DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

Book Website Email address

math.mit.edu/dela

Course page

OpenCourseWare

Home page

Publisher

Direct email

diffeqla@gmail.com

web.mit.edu/18.06 video lectures: ocw.mit.edu

math.mit.edu/~gs www.wellesleycambridge.com

gs@math.mit.edu

Wellesley - Cambridge Press Box 812060

Wellesley, Massachusetts 02482

Problem Set 7.1, page 393

1 Suppose your pulse is measured at $b_1 = 70$ beats per minute, then $b_2 = 120$, then $b_3 = 80$. The least squares solution to three equations $v = b_1, v = b_2, v = b_3$ with $A^{\rm T} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ is $\hat{v} = (A^{\rm T}A)^{-1}A^{\rm T}b =$ _____. Use calculus and projections:

(a) Minimize $E = (v - 70)^2 + (v - 120)^2 + (v - 80)^2$ by solving dE/dv = 0.

Solution (a) $\frac{dE}{dv} = 2(v - 70) + 2(v - 120) + 2(v - 80) = 0$ at the minimizing \hat{v} .

Cancel the 2's: 3v = 70 + 120 + 80 = 270 so $\hat{v} = v_{\text{average}} = 90$

(b) Project b = (70, 120, 80) onto a = (1, 1, 1) to find $\hat{v} = a^{T}b/a^{T}a$.

Solution (b) The projection of **b** onto the line through a is $p = a\hat{v}$:

$$\boldsymbol{b} = \begin{bmatrix} 70\\120\\80 \end{bmatrix} \qquad \boldsymbol{a} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \qquad \hat{\boldsymbol{v}} = \frac{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}}\boldsymbol{a}} = \frac{270}{3} = \boldsymbol{90}.$$

2 Suppose $Av = \mathbf{b}$ has m equations $a_iv = b_i$ in *one unknown* v. For the sum of squares $E = (a_1v - b_1)^2 + \cdots + (a_mv - b_m)^2$, find the minimizing \hat{v} by calculus. Then form $A^T A \hat{v} = A^T \mathbf{b}$ with one column in A, and reach the same \hat{v} .

Solution To minimize E we solve dE/dv = 0. For m = 3 equations $a_i v = b_i$,

$$\frac{dE}{dv} = 2a_1(a_1v - b_1) + 2a_2(a_2v - b_2) + 2a_3(a_3v - b_3) = 0 \text{ is zero when}$$
$$v = \hat{v} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{a_1^2 + a_2^2 + a_3^2} = \frac{\mathbf{a}^{\mathbf{T}}\mathbf{b}}{\mathbf{a}^{\mathbf{T}}\mathbf{a}}.$$

When A has one column, $A^{\mathrm{T}}A\hat{v} = A^{\mathrm{T}}b$ is the same as $(a^{\mathrm{T}}a)\hat{v} = (a^{\mathrm{T}}b)$.

3 With $\boldsymbol{b} = (4, 1, 0, 1)$ at the points x = (0, 1, 2, 3) set up and solve the normal equation for the coefficients $\hat{\boldsymbol{v}} = (C, D)$ in the nearest line C + Dx. Start with the four equations $A\boldsymbol{v} = \boldsymbol{b}$ that would be solvable if the points fell on a line.

Solution The unsolvable equation has m = 4 points on a line : only n = 2 unknowns.

$$A\boldsymbol{v} = \boldsymbol{b} \text{ is } \begin{bmatrix} 1 & 0\\ 1 & 1\\ 1 & 2\\ 1 & 3 \end{bmatrix} \begin{bmatrix} C\\ D \end{bmatrix} = \begin{bmatrix} 4\\ 1\\ 0\\ 1 \end{bmatrix} \text{ leading to } A^{\mathrm{T}}A\widehat{\boldsymbol{v}} = A^{\mathrm{T}}\boldsymbol{b} :$$

$$\begin{bmatrix} 4 & 6\\ 6 & 14 \end{bmatrix} \begin{bmatrix} \widehat{C}\\ \widehat{D} \end{bmatrix} = \begin{bmatrix} 6\\ 4 \end{bmatrix} \text{ gives } \begin{bmatrix} \widehat{C}\\ \widehat{D} \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 14 & -6\\ -6 & 4 \end{bmatrix} \begin{bmatrix} 6\\ 4 \end{bmatrix} = \frac{1}{2a} \begin{bmatrix} 60\\ -20 \end{bmatrix} = \begin{bmatrix} \mathbf{3}\\ -\mathbf{1} \end{bmatrix}$$

The closest line to the four points is b = 3 - x.

4 In Problem 3, find the projection p = Av. Check that those four values lie on the line C + Dx. Compute the error e = b - p and verify that $A^{T}e = 0$. Solution The projection $p = A\hat{v}$ is

Chapter 7. Applied Mathematics and $A^{T}A$

$$\boldsymbol{p} = \begin{bmatrix} 1 & 0\\ 1 & 1\\ 1 & 2\\ 1 & 3 \end{bmatrix} \begin{bmatrix} 3\\ -1 \end{bmatrix} = \begin{bmatrix} 3\\ 2\\ 1\\ 0 \end{bmatrix} \text{ with error } \boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p} = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}$$

The best line C + Dx = 3 - x does produce p = (3, 2, 1, 0) at the four points x = 0, 1, 2, 3.

Multiply this e by A^{T} to get $A^{\mathrm{T}}e = \begin{bmatrix} 0\\0 \end{bmatrix}$ as expected.

5 (Problem 3 by calculus) Write down $E = ||\boldsymbol{b} - A\boldsymbol{v}||^2$ as a sum of four squares : the last one is $(1 - C - 3D)^2$. Find the derivative equations $\partial E/\partial C = \partial E/\partial D = 0$. Divide by 2 to obtain $A^T A \hat{\boldsymbol{v}} = A^T \boldsymbol{b}$.

Solution Minimize $E = (4 - C)^2 + (1 - C - D)^2 + (-C - 2D)^2 + (1 - C - 3D)^2$. The partial derivatives are $\partial E/\partial C = 0$ and $\partial E/\partial D = 0$ at the minimum:

$$-2(4-C) - 2(1-C-D) - 2(-C-2D) - 2(1-C-3D) = 0$$

$$-2(1 - C - D) - 4(-C - 2D) - 6(1 - C - 3D) = 0$$

Factoring out -2 and collecting terms this is the same equation $A^{T}A\hat{v} = A^{T}b!$

$$\begin{array}{ccc} 6-4C-&6D=0\\ 4-6C-14D=0 \end{array} \text{ or } \begin{bmatrix} 4 & 6\\ 6 & 14 \end{bmatrix} \begin{bmatrix} \hat{C}\\ \hat{D} \end{bmatrix} = \begin{bmatrix} 6\\ 4 \end{bmatrix}.$$

6 For the closest parabola $C + Dt + Et^2$ to the same four points, write down 4 unsolvable equations Av = b for v = (C, D, E). Set up the normal equations for \hat{v} . If you fit the best cubic $C + Dt + Et^2 + Ft^3$ to those four points (thought experiment), what is the error vector e?

Solution The parabola $C + Dt + Et^2$ fits the 4 points exactly if Av = b:

$$\begin{split} t &= 0 & C + 0D + 0E = 4 \\ t &= 1 & C + 1D + 1E = 1 \\ t &= 2 & C + 2D + 4E = 0 \\ t &= 3 & C + 3D + 9E = 1 \end{split} A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}. \\ A^{\mathrm{T}}A &= \begin{bmatrix} 4 & 6 & 14 \\ 6 & 14 & 36 \\ 14 & 36 & 98 \end{bmatrix} \qquad .\phi A^{\mathrm{T}}\boldsymbol{b} = \begin{bmatrix} 4 + 1 + 0 + 1 \\ 0 + 1 + 0 + 3 \\ 0 + 1 + 0 + 9 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 10 \end{bmatrix}.$$

The cubic $C + Dt + Et^2 + Ft^3$ can fit 4 points exactly, with **error** = **zero vector**.

7 Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{v} = (C, D)$ and draw the closest line.

Solution
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$$
. The solution $\hat{x} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$ comes from $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 35 \\ 42 \end{bmatrix}$

8 Find the projection $p = A\hat{v}$ in Problem 7. This gives the three heights of the closest line. Show that the error vector is e = (2, -6, 4).

Solution $\mathbf{p} = A\widehat{\mathbf{x}} = (5, 13, 17)$ gives the heights of the closest line. The error is $\mathbf{b} - \mathbf{p} = (2, -6, 4)$. This error \mathbf{e} has $P\mathbf{e} = P\mathbf{b} - P\mathbf{p} = \mathbf{p} - \mathbf{p} = \mathbf{0}$.

7.1. Least Squares and Projections

9 Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in Problem 8. Compute \hat{v} and the closest line to these new measurements. Explain the answer: $\boldsymbol{b} = (2, -6, 4)$ is perpendicular to _____ so the projection is $\boldsymbol{p} = \boldsymbol{0}$.

Solution If b = previous error e then b is perpendicular to the column space of A. Projection of b is p = 0.

10 Suppose the measurements at t = -1, 1, 2 are b = (5, 13, 17). Compute \hat{v} and the closest line e. The error is e = 0 because this b is _____.

Solution If $\mathbf{b} = A\hat{\mathbf{x}} = (5, 13, 17)$ then $\hat{\mathbf{x}} = (9, 4)$ and $\mathbf{e} = \mathbf{0}$ since \mathbf{b} is in the column space of A.

