text { with } \\ & \text { determinants } D_{1}=2, D_{2}=3, D_{3}=0\end{aligned}$.
The energy $\boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}=0$ when $\boldsymbol{x}=(1,1,1)$.
8 Compute the three upper left determinants of S to establish positive definiteness. (The first is 2.) Verify that their ratios give the second and third pivots.

$$
\text { Pivots }=\text { ratios of determinants } \quad S=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right]
$$

Solution The upper left determinants of S are $2,6,30$. The pivots are $2,3,5$ (ratios of determinants). Notice that the product of pivots is $\mathbf{3 0}$.

9 For what numbers c and d are S and T positive definite? Test the 3 determinants:

$$
S=\left[\begin{array}{lll}
c & 1 & 1 \\
1 & c & 1 \\
1 & 1 & c
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & d & 4 \\
3 & 4 & 5
\end{array}\right]
$$

Solution For $c=1$, the matrix S has eigenvalues $3,0,0$. For any c, the eigenvalues all add $c-1$. So S is positive definite for $c>1$. (Same answer using determinants.) For T the determinants are $1, d-4,-4 d+12$. If $d>4$ then $-4 d+12$ is negative ! So T is never positive definite for any d.

10 If S is positive definite then S^{-1} is positive definite. Best proof: The eigenvalues of S^{-1} are positive because \qquad . Second proof (only for 2 by 2):

The entries of $S^{-1}=\frac{1}{a c-b^{2}}\left[\begin{array}{rr}c & -b \\ -b & a\end{array}\right] \quad$ pass the determinant tests \qquad -

Solution Positive definite \Rightarrow all eigenvalues $\lambda>0 \Rightarrow$ all eigenvalues $1 / \lambda$ of S^{-1} are positive. Also for 2×2 : the determinant tests are passed.

11 If S and T are positive definite, their sum $S+T$ is positive definite. Pivots and eigenvalues are not convenient for $S+T$. Better to prove $\boldsymbol{x}^{\mathrm{T}}(S+T) \boldsymbol{x}>0$.
Solution Energy $\boldsymbol{x}^{\mathrm{T}}(S+T) \boldsymbol{x}=\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}+\boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}>0+0$
12 A positive definite matrix cannot have a zero (or even worse, a negative number) on its diagonal. Show that this matrix fails to have $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}>0$:

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & \mathbf{0} & 2 \\
1 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { is not positive when }\left(x_{1}, x_{2}, x_{3}\right)=(\quad, \quad, \quad)
$$

Solution $\quad \boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ is zero when $\boldsymbol{x}=(0,1,0)$.

13 A diagonal entry $a_{j j}$ of a symmetric matrix cannot be smaller than all the λ 's. If it were, then $A-a_{j j} I$ would have \qquad eigenvalues and would be positive definite. But $A-a_{j j} I$ has a \qquad on the main diagonal.
Solution If $a_{j j}$ is smaller than all eigenvalues, then $A-a_{j j} I$ would have positive eigenvalues. But this matrix has a zero on the diagonal. But Problem 13, it can't be positive definite. So $A_{j j}$ can't be smaller than all eigenvalues !

14 Show that if all $\lambda>0$ then $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}>0$. We must do this for every nonzero \boldsymbol{x}, not just the eigenvectors. So write \boldsymbol{x} as a combination of the eigenvectors and explain why all "cross terms" are $\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{j}=0$. Then $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x}$ is
$\left(c_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \boldsymbol{x}_{n}\right)^{\mathrm{T}}\left(c_{1} \lambda_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \lambda_{n} x_{n}\right)=c_{1}^{2} \lambda_{1} \boldsymbol{x}_{1}^{\mathrm{T}} \boldsymbol{x}_{1}+\cdots+c_{n}^{2} \lambda_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n}>0$.
Solution The "cross terms" have the form $\left(c_{i} x_{i}\right)^{\mathrm{T}}\left(c_{j} \lambda_{j} \boldsymbol{x}_{j}\right)$. This is zero because symmetric matrices S have orthogonal eigenvectors.

15 Give a quick reason why each of these statements is true:
(a) Every positive definite matrix is invertible.
(b) The only positive definite projection matrix is $P=I$.
(c) A diagonal matrix with positive diagonal entries is positive definite.
(d) A symmetric matrix with a positive determinant might not be positive definite !

Solution

(a) All $\lambda_{i}>0$ so zero is not an eigenvalue and S is invertible
(b) All projection matrices except $P=I$ are singular
(c) The energy for a positive diagonal matrix is $\boldsymbol{x}^{\mathrm{T}} D \boldsymbol{x}=d_{1} x_{1}^{2}+\cdots+d_{n} x_{n}^{2}>0$ when $\boldsymbol{x} \neq \mathbf{0}$
(d) $S=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$ has $\operatorname{det} S=1$ but S is negative definite

16 With positive pivots in D, the factorization $S=L D L^{\mathrm{T}}$ becomes $L \sqrt{D} \sqrt{D} L^{\mathrm{T}}$. (Square roots of the pivots give $D=\sqrt{D} \sqrt{D}$.) Then $A=\sqrt{D} L^{\mathrm{T}}$ yields the Cholesky factorization $S=A^{\mathrm{T}} A$ which is "symmetrized $L U$ ":

$$
\text { From } \quad A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \quad \text { find } S . \quad \text { From } \quad S=\left[\begin{array}{rr}
4 & 8 \\
8 & 25
\end{array}\right] \quad \text { find } A=\operatorname{chol}(S)
$$

Solution If $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$ then $A^{\mathrm{T}} A=\left[\begin{array}{ll}9 & 3 \\ 3 & 5\end{array}\right]=$ positive definite S.
$S=\left[\begin{array}{rr}4 & 8 \\ 8 & 25\end{array}\right]=L U=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}4 & 8 \\ 0 & 9\end{array}\right]=L D L^{\mathrm{T}}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}4 & \\ & 9\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ so $A=\sqrt{D} L^{\mathrm{T}}=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 0 & 3\end{array}\right]$.

17 Without multiplying $S=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, find
(a) the determinant of S
(b) the eigenvalues of S
(c) the eigenvectors of S
(d) a reason why S is symmetric positive definite.

Solution $\operatorname{det} S=10, \lambda(S)=2$ and 5 , eigenvectors $(\cos \theta, \sin \theta)$ and $(-\sin \theta, \cos \theta)$, S has positive eigenvalues.

18 For $F_{1}(x, y)=\frac{1}{4} x^{4}+x^{2} y+y^{2}$ and $F_{2}(x, y)=x^{3}+x y-x$ find the second derivative matrices H_{1} and H_{2} :

$$
\text { Test for minimum } \quad H=\left[\begin{array}{cc}
\partial^{2} F / \partial x^{2} & \partial^{2} F / \partial x \partial y \\
\partial^{2} F / \partial y \partial x & \partial^{2} F / \partial y^{2}
\end{array}\right] \text { is positive definite }
$$

H_{1} is positive definite so F_{1} is concave up ($=$ convex). Find the minimum point of F_{1} and the saddle point of F_{2} (look only where first derivatives are zero).
Solution $\quad F_{1}=\frac{1}{4} x^{4}+x^{2} y+y^{2}$ has $\partial F_{1} / d x=x^{3}+2 x y$ and $\partial F_{1} / d y=x^{2}+2 y$. Then the 2 nd derivatives are

$$
H_{1}=\left[\begin{array}{cc}
3 x^{2}+2 y & 2 x \\
2 x & 2
\end{array}\right] . F_{2}=x^{3}+x y-x \text { has } H_{2}=\left[\begin{array}{cc}
6 x & 1 \\
1 & 0
\end{array}\right]
$$

19 The graph of $z=x^{2}+y^{2}$ is a bowl opening upward. The graph of $z=x^{2}-y^{2}$ is a saddle. The graph of $z=-x^{2}-y^{2}$ is a bowl opening downward. What is a test on a, b, c for $z=a x^{2}+2 b x y+c y^{2}$ to have a saddle point at $(0,0)$?
Solution $a x^{2}+2 b x y+c y^{2}$ has a saddle point $(0,0)$ if $\partial z / \partial x=\partial z / \partial y=0$ (which is true) and if $H=2\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is positive definite.

