DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang

Massachusetts Institute of Technology

Book Website

Email address

diffeqla@gmail.com

math.mit.edu/dela

web.mit.edu/18.06

math.mit.edu/~gs

Course page

OpenCourseWare

Home page

Publisher Direct email www.wellesleycambridge.com

video lectures: ocw.mit.edu

gs@math.mit.edu

Wellesley - Cambridge Press Box 812060

Wellesley, Massachusetts 02482

Problem Set 6.1, page 333

- A has eigenvalues 1 and ¹/₂, A² has eigenvalues 1 and (¹/₂)² = ¹/₄, A[∞] has eigenvalues 1 and 0 (notice (¹/₂)[∞] = 0).
 - (a) Exchange the rows of A to get B:

$$B = \begin{bmatrix} .2 & .7 \\ .8 & .3 \end{bmatrix}$$
 has eigenvalues 1 and $-\frac{1}{2}$.

B is still a Markov matrix, so $\lambda = 1$ is still an eigenvalue. The sum down the main diagonal (the "trace") is now .5 so the second eigenvalue must be -.5. Then trace = .2 + .3 = 1 - .5.

Zero eigenvalues remain zero after elimination because the matrix remains singular and its determinant remains zero.

- **2** A has $\lambda_1 = -1$ and $\lambda_2 = 5$ with eigenvectors $x_1 = (-2, 1)$ and $x_2 = (1, 1)$. The matrix A + I has the same eigenvectors, with eigenvalues increased by 1 to **0** and **6**. That zero eigenvalue correctly indicates that A + I is singular.
- **3** A has $\lambda_1 = 2$ and $\lambda_2 = -1$ (check trace and determinant) with $x_1 = (1, 1)$ and $x_2 = (2, -1)$. A^{-1} has the same eigenvectors, with eigenvalues $1/\lambda = \frac{1}{2}$ and -1.
- **4** A has $\lambda_1 = -3$ and $\lambda_2 = 2$ (check trace = -1 and determinant = -6) with $x_1 = (3, -2)$ and $x_2 = (1, 1)$. A^2 has the *same eigenvectors* as A, with eigenvalues $\lambda_1^2 = 9$ and $\lambda_2^2 = 4$.
- **5** A and B have eigenvalues 1 and 3. A + B has $\lambda_1 = 3$, $\lambda_2 = 5$. Eigenvalues of A + B are not equal to eigenvalues of A plus eigenvalues of B.
- 6 A and B have λ₁ = 1 and λ₂ = 1. AB and BA have λ = 2±√3. Eigenvalues of AB are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are equal (this is proved in section 6.6, Problems 18-19).
- 7 U is triangular so its eigenvalues are the diagonal entries $u_{11}, u_{22}, \ldots, u_{nn}$. (This is because det $(U \lambda I)$ will be just the product $(u_{11} \lambda)(u_{22} \lambda) \ldots (u_{nn} \lambda)$ from the main diagonal.)

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ with } \lambda = 2 \text{ and } 0 \qquad U = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ has } \lambda = 1 \text{ and } 0.$$

- **8** (a) Multiply Ax to see λx which reveals λ (b) Solve $(A \lambda I)x = 0$ to find x.
- **9** (a) Multiply by A: $A(Ax) = A(\lambda x) = \lambda Ax$ gives $A^2x = \lambda^2 x$ (b) Multiply by A^{-1} : $x = A^{-1}Ax = A^{-1}\lambda x = \lambda A^{-1}x$ gives $A^{-1}x = \frac{1}{\lambda}x$ (c) Add Ix = x: $(A + I)x = (\lambda + 1)x$.
- **10** A has $\lambda_1 = 1$ and $\lambda_2 = .4$ with $\boldsymbol{x}_1 = (1, 2)$ and $\boldsymbol{x}_2 = (1, -1)$. A^{∞} has $\lambda_1 = 1$ and $\lambda_2 = 0$ (same eigenvectors). A^{100} has $\lambda_1 = 1$ and $\lambda_2 = (.4)^{100}$ which is near zero. So A^{100} is very near A^{∞} : same eigenvectors and close eigenvalues.
- **11** With $\lambda = 0, 1, 2$ the rank is **2**. The eigenvalues of B^2 are 0, 1, 4. The eigenvalues of $(B^2 + I)^{-1}$ are $(0+1)^{-1} = 1, (1+1)^{-1} = \frac{1}{2}, (4+1)^{-1} = \frac{1}{5}$.

6.1. Introduction to Eigenvalues

- 12 The projection matrix P has $\lambda = 1, 0, 1$ with eigenvectors (1, 2, 0), (2, -1, 0), (0, 0, 1). Add the first and last vectors: (1, 2, 1) also has $\lambda = 1$. Note $P^2 = P$ leads to $\lambda^2 = \lambda$ so $\lambda = 0$ or 1.
- **13** (a) $Pu = (uu^{T})u = u(u^{T}u) = u$ so $\lambda = 1$ (b) $Pv = (uu^{T})v = u(u^{T}v) = 0$ (c) $x_{1} = (-1, 1, 0, 0), x_{2} = (-3, 0, 1, 0), x_{3} = (-5, 0, 0, 1)$ all have Px = 0x = 0.
- 14 Two eigenvectors of this rotation matrix are $x_1 = (1, i)$ and $x_2 = (1, -i)$ (more generally cx_1 , and dx_2 with $cd \neq 0$).
- **15** These matrices all have $\lambda_1 = 0$ and $\lambda_2 = 0$ (which we can see from trace = 0 and determinant = 0):

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ has } A^2 = 0 \qquad A = \begin{bmatrix} a & -a \\ a & -a \end{bmatrix} \text{ has } A^2 = 0.$$

- **16** $\lambda = 0, 0, 6$ (notice rank 1 and trace 6) with $x_1 = (0, -2, 1), x_2 = (1, -2, 0), x_3 = (1, 2, 1).$
- **17** $\begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$ so $\lambda_1 = 6$. Then $\lambda_2 = 1$ to make trace = 5 + 2 = 6 + 1. $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a+b \\ c+d \end{bmatrix} = (a+b) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ so $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector.

The other eigenvalue is d - b to make trace = a + d = (a + b) + (d - b).

18 These 3 matrices have $\lambda = 4$ and 5, trace 9, det 20: $\begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$, $\begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix}$, $\begin{bmatrix} 2 & 2 \\ -3 & 7 \end{bmatrix}$.

- (a) u is a basis for the nullspace, v and w give a basis for the column space
 (b) x = (0, 1/3, 1/5) is a particular solution. Add any cu from the nullspace
 - (c) If Ax = u had a solution, u would be in the column space: wrong dimension 3.
- **20** (a) $A = \begin{bmatrix} 0 & -1 \\ -28 & 11 \end{bmatrix}$ has trace 11 and determinant 28, so $\lambda = 4$ and 7.

(b) $A = \begin{bmatrix} 0 & 1 \\ -\lambda_1\lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix}$ has trace $\lambda_1 + \lambda_2$ and determinant $\lambda_1\lambda_2$ so its eigenvalues must be λ_1 and λ_2 . This is a typical **companion matrix**.

- **21** $(A \lambda I)$ has the same determinant as $(A \lambda I)^{\mathrm{T}}$ $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ have different because every square matrix has det $M = \det M^{\mathrm{T}}$.
- **22** $\lambda = 1$ (for Markov), 0 (for singular), $-\frac{1}{2}$ (so sum of eigenvalues = trace = $\frac{1}{2}$).
- **23** If you know *n* independent eigenvectors and their eigenvalues, you know the matrix *A*. In Section 6.2, the *x*'s and λ 's go into *V* and Λ , and the matrix must be $A = V\Lambda V^{-1}$. In this section, Problem 23 suggests that Av = Bv for every vector *v* (which proves A = B) because

$$\boldsymbol{v} = c_1 \boldsymbol{x}_1 + \dots + c_n \boldsymbol{x}_n$$
 $A \boldsymbol{v} = c_1 \lambda_1 \boldsymbol{x}_1 + \dots + c_n \lambda_n \boldsymbol{x}_n = B \boldsymbol{v}.$

24 The block matrix has $\lambda = 1, 2$ from *B* and 5, 7 from *D*. All entries of *C* are multiplied by zeros in det $(A - \lambda I)$, so *C* has no effect on the eigenvalues.

- **25** *A* has rank 1 with eigenvalues 0, 0, 0, 4 (the 4 comes from the trace of *A*). *C* has rank 2 (ensuring two zero eigenvalues) and (1, 1, 1, 1) is an eigenvector with $\lambda = 2$. With trace 4, the other eigenvalue is also $\lambda = 2$, and its eigenvector is (1, -1, 1, -1).
- **26** B has $\lambda = -1, -1, -1, 3$ and C has $\lambda = 1, 1, 1, -3$. Both have det = -3.
- **27** Triangular matrix: $\lambda(A) = 1, 4, 6$; $\lambda(B) = 2, \sqrt{3}, -\sqrt{3}$; Rank-1 matrix: $\lambda(C) = 0, 0, 6$.
- **28** det $\begin{bmatrix} 0 \lambda & 1 & 0 \\ 0 & 0 \lambda & 1 \\ 1 & 0 & 0 \lambda \end{bmatrix} = -\lambda^3 + 1 = 0 \text{ for } \lambda = 1, e^{2\pi i/3}, e^{-2\pi i/3}.$

Those complex eigenvalues λ_2, λ_3 are $\cos 120^\circ \pm i \sin 120^\circ = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$.