11 Find the best line C + Dt to fit b = 4, 2, -1, 0, 0 at times t = -2, -1, 0, 1, 2.

Solution The least squares equation is $\begin{bmatrix} 5 & \mathbf{0} \\ \mathbf{0} & 10 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 5 \\ -10 \end{bmatrix}$. Solution: C = 1, D = -1. Line 1 - t. Symmetric t's \Rightarrow diagonal $A^{\mathrm{T}}A$

12 Find the *plane* that gives the best fit to the 4 values $\boldsymbol{b} = (0, 1, 3, 4)$ at the corners (1,0) and (0,1) and (-1,0) and (0,-1) of a square. At those 4 points, the equations C + Dx + Ey = b are $A\boldsymbol{v} = \boldsymbol{b}$ with 3 unknowns $\boldsymbol{v} = (C, D, E)$.

Solution
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix}$$
 has $A^{\mathrm{T}}A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and $A^{\mathrm{T}}b = \begin{bmatrix} 8 \\ -2 \\ -3 \end{bmatrix}$.

The solution $(C, D, E) = (2, -1, \frac{3}{2})$ gives the best plane $2 - x - \frac{3}{2}y$.

13 With b = 0, 8, 8, 20 at t = 0, 1, 3, 4 set up and solve the normal equations $A^{T}Av = A^{T}b$. For the best straight line C + Dt, find its four heights p_i and four errors e_i . What is the minimum value $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

Solution
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$ give $A^{T}A = \begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix}$ and $A^{T}b = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$.
 $A^{T}A\hat{x} = A^{T}b$ gives $\hat{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $p = A\hat{x} = \begin{bmatrix} 1 \\ 5 \\ 13 \\ 17 \end{bmatrix}$ and $e = b - p = \begin{bmatrix} -1 \\ 3 \\ -5 \\ 3 \end{bmatrix}$.

14 (By calculus) Write down $E = ||\boldsymbol{b} - A\boldsymbol{v}||^2$ as a sum of four squares—the last one is $(C + 4D - 20)^2$. Find the derivative equations $\partial E/\partial C = 0$ and $\partial E/\partial D = 0$. Divide by 2 to obtain the normal equations $A^{\mathrm{T}}A\hat{\boldsymbol{v}} = A^{\mathrm{T}}\boldsymbol{b}$.

Solution $E = (C + \mathbf{0}D)^2 + (C + \mathbf{1}D - 8)^2 + (C + \mathbf{3}D - 8)^2 + (C + \mathbf{4}D - 20)^2$. Then $\partial E/\partial C = 2C + 2(C + D - 8) + 2(C + 3D - 8) + 2(C + 4D - 20) = 0$ and $\partial E/\partial D = 1 \cdot 2(C + D - 8) + 3 \cdot 2(C + 3D - 8) + 4 \cdot 2(C + 4D - 20) = 0$. These normal equations $\partial E/\partial C = 0$ and $\partial E/\partial D = 0$ are again $\begin{bmatrix} 4 & 8 \\ 8 & 26 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 36 \\ 112 \end{bmatrix}$

15 Which of the four subspaces contains the error vector e? Which contains p? Which contains \hat{v} ?

Solution The error e is contained in the nullspace $N(A^T)$, since $A^T e = 0$. The projection p is contained in the column space C(A). The vector \hat{v} of coefficients can be any vector in \mathbb{R}^n .

16 Find the height C of the best *horizontal line* to fit $\mathbf{b} = (0, 8, 8, 20)$. An exact fit would solve the four unsolvable equations C = 0, C = 8, C = 8, C = 20. Find the 4 by 1 matrix A in these equations and solve $A^{T}A\hat{v} = A^{T}b$.

Solution $E = (C-0)^2 + (C-8)^2 + (C-8)^2 + (C-20)^2$ and $A^{\rm T} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$.

$$A^{\mathrm{T}}A = [4]. A^{\mathrm{T}}\boldsymbol{b} = [36] \text{ and } (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\boldsymbol{b} = \boldsymbol{9} = \text{best } C. \boldsymbol{e} = (-9, -1, -1, 11).$$

17 Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution $\hat{v} = (C, D)$ and draw the closest line.

Solution
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 21 \end{bmatrix}$$
. The solution $\widehat{\boldsymbol{x}} = \begin{bmatrix} \boldsymbol{9} \\ \boldsymbol{4} \end{bmatrix}$ comes from $\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 35 \\ 42 \end{bmatrix}$.

18 Find the projection $p = A\hat{v}$ in Problem 17. This gives the three heights of the closest line. Show that the error vector is e = (2, -6, 4). Why is Pe = 0?

Solution $\mathbf{p} = A\hat{\mathbf{x}} = (5, 13, 17)$ gives the heights of the closest line. The error is $\mathbf{b} - \mathbf{p} = (2, -6, 4)$. This error \mathbf{e} has $P\mathbf{e} = P\mathbf{b} - P\mathbf{p} = \mathbf{p} - \mathbf{p} = \mathbf{0}$.

19 Suppose the measurements at t = -1, 1, 2 are the errors 2, -6, 4 in Problem 18. Compute \hat{v} and the closest line to these new measurements. Explain the answer: b = (2, -6, 4) is perpendicular to _____ so the projection is p = 0.

Solution If b = error e then b is perpendicular to the column space of A. Projection p = 0.

20 Suppose the measurements at t = -1, 1, 2 are $\boldsymbol{b} = (5, 13, 17)$. Compute $\hat{\boldsymbol{v}}$ and the closest line and \boldsymbol{e} . The error is $\boldsymbol{e} = \boldsymbol{0}$ because this \boldsymbol{b} is _____?

Solution If $\mathbf{b} = A\hat{\mathbf{x}} = (5, 13, 17)$ then $\hat{\mathbf{x}} = (9, 4)$ and $\mathbf{e} = \mathbf{0}$ since \mathbf{b} is in the column space of A.

Questions 21–26 ask for projections onto lines. Also errors e = b - p and matrices P.

21 Project the vector **b** onto the line through **a**. Check that **e** is perpendicular to **a**:

(a)
$$\boldsymbol{b} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 and $\boldsymbol{a} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ (b) $\boldsymbol{b} = \begin{bmatrix} 1\\3\\1 \end{bmatrix}$ and $\boldsymbol{a} = \begin{bmatrix} -1\\-3\\-1 \end{bmatrix}$

Solution (a) The projection p is

$$\boldsymbol{p} = \boldsymbol{a} \frac{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b}}{\boldsymbol{a}^{\mathrm{T}} \boldsymbol{a}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \frac{6}{3} = \begin{bmatrix} 2\\2\\2 \end{bmatrix} \quad \boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \text{ perpendicular to } \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Solution (b) In this case the projection is

$$p = a \frac{a^{\mathrm{T}}b}{a^{\mathrm{T}}a} = \begin{bmatrix} -1\\ -3\\ -1 \end{bmatrix} \frac{-11}{11} = \begin{bmatrix} 1\\ 3\\ 1 \end{bmatrix}$$
 and $e = b - p = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$.

7.1. Least Squares and Projections

22 Draw the projection of **b** onto **a** and also compute it from $p = \hat{v}a$:

(a)
$$\boldsymbol{b} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $\boldsymbol{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (b) $\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\boldsymbol{a} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Solution (a) The projection of $\boldsymbol{b} = (\cos \theta, \sin \theta)$ onto $\boldsymbol{a} = (1, 0)$ is $\boldsymbol{p} = (\cos \theta, 0)$

Solution (b) The projection of $\boldsymbol{b} = (1, 1)$ onto $\boldsymbol{a} = (1, -1)$ is $\boldsymbol{p} = (0, 0)$ since $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{b} = 0$.

23 In Problem 22 find the projection matrix $P = aa^{T}/a^{T}a$ onto each vector a. Verify in both cases that $P^{2} = P$. Multiply Pb in each case to find the projection p.

Solution
$$P_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\boldsymbol{p} = P_1 \boldsymbol{b} = \begin{bmatrix} \cos \theta \\ 0 \end{bmatrix}$. $P_2 = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $\boldsymbol{p} = P_2 \boldsymbol{b} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

24 Construct the projection matrices P_1 and P_2 onto the lines through the *a*'s in Problem 22. Is it true that $(P_1 + P_2)^2 = P_1 + P_2$? This would be true if $P_1P_2 = 0$.

Solution The projection matrices P_1 and P_2 (note correction P_2 not P-2) are

$$P_1 = \frac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a} = \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} \qquad P_2 = \frac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a} = \frac{1}{2} \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix}.$$

It is *not true* that $(P_1 + P_2)^2 = P_1 + P_2$. The sum of projection matrices is **not usually** a projection matrix.

25 Compute the projection matrices $aa^{T}/a^{T}a$ onto the lines through $a_{1} = (-1, 2, 2)$ and $a_2 = (2, 2, -1)$. Multiply those two matrices $P_1 P_2$ and explain the answer.

Solution
$$P_1 = \frac{1}{9} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix}, P_2 = \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix}.$$

 $P_1P_2 = zero matrix because a_1$ is perpendicular to a_2 .

26 Continuing Problem 25, find the projection matrix P_3 onto $a_3 = (2, -1, 2)$. Verify that $P_1 + P_2 + P_3 = I$. The basis a_1, a_2, a_3 is orthogonal !

Solution
$$P_1 + P_2 + P_3 = \frac{1}{9} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{bmatrix} + \frac{1}{9} \begin{bmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{bmatrix} = I$$

We can add projections onto arthogonal vectors. This is important

We can add projections onto orthogonal vectors. This is important.

27 Project the vector $\boldsymbol{b} = (1, 1)$ onto the lines through $\boldsymbol{a}_1 = (1, 0)$ and $\boldsymbol{a}_2 = (1, 2)$. Draw the projections p_1 and p_2 and add $p_1 + p_2$. The projections do not add to b because the *a*'s are not orthogonal.

Solution The projections of (1,1) onto the lines through (1,0) and (1,2) are $p_1 =$ (1,0) and $p_2 = (3/5, 6/5) = (0.6, 1.2)$. Then $p_1 + p_2 \neq b$.