20 Which values of c give a bowl and which c give a saddle point for the graph of $z=$ $4 x^{2}+12 x y+c y^{2}$? Describe this graph at the borderline value of c.
Solution The matrix for this problem is $S=\left[\begin{array}{ll}4 & 6 \\ 6 & c\end{array}\right]$ and this has a saddle for $c<9$. Then $\lambda_{1}>0>\lambda_{2}$ because the determinants are $4>0$ and $4 c-3 b<0$.

21 When S and T are symmetric positive definite, $S T$ might not even be symmetric. But its eigenvalues are still positive. Start from $S T \boldsymbol{x}=\lambda \boldsymbol{x}$ and take dot products with $T \boldsymbol{x}$. Then prove $\lambda>0$.
Solution If $S T \boldsymbol{x}=\lambda \boldsymbol{x}$ then $(T \boldsymbol{x})^{\mathrm{T}} S T \boldsymbol{x}=\lambda(T \boldsymbol{x})^{\mathrm{T}} \boldsymbol{x}$. Left side >0 because S is positive definite, right side has $\boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x}>0$ because T is positive definite. Therefore $\lambda>0$.

22 Suppose C is positive definite (so $\boldsymbol{y}^{\mathrm{T}} C \boldsymbol{y}>0$ whenever $\boldsymbol{y} \neq \mathbf{0}$) and A has independent columns (so $A \boldsymbol{x} \neq \mathbf{0}$ whenever $\boldsymbol{x} \neq \mathbf{0}$). Apply the energy test to $\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} C A \boldsymbol{x}$ to show that $A^{\mathrm{T}} C A$ is positive definite : the crucial matrix in engineering.
Solution $\boldsymbol{x}^{\mathrm{T}} A^{\mathrm{T}} C A \boldsymbol{x}=\boldsymbol{y}^{\mathrm{T}} C \boldsymbol{y}>0$ because $\boldsymbol{y}=A \boldsymbol{x}$ is only zero when \boldsymbol{x} is zero (A has independent columns).

23 Find the eigenvalues and unit eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ of $A^{\mathrm{T}} A$. Then find $\boldsymbol{u}_{1}=A \boldsymbol{v}_{1} / \sigma_{1}$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right] \text { and } A^{\mathrm{T}} A=\left[\begin{array}{ll}
10 & 20 \\
20 & 40
\end{array}\right] \text { and } A A^{\mathrm{T}}=\left[\begin{array}{rr}
5 & 15 \\
15 & 45
\end{array}\right] .
$$

Verify that \boldsymbol{u}_{1} is a unit eigenvector of $A A^{\mathrm{T}}$. Complete the matrices U, Σ, V.

$$
\text { SVD } \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1} & \\
& 0
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right]^{\mathbf{T}} .
$$

Solution $\quad A^{\mathrm{T}} A=\left[\begin{array}{cc}10 & 20 \\ 20 & 40\end{array}\right]$ has eigenvalues 50 and 0 . Its eigenvectors are $\boldsymbol{v}_{1}=(1,2) / \sqrt{5}$ and $\boldsymbol{v}_{2}=(-2,1) / \sqrt{5}$. Then $\boldsymbol{u}_{1}=A \boldsymbol{v}_{1} / \sqrt{50}=(50,100) / \sqrt{250}$.
The SVD is $\underset{\frac{1}{\sqrt{10}}}{\left[\begin{array}{cc}1 & -3 \\ 3 & 1\end{array}\right]} \underset{\frac{\sqrt{5}}{\sqrt{50}}}{\sqrt{5}} 0$
24 Write down orthonormal bases for the four fundamental subspaces of this A.
Solution $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$ has bases $\left[\begin{array}{l}1 \\ 3\end{array}\right] / \sqrt{10}$ for $\mathbf{C}(A),\left[\begin{array}{l}1 \\ 2\end{array}\right] / \sqrt{5}$ for row space $\mathbf{C}\left(A^{\mathrm{T}}\right),\left[\begin{array}{r}2 \\ -1\end{array}\right] / \sqrt{5}$ for $\mathbf{N}(A),\left[\begin{array}{r}3 \\ -1\end{array}\right] / \sqrt{10}$ for $\mathbf{N}\left(A^{\mathrm{T}}\right)$.
25 (a) Why is the trace of $A^{\mathrm{T}} A$ equal to the sum of all $a_{i j}^{2}$?
(b) For every rank-one matrix, why is $\sigma_{1}^{2}=$ sum of all $a_{i j}^{2}$?

Solution The diagonal entries of $A^{\mathrm{T}} A$ are $\|$ column $1 \|^{2}$ to $\|$ column $n \|^{2}$. The sum of those is the sum of all $a_{i j}^{2}$. The trace of $A^{\mathrm{T}} A$ is always the sum of all σ_{i}^{2} and for a rank one matrix that sum is only σ_{1}^{2}.
26 Find the eigenvalues and unit eigenvectors of $A^{\mathrm{T}} A$ and $A A^{\mathrm{T}}$. Keep each $A \boldsymbol{v}=\sigma \boldsymbol{u}$:

$$
\text { Fibonacci matrix } \quad A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Construct the singular value decomposition and verify that A equals $U \Sigma V^{\mathrm{T}}$.
Solution A is symmetric with $A^{\mathrm{T}} A=A^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ with eigenvalues x from $x^{2}-3 x+1=0$ and $x=\frac{1}{2}(3 \pm \sqrt{5})$. Then $\sigma=\sqrt{x}=\frac{1}{2}(\sqrt{5} \pm 1)$.
27 Compute $A^{\mathrm{T}} A$ and $A A^{\mathrm{T}}$ and their eigenvalues and unit eigenvectors for V and U.

$$
\text { Rectangular matrix } \quad A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

Check $A V=U \Sigma$ (this will decide \pm signs in U). Σ has the same shape as A.

Solution $\quad A^{\mathrm{T}} A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has eigenvalues 3 and 1 , so A has singular values $\sqrt{3}$ and 1. The unit eigenvectors are $(1,1) / \sqrt{2}$ and $(1,-1) / \sqrt{2} . A A^{\mathrm{T}}=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$ has eigenvalues 3 and 1 and 0 and eigenvectors $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ divided by $\sqrt{6}, \sqrt{2}, \sqrt{3}$.

28 Construct the matrix with rank one that has $A \boldsymbol{v}=12 \boldsymbol{u}$ for $\boldsymbol{v}=\frac{1}{2}(1,1,1,1)$ and $\boldsymbol{u}=\frac{1}{3}(2,2,1)$. Its only singular value is $\sigma_{1}=$ \qquad —.
Solution $A=12 \boldsymbol{u} \boldsymbol{v}^{\mathrm{T}}$ has $A \boldsymbol{v}=12 \boldsymbol{u}$ for that unit vector \boldsymbol{v}. The only singular value is $\sigma_{1}=12$. (Other A are also possible.)