The trace of P is $\lambda_1 + \lambda_2 + \lambda_3 = 0$.

 $\det \begin{bmatrix} 0 - \lambda & 0 & 1\\ 0 & 1 - \lambda & 0\\ 1 & 0 & 0 - \lambda \end{bmatrix} = -\lambda^3 + \lambda^2 + \lambda - 1 = 0 \text{ for } \lambda = 1, 1, -1. \text{ The trace is}$

1 + 1 - 1 = 1. Three eigenvectors are (1, 1, 1) and (1, 0, 1) and (1, 0, -1). Since P is symmetric we could have chosen orthogonal eigenvectors—change the first to (0, 1, 0).

29 Set λ = 0 in det(A − λI) = (λ₁ − λ)... (λ_n − λ) to find det A = (λ₁)(λ₂)... (λ_n).
30 λ₁ = ½(a + d + √(a − d)² + 4bc) and λ₂ = ½(a + d − √) add to a + d. If A has λ₁ = 3 and λ₂ = 4 then det(A − λI) = (λ − 3)(λ − 4) = λ² − 7λ + 12.

Problem Set 6.2, page 345

Questions 1–7 are about the eigenvalue and eigenvector matrices Λ and V.

1 (a) Factor these two matrices into $A = V\Lambda V^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}.$$

(b) If
$$A = V\Lambda V^{-1}$$
 then $A^3 = (V)(\Lambda^3)(V^{-1})$ and $A^{-1} = (V)(\Lambda^{-1})(V^{-1})$.
 $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$; $\begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$

2 If A has $\lambda_1 = 2$ with eigenvector $\boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\lambda_2 = 5$ with $\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, use $V\Lambda V^{-1}$ to find A. No other matrix has the same λ 's and \boldsymbol{x} 's.

Put the eigenvectors in V $A = V\Lambda S^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix}.$

3 Suppose $A = V\Lambda V^{-1}$. What is the eigenvalue matrix for A + 2I? What is the eigenvector matrix? Check that $A + 2I = (V)(\Lambda + 2I)(V)^{-1}$.

If $A = V\Lambda V^{-1}$ then the eigenvalue matrix for A + 2I is $\Lambda + 2I$ and the eigenvector matrix is still V. $V(\Lambda + 2I)V^{-1} = V\Lambda V^{-1} + V(2I)V^{-1} = A + 2I$.

4 True or false : If the columns of V (eigenvectors of A) are linearly independent, then

(a) A is invertible (b)	A is diagonalizable
-------------------------	---------------------

- (c) V is invertible (d) V is diagonalizable.
- (a) False: don't know λ 's (b) True (c) True (d) False: need eigenvectors of V
- 5 If the eigenvectors of A are the columns of I, then A is a _____ matrix. If the eigenvector matrix V is triangular, then V⁻¹ is triangular. Prove that A is also triangular. With V = I, A = VΛV⁻¹ = Λ is a diagonal matrix. If V is triangular, then V⁻¹ is triangular, so VΛV⁻¹ is also triangular.
- **6** Describe all matrices V that diagonalize this matrix A (find all eigenvectors):

$$A = \left[\begin{array}{cc} 4 & 0 \\ 1 & 2 \end{array} \right].$$

Then describe all matrices that diagonalize A^{-1} .

The columns of V are nonzero multiples of (2,1) and (0,1): in either order. The same matrices V will diagonize A^{-1} .

7 Write down the most general matrix that has eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

$$A = V\Lambda V^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2 = \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 - \lambda_2 \\ \lambda_1 - \lambda_2 & \lambda_1 + \lambda_2 \end{bmatrix} / 2 = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
for any a and b .

Questions 8-10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completing V^{-1} :

 $\left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right] = \left[\begin{array}{cc} \lambda_1 & \lambda_2 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right] \left[\begin{array}{cc} \end{array}\right].$

Do the multiplication $V\Lambda^k V^{-1}\begin{bmatrix} \mathbf{1}\\ \mathbf{0} \end{bmatrix}$ to find its second component. This is the *k*th Fibonacci number $F_k = (\lambda_1^k - \lambda_2^k)/(\lambda_1 - \lambda_2)$.

$$\begin{split} A &= V\Lambda V^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix}. \ V\Lambda^k V^{-1} = \\ \frac{1}{\lambda_1 - \lambda_2} \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{bmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2nd \text{ component is } F_k \\ (\lambda_1^k - \lambda_2^k)/(\lambda_1 - \lambda_2) \end{bmatrix}. \end{split}$$

9 Suppose G_{k+2} is the *average* of the two previous numbers G_{k+1} and G_k :

$$\begin{array}{ccc} G_{k+2} &= \frac{1}{2}G_{k+1} + \frac{1}{2}G_k \\ G_{k+1} &= G_{k+1} \end{array} \quad \text{is} \quad \begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = \begin{bmatrix} & A \end{bmatrix} \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}.$$

- (a) Find A and its eigenvalues and eigenvectors.
- (b) Find the limit as $n \to \infty$ of the matrices $A^n = V \Lambda^n V^{-1}$.
- (c) If $G_0 = 0$ and $G_1 = 1$ show that the Gibonacci numbers approach $\frac{2}{3}$.

(a)
$$A = \begin{bmatrix} .5 & .5 \\ 1 & 0 \end{bmatrix}$$
 has $\lambda_1 = 1$, $\lambda_2 = -\frac{1}{2}$ with $\boldsymbol{x}_1 = (1,1)$, $\boldsymbol{x}_2 = (1,-2)$
(b) $A^n = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1^n & 0 \\ 0 & (-.5)^n \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \to A^{\infty} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$

10 Prove that every third Fibonacci number in 0, 1, 1, 2, 3, ... is even.

The rule $F_{k+2} = F_{k+1} + F_k$ produces the pattern: even, odd, odd, even, odd, odd, ...

Questions 11-14 are about diagonalizability.

11 True or false : If the eigenvalues of A are 2, 2, 5 then the matrix is certainly

(a) invertible (b) diagonalizable (c) not diagonalizable.

(a) *True* (no zero eigenvalues) (b) *False* (repeated $\lambda = 2$ may have only one line of eigenvectors) (c) *False* (repeated λ may have a full set of eigenvectors)

- **12** True or false : If the only eigenvectors of A are multiples of (1, 4) then A has
 - (a) no inverse (b) a repeated eigenvalue (c) no diagonalization $V\Lambda V^{-1}$.
 - (a) False: don't know λ (b) True: an eigenvector is missing (c) True.
- **13** Complete these matrices so that det A = 25. Then check that $\lambda = 5$ is repeated the trace is 10 so the determinant of $A - \lambda I$ is $(\lambda - 5)^2$. Find an eigenvector with Ax = 5x. These matrices will not be diagonalizable because there is no second line of eigenvectors.

$$A = \begin{bmatrix} 8 \\ & 2 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 9 & 4 \\ & 1 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 10 & 5 \\ -5 \end{bmatrix}$$

$$A = \begin{bmatrix} 8 & 3 \\ -3 & 2 \end{bmatrix} \text{ (or other), } A = \begin{bmatrix} 9 & 4 \\ -4 & 1 \end{bmatrix}, \ A = \begin{bmatrix} 10 & 5 \\ -5 & 0 \end{bmatrix}; \text{ only eigenvectors} are \boldsymbol{x} = (c, -c).$$

14 The matrix $A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ is not diagonalizable because the rank of A - 3I is _____. Change one entry to make A diagonalizable. Which entries could you change? The rank of A - 3I is r = 1. Changing any entry except $a_{12} = 1$ makes A diagonalizable (A will have unequal eigenvalues, so eigenvectors are independent.)

Questions 15–19 are about powers of matrices.

15 $A^k = V\Lambda^k V^{-1}$ approaches the zero matrix as $k \to \infty$ if and only if every λ has absolute value less than _____. Which of these matrices has $A^k \to 0$?

$A_1 =$	$\begin{bmatrix} .6\\.4 \end{bmatrix}$.9 .1	and	$A_2 =$.6 .1	.9 .6	
---------	--	----------	-----	---------	----------	----------	--

 $A^k = V \Lambda^k V^{-1}$ approaches zero if and only if every $|\lambda| < 1$; $A_1^k \to A_1^\infty, A_2^k \to 0$.

16 (Recommended) Find Λ and V to diagonalize A_1 in Problem 15. What is the limit of Λ^k as $k \to \infty$? What is the limit of $V\Lambda^k V^{-1}$? In the columns of this limiting matrix you see the _____.