28 (Quick and recommended) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\boldsymbol{b} = (1, 2, 3, 4)$ onto the column space of A. What shape is the projection matrix P and what is P?

Solution
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $P = \text{square matrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, $p = P \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$.

29 If A is doubled, then $P = 2A(4A^{T}A)^{-1}2A^{T}$. This is the same as $A(A^{T}A)^{-1}A^{T}$. The column space of 2A is the same as _____. Is \hat{v} the same for A and 2A?

Solution 2A has the same column space as A. Same p. But \hat{x} for 2A is half of \hat{x} for A.

30 What linear combination of (1, 2, -1) and (1, 0, 1) is closest to $\boldsymbol{b} = (2, 1, 1)$?

Solution $\frac{1}{2}(1,2,-1) + \frac{3}{2}(1,0,1) = (2,1,1)$. So **b** is in the plane: no error **e**. Projection shows P**b** = **b**.

31 (*Important*) If $P^2 = P$ show that $(I - P)^2 = I - P$. When P projects onto the column space of A, I - P projects onto which fundamental subspace ?

Solution If $P^2 = P$ then $(I - P)^2 = (I - P)(I - P) = I - PI - IP + P^2 = I - P$. When P projects onto the column space, I - P projects onto the *left nullspace*.

32 If *P* is the 3 by 3 projection matrix onto the line through (1,1,1), then I - P is the projection matrix onto _____.

Solution I - P is the projection onto the plane $x_1 + x_2 + x_3 = 0$, perpendicular to the direction (1, 1, 1):

$$I - P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

33 Multiply the matrix $P = A(A^{T}A)^{-1}A^{T}$ by itself. Cancel to prove that $P^{2} = P$. Explain why P(Pb) always equals Pb: The vector Pb is in the column space so its projection is _____.

Solution $(A(A^{T}A)^{-1}A^{T})^{2} = A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T} = A(A^{T}A)^{-1}A^{T}$. So $P^{2} = P$. Geometric reason: Pb is in the column space (where P projects). Then its projection P(Pb) is Pb for every b. So $P^{2} = P$.

34 If A is square and invertible, the warning against splitting $(A^{T}A)^{-1}$ does not apply. Then $AA^{-1}(A^{T})^{-1}A^{T} = I$ is true. When A is invertible, why is P = I and e = 0?

Solution If A is invertible then its column space is all of \mathbb{R}^n . So P = I and e = 0.

35 An important fact about $A^{T}A$ is this: If $A^{T}Ax = 0$ then Ax = 0. New proof: The vector Ax is in the nullspace of _____. Ax is always in the column space of _____. To be in both of those perpendicular spaces, Ax must be zero.

Solution If $A^{T}Ax = 0$ then Ax is in the nullspace of A^{T} . But Ax is always in the column space of A. To be in both of those perpendicular spaces, Ax must be zero. So A and $A^{T}A$ have the same nullspace.

Notes on mean and variance and test grades

If all grades on a test are 90, the mean is m = 90 and the variance is $\sigma^2 = 0$. Suppose the expected grades are g_1, \ldots, g_N . Then σ^2 comes from squaring distances to the mean:

Mean
$$m = \frac{g_1 + \dots + g_N}{N}$$
 Variance $\sigma^2 = \frac{(g_1 - m)^2 + \dots + (g_N - m)^2}{N}$

After every test my class wants to know m and σ . My expectations are usually way off.

7.2. Positive Definite Matrices and the SVD

36 Show that σ^2 also equals $\frac{1}{N}(g_1^2 + \cdots + g_N^2) - m^2$.

Solution Each term $(g_i - m)^2$ equals $g_i^2 - 2g_im + m^2$, so

$$\begin{split} \sigma^2 &= \frac{(\text{sum of } g_i^2) - 2m(\text{sum of } g_i) + Nm^2}{N} = \frac{(\text{sum of } g_i^2) - 2mNm + Nm^2}{N} \\ &= \frac{(\text{sum of } g_i^2)}{N} - m^2. \end{split}$$

37 If you flip a fair coin N times (1 for heads, 0 for tails) what is the expected number m of heads ? What is the variance σ^2 ?

Solution For a fair coin you expect N/2 heads in N flips. The variance σ^2 turns out to be N/4.

Problem Set 7.2, page 402

- **1** For a 2 by 2 matrix, suppose the 1 by 1 and 2 by 2 determinants a and $ac b^2$ are positive. Then $c > b^2/a$ is also positive.
 - (i) λ_1 and λ_2 have the same sign because their product $\lambda_1 \lambda_2$ equals _____.
 - (i) That sign is positive because $\lambda_1 + \lambda_2$ equals _____.

Conclusion: The tests a > 0, $ac - b^2 > 0$ guarantee positive eigenvalues λ_1, λ_2 . Solution Suppose a > 0 and $ac > b^2$ so that also $c > b^2/a > 0$.

- (i) The eigenvalues have the same sign because $\lambda_1 \lambda_2 = \det = ac b^2 > 0$.
- (ii) That sign is *positive* because $\lambda_1 + \lambda_2 > 0$ (it equals the trace a + c > 0).
- **2** Which of S_1, S_2, S_3, S_4 has two positive eigenvalues? Use a and $ac-b^2$, don't compute the λ 's. Find an x with $x^T S_1 x < 0$, confirming that A_1 fails the test.

$$S_1 = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix} \quad S_2 = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix} \quad S_3 = \begin{bmatrix} 1 & 10 \\ 10 & 100 \end{bmatrix} \quad S_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}.$$

Solution Only $S_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}$ has two positive eigenvalues since $101 > 10^2$.

 $\boldsymbol{x}^{\mathrm{T}}S_1\boldsymbol{x} = 5x_1^2 + 12x_1x_2 + 7x_2^2$ is negative for example when $x_1 = 4$ and $x_2 = -3$: A_1 is not positive definite as its determinant confirms; S_2 has trace c_0 ; S_3 has det = 0. **3** For which numbers b and c are these matrices positive definite ?

$$S = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix} \qquad S = \begin{bmatrix} 2 & 4 \\ 4 & c \end{bmatrix} \qquad S = \begin{bmatrix} c & b \\ b & c \end{bmatrix}.$$

Solution

Positive definite
for
$$-3 < b < 3$$
 $\begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 9 - b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 9 - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = LDL^T$ Positive definite
for $c > 8$ $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & c - 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & c - 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = LDL^T$ Positive definite
for $c > b$ $L = \begin{bmatrix} 1 & 1 \\ -b/c & 0 \end{bmatrix}$ $D = \begin{bmatrix} c & 0 \\ 0 & c - b/c \end{bmatrix}$ $S = LDL^T$

4 What is the energy $q = ax^2 + 2bxy + cy^2 = \mathbf{x}^T S \mathbf{x}$ for each of these matrices? Complete the square to write q as a sum of squares $d_1(\)^2 + d_2(\)^2$.

$$S = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$$
 and $S = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$.

Solution $f(x,y) = x^2 + 4xy + 9y^2 = (x+2y)^2 + 5y^2$; $x^2 + 6xy + 9y^2 = (x+3y)^2$.

5 $x^{T}Sx = 2x_1x_2$ certainly has a saddle point and not a minimum at (0,0). What symmetric matrix S produces this energy? What are its eigenvalues?

Solution $\mathbf{x}^{\mathrm{T}}S\mathbf{x} = 2x_1x_2$ comes from $S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ which has eigenvalues 1 and -1: S is indefinite.

6 Test to see if $A^{T}A$ is positive definite in each case :

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

Solution The first and second matrices have independent columns in A, so $A^{T}A$ is positive definite. The third matrix has dependent columns so $A^{T}A$ is only positive semidefinite.

7 Which 3 by 3 symmetric matrices S and T produce these quadratic energies?

$$\boldsymbol{x}^{\mathrm{T}}S\boldsymbol{x} = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3).$$
 Why is *S* positive definite?
 $\boldsymbol{x}^{\mathrm{T}}T\boldsymbol{x} = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_1x_3 - x_2x_3).$ Why is *T* semidefinite?

Solution

$$S = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 is positive *definite*—its determinants are $D_1 = 2, D_2 = 3, D_3 = 4$.

7.2. Positive Definite Matrices and the SVD

 $T = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \text{ is positive semidefinite with determinants } D_1 = 2, D_2 = 3, D_3 = 0 \text{ }.$ The energy $\boldsymbol{x}^{\mathrm{T}}T\boldsymbol{x} = 0$ when $\boldsymbol{x} = (1, 1, 1).$

8 Compute the three upper left determinants of S to establish positive definiteness. (The first is 2.) Verify that their ratios give the second and third pivots.

Pivots = ratios of determinants
$$S = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 5 & 3 \\ 0 & 3 & 8 \end{bmatrix}$$

Solution The upper left determinants of S are 2, 6, 30. The pivots are 2, 3, 5 (ratios of determinants). Notice that the product of pivots is **30**.

9 For what numbers c and d are S and T positive definite? Test the 3 determinants :

 $S = \begin{bmatrix} c & 1 & 1 \\ 1 & c & 1 \\ 1 & 1 & c \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} 1 & 2 & 3 \\ 2 & d & 4 \\ 3 & 4 & 5 \end{bmatrix}.$

Solution For c = 1, the matrix S has eigenvalues 3, 0, 0. For any c, the eigenvalues all add c - 1. So S is positive definite for c > 1. (Same answer using determinants.) For T the determinants are 1, d - 4, -4d + 12. If d > 4 then -4d + 12 is negative ! So T is **never** positive definite for any d.

10 If S is positive definite then S^{-1} is positive definite. Best proof: The eigenvalues of S^{-1} are positive because _____. Second proof (only for 2 by 2):

The entries of $S^{-1} = \frac{1}{ac - b^2} \begin{bmatrix} c & -b \\ -b & a \end{bmatrix}$ pass the determinant tests _____.

