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Problem Set 7.1, page 393

1 Suppose your pulse is measured at b1 = 70 beats per minute, then b2 = 120, then
b3 = 80. The least squares solution to three equations v = b1, v = b2, v = b3 with
AT = [1 1 1] is v̂ = (ATA)−1ATb = . Use calculus and projections :

(a) Minimize E = (v − 70)2 + (v − 120)2 + (v − 80)2 by solving dE/dv = 0.

Solution (a) dE
dv

= 2(v − 70) + 2(v − 120) + 2(v − 80) = 0 at the minimizing v̂.

Cancel the 2’s : 3v = 70 + 120 + 80 = 270 so v̂ = vaverage = 90

(b) Project b = (70, 120, 80) onto a = (1, 1, 1) to find v̂ = aTb/aTa.

Solution (b) The projection of b onto the line through a is p = av̂ :

b =

[
70
120
80

]
a =

[
1
1
1

]
v̂ =

aTb

aTa
=

270

3
= 90.

2 Suppose Av = b has m equations aiv = bi in one unknown v. For the sum of squares
E = (a1v − b1)

2 + · · ·+ (amv − bm)2, find the minimizing v̂ by calculus. Then form
ATAv̂ = ATb with one column in A, and reach the same v̂.

Solution To minimize E we solve dE/dv = 0. For m = 3 equations aiv = bi,

dE

dv
= 2a1(a1v − b1) + 2a2(a2v − b2) + 2a3(a3v − b3) = 0 is zero when

v = v̂ =
a1b1 + a2b2 + a3b3

a21 + a22 + a23
=

aTb

aTa
.

When A has one column, ATAv̂ = ATb is the same as (aTa)v̂ = (aTb).

3 With b = (4, 1, 0, 1) at the points x = (0, 1, 2, 3) set up and solve the normal equation
for the coefficients v̂ = (C,D) in the nearest line C+Dx. Start with the four equations
Av = b that would be solvable if the points fell on a line.

Solution The unsolvable equation has m = 4 points on a line : only n = 2 unknowns.

Av = b is




1 0
1 1
1 2
1 3



[

C
D

]
=




4
1
0
1


 leading to ATAv̂ = ATb :

[
4 6
6 14

] [
Ĉ

D̂

]
=

[
6
4

]
gives

[
Ĉ

D̂

]
=

1

20

[
14 −6
−6 4

] [
6
4

]
=

1

2a

[
60

−20

]
=

[
3

−1

]

The closest line to the four points is b = 3 − x.

4 In Problem 3, find the projection p = Av. Check that those four values lie on the line
C +Dx. Compute the error e = b− p and verify that ATe = 0.

Solution The projection p = Av̂ is
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p =




1 0
1 1
1 2
1 3



[

3
−1

]
=




3
2
1
0


 with error e = b− p =




1
−1
−1
1




The best line C + Dx = 3 − x does produce p = (3, 2, 1, 0) at the four points
x = 0, 1, 2, 3.

Multiply this e by AT to get ATe =

[
0
0

]
as expected.

5 (Problem 3 by calculus) Write down E = ||b−Av||2 as a sum of four squares : the last
one is (1 − C − 3D)2. Find the derivative equations ∂E/∂C = ∂E/∂D = 0. Divide
by 2 to obtain ATAv̂ = ATb.

Solution Minimize E = (4−C)2 +(1−C −D)2 +(−C − 2D)2 +(1−C − 3D)2.

The partial derivatives are ∂E/∂C = 0 and ∂E/∂D = 0 at the minimum :

−2(4− C)− 2(1− C −D)− 2(−C − 2D)− 2(1− C − 3D) = 0

−2(1− C −D)− 4(−C − 2D)− 6(1− C − 3D) = 0

Factoring out −2 and collecting terms this is the same equation ATAv̂ = ATb !

6− 4C − 16D = 0
4− 6C − 14D = 0

or

[
4 6
6 14

] [
Ĉ

D̂

]
=

[
6
4

]
.

6 For the closest parabola C+Dt+Et2 to the same four points, write down 4 unsolvable
equations Av = b for v = (C,D,E). Set up the normal equations for v̂. If you fit the
best cubic C +Dt+ Et2 + Ft3 to those four points (thought experiment), what is the
error vector e ?

Solution The parabola C +Dt+ Et2 fits the 4 points exactly if Av = b :

t = 0 C + 0D + 0E = 4
t = 1 C + 1D + 1E = 1
t = 2 C + 2D + 4E = 0
t = 3 C + 3D + 9E = 1

A =




1 0 0
1 1 1
1 2 4
1 3 9


 .

ATA =

[
4 6 14
6 14 36
14 36 98

]
.φATb =

[
4 + 1 + 0 + 1
0 + 1 + 0 + 3
0 + 1 + 0 + 9

]
=

[
6
4
10

]
.

The cubic C +Dt+ Et2 + Ft3 can fit 4 points exactly, with error= zero vector.

7 Write down three equations for the line b = C + Dt to go through b = 7 at
t = −1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution
v̂ = (C,D) and draw the closest line.

Solution

[
1 −1
1 1
1 2

][
C
D

]
=

[
7
7

21

]
.The solution x̂ =

[
9
4

]
comes from

[
3 2
2 6

][
C
D

]
=

[
35
42

]
.

8 Find the projection p = Av̂ in Problem 7. This gives the three heights of the closest
line. Show that the error vector is e = (2,−6, 4).

Solution p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is
b− p = (2,−6, 4). This error e has Pe = Pb− Pp = p− p = 0.
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9 Suppose the measurements at t = −1, 1, 2 are the errors 2,−6, 4 in Problem 8. Com-
pute v̂ and the closest line to these new measurements. Explain the answer : b =
(2,−6, 4) is perpendicular to so the projection is p = 0.

Solution If b = previous error e then b is perpendicular to the column space of A.
Projection of b is p = 0.

10 Suppose the measurements at t = −1, 1, 2 are b = (5, 13, 17). Compute v̂ and the
closest line e. The error is e = 0 because this b is .

Solution If b = Ax̂ = (5, 13, 17) then x̂ = (9, 4) and e = 0 since b is in the column
space of A.

11 Find the best line C +Dt to fit b = 4, 2,−1, 0, 0 at times t = −2,−1, 0, 1, 2.

Solution The least squares equation is

[
5 0
0 10

] [
C
D

]
=

[
5

−10

]
.

Solution: C = 1, D = −1. Line 1− t. Symmetric t’s ⇒ diagonal ATA

12 Find the plane that gives the best fit to the 4 values b = (0, 1, 3, 4) at the corners
(1, 0) and (0, 1) and (−1, 0) and (0,−1) of a square. At those 4 points, the equations
C +Dx+ Ey = b are Av = b with 3 unknowns v = (C,D,E).

Solution



1 1 0
1 0 1
1 −1 0
1 0 −1



[
C
D
E

]
=



0
1
3
4


 has ATA =

[
4 0 0
0 2 0
0 0 2

]
and ATb =

[
8

−2
−3

]
.

The solution (C,D,E) = (2,−1, 3
2
) gives the best plane 2− x− 3

2
y.

13 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4 set up and solve the normal equations ATAv =
ATb. For the best straight line C+Dt, find its four heights pi and four errors ei. What
is the minimum value E = e21 + e22 + e23 + e24 ?

Solution A =



1 0
1 1
1 3
1 4


 and b =




0
8
8
20


 give ATA =

[
4 8
8 26

]
and ATb =

[
36
112

]
.

ATAx̂ = ATb gives

E = ‖e‖2 = 44
x̂ =

[
1
4

]
and p = Ax̂ =




1
5
13
17


 and e = b− p =



−1
3

−5
3




14 (By calculus) Write down E = ||b − Av||2 as a sum of four squares—the last one is
(C + 4D − 20)2. Find the derivative equations ∂E/∂C = 0 and ∂E/∂D = 0. Divide
by 2 to obtain the normal equations ATAv̂ = ATb.