29 Suppose A is invertible (with $\sigma_{1}>\sigma_{2}>0$). Change A by as small a matrix as possible to produce a singular matrix A_{0}. Hint : U and V do not change.

$$
\text { From } \quad A=\left[\begin{array}{ll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1} & \\
& \sigma_{2}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right]^{\mathrm{T}} \quad \text { find the nearest } A_{0}
$$

Solution The nearest singular matrix is $A_{0}=U\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & 0\end{array}\right] V^{\mathrm{T}}$. Since U and V are orthogonal matrices, the size of $A-A_{0}$ is only σ_{2}. In other words, $\boldsymbol{u}_{1} \sigma_{1} \boldsymbol{v}_{1}^{\mathrm{T}}$ is the closest rank 1 matrix to A.

30 The SVD for $A+I$ doesn't use $\Sigma+I$. Why is $\sigma(A+I)$ not just $\sigma(A)+I$?
Solution The SVD of $A+I$ uses the eigenvectors of $(A+I)^{\mathrm{T}}(A+I)$. Those are not the eigenvectors of $A^{\mathrm{T}} A$ (or $A^{\mathrm{T}} A+I$).

31 Multiply $A^{\mathrm{T}} A \boldsymbol{v}=\sigma^{2} \boldsymbol{v}$ by A. Put in parentheses to show that $A \boldsymbol{v}$ is an eigenvector of $A A^{\mathrm{T}}$. We divide by its length $\|A \boldsymbol{v}\|=\sigma$ to get the unit eigenvector \boldsymbol{u}.
Solution A times $A^{\mathrm{T}} A \boldsymbol{v}=\sigma^{2} \boldsymbol{v}$ is $\left(A A^{\mathrm{T}}\right) A \boldsymbol{v}=\sigma^{2}(A \boldsymbol{v})$. So $A \boldsymbol{v}$ is an eigenvector of $A A^{\mathrm{T}}$.

32 My favorite example of the SVD is when $A v(x)=d v / d x$, with the endpoint conditions $v(0)=0$ and $v(1)=0$. We are looking for orthogonal functions $v(x)$ so that their derivatives $A v=d v / d x$ are also orthogonal. The perfect choice is $v_{1}=\sin \pi x$ and $v_{2}=\sin 2 \pi x$ and $v_{k}=\sin k \pi x$. Then each u_{k} is a cosine.
The derivative of v_{1} is $A v_{1}=\pi \cos \pi x=\pi u_{1}$. The singular values are $\sigma_{1}=\pi$ and $\sigma_{k}=k \pi$. Orthogonality of the sines (and orthogonality of the cosines) is the foundation for Fourier series.
You may object to $A V=U \Sigma$. The derivative $A=d / d x$ is not a matrix! The orthogonal factor V has functions $\sin k \pi x$ in its columns, not vectors. The matrix U has cosine functions $\cos k \pi x$. Since when is this allowed? One answer is to refer you to the chebfun package on the web. This extends linear algebra to matrices whose columns are functions-not vectors.

Another answer is to replace $d / d x$ by a first difference matrix A. Its shape will be $N+1$ by N. A has 1 's down the diagonal and -1 's on the diagonal below. Then $A V=U \Sigma$ has discrete sines in V and discrete cosines in U. For $N=2$ those will be sines and cosines of 30° and 60° in \boldsymbol{v}_{1} and \boldsymbol{u}_{1}.
** Can you construct the difference matrix A (3 by 2$)$ and $A^{\mathrm{T}} A(2$ by 2$)$? The discrete sines are $\boldsymbol{v}_{1}=(\sqrt{3} / 2, \sqrt{3} / 2)$ and $\boldsymbol{v}_{2}=(\sqrt{3} / 2,-\sqrt{3} / 2)$. Test that $A \boldsymbol{v}_{1}$ is orthogonal to $A \boldsymbol{v}_{2}$. What are the singular values σ_{1} and σ_{2} in Σ ?
Solution The sines and cosines are perfect examples of the \boldsymbol{v} 's and \boldsymbol{u} 's for the operator (infinite-dimensional matrix) $A=$ derivative $d / d x$. The sines $\boldsymbol{v}_{k}=\sin \pi k x$ are orthogonal, the cosines $\boldsymbol{u}_{k}=\cos \pi k x$ are orthogonal, and $A \boldsymbol{v}_{k}=\sigma_{k} \boldsymbol{u}_{k}$. (The derivative of a sine is a cosine with $\sigma_{k}=\pi k$.) For differences instead of derivatives, we can try the matrix $A=\left[\begin{array}{rr}1 & 0 \\ -1 & 1 \\ 0 & -1\end{array}\right]$.

Problem Set 7.3, page 413

1 Transpose the derivative with integration by parts: $(d y / d x, g)=-(y, d g / d x)$. $A y$ is $d y / d x$ with boundary conditions $y(0)=0$ and $y(1)=0$. Why is $\int y^{\prime} g d x$ equal to $-\int y g^{\prime} d x$? Then A^{T} (which is normally written as A^{*}) is $A^{\mathrm{T}} g=-d g / d x$ with no boundary conditions on $g . \quad A^{\mathrm{T}} A y$ is $-y^{\prime \prime}$ with $y(0)=0$ and $y(1)=0$.
Solution Integration by parts for $0 \leq x \leq 1$ produces boundary terms at $x=0$ and 1:

$$
\int_{0}^{1} \frac{d y}{d x} g(x) d x=-\int_{0}^{1} y(x) \frac{d g}{d x} d x+\left.y(x) g(x)\right|_{x=0} ^{x=1}
$$

The boundary terms are zero if $y(0)=y(1)=0$. Then the adjoint (or transpose) of $d / d x$ is $-d / d x$, with no boundary condition on g when there are 2 boundary conditions on y (fixed-fixed).

Problems 2-6 have boundary conditions at $x=0$ and $x=1:$ no initial conditions.

2 Solve this boundary value problem in two steps. Find the complete solution $y_{p}+y_{n}$ with two constants in y_{n}, and find those constants from the boundary conditions:
Solve $-y^{\prime \prime}=12 x^{2}$ with $y(0)=0$ and $y(1)=0$ and $y_{p}=-x^{4}$.
Solution $y_{p}=-x^{4}$ solves $-y_{p}^{\prime \prime}=12 x^{2}$. It has $y_{p}(0)=0$ and $y_{p}=-1$. We need to add the solution to $-Y^{\prime \prime}=0$ with $Y(0)=0$ and $Y(1)=1$. Then $Y=A+B x$ has $A=0$ and $B=1$. The complete solution is $y=-x^{4}+x$.

3 Solve the same equation $-y^{\prime \prime}=12 x^{2}$ with $y(0)=0$ and $y^{\prime}(1)=0$ (zero slope).
Solution Changing $y(1)=0$ to $y^{\prime}(1)=0$ will change the solution to $y=-x^{4}+B x$ with $y^{\prime}=-4 x^{3}+B$. For $y^{\prime}(1)=0$ we need $B=4$.

4 Solve the same equation $-y^{\prime \prime}=12 x^{2}$ with $y^{\prime}(0)=0$ and $y(1)=0$. Then try for both slopes $y^{\prime}(0)=0$ and $y^{\prime}(1)=0$: this has no solution $y=-x^{4}+A x+B$.
Solution With $y^{\prime}(0)=0$ the solution we want is $y=-x^{4}+A$. The constant A is determined by $y(1)=-1+A=0$. We cannot have $y^{\prime}(1)=0$ because $y^{\prime}=-4 x^{3}$.