Solution Positive definite \Rightarrow all eigenvalues $\lambda > 0 \Rightarrow$ all eigenvalues $1/\lambda$ of S^{-1} are positive. Also for 2×2 : the determinant tests are passed.

11 If S and T are positive definite, their sum S + T is positive definite. Pivots and eigenvalues are not convenient for S + T. Better to prove $\mathbf{x}^{\mathrm{T}}(S + T)\mathbf{x} > 0$.

Solution Energy $\boldsymbol{x}^{\mathrm{T}}(S+T)\boldsymbol{x} = \boldsymbol{x}^{\mathrm{T}}S\boldsymbol{x} + \boldsymbol{x}^{\mathrm{T}}T\boldsymbol{x} > 0 + 0$

12 A positive definite matrix *cannot have a zero* (or even worse, a negative number) on its diagonal. Show that this matrix fails to have $\boldsymbol{x}^{\mathrm{T}} S \boldsymbol{x} > 0$:

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 4 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 is not positive when $(x_1, x_2, x_3) = (, ,)$.

Solution $\mathbf{x}^{\mathrm{T}} S \mathbf{x}$ is zero when $\mathbf{x} = (0, 1, 0)$.

- 13 A diagonal entry a_{jj} of a symmetric matrix cannot be smaller than all the λ's. If it were, then A a_{jj}I would have ______ eigenvalues and would be positive definite. But A a_{jj}I has a ______ on the main diagonal.
 Solution If a_{jj} is smaller than all eigenvalues, then A a_{jj}I would have positive eigenvalues. But this matrix has a zero on the diagonal. But Problem 13, it can't be
- positive definite. So A_{jj} can't be smaller than all eigenvalues ! **14** Show that *if all* $\lambda > 0$ *then* $\mathbf{x}^{T}S\mathbf{x} > 0$. We must do this for *every* nonzero \mathbf{x} ,
- 14 Show that if all $\lambda > 0$ then $x^2 Sx > 0$. We must do this for every nonzero x, not just the eigenvectors. So write x as a combination of the eigenvectors and explain why all "cross terms" are $x_i^T x_j = 0$. Then $x^T Sx$ is

$$(c_1\boldsymbol{x}_1 + \dots + c_n\boldsymbol{x}_n)^{\mathrm{T}}(c_1\lambda_1\boldsymbol{x}_1 + \dots + c_n\lambda_n\boldsymbol{x}_n) = c_1^2\lambda_1\boldsymbol{x}_1^{\mathrm{T}}\boldsymbol{x}_1 + \dots + c_n^2\lambda_n\boldsymbol{x}_n^{\mathrm{T}}\boldsymbol{x}_n > 0.$$

Solution The "cross terms" have the form $(c_i x_i)^T (c_j \lambda_j x_j)$. This is zero because symmetric matrices S have orthogonal eigenvectors.

- **15** Give a quick reason why each of these statements is true:
 - (a) Every positive definite matrix is invertible.
 - (b) The only positive definite projection matrix is P = I.
 - (c) A diagonal matrix with positive diagonal entries is positive definite.
 - (d) A symmetric matrix with a positive determinant might not be positive definite !

Solution

- (a) All $\lambda_i > 0$ so zero is not an eigenvalue and S is invertible
- (b) All projection matrices except P = I are singular
- (c) The energy for a positive diagonal matrix is $x^T D x = d_1 x_1^2 + \cdots + d_n x_n^2 > 0$ when $x \neq 0$

(d)
$$S = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 has det $S = 1$ but S is **negative** definite

16 With positive pivots in D, the factorization $S = LDL^{T}$ becomes $L\sqrt{D}\sqrt{D}L^{T}$. (Square roots of the pivots give $D = \sqrt{D}\sqrt{D}$.) Then $A = \sqrt{D}L^{T}$ yields the **Cholesky factorization** $S = A^{T}A$ which is "symmetrized LU":

From
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$
 find S. From $S = \begin{bmatrix} 4 & 8 \\ 8 & 25 \end{bmatrix}$ find $A = \mathbf{chol}(S)$.

Solution If $A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$ then $A^{\mathrm{T}}A = \begin{bmatrix} 9 & 3 \\ 3 & 5 \end{bmatrix}$ = positive definite S. $S = \begin{bmatrix} 4 & 8 \\ 8 & 25 \end{bmatrix} = LU = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 8 \\ 0 & 9 \end{bmatrix} = LDL^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 9 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ so $A = \sqrt{D}L^{\mathrm{T}} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$.

7.2. Positive Definite Matrices and the SVD

- **17** Without multiplying $S = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, find
 - (a) the determinant of S (b) the eigenvalues of S
 - (c) the eigenvectors of S (d) a reason why S is symmetric positive definite.
 - Solution det S = 10, $\lambda(S) = 2$ and 5, eigenvectors $(\cos \theta, \sin \theta)$ and $(-\sin \theta, \cos \theta)$, S has positive eigenvalues.
- **18** For $F_1(x,y) = \frac{1}{4}x^4 + x^2y + y^2$ and $F_2(x,y) = x^3 + xy x$ find the second derivative matrices H_1 and H_2 :

Test for minimum
$$H = \begin{bmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} \end{bmatrix}$$
 is positive definite

 H_1 is positive definite so F_1 is concave up (= convex). Find the minimum point of F_1 and the saddle point of F_2 (look only where first derivatives are zero).

Solution $F_1 = \frac{1}{4}x^4 + x^2y + y^2$ has $\partial F_1/dx = x^3 + 2xy$ and $\partial F_1/dy = x^2 + 2y$. Then the 2nd derivatives are

$$H_1 = \begin{bmatrix} 3x^2 + 2y & 2x \\ 2x & 2 \end{bmatrix}, F_2 = x^3 + xy - x \text{ has } H_2 = \begin{bmatrix} 6x & 1 \\ 1 & 0 \end{bmatrix}.$$

19 The graph of $z = x^2 + y^2$ is a bowl opening upward. The graph of $z = x^2 - y^2$ is a saddle. The graph of $z = -x^2 - y^2$ is a bowl opening downward. What is a test on a, b, c for $z = ax^2 + 2bxy + cy^2$ to have a saddle point at (0, 0)?

Solution $ax^2 + 2bxy + cy^2$ has a saddle point (0,0) if $\partial z/\partial x = \partial z/\partial y = 0$ (which is true) and if $H = 2\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is positive definite.

20 Which values of c give a bowl and which c give a saddle point for the graph of $z = 4x^2 + 12xy + cy^2$? Describe this graph at the borderline value of c.

Solution The matrix for this problem is $S = \begin{bmatrix} 4 & 6 \\ 6 & c \end{bmatrix}$ and this has a saddle for c < 9. Then $\lambda_1 > 0 > \lambda_2$ because the determinants are 4 > 0 and 4c - 3b < 0.

21 When S and T are symmetric positive definite, ST might not even be symmetric. But its eigenvalues are still positive. Start from $STx = \lambda x$ and take dot products with Tx. Then prove $\lambda > 0$.

Solution If $ST \boldsymbol{x} = \lambda \boldsymbol{x}$ then $(T \boldsymbol{x})^{\mathrm{T}} ST \boldsymbol{x} = \lambda (T \boldsymbol{x})^{\mathrm{T}} \boldsymbol{x}$. Left side > 0 because S is positive definite, right side has $\boldsymbol{x}^{\mathrm{T}} T \boldsymbol{x} > 0$ because T is positive definite. Therefore $\lambda > 0$.

22 Suppose *C* is positive definite (so $y^{T}Cy > 0$ whenever $y \neq 0$) and *A* has independent columns (so $Ax \neq 0$ whenever $x \neq 0$). Apply the energy test to $x^{T}A^{T}CAx$ to show that $A^{T}CA$ is positive definite : *the crucial matrix in engineering*.

Solution $\mathbf{x}^{\mathrm{T}}A^{\mathrm{T}}CA\mathbf{x} = \mathbf{y}^{\mathrm{T}}C\mathbf{y} > 0$ because $\mathbf{y} = A\mathbf{x}$ is only zero when \mathbf{x} is zero (A has independent columns).

Chapter 7. Applied Mathematics and $A^{T}A$

23 Find the eigenvalues and unit eigenvectors v_1, v_2 of $A^T A$. Then find $u_1 = A v_1 / \sigma_1$:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \text{ and } A^{\mathrm{T}}A = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix} \text{ and } AA^{\mathrm{T}} = \begin{bmatrix} 5 & 15 \\ 15 & 45 \end{bmatrix}$$

Verify that u_1 is a unit eigenvector of AA^{T} . Complete the matrices U, Σ, V .

SVD
$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ & 0 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{\mathsf{T}}$$

Solution $A^{\mathrm{T}}A = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$ has eigenvalues 50 and 0. Its eigenvectors are $\boldsymbol{v}_1 = (1,2)/\sqrt{5}$ and $\boldsymbol{v}_2 = (-2,1)/\sqrt{5}$. Then $\boldsymbol{u}_1 = A\boldsymbol{v}_1/\sqrt{50} = (50,100)/\sqrt{250}$. The SVD is $\begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{50} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ $\overline{\sqrt{10}}$ $\overline{\sqrt{5}}$

24 Write down orthonormal bases for the four fundamental subspaces of this A.

Solution
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$$
 has bases $\begin{bmatrix} 1 \\ 3 \end{bmatrix} / \sqrt{10}$ for $\mathbf{C}(A)$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix} / \sqrt{5}$ for row space $\mathbf{C}(A^{\mathrm{T}})$, $\begin{bmatrix} 2 \\ -1 \end{bmatrix} / \sqrt{5}$ for $\mathbf{N}(A)$, $\begin{bmatrix} 3 \\ -1 \end{bmatrix} / \sqrt{10}$ for $\mathbf{N}(A^{\mathrm{T}})$.