Solution E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2.
Then ∂E/∂C = 2C + 2(C + D − 8) + 2(C + 3D − 8) + 2(C + 4D − 20) = 0
and ∂E/∂D = 1 · 2(C + D − 8) + 3 · 2(C + 3D − 8) + 4 · 2(C + 4D − 20) = 0.

These normal equations ∂E/∂C = 0 and ∂E/∂D = 0 are again

[
4 8
8 26

] [
C
D

]
=

[
36
112

]
.

15 Which of the four subspaces contains the error vector e ? Which contains p ? Which
contains v̂ ?



194 Chapter 7. Applied Mathematics and ATA

Solution The error e is contained in the nullspace N(AT), since ATe = 0. The
projection p is contained in the column space C(A). The vector v̂ of coefficients can
be any vector in Rn.

16 Find the height C of the best horizontal line to fit b = (0, 8, 8, 20). An exact fit
would solve the four unsolvable equations C = 0, C = 8, C = 8, C = 20. Find
the 4 by 1 matrix A in these equations and solve ATAv̂ = ATb.

Solution E = (C − 0)2 + (C − 8)2 + (C − 8)2 + (C − 20)2 and AT = [ 1 1 1 1 ].

ATA = [ 4 ]. ATb = [ 36 ] and (ATA)−1ATb = 9 = best C. e = (−9,−1,−1, 11).

17 Write down three equations for the line b = C + Dt to go through b = 7 at
t = −1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution
v̂ = (C,D) and draw the closest line.

Solution

[
1 −1
1 1
1 2

][
C
D

]
=

[
7
7

21

]
.The solution x̂ =

[
9
4

]
comes from

[
3 2
2 6

][
C
D

]
=

[
35
42

]
.

18 Find the projection p = Av̂ in Problem 17. This gives the three heights of the closest
line. Show that the error vector is e = (2,−6, 4). Why is Pe = 0 ?

Solution p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is
b− p = (2,−6, 4). This error e has Pe = Pb− Pp = p− p = 0.

19 Suppose the measurements at t = −1, 1, 2 are the errors 2,−6, 4 in Problem 18. Com-
pute v̂ and the closest line to these new measurements. Explain the answer : b =
(2,−6, 4) is perpendicular to so the projection is p = 0.

Solution If b = error e then b is perpendicular to the column space of A. Projection
p = 0.

20 Suppose the measurements at t = −1, 1, 2 are b = (5, 13, 17). Compute v̂ and the
closest line and e. The error is e = 0 because this b is ?

Solution If b = Ax̂ = (5, 13, 17) then x̂ = (9, 4) and e = 0 since b is in the column
space of A.

Questions 21–26 ask for projections onto lines. Also errorse = b − p and matricesP .

21 Project the vector b onto the line through a. Check that e is perpendicular to a :

(a) b =

[
1
2
3

]
and a =

[
1
1
1

]
(b) b =

[
1
3
1

]
and a =

[ −1
−3
−1

]
.

Solution (a) The projection p is

p = a
aTb

aTa
=

[
1
1
1

]
6

3
=

[
2
2
2

]
e = b−p =

[ −1
0
1

]
perpendicular to

[
1
1
1

]
.

Solution (b) In this case the projection is

p = a
aTb

aTa
=

[ −1
−3
−1

]
−11

−11
=

[
1
3
1

]
and e = b− p =

[
0
0
0

]
.
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22 Draw the projection of b onto a and also compute it from p = v̂a :

(a) b =

[
cos θ
sin θ

]
and a =

[
1
0

]
(b) b =

[
1
1

]
and a =

[
1

−1

]
.

Solution (a) The projection of b = (cos θ, sin θ) onto a = (1, 0) is p = (cos θ, 0)

Solution (b) The projection of b = (1, 1) ontoa = (1,−1) is p = (0, 0) since aTb = 0.

23 In Problem 22 find the projection matrix P = aaT/aTa onto each vector a. Verify
in both cases that P 2 = P . Multiply Pb in each case to find the projection p.

Solution P1=

[
1 0
0 0

]
and p = P1b =

[
cos θ
0

]
. P2=

1

2

[
1 −1

−1 1

]
and p = P2b =

[
0
0

]
.

24 Construct the projection matrices P1 and P2 onto the lines through the a’s in Problem
22. Is it true that (P1 + P2)

2 = P1 + P2 ? This would be true if P1P2 = 0.

Solution The projection matrices P1 and P2 (note correction P2 not P − 2) are

P1 =
aaT

aTa
=

[
1 0
0 0

]
P2 =

aaT

aTa
=

1

2

[
1 −1

−1 1

]
.

It is not true that (P1+P2)
2 = P1+P2. The sum of projection matrices is not usually

a projection matrix.

25 Compute the projection matrices aaT/aTa onto the lines through a1 = (−1, 2, 2)
and a2 = (2, 2,−1). Multiply those two matrices P1P2 and explain the answer.

Solution P1 =
1

9

[
1 −2 −2

−2 4 4
−2 4 4

]
, P2 =

1

9

[
4 4 −2
4 4 −2

−2 −2 1

]
.

P1P2 = zero matrix because a1 is perpendicular to a2.

26 Continuing Problem 25, find the projection matrix P3 onto a3 = (2,−1, 2). Verify that
P1 + P2 + P3 = I . The basis a1,a2,a3 is orthogonal !

Solution P1+P2+P3 =
1

9

[
1 −2 −2

−2 4 4
−2 4 4

]
+
1

9

[
4 4 −2
4 4 −2

−2 −2 1

]
+
1

9

[
4 −2 4

−2 1 −2
4 −2 4

]
= I .

We can add projections onto orthogonal vectors. This is important.

27 Project the vector b = (1, 1) onto the lines through a1 = (1, 0) and a2 = (1, 2). Draw
the projections p1 and p2 and add p1 + p2. The projections do not add to b because
the a’s are not orthogonal.

Solution The projections of (1, 1) onto the lines through (1, 0) and (1, 2) are p1 =
(1, 0) and p2 = (3/5, 6/5) = (0.6, 1.2). Then p1 + p2 6= b.

28 (Quick and recommended) Suppose A is the 4 by 4 identity matrix with its last column
removed. A is 4 by 3. Project b = (1, 2, 3, 4) onto the column space of A. What shape
is the projection matrix P and what is P ?

Solution A=



1 0 0
0 1 0
0 0 1
0 0 0


, P =square matrix=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


, p=P



1
2
3
4


 =



1
2
3
0


.
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29 If A is doubled, then P = 2A(4ATA)−12AT. This is the same as A(ATA)−1AT.
The column space of 2A is the same as . Is v̂ the same for A and 2A?

Solution 2A has the same column space as A. Same p. But x̂ for 2A is half of x̂ for A.

30 What linear combination of (1, 2,−1) and (1, 0, 1) is closest to b = (2, 1, 1)?

Solution 1
2
(1, 2,−1) + 3

2
(1, 0, 1) = (2, 1, 1). So b is in the plane: no error e.

Projection shows Pb = b.

31 (Important) If P 2 = P show that (I−P )2 = I−P . When P projects onto the column
space of A, I − P projects onto which fundamental subspace ?

Solution If P 2 = P then (I − P )2 = (I−P )(I−P ) = I−PI−IP+P 2 = I − P .
When P projects onto the column space, I − P projects onto the left nullspace.

32 If P is the 3 by 3 projection matrix onto the line through (1, 1, 1), then I − P is the
projection matrix onto .

Solution I − P is the projection onto the plane x1 + x2 + x3 = 0, perpendicular to
the direction (1, 1, 1) :

I − P =

[
1 0 0
0 1 0
0 0 1

]
− 1

3

[
1 1 1
1 1 1
1 1 1

]
=

1

3

[
2 −1 −1

−1 2 −1
−1 −1 2

]
.