5 Solve $-y^{\prime \prime}=6 x$ with $y(0)=2$ and $y(1)=4$. Boundary values need not be zero.
Solution $-y^{\prime \prime}=6 x$ leads to $y=-x^{3}+A+B x$. The boundary conditions are $y(0)=A=2$ and $y(1)=-1+2+B=4$. Then $B=3$ and $y=-x^{3}+2+3 x$.

6 Solve $-y^{\prime \prime}=e^{x}$ with $y(0)=5$ and $y(1)=0$, starting from $y=y_{p}+y_{n}$.
Solution $-y^{\prime \prime}=e^{x}$ leads to $y=-e^{x}+A+B x$. The first boundary condition is $y(0)=-1+A=5$ so that $A=\mathbf{6}$. Then $y(1)=-e+6+B=0$ and $B=e-6$.

Problems 7-11 are about the $\mathbf{L U}$ factors and the inverses of second difference matrices.

7 The matrix T with $T_{11}=1$ factors perfectly into $L U=A^{\mathrm{T}} A$ (all its pivots are 1).

$$
\boldsymbol{T}=\left[\begin{array}{rrrr}
1 & -1 & & \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
& & -1 & 2
\end{array}\right]=\left[\begin{array}{rrrr}
1 & & & \\
-1 & 1 & & \\
& -1 & 1 & \\
& & -1 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & -1 & & \\
& 1 & -1 & \\
& & 1 & -1 \\
& & & 1
\end{array}\right]=L U
$$

Each elimination step adds the pivot row to the next row (and L subtracts to recover T from U). The inverses of those difference matrices L and U are sum matrices. Then the inverse of $T=L U$ is $U^{-1} L^{-1}$:

$$
T^{-1}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
& 1 & 1 & 1 \\
& & 1 & 1 \\
& & & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & & & \\
1 & 1 & & \\
1 & 1 & 1 & \\
1 & 1 & 1 & 1
\end{array}\right]=U^{-1} L^{-1}
$$

Compute T^{-1} for $N=4$ (as shown) and for any N.
Solution $T^{-1}=\left[\begin{array}{llll}4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] \begin{aligned} & T \text { is fixed-free second difference matrix. } \\ & \text { For any } N, T^{-1} \text { has the same } \\ & \text { pattern with first row } \\ & N N-1 \cdots\end{aligned}$
8 The matrix equation $T Y=(0,1,0,0)=$ delta vector is like the differential equation $-y^{\prime \prime}=\delta(x-a)$ with $a=2 \Delta x=\frac{2}{5}$. The boundary conditions are $y^{\prime}(0)=0$ and $y(1)=0$. Solve for $y(x)$ and graph it from 0 to 1 . Also graph $Y=$ second column of T^{-1} at the points $x=\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$. The two graphs are ramp functions.
Solution Two integrations of the delta function $\delta(x)$ will produce the unit ramp $R(x)=0$ for $x \leq 0, R(x)=x$ for $x \geq 0$. Shifting $\delta(x)$ to $\delta\left(x-\frac{2}{5}\right)$ will shift the solution to $y=-R\left(x-\frac{2}{5}\right)+A+B x$. Then $y^{\prime}(0)=-1+B$ gives $B=1$, and $y(1)=0$ gives $-\frac{3}{5}+A+1=0$ and $A=-\frac{2}{5}$.

9 The matrix B has $B_{11}=1$ (like $T_{11}=1$) and also $B_{N N}=1$ (where $T_{N N}=2$). Why does B have the same pivots $1,1, \ldots$ as T, except for zero in the last pivot position? The early pivots don't know $B_{N N}=1$.
Then B is not invertible: $-y^{\prime \prime}=\delta(x-a)$ has no solution with $y^{\prime}(0)=y^{\prime}(1)=0$.

Solution B starts with the pivots $1,1,1, \ldots$ (as T did) but reducing the N, N entry by 1 will reduce the last pivot by 1 . So we have last pivot $=$ zero and B is not invertible. The analog for differential equations is $y^{\prime}=0$ at both endpoints: No ramp function except $y=0$ can meet those boundary conditions.
10 When you compute K^{-1}, multiply by $\operatorname{det} K=N+1$ to get nice numbers:
Column 2 of $5 K^{-1}$ solves the equation $K \boldsymbol{v}=\mathbf{5} \boldsymbol{\delta}$ when the delta vector is $\boldsymbol{\delta}=$
We know from $K K^{-1}=I$ that K times each column of K^{-1} is a delta vector.

$$
\boldsymbol{5} K^{-1}=\left[\begin{array}{cccc}
4 & \mathbf{3} & 2 & 1 \\
3 & \mathbf{6} & 4 & 2 \\
2 & \mathbf{4} & 6 & 3 \\
1 & \mathbf{2} & 3 & 4
\end{array}\right] \quad \text { graph of }
$$

Solution Column 2 of $5 K^{-1}$ is like the solution to $-y^{\prime \prime}=5 \delta\left(x-\frac{2}{5}\right)$. The column of $5 K^{-1}$ has a max in row 2 and the solution $y(x)$ has a max at $x=\frac{2}{5}$.
$11 K$ comes with two boundary conditions. T only has $y(1)=0$. B has no boundary conditions on y. Verify that $K=A^{\mathrm{T}} A$. Then remove the first row of A to get $T=$ $A_{1}^{\mathrm{T}} A_{1}$. Then remove the last row to get dependent rows : $B=A_{0}^{\mathrm{T}} A_{0}$.
The backward first difference $A=\left[\begin{array}{rrr}1 & & \\ -1 & 1 & \\ & -1 & 1 \\ & & -1\end{array}\right]$ gives $K=A^{\mathrm{T}} A$.
Solution A is the matrix in Problem 7 with 1's on the main diagonal and -1 's on the diagonal above. $A^{\mathrm{T}} A$ is the symmetric second difference matrix with three nonzero diagonals. Those diagonals contain -1 's and 2's and -1 's. Then removing the top row of A gives a rectangular A_{1} with $A_{1}^{\mathrm{T}} A_{1}=T$ as in Problem 7 ($T_{11}=1$ not 2). Removing the last row gives A_{2} with $A_{2}^{\mathrm{T}} A_{2}=B$ and $B_{N N}=1$ not 2 .
12 Multiply K_{3} by its eigenvector $\boldsymbol{y}_{n}=(\sin n \pi h, \sin 2 n \pi h, \sin 3 n \pi h)$ to verify that the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are $\lambda_{n}=2-2 \cos \frac{n \pi}{4}$ in $K \boldsymbol{y}_{n}=\lambda_{n} \boldsymbol{y}_{n}$. This uses the trigonometric identity $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$.
Solution The eigenvectors of K are "sine vectors" just as the eigenfunctions of $-y$ " $=$ λy with $y(0)=0=y(1)$ are sine functions.

13 Those eigenvalues of K_{3} are $2-\sqrt{2}$ and 2 and $2+\sqrt{2}$. Those add to 6 , which is the trace of K_{3}. Multiply those eigenvalues to get the determinant of K_{3}.
Solution Multiplying $2-\sqrt{2}$ times $2+\sqrt{2}$ gives $4-2=2$. Then multiplying by 2 gives 4 . This is the determinant (and $2-\sqrt{2}, 2+\sqrt{2}, 2$ are the eigenvalues) of 3 by 3 matrix K_{3}.