$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & .2 \end{bmatrix} \text{ and } V = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; \Lambda^k \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } V\Lambda^k V^{-1} \to \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}; \begin{array}{c} \text{steady} \\ \text{state} \end{array}.$$

17 Find A and V to diagonalize A_2 in Problem 15. What is $(A_2)^{10}u_0$ for these u_0 ?

$$\boldsymbol{u}_{0} = \begin{bmatrix} 3\\1 \end{bmatrix} \text{ and } \boldsymbol{u}_{0} = \begin{bmatrix} 3\\-1 \end{bmatrix} \text{ and } \boldsymbol{u}_{0} = \begin{bmatrix} 6\\0 \end{bmatrix}.$$

$$\Lambda = \begin{bmatrix} .9&0\\0&.3 \end{bmatrix}, S = \begin{bmatrix} 3&-3\\1&1 \end{bmatrix}; A_{2}^{10} \begin{bmatrix} 3\\1 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3\\1 \end{bmatrix}, A_{2}^{10} \begin{bmatrix} -3\\-1 \end{bmatrix} = (.3)^{10} \begin{bmatrix} -3\\-1 \end{bmatrix},$$

$$A_{2}^{10} \begin{bmatrix} 6\\0 \end{bmatrix} = (.9)^{10} \begin{bmatrix} 3\\1 \end{bmatrix} + (.3)^{10} \begin{bmatrix} -3\\-1 \end{bmatrix} \text{ because } \begin{bmatrix} 6\\0 \end{bmatrix} \text{ is the sum of } \begin{bmatrix} 3\\1 \end{bmatrix} + \begin{bmatrix} -3\\-1 \end{bmatrix}.$$

18 Diagonalize A and compute $V\Lambda^k V^{-1}$ to prove this formula for A^k :

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \quad \text{has} \quad A^{k} = \frac{1}{2} \begin{bmatrix} 1 + 3^{k} & 1 - 3^{k} \\ 1 - 3^{k} & 1 + 3^{k} \end{bmatrix}.$$
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \text{ and } A^{k} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3^{k} \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}. \text{ Multiply those last three matrices to get } A^{k} = \frac{1}{2} \begin{bmatrix} 1 + 3^{k} & 1 - 3^{k} \\ 1 - 3^{k} & 1 + 3^{k} \end{bmatrix}.$$

19 Diagonalize B and compute $V\Lambda^k V^{-1}$ to prove this formula for B^k :

$$B = \begin{bmatrix} 5 & 1 \\ 0 & 4 \end{bmatrix} \quad \text{has} \quad B^k = \begin{bmatrix} 5^k & 5^k - 4^k \\ 0 & 4^k \end{bmatrix}$$
$$B^k = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}^k \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5^k & 5^k - 4^k \\ 0 & 4^k \end{bmatrix}.$$

- **20** Suppose $A = V\Lambda V^{-1}$. Take determinants to prove det $A = \det \Lambda = \lambda_1 \lambda_2 \cdots \lambda_n$. This quick proof only works when A can be _____ det $A = (\det V)(\det \Lambda)(\det V^{-1}) = \det \Lambda = \lambda_1 \cdots \lambda_n$. This proof works when A is diagonalizable.
- **21** Show that trace VT = trace TV, by adding the diagonal entries of VT and TV:

$$V = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \quad \text{and} \quad T = \left[\begin{array}{cc} q & r \\ s & t \end{array} \right].$$

Choose T as ΛV^{-1} . Then $V\Lambda V^{-1}$ has the same trace as $\Lambda V^{-1}V = \Lambda$. The trace of A equals the trace of Λ , which is certainly the sum of the eigenvalues.

trace VT = (aq + bs) + (cr + dt) is equal to (qa + rc) + (sb + td) = trace TV. Diagonalizable trace of $V\Lambda V^{-1} = \text{trace of } (\Lambda V^{-1})V = \text{trace of } \Lambda$: sum of the λ 's.

22 AB - BA = I is impossible since the left side has trace = _____. But find an elimination matrix so that A = E and $B = E^{T}$ give

$$AB - BA = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 which has trace zero.

AB - BA = I is impossible since trace AB - trace $BA = zero \neq$ trace I. AB - BA = C is possible when trace (C) = 0.

$$E = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix} \text{ has } EE^{\mathrm{T}} - E^{\mathrm{T}}E = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}.$$

23 If $A = V\Lambda V^{-1}$, diagonalize the block matrix $B = \begin{bmatrix} A & 0 \\ 0 & 2A \end{bmatrix}$. Find its eigenvalue and eigenvector (block) matrices.

If
$$A = V\Lambda V^{-1}$$
 then $B = \begin{bmatrix} A & 0 \\ 0 & 2A \end{bmatrix} = \begin{bmatrix} V & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \Lambda & 0 \\ 0 & 2\Lambda \end{bmatrix} \begin{bmatrix} V^{-1} & 0 \\ 0 & V^{-1} \end{bmatrix}$. So B has the additional eigenvalues $2\lambda_1, \ldots, 2\lambda_n$.

24 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector matrix V. Show that the A's form a subspace (cA and $A_1 + A_2$ have this same V). What is this subspace when V = I? What is its dimension?

The A's form a subspace since cA and $A_1 + A_2$ all have the same V. When V = I the A's with those eigenvectors give the subspace of diagonal matrices. Dimension 4.

25 Suppose $A^2 = A$. On the left side A multiplies each column of A. Which of our four subspaces contains eigenvectors with $\lambda = 1$? Which subspace contains eigenvectors with $\lambda = 0$? From the dimensions of those subspaces, A has a full set of independent eigenvectors. So every matrix with $A^2 = A$ can be diagonalized.

If A has columns x_1, \ldots, x_n then column by column, $A^2 = A$ means every $Ax_i = x_i$. All vectors in the column space (combinations of those columns x_i) are eigenvectors with $\lambda = 1$. Always the nullspace has $\lambda = 0$ (A might have dependent columns, so there could be less than n eigenvectors with $\lambda = 1$). Dimensions of those spaces add to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors altogether).

26 (Recommended) Suppose $Ax = \lambda x$. If $\lambda = 0$ then x is in the nullspace. If $\lambda \neq 0$ then x is in the column space. Those spaces have dimensions (n - r) + r = n. So why doesn't every square matrix have n linearly independent eigenvectors?

Two problems: The nullspace and column space can overlap, so x could be in both. There may not be r independent eigenvectors in the column space.

27 The eigenvalues of A are 1 and 9, and the eigenvalues of B are -1 and 9:

$$A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}.$$

Find a matrix square root of A from $R = V\sqrt{\Lambda}V^{-1}$. Why is there no real matrix square root of B?

$$R = V\sqrt{\Lambda}V^{-1} = \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix} \text{ has } R^2 = A. \sqrt{B} \text{ needs } \lambda = \sqrt{9} \text{ and } \sqrt{-1} \text{, trace is not real}$$

Note that
$$\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \text{ can have } \sqrt{-1} = i \text{ and } -i \text{, trace } 0 \text{, real square root } \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}.$$

28 The powers A^k approach zero if all $|\lambda_i| < 1$ and they blow up if any $|\lambda_i| > 1$. Peter Lax gives these striking examples in his book *Linear Algebra*:

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ -5 & -3 \end{bmatrix} \quad C = \begin{bmatrix} 5 & 7 \\ -3 & -4 \end{bmatrix} \quad D = \begin{bmatrix} 5 & 6.9 \\ -3 & -4 \end{bmatrix}$$
$$\|A^{1024}\| > 10^{700} \quad B^{1024} = I \qquad C^{1024} = -C \qquad \|D^{1024}\| < 10^{-78}$$

Find the eigenvalues $\lambda = e^{i\theta}$ of B and C to show $B^4 = I$ and $C^3 = -I$.

B has $\lambda = i$ and -i, so B^4 has $\lambda^4 = 1$ and 1 and $B^4 = I$. C has $\lambda = (1 \pm \sqrt{3}i)/2$. This is $\exp(\pm \pi i/3)$ so $\lambda^3 = -1$ and -1. Then $C^3 = -I$ and $C^{1024} = -C$.

29 If A and B have the same λ 's with the same full set of independent eigenvectors, their factorizations into _____ are the same. So A = B.

The factorizations of A and B into $V\Lambda V^{-1}$ are the same. So A = B. (This is the same as Problem 6.1.25, expressed in matrix form.)

30 Suppose the same V diagonalizes both A and B. They have the same eigenvectors in $A = V\Lambda_1 V^{-1}$ and $B = V\Lambda_2 V^{-1}$. Prove that AB = BA.

 $A = V\Lambda_1 V^{-1}$ and $B = V\Lambda_2 V^{-1}$. Diagonal matrices always give $\Lambda_1 \Lambda_2 = \Lambda_2 \Lambda_1$. Then AB = BA from $V\Lambda_1 V^{-1} V\Lambda_2 V^{-1} = V\Lambda_1 \Lambda_2 V^{-1} = V\Lambda_2 \Lambda_1 V^{-1}$. This is $V\Lambda_2 V^{-1} V\Lambda_1 V^{-1} = BA$.

- **31** (a) If $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ then the determinant of $A \lambda I$ is $(\lambda a)(\lambda d)$. Check the "Cayley-Hamilton Theorem" that (A aI)(A dI) = zero matrix.
 - (b) Test the Cayley-Hamilton Theorem on Fibonacci's $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. The theorem predicts that $A^2 A I = 0$, since the polynomial det $(A \lambda I)$ is $\lambda^2 \lambda 1$. (a) $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ has $\lambda = a$ and $\lambda = d$: $(A - aI)(A - dI) = \begin{bmatrix} 0 & b \\ 0 & d - a \end{bmatrix} \begin{bmatrix} a - d & b \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. (b) $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has $A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $A^2 - A - I = 0$ is true,

matching $\lambda^2 - \lambda - 1 = 0$ as the Cayley-Hamilton Theorem predicts.