33 Multiply the matrix P = A(ATA)−1AT by itself. Cancel to prove that P 2 = P .
Explain why P (Pb) always equals Pb: The vector Pb is in the column space so its
projection is .

Solution
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT.

So P 2 = P . Geometric reason : Pb is in the column space (where P projects).
Then its projection P (Pb) is Pb for every b. So P 2 = P .

34 If A is square and invertible, the warning against splitting (ATA)−1 does not apply.
Then AA−1(AT)−1AT = I is true. When A is invertible, why is P = I and e = 0 ?

Solution If A is invertible then its column space is all of Rn. So P = I and e = 0.

35 An important fact about ATA is this: If ATAx = 0 then Ax = 0. New proof :
The vector Ax is in the nullspace of . Ax is always in the column space of

. To be in both of those perpendicular spaces, Ax must be zero.

Solution If ATAx = 0 then Ax is in the nullspace of AT. But Ax is always in the
column space of A. To be in both of those perpendicular spaces, Ax must be zero. So
A and ATA have the same nullspace.

Notes on mean and variance and test grades

If all grades on a test are 90, the mean is m = 90 and the variance is σ2 = 0. Suppose

the expected grades are g1, . . . , gN . Then σ2 comes from squaring distances to the mean :

Mean m =
g1 + · · ·+ gN

N
Variance σ2 =

(g1 −m)2 + · · ·+ (gN −m)2

N

After every test my class wants to know m and σ. My expectations are usually way off.
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36 Show that σ2 also equals 1
N
(g21 + · · ·+ g2N )−m2.

Solution Each term (gi −m)2 equals g2i − 2gim+m2, so

σ2 =
(sum of g2i )− 2m(sum of gi) +Nm2

N
=

(sum of g2i )− 2mNm+Nm2

N

=
(sum of g2i )

N
−m2.

37 If you flip a fair coin N times (1 for heads, 0 for tails) what is the expected number m
of heads ? What is the variance σ2 ?

Solution For a fair coin you expect N/2 heads in N flips. The variance σ2 turns out
to be N/4.

Problem Set 7.2, page 402

1 For a 2 by 2 matrix, suppose the 1 by 1 and 2 by 2 determinants a and ac − b2 are
positive. Then c > b2/a is also positive.

(i) λ1 and λ2 have the same sign because their product λ1λ2 equals .

(i) That sign is positive because λ1 + λ2 equals .

Conclusion : The tests a > 0, ac− b2 > 0 guarantee positive eigenvalues λ1, λ2.

Solution Suppose a > 0 and ac > b2 so that also c > b2/a > 0.

(i) The eigenvalues have the same sign because λ1λ2 = det = ac− b2 > 0.

(ii) That sign is positive because λ1 + λ2 > 0 (it equals the trace a+ c > 0).

2 Which of S1, S2, S3, S4 has two positive eigenvalues? Use a and ac−b2, don’t compute
the λ’s. Find an x with xTS1x < 0, confirming that A1 fails the test.

S1 =

[
5 6
6 7

]
S2 =

[
−1 −2
−2 −5

]
S3 =

[
1 10
10 100

]
S4 =

[
1 10

10 101

]
.

Solution Only S4 =

[
1 10

10 101

]
has two positive eigenvalues since 101 > 102.

xTS1x = 5x2
1 + 12x1x2 + 7x2

2 is negative for example when x1 = 4 and x2 = −3:
A1 is not positive definite as its determinant confirms; S2 has trace c0; S3 has det = 0.



198 Chapter 7. Applied Mathematics and ATA

3 For which numbers b and c are these matrices positive definite ?

S =

[
1 b
b 9

]
S =

[
2 4
4 c

]
S =

[
c b
b c

]
.

Solution

Positive definite
for −3 < b < 3

[
1 0
b 1

][
1 b
0 9− b2

]
=

[
1 0
b 1

][
1 0
0 9− b2

][
1 b
0 1

]
=LDLT

Positive definite
for c > 8

[
1 0
2 1

][
2 4
0 c− 8

]
=

[
1 0
2 1

][
2 0
0 c− 8

][
1 2
0 1

]
=LDLT.

Positive definite
for c > b

L =

[
1 1

−b/c 0

]
D =

[
c 0
0 c− b/c

]
S = LDLT.

4 What is the energy q = ax2 + 2bxy + cy2 = xTSx for each of these matrices ?
Complete the square to write q as a sum of squares d1( )2 + d2( )2.

S =

[
1 2
2 9

]
and S =

[
1 3
3 9

]
.

Solution f(x, y) = x2+4xy+9y2 = (x+2y)2+5y2; x2+6xy+9y2 = (x+3y)2.

5 xTSx = 2x1x2 certainly has a saddle point and not a minimum at (0, 0). What sym-
metric matrix S produces this energy ? What are its eigenvalues ?

Solution xTSx = 2x1x2 comes from S =

[
0 1
1 0

]
which has eigenvalues 1 and

−1 : S is indefinite.

6 Test to see if ATA is positive definite in each case :

A =

[
1 2
0 3

]
and A =

[
1 1
1 2
2 1

]
and A =

[
1 1 2
1 2 1

]
.

Solution The first and second matrices have independent columns in A, so ATA is
positive definite. The third matrix has dependent columns so ATA is only positive
semidefinite.

7 Which 3 by 3 symmetric matrices S and T produce these quadratic energies ?

xTSx = 2
(
x2
1 + x2

2 + x2
3 − x1x2 − x2x3

)
. Why is S positive definite?

xTTx = 2
(
x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3

)
. Why is T semidefinite ?

Solution

S =

[
2 −1 0

−1 2 −1
0 −1 2

]
is positive definite—its
determinants are D1 = 2, D2 = 3, D3 = 4

.
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T =

[
2 −1 −1

−1 2 −1
−1 −1 2

]
is positive semidefinite with
determinants D1 = 2, D2 = 3, D3 = 0

.

The energy xTTx = 0 when x = (1, 1, 1).

8 Compute the three upper left determinants of S to establish positive definiteness. (The
first is 2.) Verify that their ratios give the second and third pivots.

Pivots = ratios of determinants S =

[
2 2 0
2 5 3
0 3 8

]
.

Solution The upper left determinants of S are 2, 6, 30. The pivots are 2, 3, 5 (ratios of
determinants). Notice that the product of pivots is 30.

9 For what numbers c and d are S and T positive definite? Test the 3 determinants :

S =

[
c 1 1
1 c 1
1 1 c

]
and T =

[
1 2 3
2 d 4
3 4 5

]
.

Solution For c = 1, the matrix S has eigenvalues 3, 0, 0. For any c, the eigenvalues
all add c − 1. So S is positive definite for c > 1. (Same answer using determinants.)
For T the determinants are 1, d − 4,−4d + 12. If d > 4 then −4d + 12 is negative !
So T is never positive definite for any d.

10 If S is positive definite then S−1 is positive definite. Best proof : The eigenvalues
of S−1 are positive because . Second proof (only for 2 by 2) :

The entries of S−1 =
1

ac− b2

[
c −b

−b a

]
pass the determinant tests .

Solution Positive definite ⇒ all eigenvalues λ > 0 ⇒ all eigenvalues 1/λ of S−1 are
positive. Also for 2× 2 : the determinant tests are passed.

11 If S and T are positive definite, their sum S + T is positive definite. Pivots and
eigenvalues are not convenient for S + T . Better to prove xT(S + T )x > 0.

Solution Energy xT(S + T )x = xTSx+ xTTx > 0 + 0

12 A positive definite matrix cannot have a zero (or even worse, a negative number)
on its diagonal. Show that this matrix fails to have xTSx > 0 :

[
x1 x2 x3

]
[
4 1 1
1 0 2
1 2 5

][
x1

x2

x3

]
is not positive when (x1, x2, x3) = ( , , ).