14 The slope of a ramp function is a step function. The slope of a step function is a delta function. Suppose the ramp function is $r(x)=-x$ for $x \leq 0$ and $r(x)=x$ for $x \geq 0$ (so $r(x)=|x|$). Find $d r / d x$ and $d^{2} r / d x^{2}$.
Solution For the down-up ramp function $r(\boldsymbol{x})=|x|=$ absolute value of x, the derivatives are $d r / d x=-1$ then +1 and $d^{2} r / d x^{2}=2 \delta(x)$ because $d r / d x$ jumps by 2 at $x=0$.

15 Find the second differences $y_{n+1}-2 y_{n}+y_{n-1}$ of these infinitely long vectors \boldsymbol{y} :

Constant	$(\ldots, 1,1,1,1,1, \ldots)$
Linear	$(\ldots,-1,0,1,2,3, \ldots)$
Quadratic	$(\ldots, 1,0,1,4,9, \ldots)$
Cubic	$(\ldots,-1,0,1,8,27, \ldots)$
Ramp	$(\ldots, 0,0,0,1,2, \ldots)$
Exponential	$\left(\ldots, e^{-i \omega}, e^{0}, e^{i \omega}, e^{2 i \omega}, \ldots\right)$.

It is amazing how closely those second differences follow second derivatives for $y(x)=$ $1, x, x^{2}, x^{3}, \max (x, 0)$, and $e^{i \omega x}$. From $e^{i \omega x}$ we also get $\cos \omega x$ and $\sin \omega x$.

Solution The six second differences are: zero vector, zero vector, constant vector of 2's, 6 times the linear vector, (for ramp: delta vector with $\delta_{0}=1$), $e^{i \omega}-2+e^{-i \omega}=$ $2 \cos \omega-2$ times the exponential vector. Like 2nd derivatives of $1, x, x^{2}, x^{3}$, ramp, $e^{i \omega x}$.

Problem Set 7.4, page 422

1 What solution to Laplace's equation completes "degree 3 " in the table of pairs of solutions? We have one solution $u=x^{3}-3 x y^{2}$, and we need another solution.
Solution Start with $s=-y^{3}$. Then $s_{y y}=-6 y$, and therefore we need $s_{x x}=6 y$. Integrating twice with respect to x gives $3 y^{2} x$. Therefore the second function is $s(x, y)=-y^{3}+3 x^{2} y$.
2 What are the two solutions of degree 4, the real and imaginary parts of $(x+i y)^{4}$? Check $u_{x x}+u_{y y}=0$ for both solutions.
Solution Expanding $(x+i y)^{4}$ gives

$$
(x+i y)^{4}=x^{4}-6 x^{2} y^{2}+y^{4}+\left(4 x^{3} y-4 x y^{3}\right) i
$$

Therefore the two solutions would be:

$$
u(x, y)=\boldsymbol{x}^{4}-\mathbf{6} \boldsymbol{x}^{2} \boldsymbol{y}^{2}+\boldsymbol{y}^{4} \text { and } s(x, y)=\boldsymbol{4} \boldsymbol{x}^{3} \boldsymbol{y}-\boldsymbol{4} \boldsymbol{x} \boldsymbol{y}^{\mathbf{3}}
$$

Checking the first solution:
$\frac{\partial^{2}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)}{\partial x^{2}}+\frac{\partial^{2}\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)}{\partial y^{2}}=\left(12 x^{2}-12 y^{2}\right)+\left(-12 x^{2}+12 y^{2}\right)=0$
Checking the second solution:

$$
\frac{\partial^{2}\left(4 x^{3} y-4 x y^{3}\right)}{\partial x^{2}}+\frac{\partial^{2}\left(4 x^{3} y-4 x y^{3}\right)}{\partial y^{2}}=(24 x y-0)+(0-24 x y)=0
$$

3 What is the second x-derivative of $(x+i y)^{n}$? What is the second y-derivative? Those cancel in $u_{x x}+u_{y y}$ because $i^{2}=-1$.
Solution The second x-derivative of $(x+i y)^{n}$ is:

$$
\frac{\partial^{2}(x+i y)^{n}}{\partial x^{2}}=n(n-1)(x+i y)^{n-2}
$$

The second y-derivative of $(x+i y)^{n}$ cancels that because

$$
\frac{\partial^{2}(x+i y)^{n}}{\partial y^{2}}=i \cdot i \cdot n(n-1)(x+i y)^{n-2}=-n(n-1)(x+i y)^{n-2}
$$

4 For the solved 2×2 example inside a 4×4 square grid, write the four equations (9) at the four interior nodes. Move the known boundary values 0 and 4 to the right hand sides of the equations. You should see $K 2 \mathrm{D}$ on the left side multiplying the correct solution $\boldsymbol{U}=\left(U_{11}, U_{12}, U_{21}, U_{22}\right)=(1,2,2,3)$.
Solution The equations at the interior node would be:

$$
\begin{aligned}
& 4 U_{1,1}-U_{2,1}-U_{0,1}-U_{1,2}-U_{1,0}=0 \\
& 4 U_{1,2}-U_{2,2}-U_{0,2}-U_{1,3}-U_{1,1}=0 \\
& 4 U_{2,1}-U_{3,1}-U_{1,1}-U_{2,2}-U_{2,0}=0 \\
& 4 U_{2,2}-U_{3,2}-U_{1,2}-U_{2,3}-U_{2,1}=0
\end{aligned}
$$

Substituting the known boundary values leaves :

$$
\begin{aligned}
& 4 U_{1,1}-U_{2,1}-U_{1,2}=4 \\
& 4 U_{1,2}-U_{2,2}-U_{1,1}=8 \\
& 4 U_{2,1}-U_{1,1}-U_{2,2}=0 \\
& 4 U_{2,2}-U_{1,2}-U_{2,1}=4
\end{aligned}
$$

Writing this in matrix form gives:

$$
\left[\begin{array}{rrrr}
4 & -1 & 0 & -1 \\
-1 & 4 & -1 & 0 \\
0 & -1 & 4 & -1 \\
-1 & 0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
U_{1,1} \\
U_{1,2} \\
U_{2,1} \\
U_{2,2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8 \\
0 \\
4
\end{array}\right] \text { and }\left[\begin{array}{l}
U_{1,1} \\
U_{1,2} \\
U_{2,1} \\
U_{2,2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
1 \\
2
\end{array}\right]
$$

5 Suppose the boundary values on the 4×4 grid change to $U=0$ on three sides and $U=8$ on the fourth side. Find the four inside values so that each one is the average of its neighbors.
Solution The values at the 16 nodes will be

0	0	0	0
0	$\frac{1}{2}$	$\frac{1}{2}$	0
0	$\frac{3}{2}$	$\frac{3}{2}$	0
$0 / 4$	4	4	$0 / 4$

Notice that the corner boundary values do not enter the 5 -point equations around interior points. Every interior value must be the average of its four neighbors. By symmetry the two middle columns must be the same.