- **25** (a) Why is the trace of $A^{T}A$ equal to the sum of all a_{ij}^{2} ?
 - (b) For every rank-one matrix, why is $\sigma_1^2 = \text{sum of all } a_{ij}^2$?

Solution The diagonal entries of $A^{T}A$ are $||\text{column }1||^2$ to $||\text{column }n||^2$. The sum of those is the sum of all a_{ij}^2 . The trace of $A^{T}A$ is always the sum of all σ_i^2 and for a rank one matrix that sum is only σ_1^2 .

26 Find the eigenvalues and unit eigenvectors of $A^{T}A$ and AA^{T} . Keep each $Av = \sigma u$:

Fibonacci matrix
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Construct the singular value decomposition and verify that A equals $U\Sigma V^{\mathrm{T}}$.

Solution A is symmetric with $A^{\mathrm{T}}A = A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ with eigenvalues x from $x^2 - 3x + 1 = 0$ and $x = \frac{1}{2} (3 \pm \sqrt{5})$. Then $\sigma = \sqrt{x} = \frac{1}{2} (\sqrt{5} \pm 1)$.

27 Compute $A^{T}A$ and AA^{T} and their eigenvalues and unit eigenvectors for V and U.

Rectangular matrix
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Check $AV = U\Sigma$ (this will decide \pm signs in U). Σ has the same shape as A.

7.2. Positive Definite Matrices and the SVD

Solution $A^{\mathrm{T}}A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ has eigenvalues 3 and 1, so A has singular values $\sqrt{3}$ and 1. The unit eigenvectors are $(1,1)/\sqrt{2}$ and $(1,-1)/\sqrt{2}$. $AA^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ has eigenvalues 3 and 1 and 0 and eigenvectors $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ divided by $\sqrt{6}, \sqrt{2}, \sqrt{3}$.

28 Construct the matrix with rank one that has Av = 12u for $v = \frac{1}{2}(1, 1, 1, 1)$ and $u = \frac{1}{3}(2, 2, 1)$. Its only singular value is $\sigma_1 = \underline{\qquad}$.

Solution $A = 12uv^{T}$ has Av = 12u for that unit vector v. The only singular value is $\sigma_1 = 12$. (Other A are also possible.)

29 Suppose A is invertible (with $\sigma_1 > \sigma_2 > 0$). Change A by as small a matrix as *possible* to produce a singular matrix A_0 . Hint : U and V do not change.

From
$$A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \\ & \sigma_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T$$
 find the nearest A_0 .

Solution The nearest singular matrix is $A_0 = U \begin{bmatrix} \sigma_1 & 0 \\ 0 & 0 \end{bmatrix} V^{\mathrm{T}}$. Since U and V are orthogonal matrices, the size of $A - A_0$ is only σ_2 . In other words, $\boldsymbol{u}_1 \sigma_1 \boldsymbol{v}_1^{\mathrm{T}}$ is the closest rank 1 matrix to A.

- **30** The SVD for A + I doesn't use $\Sigma + I$. Why is $\sigma(A + I)$ not just $\sigma(A) + I$? Solution The SVD of A + I uses the eigenvectors of $(A + I)^{T}(A + I)$. Those are not the eigenvectors of $A^{T}A$ (or $A^{T}A + I$).
- 31 Multiply A^TAv = σ²v by A. Put in parentheses to show that Av is an eigenvector of AA^T. We divide by its length ||Av|| = σ to get the unit eigenvector u.
 Solution A times A^TAv = σ²v is (AA^T)Av = σ²(Av). So Av is an eigenvector of AA^T.
- **32** My favorite example of the SVD is when Av(x) = dv/dx, with the endpoint conditions v(0) = 0 and v(1) = 0. We are looking for orthogonal functions v(x) so that their derivatives Av = dv/dx are also orthogonal. The perfect choice is $v_1 = \sin \pi x$ and $v_2 = \sin 2\pi x$ and $v_k = \sin k\pi x$. Then each u_k is a cosine.

The derivative of v_1 is $Av_1 = \pi \cos \pi x = \pi u_1$. The singular values are $\sigma_1 = \pi$ and $\sigma_k = k\pi$. Orthogonality of the sines (and orthogonality of the cosines) is the foundation for Fourier series.

You may object to $AV = U\Sigma$. The derivative A = d/dx is not a matrix ! The orthogonal factor V has functions $\sin k\pi x$ in its columns, not vectors. The matrix U has cosine functions $\cos k\pi x$. Since when is this allowed ? One answer is to refer you to the **cheb**-**fun** package on the web. This extends linear algebra to matrices whose columns are functions—not vectors.

Another answer is to replace d/dx by a first difference matrix A. Its shape will be N+1 by N. A has 1's down the diagonal and -1's on the diagonal below. Then $AV = U\Sigma$ has discrete sines in V and discrete cosines in U. For N = 2 those will be sines and cosines of 30° and 60° in v_1 and u_1 .

** Can you construct the difference matrix A (3 by 2) and $A^{T}A$ (2 by 2)? The discrete sines are $v_1 = (\sqrt{3}/2, \sqrt{3}/2)$ and $v_2 = (\sqrt{3}/2, -\sqrt{3}/2)$. Test that Av_1 is orthogonal to Av_2 . What are the singular values σ_1 and σ_2 in Σ ?

Solution The sines and cosines are perfect examples of the v's and u's for the operator (infinite-dimensional matrix) A = derivative d/dx. The sines $v_k = \sin \pi kx$ are orthogonal, the cosines $u_k = \cos \pi kx$ are orthogonal, and $Av_k = \sigma_k u_k$. (The derivative of a sine is a cosine with $\sigma_k = \pi k$.) For differences instead of derivatives, we can

try the matrix $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$.

Problem Set 7.3, page 413

1 Transpose the derivative with integration by parts: (dy/dx, g) = -(y, dg/dx). Ay is dy/dx with boundary conditions y(0) = 0 and y(1) = 0. Why is $\int y'gdx$ equal to $-\int yg'dx$? Then $A^{\rm T}$ (which is normally written as A^*) is $A^{\rm T}g = -dg/dx$ with **no** boundary conditions on g. $A^{\rm T}Ay$ is -y'' with y(0) = 0 and y(1) = 0.

Solution Integration by parts for $0 \le x \le 1$ produces boundary terms at x = 0 and 1:

$$\int_0^1 \frac{dy}{dx} g(x) \, dx = -\int_0^1 y(x) \, \frac{dg}{dx} \, dx + y(x) \, g(x) \Big|_{x=0}^{x=1}$$

The boundary terms are zero if y(0) = y(1) = 0. Then the adjoint (or transpose) of d/dx is -d/dx, with no boundary condition on g when there are 2 boundary conditions on y (fixed-fixed).

Problems 2-6 have boundary conditions at x = 0 and x = 1: no initial conditions.

2 Solve this boundary value problem in two steps. Find the complete solution $y_p + y_n$ with two constants in y_n , and find those constants from the boundary conditions :

Solve $-y'' = 12x^2$ with y(0) = 0 and y(1) = 0 and $y_p = -x^4$.

Solution $y_p = -x^4$ solves $-y_p'' = 12x^2$. It has $y_p(0) = 0$ and $y_p = -1$. We need to add the solution to -Y'' = 0 with Y(0) = 0 and Y(1) = 1. Then Y = A + Bx has A = 0 and B = 1. The complete solution is $y = -x^4 + x$.

3 Solve the same equation $-y'' = 12x^2$ with y(0) = 0 and y'(1) = 0 (zero slope).

Solution Changing y(1) = 0 to y'(1) = 0 will change the solution to $y = -x^4 + Bx$ with $y' = -4x^3 + B$. For y'(1) = 0 we need B = 4.

7.3. Boundary Conditions Replace Initial Conditions

- 4 Solve the same equation -y" = 12x² with y'(0) = 0 and y(1) = 0. Then try for both slopes y'(0) = 0 and y'(1) = 0: this has no solution y = -x⁴ + Ax + B.
 Solution With y'(0) = 0 the solution we want is y = -x⁴ + A. The constant A is determined by y(1) = −1 + A = 0. We cannot have y'(1) = 0 because y' = -4x³.
- **5** Solve -y'' = 6x with y(0) = 2 and y(1) = 4. Boundary values need not be zero. Solution -y'' = 6x leads to $y = -x^3 + A + Bx$. The boundary conditions are y(0) = A = 2 and y(1) = -1 + 2 + B = 4. Then B = 3 and $y = -x^3 + 2 + 3x$.
- 6 Solve $-y'' = e^x$ with y(0) = 5 and y(1) = 0, starting from $y = y_p + y_n$. Solution $-y'' = e^x$ leads to $y = -e^x + A + Bx$. The first boundary condition is y(0) = -1 + A = 5 so that A = 6. Then y(1) = -e + 6 + B = 0 and B = e - 6.

Problems 7-11 are about the LU factors and the inverses of second difference matrices.

7 The matrix T with $T_{11} = 1$ factors perfectly into $LU = A^{T}A$ (all its pivots are 1).

$$\boldsymbol{T} = \begin{bmatrix} 1 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ -1 & 1 & & \\ & -1 & 1 & \\ & & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & & \\ & 1 & -1 & \\ & & 1 & -1 \\ & & & 1 \end{bmatrix} = LU.$$

Each elimination step adds the pivot row to the next row (and L subtracts to recover T from U). The inverses of those difference matrices L and U are **sum matrices**. Then the inverse of T = LU is $U^{-1}L^{-1}$:

Compute T^{-1} for N = 4 (as shown) and for any N.

Solution	$T^{-1} =$	Γ4	3	2	1]	T is fixed-free second difference matrix.
		3	3	2	1	For any N, T^{-1} has the same
		2	2	2	1	pattern with first row
		[1	1	1	1	N $N-1$ \cdots 2 1

8 The matrix equation $TY = (0, 1, 0, 0) = delta \ vector$ is like the differential equation $-y'' = \delta(x - a)$ with $a = 2\Delta x = \frac{2}{5}$. The boundary conditions are y'(0) = 0 and y(1) = 0. Solve for y(x) and graph it from 0 to 1. Also graph Y = second column of T^{-1} at the points $x = \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$. The two graphs are ramp functions.