Solution xTSx is zero when x = (0, 1, 0).
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13 A diagonal entry ajj of a symmetric matrix cannot be smaller than all the λ’s. If it
were, then A − ajjI would have eigenvalues and would be positive definite.
But A− ajjI has a on the main diagonal.

Solution If ajj is smaller than all eigenvalues, then A − ajjI would have positive
eigenvalues. But this matrix has a zero on the diagonal. But Problem 13, it can’t be
positive definite. So Ajj can’t be smaller than all eigenvalues !

14 Show that if all λ > 0 then xTSx > 0. We must do this for every nonzero x,
not just the eigenvectors. So write x as a combination of the eigenvectors and
explain why all “cross terms” are xT

i xj = 0. Then xTSx is

(c1x1+ · · ·+ cnxn)
T(c1λ1x1+ · · ·+ cnλnxn) = c21λ1x

T
1 x1+ · · ·+ c2nλnx

T
nxn > 0.

Solution The “cross terms” have the form (cixi)
T(cjλjxj). This is zero because

symmetric matrices S have orthogonal eigenvectors.

15 Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix is P = I .

(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive definite !

Solution

(a) All λi > 0 so zero is not an eigenvalue and S is invertible

(b) All projection matrices except P = I are singular

(c) The energy for a positive diagonal matrix is xTDx = d1x
2
1 + · · · + dnx

2
n > 0

when x 6= 0

(d) S =

[
−1 0
0 −1

]
has detS = 1 but S is negative definite

16 With positive pivots in D, the factorizationS = LDLT becomesL
√
D
√
DLT. (Square

roots of the pivots give D =
√
D
√
D.) Then A =

√
DLT yields the

Cholesky factorization S = ATA which is “symmetrized LU” :

From A =

[
3 1
0 2

]
find S. From S =

[
4 8
8 25

]
find A = chol(S).

Solution If A =

[
3 1
0 2

]
then ATA =

[
9 3
3 5

]
= positive definite S.

S =

[
4 8
8 25

]
= LU =

[
1 0
2 1

] [
4 8
0 9

]
= LDLT =

[
1 0
2 1

] [
4

9

] [
1 2
0 1

]

so A =
√
DLT =

[
2 0
0 3

] [
1 2
0 1

]
=

[
2 4
0 3

]
.
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17 Without multiplying S =

[
cos θ − sin θ
sin θ cos θ

][
2 0
0 5

][
cos θ sin θ

− sin θ cos θ

]
, find

(a) the determinant of S (b) the eigenvalues of S

(c) the eigenvectors of S (d) a reason why S is symmetric positive definite.

Solution detS = 10, λ(S) = 2 and 5, eigenvectors (cos θ, sin θ) and (− sin θ, cos θ),
S has positive eigenvalues.

18 For F1(x, y) =
1
4
x4+x2y+ y2 and F2(x, y) = x3+xy−x find the second derivative

matrices H1 and H2 :

Test for minimum H =

[
∂2F/∂x2 ∂2F/∂x∂y

∂2F/∂y∂x ∂2F/∂y2

]
is positive definite

H1 is positive definite so F1 is concave up (= convex). Find the minimum point of F1

and the saddle point of F2 (look only where first derivatives are zero).

Solution F1 = 1
4
x4 + x2y + y2 has ∂F1/dx = x3 + 2xy and ∂F1/dy = x2 + 2y.

Then the 2nd derivatives are

H1 =

[
3x2 + 2y 2x

2x 2

]
. F2 = x3 + xy − x has H2 =

[
6x 1
1 0

]
.

19 The graph of z = x2 + y2 is a bowl opening upward. The graph of z = x2 − y2 is a
saddle. The graph of z = −x2 − y2 is a bowl opening downward. What is a test on
a, b, c for z = ax2 + 2bxy + cy2 to have a saddle point at (0, 0) ?

Solution ax2 + 2bxy + cy2 has a saddle point (0, 0) if ∂z/∂x = ∂z/∂y = 0 (which

is true) and if H = 2

[
a b
c d

]
is positive definite.

20 Which values of c give a bowl and which c give a saddle point for the graph of z =
4x2 + 12xy + cy2 ? Describe this graph at the borderline value of c.

Solution The matrix for this problem is S =

[
4 6
6 c

]
and this has a saddle for c < 9.

Then λ1 > 0 > λ2 because the determinants are 4 > 0 and 4c− 3b < 0.

21 When S and T are symmetric positive definite, ST might not even be symmetric. But
its eigenvalues are still positive. Start from STx = λx and take dot products with Tx.
Then prove λ > 0.

Solution If STx = λx then (Tx)TSTx = λ(Tx)Tx. Left side > 0 because S is
positive definite, right side has xTTx > 0 because T is positive definite. Therefore
λ > 0.

22 Suppose C is positive definite (so yTCy > 0 whenever y 6= 0) and A has indepen-
dent columns (so Ax 6= 0 whenever x 6= 0). Apply the energy test to xTATCAx
to show that ATCA is positive definite : the crucial matrix in engineering.

Solution xTATCAx = yTCy > 0 because y = Ax is only zero when x is zero
(A has independent columns).
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23 Find the eigenvalues and unit eigenvectors v1,v2 of ATA. Then find u1 = Av1/σ1 :

A =

[
1 2
3 6

]
and ATA =

[
10 20
20 40

]
and AAT =

[
5 15
15 45

]
.

Verify that u1 is a unit eigenvector of AAT. Complete the matrices U,Σ, V .

SVD

[
1 2
3 6

]
=

[
u1 u2

] [
σ1

0

] [
v1 v2

]T

.

Solution ATA =

[
10 20
20 40

]
has eigenvalues 50 and 0. Its eigenvectors are

v1 = (1, 2)/
√
5 and v2 = (−2, 1)/

√
5. Then u1 = Av1/

√
50 = (50, 100)/

√
250.

The SVD is

[
1 −3
3 1

] [ √
50 0
0 0

] [
1 2

−2 1

]
=

[
1 2
3 6

]

√
10

√
5

24 Write down orthonormal bases for the four fundamental subspaces of this A.

Solution A =

[
1 2
3 6

]
has bases

[
1
3

]
/
√
10 for C(A),

[
1
2

]
/
√
5 for row space

C(AT),

[
2

−1

]
/
√
5 for N(A),

[
3

−1

]
/
√
10 for N(AT).

25 (a) Why is the trace of ATA equal to the sum of all a2ij ?

(b) For every rank-one matrix, why is σ2
1 = sum of all a2ij ?

Solution The diagonal entries of ATA are ||column 1||2 to ||column n||2. The sum of
those is the sum of all a2ij . The trace of ATA is always the sum of all σ2

i and for a rank

one matrix that sum is only σ2
1 .

26 Find the eigenvalues and unit eigenvectors of ATA and AAT. Keep each Av = σu:

Fibonacci matrix A =

[
1 1
1 0

]

Construct the singular value decomposition and verify that A equals UΣV T.

Solution A is symmetric with ATA = A2 =

[
2 1
1 1

]
with eigenvalues x from

x2 − 3x+ 1 = 0 and x = 1
2

(
3±

√
5
)
. Then σ =

√
x = 1

2

(√
5± 1

)
.

27 Compute ATA and AAT and their eigenvalues and unit eigenvectors for V and U.

Rectangular matrix A =

[
1 1 0
0 1 1

]
.

Check AV = UΣ (this will decide ± signs in U ). Σ has the same shape as A.
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Solution ATA =

[
2 1
1 2

]
has eigenvalues 3 and 1, so A has singular values

√
3

and 1. The unit eigenvectors are (1, 1)/
√
2 and (1,−1)/

√
2. AAT =

[
1 1 0
1 2 1
0 1 1

]

has eigenvalues 3 and 1 and 0 and eigenvectors

[
1
2
1

][
1
0

−1

] [
1

−1
1

]
divided by

√
6,
√
2,
√
3.