6 (MATLAB) Find the inverse (K2D) ${ }^{-1}$ of the 4 by 4 matrix displayed for the square grid.
Solution The circulant matrix $K 2 \mathrm{D}$ on page 422 has a circulant inverse :

$$
(K 2 \mathrm{D})^{-1}=\frac{1}{24}\left[\begin{array}{llll}
7 & 2 & 1 & 2 \\
2 & 7 & 2 & 1 \\
1 & 2 & 7 & 2 \\
2 & 1 & 2 & 7
\end{array}\right]
$$

7 Solve this Poisson finite difference equation (right side $\neq 0$) for the inside values $U_{11}, U_{12}, U_{21}, U_{22}$. All boundary values like U_{10} and U_{13} are zero. The boundary has i or j equal to 0 or 3 , the interior has i and j equal to 1 or 2 :

$$
4 U_{i j}-U_{i-1, j}-U_{i+1, j}-U_{i, j-1}-U_{i, j+1}=\mathbf{1} \text { at four inside points. }
$$

Solution The interior solution to the Poisson equation (on this small grid) is

0	0	0	0
0	$\frac{1}{2}$	$\frac{1}{2}$	0
0	$\frac{1}{2}$	$\frac{1}{2}$	0
0	0	0	0

On a larger grid $U_{i j}$ will not be constant in the interior.
8 A 5×5 grid has a 3 by 3 interior grid: 9 unknown values U_{11} to U_{33}. Create the 9×9 difference matrix $K 2 \mathrm{D}$.
Solution Order the points by rows to get $U_{11}, U_{12}, U_{13}, U_{21}, U_{22}, U_{23}, U_{31}, U_{32}, U_{33}$. Then $K 2 D$ is symmetric with 3 by 3 blocks:

$$
K 2 D=\left[\begin{array}{rrr}
A & -I & 0 \\
-I & A & -I \\
0 & -I & A
\end{array}\right] \quad A=\left[\begin{array}{rrr}
4 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 4
\end{array}\right]
$$

9 Use eig(K2D) to find the nine eigenvalues of $K 2 \mathrm{D}$ in Problem 8. Those eigenvalues will be positive ! The matrix $K 2 \mathrm{D}$ is symmetric positive definite.
Solution eig (K2D) in Problem 8 produces 9 eigenvalues between 0 and 4 :
The eigenvalues come from eig (K2D) and explicitly from equation (11). Notice that pairs of eigenvalues add to 8 . The eigenvalue distribution is symmetric around $\lambda=4$:

$$
\begin{array}{lllllllll}
1.1716 & 2.5828 & 2.5828 & 4.0 & 4.0 & 4.0 & 5.4142 & 5.4142 & 6.8284
\end{array}
$$

10 If $u(x)$ solves $u_{x x}=0$ and $v(y)$ solves $v_{y y}=0$, verify that $u(x) v(y)$ solves Laplace's equation. Why is this only a 4 -dimensional space of solutions? Separation of variables does not give all solutions-only the solutions with separable boundary conditions.
Solution

$$
\text { If } \frac{\partial^{2} u}{\partial x^{2}}=0 \text { and } \frac{\partial^{2} v}{\partial y^{2}}=0 \text { then }
$$

$$
\begin{aligned}
\frac{\partial^{2} u(x) v(y)}{\partial x^{2}}+\frac{\partial^{2} u(x) v(y)}{\partial y^{2}} & =v(y) \frac{\partial^{2} u(x)}{\partial x^{2}}+u(x) \frac{\partial^{2} v(y)}{\partial y^{2}} \\
& =v \cdot 0+u \cdot 0=0
\end{aligned}
$$

Therefore $u(x) v(y)$ solves Laplace's equation. But the only solutions found this way are $u(x) v(y)=(A+B x)(C+D y)$.

Problem Set 7.5, page 428

Problems 1-5 are about complete graphs. Every pair of nodes has an edge.

1 With $n=5$ nodes and all edges, find the diagonal entries of $A^{\mathrm{T}} A$ (the degrees of the nodes). All the off-diagonal entries of $A^{\mathrm{T}} A$ are -1 . Show the reduced matrix R without row 5 and column 5 . Node 5 is "grounded" and $v_{5}=0$.
Solution The complete graph (all edges included) has no zeros in $A^{\mathrm{T}} A$:

$$
A^{\mathrm{T}} A=\left[\begin{array}{rrrrr}
4 & -1 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 & -1 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -1 & -1 & 4 & -1 \\
-1 & -1 & -1 & -1 & 4
\end{array}\right] \quad \text { Singular! }
$$

The grounded matrix would be

$$
\left(A^{\mathrm{T}} A\right)_{\text {reduced }}=\left[\begin{array}{rrrr}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right] \quad \text { Invetible! }
$$

2 Show that the trace of $A^{\mathrm{T}} A$ (sum down the diagonal $=$ sum of eigenvalues) is $n^{2}-n$. What is the trace of the reduced (and invertible) matrix R of size $n-1$?
Solution $A^{\mathrm{T}} A$ is n by n and each diagonal entry is $n-1$. Therefore the trace is $n(n-1)=\boldsymbol{n}^{2}-\boldsymbol{n}$. The reduced matrix R has $n-1$ diagonal entries, each still equal to $n-1$. Therefore the trace is $(n-1)(n-1)=n^{2}-2 n+1$.
3 For $n=4$, write the 3 by 3 matrix $R=\left(A_{\text {reduced }}\right)^{\mathrm{T}}\left(A_{\text {reduced }}\right)$. Show that $R R^{-1}=I$ when R^{-1} has all entries $\frac{1}{4}$ off the diagonal and $\frac{2}{4}$ on the diagonal.
Solution

$$
\text { Reduced matrix } R=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

R by its proposed inverse gives

$$
\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

4 For every n, the reduced matrix R of size $n-1$ is invertible. Show that $R R^{-1}=I$ when R^{-1} has all entries $1 / n$ off the diagonal and $2 / n$ on the diagonal.
Solution

$$
\frac{1}{4}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{rrr}
6-1-1 & 3-2-1 & 3-1-2 \\
-2+3-1 & -1+6-1 & -1+3-2 \\
-2-1+3 & -1-2+3 & -1-1+6
\end{array}\right]=I
$$

5 Write the 6 by 3 matrix $M=A_{\text {reduced }}$ when $n=4$. The equation $M \boldsymbol{v}=\boldsymbol{b}$ is to be solved by least squares. The vector \boldsymbol{b} is like scores in 6 games between 4 teams (team 4 always scores zero; it is grounded). Knowing the inverse of $R=M^{\mathrm{T}} M$, what is the least squares ranking \widehat{v}_{1} for team 1 from solving $M^{\mathrm{T}} M \widehat{\boldsymbol{v}}=M^{\mathrm{T}} \boldsymbol{b}$?
Solution Remove column 4 of A when node 4 is grounded ($x_{4}=0$).

$$
M=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \text { has independent columns }
$$

The least squares solution \widehat{v} to $M \boldsymbol{v}=\boldsymbol{b}$ comes from $M^{\mathrm{T}} M \widehat{\boldsymbol{v}}=M^{\mathrm{T}} \boldsymbol{b}$. This $\widehat{\boldsymbol{v}}$ gives the predicted point spreads when all teams play all other teams. The first component $\widehat{v_{1}}$ would come from the first row of $\left(M^{\mathrm{T}} M\right)^{-1}$ multiplying by $M^{\mathrm{T}} \boldsymbol{b}$. Note that

$$
M^{\mathrm{T}} M=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \text { and }\left(M^{\mathrm{T}} M\right)^{-1}=\frac{1}{4}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

6 For the tree graph with 4 nodes, $A^{\mathrm{T}} A$ is in equation (1). What is the 3 by 3 matrix $R=\left(A^{\mathrm{T}} A\right)_{\text {reduced }}$? How do we know it is positive definite?
Solution The reduced form of $A^{\mathrm{T}} A$ removes row 4 and column 4:
Singular $A^{\mathrm{T}} A=\left[\begin{array}{rrrr}1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$ reduces to invertible $\left[\begin{array}{rrr}1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
The first is positive semidefinite (A has dependent columns). the second is positive definite (the reduced A has 3 independent columns).
7 (a) If you are given the matrix A, how could you reconstruct the graph?
Solution Each row of A tells you an edge in the graph.
(b) If you are given $L=A^{\mathrm{T}} A$, how could you reconstruct the graph (no arrows)?