32 Substitute $A = V\Lambda V^{-1}$ into the product $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda) = \det(A - \lambda I)$. The *Cayley-Hamilton Theorem* says that this product is always p(A) = zero matrix, even if A is not diagonalizable.

When $A = V\Lambda V^{-1}$ is diagonalizable, the matrix $A - \lambda_j I = V(\Lambda - \lambda_j I)V^{-1}$ will have 0 in the *j*, *j* diagonal entry of $\Lambda - \lambda_j I$. In the product $p(A) = (A - \lambda_1 I) \cdots (A - \lambda_n I)$, each inside V^{-1} cancels *V*. This leaves *V* times (*product of diagonal matrices* $\Lambda - \lambda_j I$) times V^{-1} . That product is the zero matrix because the factors produce a zero in each diagonal position. Then p(A) = zero matrix, which is the Cayley-Hamilton Theorem. (If *A* is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching *A*.)

Comment I have also seen the following reasoning but I am not convinced:

Apply the formula $AC^{T} = (\det A)I$ from Section 5.3 to $A - \lambda I$ with variable λ . Its cofactor matrix C will be a polynomial in λ , since cofactors are determinants:

$$(A - \lambda I) \operatorname{cof} (A - \lambda I)^{\mathrm{T}} = \det(A - \lambda I)I = p(\lambda)I.$$

"For fixed A, this is an identity between two matrix polynomials." Set $\lambda = A$ to find the zero matrix on the left, so p(A) = zero matrix on the right—which is the Cayley-Hamilton Theorem.

I am not certain about the key step of substituting a matrix for λ . If other matrices B are substituted, does the identity remain true? If $AB \neq BA$, even the order of multiplication seems unclear . . .

Challenge Problems

33 The *n*th power of rotation through θ is rotation through $n\theta$:

$$A^{n} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}^{n} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}$$

Prove that neat formula by diagonalizing $A = V\Lambda V^{-1}$. The eigenvectors (columns of V) are (1, i) and (i, 1). You need to know Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$.

The eigenvalues of $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ are $\lambda = e^{i\theta}$ and $e^{-i\theta}$ (trace $2\cos\theta$ and $\det = 1$). Their eigenvectors are (1, -i) and (1, i):

$$A^{n} = V\Lambda^{n}V^{-1} = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{in\theta} & \\ & e^{-in\theta} \end{bmatrix} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} / 2i$$
$$= \begin{bmatrix} (e^{in\theta} + e^{-in\theta})/2 & \cdots \\ (e^{in\theta} - e^{-in\theta})/2i & \cdots \end{bmatrix} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

Geometrically, *n* rotations by θ give one rotation by $n\theta$.

34 The transpose of $A = V\Lambda V^{-1}$ is $A^{\mathrm{T}} = (V^{-1})^{\mathrm{T}}\Lambda V^{\mathrm{T}}$. The eigenvectors in $A^{\mathrm{T}}\boldsymbol{y} = \lambda \boldsymbol{y}$ are the columns of that matrix $(V^{-1})^{\mathrm{T}}$. They are often called *left eigenvectors*.

How do you multiply three matrices $V\Lambda V^{-1}$ to find this formula for A?

Sum of rank-1 matrices
$$A = V\Lambda V^{-1} = \lambda_1 x_1 y_1^{\mathrm{T}} + \dots + \lambda_n x_n y_n^{\mathrm{T}}$$

Columns of V times rows of ΛV^{-1} will give r rank-1 matrices (r = rank of A).

35 The inverse of A = eye(n) + ones(n) is $A^{-1} = eye(n) + C * ones(n)$. Multiply AA^{-1} to find that number C (depending on n).

Note that ones(n) * ones(n) = n * ones(n). This leads to C = 1/(n+1).

$$AA^{-1} = (\operatorname{eye}(n) + \operatorname{ones}(n)) * (\operatorname{eye}(n) + C * \operatorname{ones}(n))$$
$$= \operatorname{eye}(n) + (1 + C + Cn) * \operatorname{ones}(n) = \operatorname{eye}(n).$$

Problem Set 6.3, page 357

1 Find all solutions $\boldsymbol{y} = c_1 e^{\lambda_1 t} \boldsymbol{x}_1 + c_2 e^{\lambda_2 t} \boldsymbol{x}_2$ to $\boldsymbol{y'} = \begin{bmatrix} 3 & 1 \\ 3 & 5 \end{bmatrix} \boldsymbol{y}$. Which solution starts from $\boldsymbol{y}(0) = c_1 \boldsymbol{x}_1 + c_2 \boldsymbol{x}_2 = (2, 2)$? The eigenvalues come from $\det(A - \lambda I) = 0$. This is $\lambda^2 - 8\lambda + 12 = (\lambda - 2)(\lambda - 6) = 0$ so $\lambda = 2, 6$ Eigenvectors: $(A - 2I)\boldsymbol{x}_1 = \mathbf{0}$ and $(A - 6I)\boldsymbol{x}_2 = 0$ give $\boldsymbol{x}_1 = (1, -1)$ and $\boldsymbol{x}_2 = (1, 3)$ Solutions are $\boldsymbol{y}(t) = c_1 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{-6t} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ Constants c_1, c_2 come from $\begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \boldsymbol{y}(\mathbf{0}) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Then $\boldsymbol{c}_1 = \boldsymbol{c}_2 = \mathbf{1}$. **2** Find two solutions of the form $\boldsymbol{y} = e^{\lambda t} \boldsymbol{x}$ to $\boldsymbol{y'} = \begin{bmatrix} 3 & 10 \\ 2 & 4 \end{bmatrix} \boldsymbol{y}$.

The eigenvalues come from $\lambda^2 - 7\lambda - 8 = 0$. Factor into $(\lambda - 8)(\lambda + 1)$ to see $\lambda = 8$, and -1.

$$(A-8I)\mathbf{x}_1 = \begin{bmatrix} -5 & 10\\ 2 & -1 \end{bmatrix} \mathbf{x}_1 = \mathbf{0} \text{ gives } \mathbf{x}_1 = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$
$$(A+I)\mathbf{x}_2 = \begin{bmatrix} 4 & 10\\ 2 & 5 \end{bmatrix} \mathbf{x}_2 = \mathbf{0} \text{ gives } \mathbf{x}_2 = \begin{bmatrix} 5\\ -2 \end{bmatrix}$$

The two solutions are $y(t) = e^{8t} \boldsymbol{x}_1$ and $e^{-t} \boldsymbol{x}_2$

3 If $a \neq d$, find the eigenvalues and eigenvectors and the complete solution to y' = Ay. This equation is stable when a and d are _____.

$$oldsymbol{y'} = \left[egin{array}{cc} a & b \ 0 & d \end{array}
ight] oldsymbol{y}$$

The eigenvalues are $\lambda = a$ and $\lambda = d$. The eigenvectors come from

$$(A - aI) \mathbf{x}_1 = \begin{bmatrix} 0 & b \\ 0 & d - a \end{bmatrix} \mathbf{x}_1 = \mathbf{0}. \quad \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$(A - dI) \mathbf{x}_2 = \begin{bmatrix} a - d & b \\ 0 & 0 \end{bmatrix} \mathbf{x}_2 = \mathbf{0}. \quad \mathbf{x}_2 = \begin{bmatrix} b \\ d - a \end{bmatrix}$$

Two solutions are $y = e^{at} x_1$ and $y = e^{dt} x_2$. Stability for **negative** a and d. **4** If $a \neq -b$, find the solutions $e^{\lambda_1 t} x_1$ and $e^{\lambda_2 t} x_2$ to y' = Ay:

$$A = \begin{bmatrix} a & b \\ a & b \end{bmatrix}.$$
 Why is $y' = Ay$ not stable?

A is singular so $\lambda_1 = 0$. Trace is a + b so $\lambda_2 = a + b$. $(A - 0I) \mathbf{x}_1 = \mathbf{0}$ gives $\mathbf{x}_1 = \begin{bmatrix} b \\ -a \end{bmatrix}$ $(A - (a + b)I) \mathbf{x}_2 = \begin{bmatrix} -b & b \\ a & -a \end{bmatrix} \mathbf{x}_2 = 0$ gives $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

The system is not stable because $\lambda = 0$ is an eigenvalue. If $\lambda_2 = a + b$ is negative, the system is "neutral" and the solution approaches a steady state (a multiple of x_1).

5 Find the eigenvalues λ_1 , λ_2 , λ_3 and the eigenvectors \boldsymbol{x}_1 , \boldsymbol{x}_2 , \boldsymbol{x}_3 of A. Write $\boldsymbol{y}(0) = (0, 1, 0)$ as a combination $c_1\boldsymbol{x}_1 + c_2\boldsymbol{x}_2 + c_3\boldsymbol{x}_3 = V\boldsymbol{c}$ and solve $\boldsymbol{y}' = A\boldsymbol{y}$. What is the limit of $\boldsymbol{y}(t)$ as $t \to \infty$ (the steady state)? Steady states come from $\lambda = 0$.

$$A = \begin{bmatrix} -1 & 1 & 0\\ 1 & -2 & 1\\ 0 & 1 & -1 \end{bmatrix}.$$

Calculation gives $det(A - \lambda I) = -(\lambda + 1)\lambda(\lambda + 3)$ and eigenvalues $\lambda = 0, -1, -3$.