28 Construct the matrix with rank one that has Av = 12u for v = 1
2
(1, 1, 1, 1) and

u = 1
3
(2, 2, 1). Its only singular value is σ1 = .

Solution A = 12uvT has Av = 12u for that unit vector v. The only singular value
is σ1 = 12. (Other A are also possible.)

29 Suppose A is invertible (with σ1 > σ2 > 0). Change A by as small a matrix as
possible to produce a singular matrix A0. Hint : U and V do not change.

From A =
[
u1 u2

] [
σ1

σ2

] [
v1 v2

]T

find the nearest A0.

Solution The nearest singular matrix is A0 = U

[
σ1 0
0 0

]
V T. Since U and V are

orthogonal matrices, the size of A − A0 is only σ2. In other words, u1σ1v
T
1 is the

closest rank 1 matrix to A.

30 The SVD for A+ I doesn’t use Σ + I . Why is σ(A+ I) not just σ(A) + I ?

Solution The SVD of A+ I uses the eigenvectors of (A+ I)T(A+ I). Those are not
the eigenvectors of ATA (or ATA+ I).

31 Multiply ATAv = σ2v by A. Put in parentheses to show that Av is an eigenvector of
AAT. We divide by its length ||Av|| = σ to get the unit eigenvector u.

Solution A times ATAv = σ2v is (AAT)Av = σ2(Av). So Av is an eigenvector of
AAT.

32 My favorite example of the SVD is whenAv(x) = dv/dx, with the endpoint conditions
v(0) = 0 and v(1) = 0. We are looking for orthogonal functions v(x) so that their
derivatives Av = dv/dx are also orthogonal. The perfect choice is v1 = sinπx and
v2 = sin 2πx and vk = sin kπx. Then each uk is a cosine.

The derivative of v1 is Av1 = π cosπx = πu1. The singular values are σ1 = π and
σk = kπ. Orthogonality of the sines (and orthogonality of the cosines) is the foundation
for Fourier series.

You may object to AV = UΣ. The derivative A = d/dx is not a matrix ! The orthogo-
nal factor V has functions sin kπx in its columns, not vectors. The matrix U has cosine
functions cos kπx. Since when is this allowed ? One answer is to refer you to the cheb-
fun package on the web. This extends linear algebra to matrices whose columns are
functions—not vectors.
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Another answer is to replace d/dx by a first difference matrix A. Its shape will be N+1
by N . A has 1’s down the diagonal and −1’s on the diagonal below. Then AV = UΣ
has discrete sines in V and discrete cosines in U . For N = 2 those will be sines and
cosines of 30◦ and 60◦ in v1 and u1.

∗∗ Can you construct the difference matrix A (3 by 2) and ATA (2 by 2) ? The discrete

sines are v1 = (
√
3/2,

√
3/2) and v2 = (

√
3/2,−

√
3/2). Test that Av1 is orthogonal

to Av2. What are the singular values σ1 and σ2 in Σ ?

Solution The sines and cosines are perfect examples of the v’s and u’s for the oper-
ator (infinite-dimensional matrix) A = derivative d/dx. The sines vk = sinπkx are
orthogonal, the cosines uk = cosπkx are orthogonal, and Avk = σkuk. (The deriva-
tive of a sine is a cosine with σk = πk.) For differences instead of derivatives, we can

try the matrix A =

[
1 0

−1 1
0 −1

]
.

Problem Set 7.3, page 413

1 Transpose the derivative with integration by parts : (dy/dx, g) = −(y, dg/dx).

Ay is dy/dx with boundary conditions y(0) = 0 and y(1) = 0. Why is
∫
y′gdx

equal to −
∫
yg′dx ? Then AT (which is normally written as A∗) is ATg = −dg/dx

with no boundary conditions on g. ATAy is −y′′ with y(0) = 0 and y(1) = 0.

Solution Integration by parts for 0 ≤ x ≤ 1 produces boundary terms at x = 0 and 1 :

∫ 1

0

dy

dx
g(x) dx = −

∫ 1

0

y(x)
dg

dx
dx+ y(x) g(x)

∣∣∣
x=1

x=0

The boundary terms are zero if y(0) = y(1) = 0. Then the adjoint (or transpose) of
d/dx is −d/dx, with no boundary condition on g when there are 2 boundary conditions
on y (fixed-fixed).

Problems 2-6 have boundary conditions at x = 0 and x = 1 : no initial conditions.

2 Solve this boundary value problem in two steps. Find the complete solution yp + yn
with two constants in yn, and find those constants from the boundary conditions :

Solve −y ′′ = 12x2 with y(0) = 0 and y(1) = 0 and yp = −x4.

Solution yp = −x4 solves −y ′′

p = 12x2. It has yp(0) = 0 and yp = −1. We need to

add the solution to −Y ′′ = 0 with Y (0) = 0 and Y (1) = 1. Then Y = A + Bx has
A = 0 and B = 1. The complete solution is y = −x4 + x.

3 Solve the same equation −y ′′ = 12x2 with y(0) = 0 and y ′(1) = 0 (zero slope).

Solution Changing y(1) = 0 to y ′(1) = 0 will change the solution to y = −x4 +Bx
with y ′ = −4x3 +B. For y ′(1) = 0 we need B = 4 .
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4 Solve the same equation −y ′′ = 12x2 with y ′(0) = 0 and y(1) = 0. Then try for both
slopes y ′(0) = 0 and y ′(1) = 0 : this has no solution y = −x4 +Ax+B.

Solution With y ′(0) = 0 the solution we want is y = −x4 + A. The constant A
is determined by y(1) = −1+A = 0. We cannot have y ′(1) = 0 because y ′ = −4x3.

5 Solve −y ′′ = 6x with y(0) = 2 and y(1) = 4. Boundary values need not be zero.

Solution −y ′′ = 6x leads to y = −x3 + A + Bx. The boundary conditions are
y(0) = A = 2 and y(1) = −1 + 2 +B = 4. Then B = 3 and y = −x3 + 2 + 3x.

6 Solve −y ′′ = ex with y(0) = 5 and y(1) = 0, starting from y = yp + yn.

Solution −y ′′ = ex leads to y = −ex + A + Bx. The first boundary condition is
y(0) = −1 +A = 5 so that A = 6. Then y(1) = −e+ 6 +B = 0 and B = e− 6.

Problems 7-11 are about the LU factors and the inverses of second difference matrices.

7 The matrix T with T11 = 1 factors perfectly into LU = ATA (all its pivots are 1).

T =




1 −1
−1 2 −1

−1 2 −1
−1 2


=




1
−1 1

−1 1
−1 1






1 −1

1 −1
1 −1

1


=LU.

Each elimination step adds the pivot row to the next row (and L subtracts to recover T
from U ). The inverses of those difference matrices L and U are sum matrices. Then
the inverse of T = LU is U−1L−1 :

T−1 =




1 1 1 1
1 1 1

1 1
1







1
1 1
1 1 1
1 1 1 1


 = U−1L−1.

Compute T−1 for N = 4 (as shown) and for any N .

Solution T−1 =




4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1




T is fixed-free second difference matrix.

For any N, T−1 has the same
pattern with first row
N N − 1 · · · 2 1

8 The matrix equation TY = (0, 1, 0, 0) = delta vector is like the differential equation
−y′′ = δ(x − a) with a = 2∆x = 2

5
. The boundary conditions are y′(0) = 0 and

y(1) = 0. Solve for y(x) and graph it from 0 to 1. Also graph Y = second column of
T−1 at the points x = 1

5
, 2
5
, 3
5
, 4
5

. The two graphs are ramp functions.

Solution Two integrations of the delta function δ(x) will produce the unit ramp

R(x) = 0 for x ≤ 0, R(x) = x for x ≥ 0. Shifting δ(x) to δ
(
x− 2

5

)
will shift

the solution to y = −R
(
x− 2

5

)
+ A+ Bx. Then y ′(0) = −1 + B gives B = 1, and

y(1) = 0 gives − 3
5
+A+ 1 = 0 and A = − 2

5
.