Solution Each nonzero off the main diagonal of $A^{\mathrm{T}} A$ tells you an edge.
(c) If you are given $K=A^{\mathrm{T}} C A$, how could you reconstruct the weighted graph?

Solution Each nonzero off the main diagonal tells you the weight of that edge.
8 Find $K=A^{\mathrm{T}} C A$ for a line of 3 resistors with conductances $c_{1}=1, c_{2}=4, c_{3}=9$. Write $K_{\text {reduced }}$ and show that this matrix is positive definite.
Solution A circle of three resistors has 3 edges and 3 nodes:

$$
\begin{aligned}
A^{\mathrm{T}} C A & =\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 4 & \\
& & 9
\end{array}\right]\left[\begin{array}{rrr}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right] \\
& =\left[\begin{array}{rrr}
5 & -4 & -1 \\
-4 & 13 & -9 \\
-1 & -9 & 10
\end{array}\right] \text { is only semidefinite } \\
\left(A^{\mathrm{T}} C A\right)_{\text {reduced }} & =\left[\begin{array}{rrr}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 4 & \\
& & 9
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
\mathbf{5} & -\mathbf{4} \\
-\mathbf{4} & \mathbf{1 3}
\end{array}\right]
\end{aligned}
$$

The determinant tests $5>0$ and $(5)(13)>4^{2}$ are passed.

9 A 3 by 3 square grid has $n=9$ nodes and $m=12$ edges. Number nodes by rows.
(a) How many nonzeros among the 81 entries of $L=A^{\mathrm{T}} A$?

Solution The 9 nodes ordered by rows have $2,3,2,3,4,3,2,3,2$ neighbors around them. Those add to 24 nonzeros off the diagonal. The 9 diagonal entries make 33 nonzeros out of $9^{2}=81$ entries in $L=A^{\mathrm{T}} A$.
(b) Write down the 9 diagonal entries in the degree matrix D : they are not all 4 .

Solution Those 9 numbers are the degrees of the 9 nodes ($=$ diagonal entries in $A^{\mathrm{T}} A$).
(c) Why does the middle row of $L=D-W$ have four -1 's ? Notice $L=K 2 \mathrm{D}$!

Solution The middle node in the grid has 4 neighbors.
10 Suppose all conductances in equation (5) are equal to c. Solve equation (6) for the voltages v_{2} and v_{3} and find the current I flowing out of node 1 (and into the ground at node 4). What is the "system conductance" I / V from node 1 to node 4 ?
This overall conductance I / V should be larger than the individual conductances c.
Solution The reduced equation (6) with conductances $=c$ is

$$
\left[\begin{array}{cc}
3 c & -c \\
-c & 2 c
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
c V \\
c V
\end{array}\right] \text { and }\left[\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0.6 V \\
0.8 V
\end{array}\right]
$$

Then the flows on the five edges in Figure 7.6 use A in equation (2). Remember the minus sign :

$$
-c A \boldsymbol{v}=-c\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
V \\
0.6 V \\
0.8 V \\
0
\end{array}\right]=c V\left[\begin{array}{r}
0.4 \\
0.2 \\
-0.2 \\
1.0 \\
0.6
\end{array}\right]
$$

The total flow (on edges $1+2+4$ out of node 1 , or on edges $3+4$ into the grounded node 4 , is $I=1.6 c \mathrm{cV}$. The overall system conductance is $1.6 c$, greater than the individual conductance c on each edge.
11 The multiplication $A^{\mathrm{T}} A$ can be columns of A^{T} times rows of A. For the tree with $m=3$ edges and $n=4$ nodes, each (column times row) is $(4 \times 1)(1 \times 4)=4 \times 4$. Write down those three column-times-row matrices and add to get $L=A^{\mathrm{T}} A$.
Solution Suppose the 3 tree edges go out of node 1 to nodes 2, 3, 4. (The problem allows to choose other trees, including a line of 4 nodes.) Then

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \quad A^{\mathrm{T}} A=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]=\operatorname{sum} \text { of }\left(\operatorname{columns} \text { of } A^{\mathrm{T}}\right)(\text { rows of } A) \\
& =\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{llll}
-1 & 1 & 0 & 0
\end{array}\right]+\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{llll}
-1 & 0 & 1 & 0
\end{array}\right]+\left[\begin{array}{r}
-1 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{llll}
-1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

12 A graph with two separate 3 -node trees is not connected. Write its 6 by 4 incidence matrix A. Find two solutions to $A \boldsymbol{v}=\mathbf{0}$, not just one solution $\boldsymbol{v}=(1,1,1,1,1,1)$. To reduce $A^{\mathrm{T}} A$ we must ground two nodes and remove two rows and columns.
Solution The incidence matrix for two 3-node trees is

$$
A=\left[\begin{array}{cc}
A_{\text {tree }} & 0 \\
0 & A_{\text {tree }}
\end{array}\right] \text { with } A_{\text {tree }}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \quad \text { (for example) }
$$

The columns of $A_{\text {tree }}$ add to zero so we have 2 independent solutions to $A \boldsymbol{v}=\mathbf{0}$:

$$
\boldsymbol{v}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \text { come from } A_{\text {tree }}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

13 "Element matrices" from column times row appear in the finite element method. Include the numbers c_{1}, c_{2}, c_{3} in the element matrices K_{1}, K_{1}, K_{3}.

$$
K_{i}=(\text { row } i \text { of } A)^{\mathrm{T}}\left(\boldsymbol{c}_{\boldsymbol{i}}\right)(\text { row } i \text { of } A) \quad K=A^{\mathrm{T}} C A=\boldsymbol{K}_{\mathbf{1}}+\boldsymbol{K}_{\mathbf{2}}+\boldsymbol{K}_{\mathbf{3}}
$$

Write the element matrices that add to $A^{\mathrm{T}} A$ in (1) for the 4-node line graph.

$$
A^{\mathrm{T}} A=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
K_{1} & & \\
& {\left[\begin{array}{ll}
K_{2} & \\
& \\
& {\left[K_{3}\right.}
\end{array}\right]}
\end{array}\right]}
\end{array}\right.
$$

Solution The three "element matrices" for the three edges come from multiplying the three columns of A^{T} by the three rows of A. Then $A^{\mathrm{T}} A$ equals

$$
=\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{llll}
-1 & 1 & 0 & 0
\end{array}\right]+\left[\begin{array}{r}
0 \\
-1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{llll}
0 & -1 & 1 & 0
\end{array}\right]+\left[\begin{array}{r}
0 \\
0 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & -1 & 1
\end{array}\right] .
$$

When the diagonal matrix C is included, those are multiplied by c_{1}, c_{2}, and c_{3}. Those products produce 2 by 2 blocks of nonzeros in 4×4 matrices :

$$
K_{1}=c_{1}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1 \\
&
\end{array}\right] \quad K_{2}=c_{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \quad K_{3}=c_{3}\left[\begin{array}{rr}
& \\
& 1
\end{array}\right]
$$