6.3. Linear Systems y' = Ay

$$\lambda = 0$$
 has eigenvector $\boldsymbol{x}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ $\lambda = -1$ has $\boldsymbol{x}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ $\lambda = -3$ has $\boldsymbol{x}_3 = \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$

Notice: Those eigenvectors are orthogonal (because A is symmetric). Then y(0) is

$$(0,1,0) = \frac{1}{3}(\boldsymbol{x}_1 - \boldsymbol{x}_3)$$
 so $\boldsymbol{y}(t) = \frac{1}{3}e^{0t}\boldsymbol{x}_1 - \frac{1}{3}e^{-3t}\boldsymbol{x}_2$ approaches $y(\infty) = \frac{1}{3}\begin{bmatrix} 1\\1\\1 \end{bmatrix}$

6 The simplest 2 by 2 matrix without two independent eigenvectors has $\lambda = 0, 0$:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}' = A \boldsymbol{y} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \text{ has a first solution } \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = e^{0t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Find a second solution to these equations $y_1' = y_2$ and $y_2' = 0$. That second solution starts with t times the first solution to give $y_1 = t$. What is y_2 ?

Note A complete discussion of y' = Ay for all cases of repeated λ 's would involve the *Jordan form* of A: too technical. Section 6.4 shows that a triangular form is sufficient, as Problems 6 and 8 confirm. We can solve for y_2 and then y_1 .

The first solution to $y'_1 = y_2$ and $y'_2 = 0$ is $(y_1(t), y_2(t)) = (1, 0) =$ eigenvector. A second solution has $(y_1, y_2) = (t, 1)$. The factor t appears when there is no x_2 .

7 Find two λ 's and \boldsymbol{x} 's so that $\boldsymbol{y} = e^{\lambda t} \boldsymbol{x}$ solves

$$\frac{d\boldsymbol{y}}{dt} = \left[\begin{array}{cc} 4 & 3\\ 0 & 1 \end{array} \right] \boldsymbol{y}.$$

What combination $\boldsymbol{y} = c_1 e^{\lambda_1 t} \boldsymbol{x}_1 + c_2 e^{\lambda_2 t} \boldsymbol{x}_2$ starts from $\boldsymbol{y}(0) = (5, -2)$? $\boldsymbol{y}_1 = e^{4t} \begin{bmatrix} 1\\0 \end{bmatrix}, \ \boldsymbol{y}_2 = e^t \begin{bmatrix} 1\\-1 \end{bmatrix}$. If $\boldsymbol{y}(0) = \begin{bmatrix} 5\\-2 \end{bmatrix}$, then $\boldsymbol{y}(t) = 3e^{4t} \begin{bmatrix} 1\\0 \end{bmatrix} + 2e^t \begin{bmatrix} 1\\-1 \end{bmatrix}$.

8 Solve Problem 7 for y = (y, z) by back substitution, z before y:

Solve
$$\frac{dz}{dt} = z$$
 from $z(0) = -2$. Then solve $\frac{dy}{dt} = 4y + 3z$ from $y(0) = 5$.

The solution for y will be a combination of e^{4t} and e^t . $\lambda = 4$ and 1. $z(t) = -2e^t$.

Then
$$dy/dt = 4y - 6e^t$$
 with $y(0) = 5$ gives $y(t) = 3e^{4t} + 2e^t$ as in Problem 7.

- **9** (a) If every column of A adds to zero, why is $\lambda = 0$ an eigenvalue?
 - (b) With negative diagonal and positive off-diagonal adding to zero, y' = Ay will be a "continuous" Markov equation. Find the eigenvalues and eigenvectors, and the *steady state* as $t \to \infty$:

Solve
$$\frac{d\boldsymbol{y}}{dt} = \begin{bmatrix} -2 & 3\\ 2 & -3 \end{bmatrix} \boldsymbol{y}$$
 with $\boldsymbol{y}(0) = \begin{bmatrix} 4\\ 1 \end{bmatrix}$. What is $\boldsymbol{y}(\infty)$?

(a) If every column of A adds to zero, this means that the rows add to the zero row. So the rows are dependent, and A is singular, and $\lambda = 0$ is an eigenvalue.

- (b) The eigenvalues of $A = \begin{bmatrix} -2 & 3\\ 2 & -3 \end{bmatrix}$ are $\lambda_1 = 0$ with eigenvector $\boldsymbol{x}_1 = (3, 2)$ and $\lambda_2 = -5$ (to give trace = -5) with $\boldsymbol{x}_2 = (1, -1)$. Then the usual 3 steps: 1. Write $\boldsymbol{y}(0) = \begin{bmatrix} 4\\ 1 \end{bmatrix}$ as $\begin{bmatrix} 3\\ 2 \end{bmatrix} + \begin{bmatrix} 1\\ -1 \end{bmatrix} = \boldsymbol{x}_1 + \boldsymbol{x}_2$
- 2. Follow those eigenvectors by $e^{0t}x_1$ and $e^{-5t}x_2$
- 3. The solution $\boldsymbol{y}(t) = \boldsymbol{x}_1 + e^{-5t}\boldsymbol{x}_2$ has steady state $\boldsymbol{x}_1 = (3, 2)$.
- **10** A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people. The movement between rooms is proportional to the difference v - w:

$$\frac{dv}{dt} = w - v$$
 and $\frac{dw}{dt} = v - w.$

Show that the total v + w is constant (40 people). Find the matrix in dy/dt = Ay and its eigenvalues and eigenvectors. What are v and w at t = 1 and $t = \infty$?

$$d(v+w)/dt = (w-v) + (v-w) = 0, \text{ so the total } v+w \text{ is constant. } A = \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix}$$

has $\lambda_1 = 0$
 $\lambda_2 = -2$ with $\boldsymbol{x}_1 = \begin{bmatrix} 1\\ 1 \end{bmatrix}, \, \boldsymbol{x}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}; \quad v(1) = 20 + 10e^{-2} \quad v(\infty) = 20$
 $w(1) = 20 - 10e^{-2} \quad w(\infty) = 20$

11 Reverse the diffusion of people in Problem 10 to dz/dt = -Az:

$$\frac{dv}{dt} = v - w$$
 and $\frac{dw}{dt} = w - v.$

The total v + w still remains constant. How are the λ 's changed now that A is changed to -A? But show that v(t) grows to infinity from v(0) = 30.

$$\frac{d}{dt} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ has } \lambda = 0 \text{ and } +2: v(t) = 20 + 10e^{2t} \to \infty \text{ as } t \to \infty.$$

12 A has real eigenvalues but B has complex eigenvalues:

$$A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix} \quad B = \begin{bmatrix} b & -1 \\ 1 & b \end{bmatrix} \quad (a \text{ and } b \text{ are real})$$

Find the stability conditions on a and b so that all solutions of dy/dt = Ayand dz/dt = Bz approach zero as $t \to \infty$.

174

6.3. Linear Systems y' = Ay

 $A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix}$ has real eigenvalues a + 1 and a - 1. These are both negative if a < -1, and the solutions of y' = Ay approach zero. $B = \begin{bmatrix} b & -1 \\ 1 & b \end{bmatrix}$ has complex eigenvalues b + i and b - i. These have negative real parts if b < 0, and all solutions of z' = Bz approach zero.

13 Suppose P is the projection matrix onto the 45° line y = x in \mathbb{R}^2 . Its eigenvalues are 1 and 0 with eigenvectors (1, 1) and (1, -1). If dy/dt = -Py (notice minus sign) can you find the limit of y(t) at $t = \infty$ starting from y(0) = (3, 1)?

A projection matrix has eigenvalues $\lambda = 1$ and $\lambda = 0$. Eigenvectors $P\mathbf{x} = \mathbf{x}$ fill the subspace that P projects onto: here $\mathbf{x} = (1, 1)$. Eigenvectors $P\mathbf{x} = \mathbf{0}$ fill the perpendicular subspace: here $\mathbf{x} = (1, -1)$. For the solution to $\mathbf{y}' = -P\mathbf{y}$,

$$\boldsymbol{y}(0) = \begin{bmatrix} 3\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} + \begin{bmatrix} 1\\-1 \end{bmatrix}$$
 $\boldsymbol{y}(t) = e^{-t} \begin{bmatrix} 2\\2 \end{bmatrix} + e^{0t} \begin{bmatrix} 1\\-1 \end{bmatrix}$ approaches $\begin{bmatrix} 1\\-1 \end{bmatrix}$.

14 The rabbit population shows fast growth (from 6r) but loss to wolves (from -2w). The wolf population always grows in this model ($-w^2$ would control wolves):

$$\frac{dr}{dt} = 6r - 2w$$
 and $\frac{dw}{dt} = 2r + w$.

Find the eigenvalues and eigenvectors. If r(0) = w(0) = 30 what are the populations at time t? After a long time, what is the ratio of rabbits to wolves?