206 Chapter 7. Applied Mathematics and ATA

9 The matrix B has B11 = 1 (like T11 = 1) and also BNN = 1 (where TNN = 2). Why
does B have the same pivots 1, 1, . . . as T , except for zero in the last pivot position ?
The early pivots don’t know BNN = 1.

Then B is not invertible : −y′′ = δ(x − a) has no solution with y′(0) = y′(1) = 0.

Solution B starts with the pivots 1, 1, 1, . . . (as T did) but reducing the N,N entry by
1 will reduce the last pivot by 1. So we have last pivot = zero and B is not invertible.
The analog for differential equations is y ′ = 0 at both endpoints : No ramp function
except y = 0 can meet those boundary conditions.

10 When you compute K−1, multiply by detK = N + 1 to get nice numbers :

Column 2 of 5K−1 solves the equation Kv = 5δ when the delta vector is δ =
We know from KK−1 = I that K times each column of K−1 is a delta vector.

5K−1 =




4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4




10

2

4
3

6

graph of

column 2

Solution Column 2 of 5K−1 is like the solution to −y ′′ = 5δ
(
x− 2

5

)
. The column

of 5K−1 has a max in row 2 and the solution y(x) has a max at x = 2
5

.

11 K comes with two boundary conditions. T only has y(1) = 0. B has no boundary
conditions on y. Verify that K = ATA. Then remove the first row of A to get T =
AT

1 A1. Then remove the last row to get dependent rows : B = AT
0 A0.

The backward first difference A =




1
−1 1

−1 1
−1


 gives K = ATA.

Solution A is the matrix in Problem 7 with 1’s on the main diagonal and −1’s on the
diagonal above. ATA is the symmetric second difference matrix with three nonzero
diagonals. Those diagonals contain −1’s and 2’s and −1’s. Then removing the top
row of A gives a rectangular A1 with AT

1 A1 = T as in Problem 7 (T11 = 1 not 2).
Removing the last row gives A2 with AT

2 A2 = B and BNN = 1 not 2.

12 Multiply K3 by its eigenvector yn = (sinnπh, sin 2nπh, sin 3nπh) to verify that the
eigenvalues λ1, λ2, λ3 are λn = 2 − 2 cos nπ

4
in Kyn = λnyn. This uses the

trigonometric identity sin(A+B) + sin(A−B) = 2 sinA cosB.

Solution The eigenvectors of K are “sine vectors” just as the eigenfunctions of −y ′′ =
λy with y(0) = 0 = y(1) are sine functions.

13 Those eigenvalues of K3 are 2 −
√
2 and 2 and 2 +

√
2. Those add to 6, which is

the trace of K3. Multiply those eigenvalues to get the determinant of K3.

Solution Multiplying 2 −
√
2 times 2 +

√
2 gives 4 − 2 = 2. Then multiplying by 2

gives 4. This is the determinant (and 2 −
√
2, 2 +

√
2, 2 are the eigenvalues) of 3 by 3

matrix K3.
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14 The slope of a ramp function is a step function. The slope of a step function is a delta
function. Suppose the ramp function is r(x) = −x for x ≤ 0 and r(x) = x for x ≥ 0
(so r(x) = |x|). Find dr/dx and d2r/dx2.

Solution For the down-up ramp function r(x) = |x| = absolute value of x, the deriva-
tives are dr/dx = −1 then +1 and d2r/dx2 = 2δ(x) because dr/dx jumps by 2 at
x = 0.

15 Find the second differences yn+1 − 2yn + yn−1 of these infinitely long vectors y :

Constant (. . . , 1, 1, 1, 1, 1, . . .)

Linear (. . . ,−1, 0, 1, 2, 3, . . .)

Quadratic (. . . , 1, 0, 1, 4, 9, . . .)

Cubic (. . . ,−1, 0, 1, 8, 27, . . .)

Ramp (. . . , 0, 0, 0, 1, 2, . . .)

Exponential (. . . , e−iω, e0, eiω, e2iω , . . .).

It is amazing how closely those second differences follow second derivatives for y(x) =
1, x, x2, x3,max(x, 0), and eiωx. From eiωx we also get cosωx and sinωx.

Solution The six second differences are : zero vector, zero vector, constant vector of
2’s, 6 times the linear vector, (for ramp : delta vector with δ0 = 1), eiω − 2 + e−iω =
2 cosω − 2 times the exponential vector. Like 2nd derivatives of 1, x, x2, x3, ramp,
eiωx.

Problem Set 7.4, page 422

1 What solution to Laplace’s equation completes “degree 3” in the table of pairs of solu-
tions ? We have one solution u = x3 − 3xy2, and we need another solution.

Solution Start with s = −y3. Then syy = −6y, and therefore we need sxx = 6y.

Integrating twice with respect to x gives 3y2x. Therefore the second function is
s(x, y) = −y3 + 3x2y.

2 What are the two solutions of degree 4, the real and imaginary parts of (x + iy)4 ?
Check uxx + uyy = 0 for both solutions.

Solution Expanding (x+ iy)4 gives

(x+ iy)4 = x4 − 6x2y2 + y4 + (4x3y − 4xy3)i

Therefore the two solutions would be :

u(x, y) = x4
− 6x2y2 + y4 and s(x, y) = 4x3y − 4xy3

Checking the first solution :

∂2(x4 − 6x2y2 + y4)

∂x2
+
∂2(x4 − 6x2y2 + y4)

∂y2
= (12x2−12y2)+(−12x2+12y2) = 0

Checking the second solution :

∂2(4x3y − 4xy3)

∂x2
+

∂2(4x3y − 4xy3)

∂y2
= (24xy − 0) + (0− 24xy) = 0
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3 What is the second x-derivative of (x+ iy)n ? What is the second y-derivative ? Those
cancel in uxx + uyy because i2 = −1.

Solution The second x-derivative of (x+ iy)n is :

∂2(x+ iy)n

∂x2
= n(n− 1)(x+ iy)n−2

The second y-derivative of (x+ iy)n cancels that because

∂2(x+ iy)n

∂y2
= i · i · n(n− 1)(x+ iy)n−2 = −n(n− 1)(x+ iy)n−2

4 For the solved 2 × 2 example inside a 4 × 4 square grid, write the four equations (9)
at the four interior nodes. Move the known boundary values 0 and 4 to the right hand
sides of the equations. You should see K2D on the left side multiplying the correct
solution U = (U11, U12, U21, U22) = (1, 2, 2, 3).

Solution The equations at the interior node would be :

4U1,1 − U2,1 − U0,1 − U1,2 − U1,0 = 0

4U1,2 − U2,2 − U0,2 − U1,3 − U1,1 = 0

4U2,1 − U3,1 − U1,1 − U2,2 − U2,0 = 0

4U2,2 − U3,2 − U1,2 − U2,3 − U2,1 = 0

Substituting the known boundary values leaves :

4U1,1 − U2,1 − U1,2 = 4

4U1,2 − U2,2 − U1,1 = 8

4U2,1 − U1,1 − U2,2 = 0

4U2,2 − U1,2 − U2,1 = 4

Writing this in matrix form gives :



4 −1 0 −1
−1 4 −1 0
0 −1 4 −1

−1 0 −1 4







U1,1

U1,2

U2,1

U2,2


 =




4
8
0
4


 and




U1,1

U1,2

U2,1

U2,2


 =




2
3
1
2




5 Suppose the boundary values on the 4 × 4 grid change to U = 0 on three sides and
U = 8 on the fourth side. Find the four inside values so that each one is the average of
its neighbors.