Then $A^{\mathrm{T}} C A=K_{1}+K_{2}+K_{3}$. This 'assembly" of the element stiffness matrices just requires placing the nonzeros correctly into the final matrix $A^{\mathrm{T}} C A$.
14 An n by n grid has n^{2} nodes. How many edges in this graph? How many interior nodes? How many nonzeros in A and in $L=A^{\mathrm{T}} A$? There are no zeros in L^{-1} !
Solution An n by n grid has n horizontal rows ($n-1$ edges on each row) and n vertical columns ($n-1$ edges down each column). Altogether $2 \boldsymbol{n}(\boldsymbol{n}-1)$ edges. There are
$(n-2)^{2}$ interior nodes-a square grid with the boundary nodes removed to reduce n to $n-2$.
Every edge produces 2 nonzeros $(-1$ and +1$)$ in A. Then A has $\mathbf{4 n}(\boldsymbol{n}-1)$ nonzeros. The matrix $A^{\mathrm{T}} A$ has size n^{2} with n^{2} diagonal nonzeros-and off the diagonal of $A^{\mathrm{T}} A$ there are two -1 's for each edge : altogether $n^{2}+4 n(n-1)=\mathbf{5} \boldsymbol{n}^{\mathbf{2}}-\mathbf{4 n}$ nonzeros out of n^{4} entries. For $n=2$, this means 12 nonzeros in a 4 by 4 matrix.
15 When only $\boldsymbol{e}=C^{-1} \boldsymbol{w}$ is eliminated from the 3 -step framework, equation (??) shows

$$
\begin{aligned}
& \text { Saddle-point matrix } \\
& \text { Not positive definite }
\end{aligned}\left[\begin{array}{cc}
C^{-1} & A \\
A^{\mathrm{T}} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{w} \\
\boldsymbol{v}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{f}
\end{array}\right] .
$$

Multiply the first block row by $A^{\mathrm{T}} C$ and subtract from the second block row :

$$
\text { After block elimination }\left[\begin{array}{cc}
C^{-1} & A \\
0 & -A^{\mathrm{T}} C A
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{w} \\
\boldsymbol{v}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{b} \\
\boldsymbol{f}-A^{\mathrm{T}} C \boldsymbol{b}
\end{array}\right]
$$

After m positive pivots from C^{-1}, why does this matrix have negative pivots? The two-field problem for \boldsymbol{w} and \boldsymbol{v} is finding a saddle point, not a minimum.
Solution The three equations $e=b-A v$ and $w=C e$ and $A^{\mathrm{T}} w=f$ reduce to two equations when e is replaced by $C^{-1} w$:

$$
\begin{aligned}
C^{-1} \boldsymbol{w} & =\boldsymbol{b}-A v \quad \text { become } \quad\left[\begin{array}{cc}
C^{-1} & A \\
A^{\mathrm{T}} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{v} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{f}
\end{array}\right] ~
\end{aligned}
$$

Multiply the first equation by $A^{\mathrm{T}} C$ to get $A^{\mathrm{T}} \boldsymbol{w}=A^{\mathrm{T}} C \boldsymbol{b}-A^{\mathrm{T}} C A \boldsymbol{v}$. Subtract from the second equation $A^{\mathrm{T}} \boldsymbol{w}=\boldsymbol{f}$, to eliminate w :

$$
A^{\mathrm{T}} C \boldsymbol{b}-A^{\mathrm{T}} C A \boldsymbol{v}=\boldsymbol{f}
$$

This gives the second row of the block matrix after elimination:

$$
\left[\begin{array}{cc}
C^{-1} & A \\
0 & -A^{\mathrm{T}} C A
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{v} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\boldsymbol{f}-A^{\mathrm{T}} C \boldsymbol{b}
\end{array}\right]
$$

The pivots of that matrix on the left side start with $1 / c_{1}, 1 / c_{2}, \ldots, 1 / c_{m}$. Then we get the n pivots of $-A^{\mathrm{T}} C A$ which are negative, because this matrix is negative definite.
Altogether we are finding a saddle point $(\boldsymbol{v}, \boldsymbol{w})$ of the energy (quadratic function). The derivative of that quadratic gives our linear equations. The block matrix in those equations has m positive eigenvalues and n negative eigenvalues.
16 The least squares equation $A^{\mathrm{T}} A \boldsymbol{v}=A^{\mathrm{T}} \boldsymbol{b}$ comes from the projection equation $A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$ for the error $\boldsymbol{e}=\boldsymbol{b}-A \boldsymbol{v}$. Write those two equations in the symmetric saddle point form of Problem 7 (with $\boldsymbol{f}=\mathbf{0}$).
In this case $\boldsymbol{w}=\boldsymbol{e}$ because the weighting matrix is $C=I$.
Solution Ordinary least squares for $A \boldsymbol{v}=\boldsymbol{b}$ separates the data vector \boldsymbol{b} in two perpendicular parts:

$$
\boldsymbol{b}=(A \widehat{\boldsymbol{v}})+(\boldsymbol{b}-A \widehat{\boldsymbol{v}})=(\text { projection of } \boldsymbol{b})+(\text { error in } \boldsymbol{b})
$$

The error $\boldsymbol{e}=\boldsymbol{b}-A \boldsymbol{v}$ satisfies $A^{\mathrm{T}} \boldsymbol{e}=A^{\mathrm{T}} \boldsymbol{b}-A^{\mathrm{T}} A \boldsymbol{v}=\mathbf{0}$ (which means that $A^{\mathrm{T}} A \boldsymbol{v}=$ $A^{\mathrm{T}} \boldsymbol{b}$, the key equation). That equation $d^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}$ is Kirchhoff's Current Law for flows in
a network. It is a candidate for the "most important equation in applied mathematics"the conservation equation or continuity equation "flow in = flow out."
In the form of Problem 15 (with $C=I$) the equations are

$$
\left[\begin{array}{cc}
I & A \\
A^{\mathrm{T}} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{e} \\
\boldsymbol{v}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{b} \\
\mathbf{0}
\end{array}\right] \text { or } \begin{aligned}
& \boldsymbol{e}+A \boldsymbol{v}=\boldsymbol{b} \\
& A^{\mathrm{T}} \boldsymbol{e}=\mathbf{0}
\end{aligned}
$$

17 Find the three eigenvalues and three pivots and the determinant of this saddle point matrix with $C=I$. One eigenvalue is negative because A has one column:

$$
m=2, n=1 \quad\left[\begin{array}{rr}
C^{-1} & A \\
A^{\mathrm{T}} & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

Solution The eigenvalues come from $\operatorname{det}(M-\lambda I)=0$:

$$
\left[\begin{array}{ccr}
1-\lambda & 0 & -1 \\
0 & 1-\lambda & 1 \\
-1 & 1 & -\lambda
\end{array}\right]=-\lambda(1-\lambda)^{2}-2(1-\lambda)=0
$$

Then $(1-\lambda)\left(\lambda^{2}-\lambda-2\right)=0$ and $(1-\lambda)(\lambda-2)(\lambda+1)=0$ and the eigenvalues are $\lambda=\mathbf{1}, \mathbf{2}, \mathbf{1}$. Check the sum $1+2-1=\mathbf{2}$ equal to the trace (sum down the main diagonal $1+1+0=\mathbf{2}$).
The determinant is the product $\lambda_{1} \lambda_{2} \lambda_{3}=(1)(2)(-1)=-2$. Notice $m=2$ positive λ 's and $n=1$ negative eigenvalue.
Elimination finds the three pivots (which also multiply to give $\operatorname{det} M=-2$):

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right]
$$