 $\begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix} \text{ has } \lambda_1 = 5, \ \boldsymbol{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \lambda_2 = 2, \ \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \text{ rabbits } r(t) = 20e^{5t} + 10e^{2t}, \\ w(t) = 10e^{5t} + 20e^{2t}. \text{ The ratio of rabbits to wolves approaches } 20/10; e^{5t} \text{ dominates.}$

15 (a) Write (4, 0) as a combination $c_1 x_1 + c_2 x_2$ of these two eigenvectors of A:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = i \begin{bmatrix} 1 \\ i \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = -i \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

(b) The solution to dy/dt = Ay starting from (4, 0) is $c_1e^{it}x_1 + c_2e^{-it}x_2$. Substitute $e^{it} = \cos t + i\sin t$ and $e^{-it} = \cos t - i\sin t$ to find y(t).

(a)
$$\begin{bmatrix} 4\\0 \end{bmatrix} = 2 \begin{bmatrix} 1\\i \end{bmatrix} + 2 \begin{bmatrix} 1\\-i \end{bmatrix}$$
. (b) Then $\boldsymbol{y}(t) = 2e^{it} \begin{bmatrix} 1\\i \end{bmatrix} + 2e^{-it} \begin{bmatrix} 1\\-i \end{bmatrix} = \begin{bmatrix} 4\cos t\\4\sin t \end{bmatrix}$.

Questions 16–19 reduce second-order equations to first-order systems for (y, y').

16 Find A to change the scalar equation y'' = 5y' + 4y into a vector equation for y = (y, y'):

$$\frac{d\boldsymbol{y}}{dt} = \begin{bmatrix} y'\\ y'' \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix} \begin{bmatrix} y\\ y' \end{bmatrix} = A\boldsymbol{y}.$$

What are the eigenvalues of A? Find them also by substituting $y = e^{\lambda t}$ into y'' = 5y' + 4y.

 $\frac{d}{dt} \begin{bmatrix} y\\ y' \end{bmatrix} = \begin{bmatrix} y'\\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1\\ 4 & 5 \end{bmatrix} \begin{bmatrix} y\\ y' \end{bmatrix}. A = \begin{bmatrix} 0 & 1\\ 4 & 5 \end{bmatrix} \text{ has } \det(A - \lambda I) = \lambda^2 - 5\lambda - 4 = 0.$ Directly substituting $y = e^{\lambda t}$ into y'' = 5y' + 4y also gives $\lambda^2 = 5\lambda + 4$ and the same two values of λ . Those values are $\lambda = \frac{1}{2}(5 \pm \sqrt{41})$ by the quadratic formula.

17 Substitute $y = e^{\lambda t}$ into y'' = 6y' - 9y to show that $\lambda = 3$ is a repeated root. This is trouble; we need a second solution after e^{3t} . The matrix equation is

$$\frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix}.$$

Show that this matrix has $\lambda = 3, 3$ and only one line of eigenvectors. *Trouble here too*. Show that the second solution to y'' = 6y' - 9y is $y = te^{3t}$.

$$A = \begin{bmatrix} 0 & 1 \\ -9 & 6 \end{bmatrix}$$
 has trace 6, det 9, $\lambda = 3$ and 3 with *one* independent eigenvector (1, 3).

- **18** (a) Write down two familiar functions that solve the equation $d^2y/dt^2 = -9y$. Which one starts with y(0) = 3 and y'(0) = 0?
 - (b) This second-order equation y'' = -9y produces a vector equation y' = Ay:

$$\boldsymbol{y} = \begin{bmatrix} y \\ y' \end{bmatrix}$$
 $\frac{d\boldsymbol{y}}{dt} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = A\boldsymbol{y}.$

Find y(t) by using the eigenvalues and eigenvectors of A: y(0) = (3, 0).

(a) $y(t) = \cos 3t$ and $\sin 3t$ solve y'' = -9y. It is $3\cos 3t$ that starts with y(0) = 3and y'(0) = 0. (b) $A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix}$ has det = 9: $\lambda = 3i$ and -3i with $\boldsymbol{x} = (1, 3i)$ and (1, -3i). Then $\boldsymbol{y}(t) = \frac{3}{2}e^{3it}\begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it}\begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos 3t \\ -9\sin 3t \end{bmatrix}$.

- 19 If c is not an eigenvalue of A, substitute y = e^{ct}v and find a particular solution to dy/dt = Ay e^{ct}b. How does it break down when c is an eigenvalue of A?
 Substituting y = e^{ct}v gives ce^{ct}v = Ae^{ct}v e^{ct}b or (A cI)v = b or v = (A-cI)⁻¹b = particular solution. If c is an eigenvalue then A cI is not invertible.
- **20** A particular solution to dy/dt = Ay b is $y_p = A^{-1}b$, if A is invertible. The usual solutions to dy/dt = Ay give y_n . Find the complete solution $y = y_p + y_n$:

(a)
$$\frac{dy}{dt} = y - 4$$
 (b) $\frac{dy}{dt} = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix} \mathbf{y} - \begin{bmatrix} 4\\ 6 \end{bmatrix}$.
 $\mathbf{y}_p = 4 \text{ and } \mathbf{y}(t) = ce^t + 4; \quad \mathbf{y}_p = \begin{bmatrix} 4\\ 2 \end{bmatrix} \text{ and } \mathbf{y}(t) = c_1 e^t \begin{bmatrix} 1\\ t \end{bmatrix} + c_2 e^t \begin{bmatrix} 0\\ 1 \end{bmatrix} + \begin{bmatrix} 4\\ 2 \end{bmatrix}.$

- 21 Find a matrix A to illustrate each of the unstable regions in the stability picture :
 - (a) $\lambda_1 < 0$ and $\lambda_2 > 0$ (b) $\lambda_1 > 0$ and $\lambda_2 > 0$ (c) $\lambda = a \pm ib$ with a > 0.

6.3. Linear Systems y' = Ay

(a) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. These show the unstable cases

(a) $\lambda_1 < 0$ and $\lambda_2 > 0$ (b) $\lambda_1 > 0$ and $\lambda_2 > 0$ (c) $\lambda = a \pm ib$ with a > 0**22** Which of these matrices are stable ? Then Re $\lambda < 0$, trace < 0, and det > 0.

$$A_{1} = \begin{bmatrix} -2 & -3 \\ -4 & -5 \end{bmatrix} \quad A_{2} = \begin{bmatrix} -1 & -2 \\ -3 & -6 \end{bmatrix} \quad A_{3} = \begin{bmatrix} -1 & 2 \\ -3 & -6 \end{bmatrix}.$$

 A_1 is unstable (trace = -7 but determinant = -2; $\lambda_1 < 0$ but $\lambda_2 > 0$).

 A_2 is unstable (singular so $\lambda_1 = 0$).

 A_3 is stable (trace = -7 and determinant 12; $\lambda_1 < 0$ and $\lambda_2 < 0$).

23 For an *n* by *n* matrix with trace (A) = T and det (A) = D, find the trace and determinant of -A. Why is z' = -Az unstable whenever y' = Ay is stable ?

If trace (A) = T then trace (-A) = -T

If determinant (A) = D then determinant $(-A) = (-1)^n D$

The eigenvalues of -A are -(eigenvalues of A).

- (a) For a real 3 by 3 matrix with stable eigenvalues (Re λ < 0), show that trace < 0 and det < 0. Either three real negative λ or else λ₂ = λ
 ₁ and λ₃ is real.
 - (b) The trace and determinant of a 3 by 3 matrix do not determine all three eigenvalues ! Show that A is unstable even with trace < 0 and determinant < 0:

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & -5 \end{array} \right].$$

(a) If all three real parts are negative (stability), trace = sum of real parts < 0.

Also det = $\lambda_1 \lambda_2 \lambda_3 < 0$ from 3 negative λ 's or from $(a+ib)(a-ib)\lambda_3 = (a^2+b^2)\lambda_3 < 0$.

If a real matrix has a complex eigenvalue $\lambda = a + ib$, then $\overline{\lambda} = a - ib$ is also an eigenvalue. The third eigenvalue must be real to make the trace real.

(b) The triangular matrix A has $\lambda = 1, 1, -5$ even with trace = -3 and det = -5. There must be a third test for 3 by 3 matrices and that test must fail for this matrix.

25 You might think that $y' = -A^2 y$ would always be stable because you are squaring the eigenvalues of A. But why is that equation unstable for $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$?

This real matrix A has $\lambda = i$ and -i. Then $\lambda^2 = -1$ and -1. So $y' = -A^2 y$ has eigenvalues 1 and 1 (unstable).

26 Find the three eigenvalues of A and the three roots of $s^3 - s^2 + s - 1 = 0$ (including s = 1). The equation y''' - y'' + y' - y = 0 becomes

$$\begin{bmatrix} y\\y'\\y'' \end{bmatrix}' = \begin{bmatrix} 0 & 1 & 0\\0 & 0 & 1\\1 & -1 & 1 \end{bmatrix} \begin{bmatrix} y\\y'\\y'' \end{bmatrix} \text{ or } \boldsymbol{z'} = A\boldsymbol{z}.$$

Each eigenvalue λ has an eigenvector $\boldsymbol{x} = (1, \lambda, \lambda^2)$.

 $s^3 - s^2 + s - 1 = 0$ comes from substituting $y = e^{st}$ into y''' - y'' + y' - y = 0. $\lambda^3 - \lambda^2 + \lambda - 1 = 0$ comes from computing det $(A - \lambda I)$ for the 3 by 3 matrix. One root is s = 1 (and $\lambda = 1$). The full cubic polynomial is $s^{3} - s^{2} + s - 1 = (s - 1)(s^{2} + 1)$ with roots 1, i, -i.