Solution The values at the 16 nodes will be

0 0 0 0

0 1
2

1
2

0

0 3
2

3
2

0

0/4 4 4 0/4

Notice that the corner boundary values do not enter the 5-point equations around
interior points. Every interior value must be the average of its four neighbors. By
symmetry the two middle columns must be the same.
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6 (MATLAB) Find the inverse (K2D)−1 of the 4 by 4 matrix displayed for the square grid.

Solution The circulant matrix K2D on page 422 has a circulant inverse :

(K2D)−1 =
1

24




7 2 1 2
2 7 2 1
1 2 7 2
2 1 2 7


 .

7 Solve this Poisson finite difference equation (right side 6= 0) for the inside values
U11, U12, U21, U22. All boundary values like U10 and U13 are zero. The boundary
has i or j equal to 0 or 3, the interior has i and j equal to 1 or 2 :

4Uij − Ui−1,j − Ui+1,j − Ui,j−1 − Ui,j+1 = 1 at four inside points.

Solution The interior solution to the Poisson equation (on this small grid) is

0 0 0 0

0 1
2

1
2

0

0 1
2

1
2

0

0 0 0 0

On a larger grid Uij will not be constant in the interior.

8 A 5× 5 grid has a 3 by 3 interior grid : 9 unknown values U11 to U33. Create the 9× 9
difference matrix K2D.

Solution Order the points by rows to get U11, U12, U13, U21, U22, U23, U31, U32, U33.
Then K2D is symmetric with 3 by 3 blocks :

K2D =

[
A −I 0

−I A −I
0 −I A

]
A =

[
4 −1 0

−1 4 −1
0 −1 4

]

9 Use eig(K2D) to find the nine eigenvalues of K2D in Problem 8. Those eigenvalues
will be positive ! The matrix K2D is symmetric positive definite.

Solution eig(K2D) in Problem 8 produces 9 eigenvalues between 0 and 4 :

The eigenvalues come from eig(K2D) and explicitly from equation (11). Notice that
pairs of eigenvalues add to 8. The eigenvalue distribution is symmetric around λ = 4:

1.1716 2.5828 2.5828 4.0 4.0 4.0 5.4142 5.4142 6.8284

10 If u(x) solves uxx = 0 and v(y) solves vyy = 0, verify that u(x)v(y) solves Laplace’s
equation. Why is this only a 4-dimensional space of solutions ? Separation of variables
does not give all solutions—only the solutions with separable boundary conditions.

Solution If
∂2u

∂x2
= 0 and

∂2v

∂y2
= 0 then

∂2u(x)v(y)

∂x2
+

∂2u(x)v(y)

∂y2
= v(y)

∂2u(x)

∂x2
+ u(x)

∂2v(y)

∂y2

= v · 0 + u · 0 = 0
Therefore u(x)v(y) solves Laplace’s equation. But the only solutions found this way
are u(x)v(y) = (A+Bx)(C +Dy).
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Problem Set 7.5, page 428

Problems 1 − 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entries of ATA (the degrees of
the nodes). All the off-diagonal entries of ATA are −1. Show the reduced matrix R
without row 5 and column 5. Node 5 is “grounded” and v5 = 0.

Solution The complete graph (all edges included) has no zeros in ATA :

ATA =




4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4


 Singular!

The grounded matrix would be

(ATA)reduced =




4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4


 Invetible!

2 Show that the trace of ATA (sum down the diagonal = sum of eigenvalues)
is n2 − n. What is the trace of the reduced (and invertible) matrix R of size n− 1 ?

Solution ATA is n by n and each diagonal entry is n − 1. Therefore the trace is
n(n− 1) = n2

− n. The reduced matrix R has n− 1 diagonal entries, each still equal
to n− 1. Therefore the trace is (n− 1)(n− 1) = n2 − 2n+ 1.

3 For n = 4, write the 3 by 3 matrix R = (Areduced)
T(Areduced). Show that

RR−1 = I when R−1 has all entries 1
4

off the diagonal and 2
4

on the diagonal.

Solution
Reduced matrix R =

[
3 −1 −1

−1 3 −1
−1 −1 3

]

R by its proposed inverse gives
[

3 −1 −1
−1 3 −1
−1 −1 3

]

4 For every n, the reduced matrix R of size n − 1 is invertible. Show that RR−1 = I
when R−1 has all entries 1/n off the diagonal and 2/n on the diagonal.

Solution

1

4

[
2 1 1
1 2 1
1 1 2

]
=

1

4

[
6− 1− 1 3− 2− 1 3− 1− 2

−2 + 3− 1 −1 + 6− 1 −1 + 3− 2
−2− 1 + 3 −1− 2 + 3 −1− 1 + 6

]
= I.

5 Write the 6 by 3 matrix M = Areduced when n = 4. The equation Mv = b is to be
solved by least squares. The vector b is like scores in 6 games between 4 teams (team
4 always scores zero; it is grounded). Knowing the inverse of R = MTM , what is the
least squares ranking v̂1 for team 1 from solving MTM v̂ = MTb ?

Solution Remove column 4 of A when node 4 is grounded (x4 = 0).
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M =




−1 1 0
−1 0 1
0 −1 1

−1 0 0
0 −1 0
0 0 −1




has independent columns

The least squares solution v̂ to Mv = b comes from MTM v̂ = MTb. This v̂ gives
the predicted point spreads when all teams play all other teams. The first component v̂1
would come from the first row of (MTM)−1 multiplying by MTb. Note that

MTM =

[
3 −1 −1

−1 3 −1
−1 −1 3

]
and (MTM)−1 =

1

4

[
2 1 1
1 2 1
1 1 2

]
.

6 For the tree graph with 4 nodes, ATA is in equation (1). What is the 3 by 3 matrix
R = (ATA)reduced? How do we know it is positive definite?

Solution The reduced form of ATA removes row 4 and column 4 :

Singular ATA =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 reduces to invertible

[
1 −1 0

−1 2 −1
0 −1 2

]

The first is positive semidefinite (A has dependent columns). the second is positive
definite (the reduced A has 3 independent columns).

7 (a) If you are given the matrix A, how could you reconstruct the graph?

Solution Each row of A tells you an edge in the graph.

(b) If you are given L = ATA, how could you reconstruct the graph (no arrows) ?

Solution Each nonzero off the main diagonal of ATA tells you an edge.

(c) If you are given K = ATCA, how could you reconstruct the weighted graph?

Solution Each nonzero off the main diagonal tells you the weight of that edge.

8 Find K = ATCA for a line of 3 resistors with conductances c1 = 1, c2 = 4, c3 = 9.
Write Kreduced and show that this matrix is positive definite.

Solution A circle of three resistors has 3 edges and 3 nodes :

ATCA =

[ −1 1 0
0 −1 1
1 0 −1

][
1

4
9

][ −1 0 1
1 −1 0
0 1 −1

]

=

[
5 −4 −1

−4 13 −9
−1 −9 10

]
is only semidefinite

(ATCA)reduced =

[
−1 1 0
0 −1 1

] [ 1
4

9

][ −1 0
1 −1
0 1

]
=

[
5 −4

−4 13

]

.

The determinant tests 5 > 0 and (5)(13) > 42 are passed.
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9 A 3 by 3 square grid has n = 9 nodes and m = 12 edges. Number nodes by rows.

(a) How many nonzeros among the 81 entries of L = ATA?

Solution The 9 nodes ordered by rows have 2, 3, 2, 3, 4, 3, 2, 3, 2 neighbors around
them. Those add to 24 nonzeros off the diagonal. The 9 diagonal entries make 33
nonzeros out of 92 = 81 entries in L = ATA.

(b) Write down the 9 diagonal entries in the degree matrix D : they are not all 4.

Solution Those 9 numbers are the degrees of the 9 nodes (= diagonal entries in ATA).

(c) Why does the middle row of L = D −W have four −1’s ? Notice L = K2D !

Solution The middle node in the grid has 4 neighbors.

10 Suppose all conductances in equation (5) are equal to c. Solve equation (6) for the
voltages v2 and v3 and find the current I flowing out of node 1 (and into the ground at
node 4). What is the “system conductance” I/V from node 1 to node 4 ?