Solution Two integrations of the delta function $\delta(x)$ will produce the unit ramp R(x) = 0 for $x \le 0$, R(x) = x for $x \ge 0$. Shifting $\delta(x)$ to $\delta\left(x - \frac{2}{5}\right)$ will shift the solution to $y = -R\left(x - \frac{2}{5}\right) + A + Bx$. Then y'(0) = -1 + B gives B = 1, and y(1) = 0 gives $-\frac{3}{5} + A + 1 = 0$ and $A = -\frac{2}{5}$.

9 The matrix B has $B_{11} = 1$ (like $T_{11} = 1$) and also $B_{NN} = 1$ (where $T_{NN} = 2$). Why does B have the same pivots 1, 1, ... as T, except for zero in the last pivot position? The early pivots don't know $B_{NN} = 1$.

Then B is not invertible: $-y'' = \delta(x - a)$ has no solution with y'(0) = y'(1) = 0.

Solution B starts with the pivots 1, 1, 1, ... (as T did) but reducing the N, N entry by 1 will reduce the last pivot by 1. So we have last pivot = zero and B is not invertible. The analog for differential equations is y' = 0 at both endpoints: No ramp function except y = 0 can meet those boundary conditions.

10 When you compute K^{-1} , multiply by det K = N + 1 to get nice numbers :

Column 2 of $5K^{-1}$ solves the equation $Kv = 5\delta$ when the delta vector is $\delta =$ _____. We know from $KK^{-1} = I$ that K times each column of K^{-1} is a delta vector.

Solution Column 2 of $5K^{-1}$ is like the solution to $-y'' = 5\delta\left(x - \frac{2}{5}\right)$. The column of $5K^{-1}$ has a max in row 2 and the solution y(x) has a max at $x = \frac{2}{5}$.

11 K comes with two boundary conditions. T only has y(1) = 0. B has no boundary conditions on y. Verify that $K = A^{T}A$. Then remove the first row of A to get $T = A_{1}^{T}A_{1}$. Then remove the last row to get dependent rows: $B = A_{0}^{T}A_{0}$.

The backward first difference $A = \begin{bmatrix} 1 & \\ -1 & 1 & \\ & -1 & 1 \\ & & -1 \end{bmatrix}$ gives $K = A^{T}A$.

Solution A is the matrix in Problem 7 with 1's on the main diagonal and -1's on the diagonal above. $A^{T}A$ is the symmetric second difference matrix with three nonzero diagonals. Those diagonals contain -1's and 2's and -1's. Then removing the top row of A gives a rectangular A_1 with $A_1^{T}A_1 = T$ as in Problem 7 ($T_{11} = 1$ not 2). Removing the last row gives A_2 with $A_2^{T}A_2 = B$ and $B_{NN} = 1$ not 2.

12 Multiply K_3 by its eigenvector $\boldsymbol{y}_n = (\sin n\pi h, \sin 2n\pi h, \sin 3n\pi h)$ to verify that the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ are $\lambda_n = 2 - 2\cos\frac{n\pi}{4}$ in $K\boldsymbol{y}_n = \lambda_n\boldsymbol{y}_n$. This uses the trigonometric identity $\sin(A+B) + \sin(A-B) = 2\sin A\cos B$.

Solution The eigenvectors of K are "sine vectors" just as the eigenfunctions of $-y'' = \lambda y$ with y(0) = 0 = y(1) are sine functions.

13 Those eigenvalues of K_3 are $2 - \sqrt{2}$ and 2 and $2 + \sqrt{2}$. Those add to 6, which is the trace of K_3 . Multiply those eigenvalues to get the determinant of K_3 .

Solution Multiplying $2 - \sqrt{2}$ times $2 + \sqrt{2}$ gives 4 - 2 = 2. Then multiplying by 2 gives 4. This is the determinant (and $2 - \sqrt{2}$, $2 + \sqrt{2}$, 2 are the eigenvalues) of 3 by 3 matrix K_3 .

- 7.4. Laplace's Equation and $A^{T}A$
- 14 The slope of a ramp function is a step function. The slope of a step function is a delta function. Suppose the ramp function is r(x) = -x for $x \le 0$ and r(x) = x for $x \ge 0$ (so r(x) = |x|). Find dr/dx and d^2r/dx^2 .

Solution For the down-up ramp function r(x) = |x| = absolute value of x, the derivatives are dr/dx = -1 then +1 and $d^2r/dx^2 = 2\delta(x)$ because dr/dx jumps by 2 at x = 0.

15 Find the second differences $y_{n+1} - 2y_n + y_{n-1}$ of these infinitely long vectors y:

Constant	$(\ldots,1,1,1,1,1,\ldots)$
Linear	$(\ldots,-1,0,1,2,3,\ldots)$
Quadratic	$(\ldots, 1, 0, 1, 4, 9, \ldots)$
Cubic	$(\ldots, -1, 0, 1, 8, 27, \ldots)$
Ramp	$(\ldots, 0, 0, 0, 1, 2, \ldots)$
Exponential	$(\ldots, e^{-i\omega}, e^0, e^{i\omega}, e^{2i\omega}, \ldots).$

It is amazing how closely those second differences follow second derivatives for $y(x) = 1, x, x^2, x^3, \max(x, 0)$, and $e^{i\omega x}$. From $e^{i\omega x}$ we also get $\cos \omega x$ and $\sin \omega x$.

Solution The six second differences are : zero vector, zero vector, constant vector of 2's, 6 times the linear vector, (for ramp : delta vector with $\delta_0 = 1$), $e^{i\omega} - 2 + e^{-i\omega} = 2\cos\omega - 2$ times the exponential vector. Like 2nd derivatives of $1, x, x^2, x^3$, ramp, $e^{i\omega x}$.

Problem Set 7.4, page 422

1 What solution to Laplace's equation completes "degree 3" in the table of pairs of solutions? We have one solution $u = x^3 - 3xy^2$, and we need another solution.

Solution Start with $s = -y^3$. Then $s_{yy} = -6y$, and therefore we need $s_{xx} = 6y$. Integrating twice with respect to x gives $3y^2x$. Therefore the second function is $s(x, y) = -y^3 + 3x^2y$.

2 What are the two solutions of degree 4, the real and imaginary parts of $(x + iy)^4$? Check $u_{xx} + u_{yy} = 0$ for both solutions.

Solution Expanding $(x + iy)^4$ gives

$$(x+iy)^4 = x^4 - 6x^2y^2 + y^4 + (4x^3y - 4xy^3)i$$

Therefore the two solutions would be :

$$u(x,y) = x^4 - 6x^2y^2 + y^4$$
 and $s(x,y) = 4x^3y - 4xy^3$

Checking the first solution:

$$\frac{\partial^2 (x^4 - 6x^2y^2 + y^4)}{\partial x^2} + \frac{\partial^2 (x^4 - 6x^2y^2 + y^4)}{\partial y^2} = (12x^2 - 12y^2) + (-12x^2 + 12y^2) = 0$$

Checking the second solution:

$$\frac{\partial^2 (4x^3y - 4xy^3)}{\partial x^2} + \frac{\partial^2 (4x^3y - 4xy^3)}{\partial y^2} = (24xy - 0) + (0 - 24xy) = 0$$

3 What is the second x-derivative of $(x + iy)^n$? What is the second y-derivative? Those cancel in $u_{xx} + u_{yy}$ because $i^2 = -1$.

Solution The second x-derivative of $(x + iy)^n$ is:

$$\frac{\partial^2 (x+iy)^n}{\partial x^2} = n(n-1)(x+iy)^{n-2}$$

The second y-derivative of $(x + iy)^n$ cancels that because

$$\frac{\partial^2 (x+iy)^n}{\partial y^2} = i \cdot i \cdot n(n-1)(x+iy)^{n-2} = -n(n-1)(x+iy)^{n-2}$$

4 For the solved 2×2 example inside a 4×4 square grid, write the four equations (9) at the four interior nodes. Move the known boundary values 0 and 4 to the right hand sides of the equations. You should see K2D on the left side multiplying the correct solution $U = (U_{11}, U_{12}, U_{21}, U_{22}) = (1, 2, 2, 3).$

Solution The equations at the interior node would be :

$$\begin{aligned} &4U_{1,1} - U_{2,1} - U_{0,1} - U_{1,2} - U_{1,0} = 0\\ &4U_{1,2} - U_{2,2} - U_{0,2} - U_{1,3} - U_{1,1} = 0\\ &4U_{2,1} - U_{3,1} - U_{1,1} - U_{2,2} - U_{2,0} = 0\\ &4U_{2,2} - U_{3,2} - U_{1,2} - U_{2,3} - U_{2,1} = 0 \end{aligned}$$

Substituting the known boundary values leaves :

$$\begin{aligned} 4U_{1,1} - U_{2,1} - U_{1,2} &= 4\\ 4U_{1,2} - U_{2,2} - U_{1,1} &= 8\\ 4U_{2,1} - U_{1,1} - U_{2,2} &= 0\\ 4U_{2,2} - U_{1,2} - U_{2,1} &= 4 \end{aligned}$$

4

Writing this in matrix form gives :

$$\begin{bmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} U_{1,1} \\ U_{1,2} \\ U_{2,1} \\ U_{2,2} \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 0 \\ 4 \end{bmatrix} \text{ and } \begin{bmatrix} U_{1,1} \\ U_{1,2} \\ U_{2,1} \\ U_{2,2} \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \\ 2 \end{bmatrix}$$

5 Suppose the boundary values on the 4×4 grid change to U = 0 on three sides and U = 8 on the fourth side. Find the four inside values so that each one is the average of its neighbors.