Eigenvectors $(1, \lambda, \lambda^2) = (1, 1, 1), (1, i, -1), (1, -i, -1)$ for this companion matrix. **27** Find the two eigenvalues of A and the double root of $s^2 + 6s + 9 = 0$:

$$y'' + 6y' + 9y = 0$$
 becomes $\begin{bmatrix} y \\ y' \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ 9 & 6 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix}$ or $z' = Az$.

The repeated eigenvalue gives only one solution $z = e^{\lambda t} x$. Find a second solution zfrom the second solution $y = te^{\lambda t}$.

The matrix has $\det(A - \lambda I) = \lambda^2 + 6\lambda + 9$. This is $(\lambda + 3)^2$ so eigenvalues $\lambda = \text{roots } s = -3, -3$. The two solutions are $y = e^{-3t}$ and $y = te^{-3t}$. Those translate to $z = \begin{bmatrix} y \\ y' \end{bmatrix} = e^{-3t} \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ and $z = \begin{bmatrix} y \\ y' \end{bmatrix} = e^{-3t} \begin{bmatrix} t \\ 1 - 3t \end{bmatrix}$

28 Explain why a 3 by 3 companion matrix has eigenvectors $x = (1, \lambda, \lambda^2)$.

First Way: If the first component is $x_1 = 1$, the first row of $Ax = \lambda x$ gives the second component $x_2 = \underline{\qquad}$. Then the second row of $Ax = \lambda x$ gives the third component $x_3 = \lambda^2$.

Second Way: y' = Ay starts with $y'_1 = y_2$ and $y'_2 = y_3$. $y = e^{\lambda t}x$ solves those equations. At t = 0 the equations become $\lambda x_1 = x_2$ and _____.

 $A\boldsymbol{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -D & -C & -B \end{bmatrix} \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix}$ because rows 1 and 2 are true and

row 3 is $-D - C\lambda - B\lambda^2 = \lambda^3$. That is $\lambda^3 + B\lambda^2 + C\lambda + D = 0$ corresponding to y''' + By'' + Cy' + Dy = 0.

29 Find A to change the scalar equation y'' = 5y' - 4y into a vector equation for z =(y, y'):

$$\frac{d\boldsymbol{z}}{dt} = \begin{bmatrix} y'\\ y'' \end{bmatrix} = \begin{bmatrix} & \\ & \end{bmatrix} \begin{bmatrix} y\\ y' \end{bmatrix} = A\boldsymbol{z}$$

What are the eigenvalues of the companion matrix A? Find them also by substituting $y = e^{\lambda t}$ into y'' = 5y' - 4y.

$$\frac{d\boldsymbol{z}}{dt} = \begin{bmatrix} y'\\ y'' \end{bmatrix} = \begin{bmatrix} y'\\ 5y' - 4y \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -4 & 5 \end{bmatrix} \begin{bmatrix} y\\ y' \end{bmatrix} = A\boldsymbol{z}.$$

The eigenvalues come from $\lambda^2 - 5\lambda + 4 = 0$. Then $\lambda = 1$ and 4. Unstable because y'' - 5y' + 4y has negative damping.

30 (a) Write down two familiar functions that solve the equation $d^2y/dt^2 = -9y$. Which one starts with y(0) = 3 and y'(0) = 0?

6.3. Linear Systems y' = Ay

(b) This second-order equation y'' = -9y produces a vector equation z' = Az:

$$\boldsymbol{z} = \begin{bmatrix} y \\ y' \end{bmatrix} \qquad \frac{d\boldsymbol{z}}{dt} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = A\boldsymbol{z}$$

Find z(t) by using the eigenvalues and eigenvectors of A: z(0) = (3, 0).

(a) $y_1 = \cos 3t$ and $y_2 = \sin 3t$ and their combinations solve y'' = -9y. The initial conditions y(0) = 3, y'(0) = 0 are satisfied by $y = 3 \cos 3t$.

(b) The matrix A has det $\begin{bmatrix} -\lambda & 1 \\ -9 & -\lambda \end{bmatrix} = \lambda^2 + 9 = 0$ and $\lambda = 3i, -3i$. Eigenvectors (1, 3i), (1, -3i).

$$\boldsymbol{z}(t) = c_1 e^{3it} \begin{bmatrix} 1\\3i \end{bmatrix} + c_2 e^{-3it} \begin{bmatrix} 1\\-3i \end{bmatrix} \text{ gives } c_1 + c_2 = 3 \text{ and } 3ic_1 - 3ic_2 = 0 \text{ at } t = 0.$$

$$3 \quad \begin{bmatrix} y \\ 3 \end{bmatrix} = 3 \quad \text{av} \begin{bmatrix} 1\\ 3 \end{bmatrix} = 3 \quad \text{av} \begin{bmatrix} 1\\ 3 \end{bmatrix} = 3 \quad \text{av} \begin{bmatrix} 1\\ 3 \end{bmatrix} = \begin{bmatrix} 3\cos 3t \end{bmatrix}$$

Then
$$c_1 = c_2 = \frac{3}{2}$$
 gives $\begin{bmatrix} y \\ y' \end{bmatrix} = \frac{3}{2}e^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos 3t \\ -9\sin 3t \end{bmatrix}$

31 (a) Change the third order equation y''' - 2y'' - y' + 2y = 0 to a first order system z' = Az for the unknown z = (y, y', y''). The companion matrix A is 3 by 3.

(b) Substitute $y = e^{\lambda t}$ and also find det $(A - \lambda I)$. Those lead to the same λ 's.

(c) One root is $\lambda = 1$. Find the other roots and these complete solutions :

$$y = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + c_3 e^{\lambda_3 t}$$
 $z = C_1 e^{\lambda_1 t} x_1 + C_2 e^{\lambda_2 t} x_2 + C_3 e^{\lambda_3 t} x_3.$

(a)
$$\mathbf{z}' = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2 \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix} = A\mathbf{z}$$

(b) The characteristic equation is det(A - λI) = -(λ³ - 2λ² - λ + 2) = 0.
(c) λ = 1 is a root so we can factor out (λ - 1):

$$\lambda^3 - 2\lambda^2 - \lambda + 2 = (\lambda - 1)(\lambda^2 - \lambda - 2) = (\lambda - 1)(\lambda - 2)(\lambda + 1)$$
 has roots 1, 2, -1.
The complete solution is $u = c_1 e^t + c_2 e^{2t} + c_3 e^{-t}$.

This vectorizes into $\boldsymbol{z} = C_1 e^t \begin{bmatrix} 1\\1\\1 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1\\2\\4 \end{bmatrix} + C_3 e^{-t} \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$

32 These companion matrices have $\lambda = 2, 1$ and $\lambda = 4, 1$. Find their eigenvectors :

$$A = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 1 \\ -4 & 5 \end{bmatrix} \text{ Notice trace and determinant !}$$

A has
$$\lambda^2 - 3\lambda + 2 = 0 = (\lambda - 2)(\lambda - 1)$$
. $\lambda = \mathbf{2}, \mathbf{1}$ with eigenvectors $\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$.
B has $\lambda^2 - 5\lambda + 4 = 0 = (\lambda - 4)(\lambda - 1)$. $\lambda = \mathbf{4}, \mathbf{1}$ with eigenvectors $\begin{bmatrix} 1\\4 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$.

Problem Set 6.4, page 369

1 If $A\boldsymbol{x} = \lambda \boldsymbol{x}$, find an eigenvalue and an eigenvector of e^{At} and also of $-e^{-At}$. If $Ax = \lambda x$ then $e^{At}x = e^{\lambda t}x$ and $-e^{-At}x = -e^{-\lambda t}x$. Use the infinite series : $e^{At}\boldsymbol{x} = (I + At + \frac{1}{2}(At)^2 + \cdots)\boldsymbol{x}$ $= (I + \lambda t + \frac{1}{2}(\lambda t)^2 + \cdots) \boldsymbol{x} = e^{\lambda t} \boldsymbol{x}.$ **2** (a) From the infinite series $e^{At} = I + At + \cdots$ show that its derivative is Ae^{At} . (b) The series for e^{At} ends quickly if $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ because $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Find e^{At} and take its derivative (which should agree with Ae^{At}). (a) The time derivative of the matrix e^{At} is Ae^{At} : $\frac{d}{dt}(I + At + \frac{1}{2}(At)^2 + \frac{1}{6}(At)^3 + \dots) = A + A^2t + \frac{1}{2}A^3t^2 + \dots) = Ae^{At}.$ (b) If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then $A^2 = 0$ and $e^{At} = I + At = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$. The derivative of $e^{At} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ which agrees with Ae^{At} . This derivative also agrees with A itself but that is an accident. **3** For $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ with eigenvectors in $V = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, compute $e^{At} = Ve^{\Lambda t}V^{-1}$. $e^{At} = V e^{\Lambda t} V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^t & \\ e^{2t} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^t & e^{2t} - e^t \\ 0 & e^{2t} \end{bmatrix}.$ Check $e^{At} = I$ at t = 0. **4** Why is $e^{(A+3I)t}$ equal to e^{At} multiplied by e^{3t} ? If AB = BA then $e^{(A+B)t} = e^{At}e^{Bt}$. (This usually fails if $AB \neq BA$.) Here B = 3I always gives AB = BA so $e^{(A+3I)t} = e^{At}e^{3It} = e^{At}e^{3t}$ is true. **5** Why is $e^{A^{-1}}$ not the inverse of e^A ? What is the correct inverse of e^A ? The correct inverse of e^A is e^{-A} . In general $e^{At}e^{AT} = e^{A(t+T)}$. Choose t = 1, T = -1. The matrix $e^{A^{-1}}$ is a series of powers of A^{-1} and $(e^A)(e^{A^{-1}}) = e^{A+A^{-1}}$: not wanted. **6** Compute $A^n = \begin{bmatrix} 1 & c \\ 0 & 0 \end{bmatrix}^n$. Add the series to find $e^{At} = \begin{bmatrix} e^t & c(e^t - 1) \\ 0 & 1 \end{bmatrix}$. Start by assuming $\begin{bmatrix} 1 & c \\ 0 & 0 \end{bmatrix}^n = \begin{bmatrix} 1 & nc \\ 0 & 0 \end{bmatrix}$ (certainly true for (n = 1). Then by induction $\begin{bmatrix} 1 & c \\ 0 & 0 \end{bmatrix}^{n+1} = \begin{bmatrix} 1 & c \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & nc \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & (n+1)c \\ 0 & 0 \end{bmatrix}.$ The first equation is true for n = 1. Then the second equation says that every matrix multiplication adds c to the off-diagonal entry. So the first equation is true for n = $2, 3, 4, \ldots$