This overall conductance I/V should be larger than the individual conductances c.

Solution The reduced equation (6) with conductances = c is
[

3c −c
−c 2c

] [
v2
v3

]
=

[
cV
cV

]
and

[
v2
v3

]
=

[
0.6V
0.8V

]
.

Then the flows on the five edges in Figure 7.6 use A in equation (2). Remember the
minus sign :

−cAv = −c




−1 1 0 0
−1 0 1 0
0 −1 1 0

−1 0 0 1
0 −1 0 1







V
0.6V
0.8V

0


 = cV




0.4
0.2

−0.2
1.0
0.6




The total flow (on edges 1+2+4 out of node 1, or on edges 3+4 into the grounded node
4, is I = 1.6cV . The overall system conductance is 1.6c, greater than the individual
conductance c on each edge.

11 The multiplication ATA can be columns of AT times rows of A. For the tree with
m = 3 edges and n = 4 nodes, each (column times row) is (4 × 1)(1 × 4) = 4 × 4.
Write down those three column-times-row matrices and add to get L = ATA.

Solution Suppose the 3 tree edges go out of node 1 to nodes 2, 3, 4. (The problem
allows to choose other trees, including a line of 4 nodes.) Then

A =

[ −1 1 0 0
−1 0 1 0
−1 0 0 1

]
ATA =




3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1


 = sum of (columns ofAT)( rows of A)

=



−1
1
0
0


 [−1 1 0 0 ] +



−1
0
1
0


 [−1 0 1 0 ] +



−1
0
0
1


 [−1 0 0 1 ] .
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12 A graph with two separate 3-node trees is not connected. Write its 6 by 4 incidence
matrix A. Find two solutions to Av = 0, not just one solution v = (1, 1, 1, 1, 1, 1). To
reduce ATA we must ground two nodes and remove two rows and columns.

Solution The incidence matrix for two 3-node trees is

A =

[
Atree 0
0 Atree

]
with Atree =

[
1 1 0

−1 0 1

]
(for example)

The columns of Atree add to zero so we have 2 independent solutions to Av = 0 :

v =




1
1
1
0
0
0




and




0
0
0
1
1
1




come from Atree

[
1
1
1

]
=

[
0
0
0

]
.

13 “Element matrices” from column times row appear in the finite element method.
Include the numbers c1, c2, c3 in the element matrices K1,K1,K3.

Ki = (row i of A)T (ci) (row i of A) K = ATCA = K1 + K2 + K3.

Write the element matrices that add to ATA in (1) for the 4-node line graph.

ATA =




[
K1

]
[
K2

]

[
K3

]



=

assembly of the nonzero
entries of K1 +K2 +K3

from edges 1, 2, and 3

Solution The three “element matrices” for the three edges come from multiplying the
three columns of AT by the three rows of A. Then ATA equals

=



−1
1
0
0


 [−1 1 0 0 ] +




0
−1
1
0


 [ 0 −1 1 0 ] +




0
0

−1
1


 [ 0 0 −1 1 ] .

When the diagonal matrix C is included, those are multiplied by c1, c2, and c3. Those
products produce 2 by 2 blocks of nonzeros in 4× 4 matrices :

K1 = c1




1 −1
−1 1


 K2 = c2


 1 −1

−1 1


 K3 = c3


 1 −1

−1 1




Then ATCA = K1 + K2 + K3. This ‘assembly” of the element stiffness matrices
just requires placing the nonzeros correctly into the final matrix ATCA.

14 An n by n grid has n2 nodes. How many edges in this graph ? How many interior
nodes ? How many nonzeros in A and in L = ATA ? There are no zeros in L−1 !

Solution An n by n grid has n horizontal rows (n−1 edges on each row) and n vertical
columns (n − 1 edges down each column). Altogether 2n(n − 1) edges. There are
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(n − 2)2 interior nodes—a square grid with the boundary nodes removed to reduce n
to n− 2.

Every edge produces 2 nonzeros (−1 and +1) in A. Then A has 4n(n − 1) nonzeros.
The matrix ATA has size n2 with n2 diagonal nonzeros—and off the diagonal of ATA
there are two −1’s for each edge : altogether n2 + 4n(n− 1) = 5n2

− 4n nonzeros
out of n4 entries. For n = 2, this means 12 nonzeros in a 4 by 4 matrix.

15 When only e = C−1w is eliminated from the 3-step framework, equation (??) shows

Saddle-point matrix
Not positive definite

[
C−1 A
AT 0

] [
w
v

]
=

[
b
f

]
.

Multiply the first block row by ATC and subtract from the second block row :

After block elimination

[
C−1 A
0 −ATCA

] [
w
v

]
=

[
b

f −ATCb

]
.

After m positive pivots from C−1, why does this matrix have negative pivots ?
The two-field problem for w and v is finding a saddle point, not a minimum.

Solution The three equations e = b − Av and w = Ce and ATw = f reduce to two
equations when e is replaced by C−1w :

C−1w = b−Av
ATw = f

become

[
C−1 A
AT 0

] [
v
w

]
=

[
b
f

]
.

Multiply the first equation by ATC to get ATw = ATCb − ATCAv. Subtract from
the second equation ATw = f , to eliminate w :

ATCb−ATCAv = f .

This gives the second row of the block matrix after elimination :[
C−1 A
0 −ATCA

] [
v
w

]
=

[
b
f −ATCb

]
.

The pivots of that matrix on the left side start with 1/c1, 1/c2, . . . , 1/cm. Then we get
the n pivots of −ATCA which are negative, because this matrix is negative definite.

Altogether we are finding a saddle point (v,w) of the energy (quadratic function).
The derivative of that quadratic gives our linear equations. The block matrix in those
equations has m positive eigenvalues and n negative eigenvalues.

16 The least squares equation ATAv = ATb comes from the projection equation
ATe = 0 for the error e = b − Av. Write those two equations in the symmetric
saddle point form of Problem 7 (with f = 0).

In this case w = e because the weighting matrix is C = I .

Solution Ordinary least squares for Av = b separates the data vector b in two perpen-
dicular parts :

b = (Av̂) + (b−Av̂) = (projection of b) + (error in b).

The error e = b−Av satisfies ATe = ATb−ATAv = 0 (which means that ATAv =
ATb, the key equation). That equation dTe = 0 is Kirchhoff’s Current Law for flows in
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a network. It is a candidate for the “most important equation in applied mathematics”—
the conservation equation or continuity equation “flow in = flow out.”

In the form of Problem 15 (with C = I) the equations are[
I A
AT 0

] [
e
v

]
=

[
b
0

]
or

e+Av = b
ATe = 0 .

17 Find the three eigenvalues and three pivots and the determinant of this saddle point
matrix with C = I . One eigenvalue is negative because A has one column :

m = 2, n = 1

[
C−1 A
AT 0

]
=

[
1 0 −1
0 1 1

−1 1 0

]
.

Solution The eigenvalues come from det(M − λI) = 0 :
[

1− λ 0 −1
0 1− λ 1
−1 1 −λ

]
= −λ(1 − λ)2 − 2(1− λ) = 0 .

Then (1− λ)(λ2 − λ− 2) = 0 and (1− λ)(λ− 2)(λ+1) = 0 and the eigenvalues are
λ = 1,2,−1. Check the sum 1 + 2 − 1 = 2 equal to the trace (sum down the main
diagonal 1 + 1 + 0 = 2).

The determinant is the product λ1λ2λ3 = (1)(2)(−1) = −2. Notice m = 2 positive
λ’s and n = 1 negative eigenvalue.

Elimination finds the three pivots (which also multiply to give detM = −2) :



1 0 −1

0 1 1

−1 1 0


 →




1 0 −1

0 1 1

0 1 −1


 −→




1 0 −1

0 1 1

0 0 −2©


 .