Solution The values at the 16 nodes will be

$$\begin{array}{ccccccc} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{3}{2} & \frac{3}{2} & 0 \\ 0/4 & 4 & 4 & 0/4 \end{array}$$

0

Notice that the corner boundary values do not enter the 5-point equations around interior points. Every interior value must be the average of its four neighbors. By symmetry the two middle columns must be the same.

- 7.4. Laplace's Equation and $A^{T}A$
- 6 (MATLAB) Find the inverse $(K2D)^{-1}$ of the 4 by 4 matrix displayed for the square grid. Solution The circulant matrix K2D on page 422 has a circulant inverse :

$$(K2D)^{-1} = \frac{1}{24} \begin{bmatrix} 7 & 2 & 1 & 2\\ 2 & 7 & 2 & 1\\ 1 & 2 & 7 & 2\\ 2 & 1 & 2 & 7 \end{bmatrix}.$$

7 Solve this Poisson finite difference equation (right side $\neq 0$) for the inside values $U_{11}, U_{12}, U_{21}, U_{22}$. All boundary values like U_{10} and U_{13} are zero. The boundary has i or j equal to 0 or 3, the interior has i and j equal to 1 or 2:

 $4U_{ij} - U_{i-1,j} - U_{i+1,j} - U_{i,j-1} - U_{i,j+1} = 1$ at four inside points.

Solution The interior solution to the Poisson equation (on this small grid) is

0 0 0 0 $\begin{array}{ccccccc} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{array}$ 0 0 0 0

On a larger grid U_{ij} will not be constant in the interior.

8 A 5 \times 5 grid has a 3 by 3 interior grid : 9 unknown values U_{11} to U_{33} . Create the 9 \times 9 difference matrix K2D.

Solution Order the points by rows to get $U_{11}, U_{12}, U_{13}, U_{21}, U_{22}, U_{23}, U_{31}, U_{32}, U_{33}$. Then K2D is symmetric with 3 by 3 blocks:

$$K2D = \begin{bmatrix} A & -I & 0 \\ -I & A & -I \\ 0 & -I & A \end{bmatrix} \qquad A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$

9 Use eig(K2D) to find the nine eigenvalues of K2D in Problem 8. Those eigenvalues will be positive ! The matrix K2D is symmetric positive definite.

Solution eig(K2D) in Problem 8 produces 9 eigenvalues between 0 and 4:

The eigenvalues come from eig(K2D) and explicitly from equation (11). Notice that pairs of eigenvalues add to 8. The eigenvalue distribution is symmetric around $\lambda = 4$:

 $1.1716 \quad 2.5828 \quad 2.5828 \quad 4.0 \quad 4.0 \quad 4.0 \quad 5.4142 \quad 5.4142 \quad 6.8284$

10 If u(x) solves $u_{xx} = 0$ and v(y) solves $v_{yy} = 0$, verify that u(x)v(y) solves Laplace's equation. Why is this only a 4-dimensional space of solutions? Separation of variables does not give all solutions—only the solutions with separable boundary conditions. Solution If $\frac{\partial^2 u}{\partial r^2} = 0$ and $\frac{\partial^2 v}{\partial u^2} = 0$ then

$$\frac{\partial^2 u(x)v(y)}{\partial x^2} + \frac{\partial^2 u(x)v(y)}{\partial y^2} = v(y)\frac{\partial^2 u(x)}{\partial x^2} + u(x)\frac{\partial^2 v(y)}{\partial y^2}$$

Therefore u(x)v(y) solves Laplace's equation. But the only solutions found this way are u(x)v(y) = (A + Bx)(C + Dy).

Problem Set 7.5, page 428

Problems 1 - 5 are about complete graphs. Every pair of nodes has an edge.

1 With n = 5 nodes and all edges, find the diagonal entries of $A^{T}A$ (the degrees of the nodes). All the off-diagonal entries of $A^{T}A$ are -1. Show the reduced matrix R without row 5 and column 5. Node 5 is "grounded" and $v_{5} = 0$.

Solution The complete graph (all edges included) has no zeros in $A^{T}A$:

$$A^{\mathrm{T}}A = \begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{bmatrix}$$
 Singular!

The grounded matrix would be

$$(A^{\mathrm{T}}A)_{\mathrm{reduced}} = \begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}$$
 Invetible!

- **2** Show that the *trace* of $A^{T}A$ (sum down the diagonal = sum of eigenvalues) is $n^{2} n$. What is the trace of the reduced (and invertible) matrix R of size n 1? Solution $A^{T}A$ is n by n and each diagonal entry is n 1. Therefore the trace is $n(n-1) = n^{2} n$. The reduced matrix R has n 1 diagonal entries, each still equal to n 1. Therefore the trace is $(n 1)(n 1) = n^{2} 2n + 1$.
- **3** For n = 4, write the 3 by 3 matrix $R = (A_{reduced})^{T}(A_{reduced})$. Show that $RR^{-1} = I$ when R^{-1} has all entries $\frac{1}{4}$ off the diagonal and $\frac{2}{4}$ on the diagonal.

Solution

Reduced matrix
$$R = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

R by its proposed inverse gives

$$\left[\begin{array}{rrrr} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{array}\right]$$

4 For every *n*, the reduced matrix *R* of size n - 1 is *invertible*. Show that $RR^{-1} = I$ when R^{-1} has all entries 1/n off the diagonal and 2/n on the diagonal.

Solution

- $\frac{1}{4} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6-1-1 & 3-2-1 & 3-1-2 \\ -2+3-1 & -1+6-1 & -1+3-2 \\ -2-1+3 & -1-2+3 & -1-1+6 \end{bmatrix} = I.$
- **5** Write the 6 by 3 matrix $M = A_{\text{reduced}}$ when n = 4. The equation $M\boldsymbol{v} = \boldsymbol{b}$ is to be solved by least squares. The vector \boldsymbol{b} is like scores in 6 games between 4 teams (team 4 always scores zero; it is grounded). Knowing the inverse of $R = M^{\text{T}}M$, what is the least squares ranking \hat{v}_1 for team 1 from solving $M^{\text{T}}M\hat{\boldsymbol{v}} = M^{\text{T}}\boldsymbol{b}$?

Solution Remove column 4 of A when node 4 is grounded $(x_4 = 0)$.

$$M = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
has independent columns

The least squares solution \hat{v} to Mv = b comes from $M^{\mathrm{T}}M\hat{v} = M^{\mathrm{T}}b$. This \hat{v} gives the predicted point spreads when all teams play all other teams. The first component \hat{v}_1 would come from the first row of $(M^{\mathrm{T}}M)^{-1}$ multiplying by $M^{\mathrm{T}}b$. Note that

$$M^{\mathrm{T}}M = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \text{ and } (M^{\mathrm{T}}M)^{-1} = \frac{1}{4} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

6 For the tree graph with 4 nodes, $A^{T}A$ is in equation (1). What is the 3 by 3 matrix $R = (A^{T}A)_{reduced}$? How do we know it is positive definite?

Solution The reduced form of $A^{T}A$ removes row 4 and column 4 :

Singular
$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
 reduces to invertible $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$

The first is positive semidefinite (A has dependent columns). the second is positive definite (the reduced A has 3 independent columns).

7 (a) If you are given the matrix A, how could you reconstruct the graph?

Solution Each row of A tells you an edge in the graph.

(b) If you are given $L = A^{T}A$, how could you reconstruct the graph (no arrows)?

Solution Each nonzero off the main diagonal of $A^{T}A$ tells you an edge.

(c) If you are given $K = A^{\mathrm{T}}CA$, how could you reconstruct the weighted graph?

Solution Each nonzero off the main diagonal tells you the weight of that edge.

8 Find $K = A^{T}CA$ for a line of 3 resistors with conductances $c_1 = 1$, $c_2 = 4$, $c_3 = 9$. Write K_{reduced} and show that this matrix is positive definite.

Solution A circle of three resistors has 3 edges and 3 nodes :

$$A^{\mathrm{T}}CA = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & -4 & -1 \\ -4 & 13 & -9 \\ -1 & -9 & 10 \end{bmatrix} \text{ is only semidefinite}$$
$$(A^{\mathrm{T}}CA)_{\mathrm{reduced}} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -4 \\ -4 & 13 \end{bmatrix}$$

The determinant tests 5 > 0 and $(5)(13) > 4^2$ are passed.

9 A 3 by 3 square grid has n = 9 nodes and m = 12 edges. Number nodes by rows.

(a) How many nonzeros among the 81 entries of $L = A^{T}A$?

Solution The 9 nodes ordered by rows have 2, 3, 2, 3, 4, 3, 2, 3, 2 neighbors around them. Those add to 24 nonzeros off the diagonal. The 9 diagonal entries make 33 nonzeros out of $9^2 = 81$ entries in $L = A^T A$.

(b) Write down the 9 diagonal entries in the degree matrix D: they are not all 4.

Solution Those 9 numbers are the degrees of the 9 nodes (= diagonal entries in $A^{T}A$).

(c) Why does the middle row of L = D - W have four -1's? Notice L = K2D!

Solution The middle node in the grid has 4 neighbors.

10 Suppose all conductances in equation (5) are equal to c. Solve equation (6) for the voltages v_2 and v_3 and find the current I flowing out of node 1 (and into the ground at node 4). What is the "system conductance" I/V from node 1 to node 4?

This overall conductance I/V should be larger than the individual conductances c.

Solution The reduced equation (6) with conductances = c is

$\frac{3c}{-c}$	$\begin{bmatrix} -c \\ 2c \end{bmatrix}$	$\left[\begin{array}{c} v_2\\ v_3 \end{array}\right]$	=	$\begin{bmatrix} cV\\ cV \end{bmatrix}$	and	$\left[\begin{array}{c} v_2 \\ v_3 \end{array}\right]$] =	$\left[\begin{array}{c} 0.6V\\ 0.8V \end{array}\right]$].
-----------------	--	---	---	---	-----	--	-----	---	----

Then the flows on the five edges in Figure 7.6 use A in equation (2). Remember the minus sign:

$$-cA\boldsymbol{v} = -c \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} V \\ 0.6V \\ 0.8V \\ 0 \end{bmatrix} = cV \begin{bmatrix} 0.4 \\ 0.2 \\ -0.2 \\ 1.0 \\ 0.6 \end{bmatrix}$$

The total flow (on edges 1+2+4 out of node 1, or on edges 3+4 into the grounded node 4, is I = 1.6cV. The overall system conductance is 1.6c, greater than the individual conductance c on each edge.

11 The multiplication $A^{T}A$ can be columns of A^{T} times rows of A. For the tree with m = 3 edges and n = 4 nodes, each (column times row) is $(4 \times 1)(1 \times 4) = 4 \times 4$. Write down those three column-times-row matrices and add to get $L = A^{T}A$.

Solution Suppose the 3 tree edges go out of node 1 to nodes 2, 3, 4. (The problem allows to choose other trees, including a line of 4 nodes.) Then

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \quad A^{\mathrm{T}}A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} = \text{sum of (columns of } A^{\mathrm{T}})(\text{ rows of } A)$$

$$= \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 1 \end{bmatrix}.$$

7.5. Networks and the Graph Laplacian

12 A graph with two separate 3-node trees is *not connected*. Write its 6 by 4 incidence matrix A. Find *two* solutions to Av = 0, not just one solution v = (1, 1, 1, 1, 1, 1). To reduce $A^{T}A$ we must ground *two* nodes and remove two rows and columns.

Solution The incidence matrix for two 3-node trees is

$$A = \begin{bmatrix} A_{\text{tree}} & 0\\ 0 & A_{\text{tree}} \end{bmatrix} \text{ with } A_{\text{tree}} = \begin{bmatrix} 1 & 1 & 0\\ -1 & 0 & 1 \end{bmatrix} \text{ (for example)}$$

The columns of A_{tree} add to zero so we have 2 independent solutions to Av = 0:

$$\boldsymbol{v} = \begin{bmatrix} 1\\1\\1\\0\\0\\0 \end{bmatrix} \text{ and } \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix} \text{ come from } A_{\text{tree}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

13 "Element matrices" from column times row appear in the **finite element method**. Include the numbers c_1, c_2, c_3 in the element matrices K_1, K_1, K_3 .

$$K_i = (\text{row } i \text{ of } A)^{\mathrm{T}} (c_i) (\text{row } i \text{ of } A) \qquad K = A^{\mathrm{T}}CA = K_1 + K_2 + K_3.$$

Write the element matrices that add to $A^{T}A$ in (1) for the 4-node line graph.

$$A^{\mathrm{T}}A = \begin{bmatrix} \begin{bmatrix} K_1 & \\ & K_2 & \\ & & \\$$

Solution The three "element matrices" for the three edges come from multiplying the three columns of A^{T} by the three rows of A. Then $A^{T}A$ equals

$$= \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0\\-1\\1\\0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0\\0\\-1\\1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 1 \end{bmatrix}.$$

When the diagonal matrix C is included, those are multiplied by c_1, c_2 , and c_3 . Those products produce 2 by 2 blocks of nonzeros in 4×4 matrices :

$$K_{1} = c_{1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ & & \\$$

Then $A^{T}CA = K_1 + K_2 + K_3$. This 'assembly" of the element stiffness matrices just requires placing the nonzeros correctly into the final matrix $A^{T}CA$.

14 An *n* by *n* grid has n^2 nodes. How many edges in this graph? How many interior nodes? How many nonzeros in *A* and in $L = A^T A$? There are no zeros in L^{-1} !

Solution An n by n grid has n horizontal rows (n-1 edges on each row) and n vertical columns (n-1 edges down each column). Altogether 2n(n-1) edges. There are

 $(n-2)^2$ interior nodes—a square grid with the boundary nodes removed to reduce n to n-2.

Every edge produces 2 nonzeros (-1 and +1) in A. Then A has 4n(n-1) nonzeros. The matrix $A^{T}A$ has size n^{2} with n^{2} diagonal nonzeros—and off the diagonal of $A^{T}A$ there are two -1's for each edge: altogether $n^{2} + 4n(n-1) = 5n^{2} - 4n$ nonzeros out of n^{4} entries. For n = 2, this means 12 nonzeros in a 4 by 4 matrix.

15 When only $e = C^{-1}w$ is eliminated from the 3-step framework, equation (??) shows

Saddle-point matrix	C^{-1}	A	$\begin{bmatrix} w \end{bmatrix}$	b]
Not positive definite	A^{T}	0	v	f	·

Multiply the first block row by $A^{T}C$ and subtract from the second block row :

After block elimination
$$\begin{bmatrix} C^{-1} & A \\ 0 & -A^{\mathrm{T}}CA \end{bmatrix} \begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{v} \end{bmatrix} = \begin{bmatrix} \boldsymbol{b} \\ \boldsymbol{f} - A^{\mathrm{T}}C\boldsymbol{b} \end{bmatrix}.$$

After m positive pivots from C^{-1} , why does this matrix have negative pivots? The two-field problem for w and v is finding a saddle point, not a minimum.

Solution The three equations e = b - Av and w = Ce and $A^{T}w = f$ reduce to two equations when e is replaced by $C^{-1}w$:

$$\begin{array}{c} C^{-1}\boldsymbol{w} = \boldsymbol{b} - A\boldsymbol{v} \\ A^{\mathrm{T}}\boldsymbol{w} = \boldsymbol{f} \end{array} \qquad \text{become} \qquad \left[\begin{array}{c} C^{-1} & A \\ A^{\mathrm{T}} & 0 \end{array} \right] \left[\begin{array}{c} \boldsymbol{v} \\ \boldsymbol{w} \end{array} \right] = \left[\begin{array}{c} \boldsymbol{b} \\ \boldsymbol{f} \end{array} \right]$$

Multiply the first equation by $A^{T}C$ to get $A^{T}w = A^{T}Cb - A^{T}CAv$. Subtract from the second equation $A^{T}w = f$, to eliminate w:

$$A^{\mathrm{T}}C\boldsymbol{b} - A^{\mathrm{T}}CA\boldsymbol{v} = \boldsymbol{f}$$

This gives the second row of the block matrix after elimination :

$$\begin{bmatrix} C^{-1} & A \\ 0 & -A^{\mathrm{T}}CA \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{f} - A^{\mathrm{T}}C\mathbf{b} \end{bmatrix}.$$

The pivots of that matrix on the left side start with $1/c_1, 1/c_2, \ldots, 1/c_m$. Then we get the *n* pivots of $-A^TCA$ which are **negative**, because this matrix is negative definite.

Altogether we are finding a saddle point (v, w) of the energy (quadratic function). The derivative of that quadratic gives our linear equations. The block matrix in those equations has m positive eigenvalues and n negative eigenvalues.

16 The least squares equation $A^{T}Av = A^{T}b$ comes from the projection equation $A^{T}e = 0$ for the error e = b - Av. Write those two equations in the symmetric saddle point form of Problem 7 (with f = 0).

In this case w = e because the weighting matrix is C = I.

Solution Ordinary least squares for Av = b separates the data vector b in two perpendicular parts :

 $\boldsymbol{b} = (A\widehat{\boldsymbol{v}}) + (\boldsymbol{b} - A\widehat{\boldsymbol{v}}) = (\text{projection of } \boldsymbol{b}) + (\text{error in } \boldsymbol{b}).$

The error e = b - Av satisfies $A^{T}e = A^{T}b - A^{T}Av = 0$ (which means that $A^{T}Av = A^{T}b$, the key equation). That equation $d^{T}e = 0$ is Kirchhoff's Current Law for flows in

7.5. Networks and the Graph Laplacian

a network. It is a candidate for the "most important equation in applied mathematics"— the conservation equation or continuity equation "flow in = flow out."

In the form of Problem 15 (with C = I) the equations are

$$\begin{bmatrix} I & A \\ A^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} e \\ v \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} \text{ or } \begin{array}{c} e + Av = b \\ A^{\mathrm{T}}e = 0 \end{array}.$$

17 Find the three eigenvalues and three pivots and the determinant of this saddle point matrix with C = I. One eigenvalue is negative because A has one column:

$$m = 2, n = 1 \qquad \left[\begin{array}{cc} C^{-1} & A \\ A^{\mathrm{T}} & 0 \end{array} \right] = \left[\begin{array}{cc} 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{array} \right].$$

Solution The eigenvalues come from $det(M - \lambda I) = 0$:

$$\begin{bmatrix} 1-\lambda & 0 & -1\\ 0 & 1-\lambda & 1\\ -1 & 1 & -\lambda \end{bmatrix} = -\lambda(1-\lambda)^2 - 2(1-\lambda) = 0.$$

Then $(1 - \lambda)(\lambda^2 - \lambda - 2) = 0$ and $(1 - \lambda)(\lambda - 2)(\lambda + 1) = 0$ and the eigenvalues are $\lambda = 1, 2, -1$. Check the sum 1 + 2 - 1 = 2 equal to the trace (sum down the main diagonal 1 + 1 + 0 = 2).

The determinant is the product $\lambda_1 \lambda_2 \lambda_3 = (1)(2)(-1) = -2$. Notice m = 2 positive λ 's and n = 1 negative eigenvalue.

Elimination finds the three pivots (which also multiply to give det M = -2):

$$\begin{bmatrix} (1) & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} (1) & 0 & -1 \\ 0 & (1) & 1 \\ 0 & 1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} (1) & 0 & -1 \\ 0 & (1) & 1 \\ 0 & 0 & (-2) \end{bmatrix}.$$