6.4. The Exponential of a Matrix

Now add up the series for e^{At} :

$$I + At + \frac{1}{2}(At)^{2} + \dots = \begin{bmatrix} 1 + t + \frac{1}{2}t^{2} + \dots & 0 + ct + \frac{1}{2}2ct^{2} + \dots \\ 0 & 1 + 0 + 0 + \dots \end{bmatrix} = \begin{bmatrix} e^{t} & c(e^{t} - 1) \\ 0 & 1 \end{bmatrix}$$

7 Find e^A and e^B by using Problem 6 for c = 4 and c = -4. Multiply to show that the matrices $e^A e^B$ and $e^B e^A$ and e^{A+B} are all different.

$$A = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix} \qquad A + B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}.$$

With $t = 1$ in Problem 6, $A = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix}$ has $e^A = \begin{bmatrix} e & 4(e-1) \\ 0 & 1 \end{bmatrix}$
$$B = \begin{bmatrix} 1 & -4 \\ 0 & 0 \end{bmatrix}$$
 has $e^B = \begin{bmatrix} e & -4(e-1) \\ 0 & 1 \end{bmatrix}$ Then $e^A e^B = \begin{bmatrix} e^2 & (-4e+4)(e-1) \\ 0 & 1 \end{bmatrix}$ and $e^B e^A = \begin{bmatrix} e^2 & (4e-4)(e-1) \\ 0 & 1 \end{bmatrix}$ and $e^{A+B} = \begin{bmatrix} e^2 & 0 \\ 0 & 1 \end{bmatrix}$. Those three off-diagonal entries are different because AB and

BA have off-diagonals -4 and 4.

8 Multiply the first terms $I + A + \frac{1}{2}A^2$ of e^A by the first terms $I + B + \frac{1}{2}B^2$ of e^B . Do you get the correct first three terms of e^{A+B} ? *Conclusion*: e^{A+B} is not always equal to $(e^A)(e^B)$. The exponent rule only applies when AB = BA. $(I + A + \frac{1}{2}A^2)(I + B + \frac{1}{2}B^2) = I + A + B + \frac{1}{2}A^2 + AB + \frac{1}{2}B^2 + \cdots$

 $(I + A + \frac{1}{2}A^{-})(I + B + \frac{1}{2}B^{-}) = I + A + B + \frac{1}{2}A^{-} + AB + \frac{1}{2}B^{-} + \cdots$ The correct three terms of e^{A+B} are $I + A + B + \frac{1}{2}A^{2} + \frac{1}{2}AB + \frac{1}{2}BA + \frac{1}{2}B^{2}$. Then AB agrees with $\frac{1}{2}AB + \frac{1}{2}BA$ only if AB = BA.

9 Write $A = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix}$ in the form $V\Lambda V^{-1}$. Find e^{At} from $Ve^{\Lambda t}V^{-1}$.

This is Problem 6 using diagonalization $A = V\Lambda V^{-1}$ by the eigenvector matrix V :

$$A = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$
$$e^{At} = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^t & 4(e^t - 1) \\ 0 & 1 \end{bmatrix}$$

10 Starting from y(0) the solution at time t is $e^{At}y(0)$. Go an additional time t to reach $e^{At} e^{At}y(0)$. Conclusion: e^{At} times e^{At} equals _____.

The conclusion is that e^{At} times e^{At} equals e^{2At} . No problem with $AB \neq BA$ because here B is the same as A.

11 Diagonalize A by V and confirm this formula for e^{At} by using $Ve^{\Lambda t}V^{-1}$:

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} \qquad e^{At} = \begin{bmatrix} e^{2t} & 4(e^{3t} - e^{2t}) \\ 0 & e^{3t} \end{bmatrix}$$
At $t = 0$ this matrix is _____.

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} = V\Lambda V^{-1}$$

$$e^{At} = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{2t} & 4(e^{3t} - e^{2t}) \\ 0 & e^{3t} \end{bmatrix} = I \text{ at } t = 0.$$
12 (a) Find A^2 and A^3 and A^n for $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ with repeated eigenvalues $\lambda = 1, 1.$
(b) Add the infinite series to find e^{At} . (The $Ve^{\Lambda t}V^{-1}$ method won't work.)
(a) $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ and $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$. (b) $e^{At} = \begin{bmatrix} 1 + t + \frac{1}{2}t^2 + \cdots & t + \frac{1}{2}2t^2 + \frac{1}{6}3t^3 + \cdots \\ 0 & 1 + t + \frac{1}{2}t^2 + \cdots \end{bmatrix} = \begin{bmatrix} e^t & t(1 + t + \frac{1}{2}t^2 + \cdots) \\ 0 & e^t \end{bmatrix}$

$$= \begin{bmatrix} e^t & te^t \\ 0 & e^t \end{bmatrix}$$

Notice the factor t appearing as usual when there are equal roots (or equal eigenvalues). **13** (a) Solve y' = Ay as a combination of eigenvectors of this matrix A:

$$oldsymbol{y}' = \left[egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight] oldsymbol{y} \quad ext{ with } oldsymbol{y}(0) = \left[egin{array}{cc} 3 \\ 5 \end{array}
ight]$$

(b) Write the equations as $y'_1 = y_2$ and $y'_2 = y_1$. Find an equation for y''_1 with y_2 eliminated. Solve for $y_1(t)$ and compare with part (a).

(a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 has $\lambda = 1$ with $\boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\lambda = -1$ with $\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
Then $\boldsymbol{y}(0) = 4\boldsymbol{x}_1 - \boldsymbol{x}_2$ and $\boldsymbol{y}(t) = 4e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix} - e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(b) If $y'_1 = y_2$ and $y'_2 = y_1$ then $y''_1 = y'_2 = y_1$.

The second order equation $y_1'' = y_1$ has $y_1 = c_1 e^t + c_2 e^{-t}$.

The initial conditions produce the solution of part (a).

14 Similar matrices A and $B = V^{-1}AV$ have the *same eigenvalues* if V is invertible. Second proof $\det(V^{-1}AV - \lambda I) = (\det V^{-1})(\det(A - \lambda I))(\det V).$

Why is this equation true ? Then both sides are zero when det $(A - \lambda I) = 0$. We use the rule det $ABC = (\det A)(\det B)(\det C)$. Here $A = V^{-1}$ and C = V have $(\det A)(\det C) = 1$. This only leaves det **B** which is det $(A - \lambda I)$. Conclusion: $V^{-1}AV$ has the same eigenvalues as **A**. Similar matrices!

6.4. The Exponential of a Matrix

- 15 If B is similar to A, the growth rates for z' = Bz are the same as for y' = Ay. That equation converts to the equation for z when B = V⁻¹AV and z = _____.
 If y' = Ay just set y = Vz to get Vz' = AVz which is z' = V⁻¹AVz. Similar matrices come from a change of variable in the differential equation.
- **16** If $Ax = \lambda x \neq 0$, what is an eigenvalue and eigenvector of $(e^{At} I)A^{-1}$? The same x is an eigenvector, with eigenvalue in

$$(e^{At} - I)A^{-1}\boldsymbol{x} = \frac{1}{\lambda}(e^{At} - I)\boldsymbol{x} = \frac{e^{\lambda t} - 1}{\lambda}\boldsymbol{x}.$$

17 The matrix $B = \begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix}$ has $B^2 = 0$. Find e^{Bt} from a (short) infinite series. Check that the derivative of e^{Bt} is Be^{Bt} .

$$e^{Bt} = I + Bt + 0 = \begin{bmatrix} 1 & -4t \\ 0 & 1 \end{bmatrix}$$
. The derivative is $\begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix}$.

The derivative is always Be^{Bt} ; here it also equals B.

18 Starting from y(0) = 0, solve y' = Ay + q as a combination of the eigenvectors. Suppose the source is $q = q_1 x_1 + \cdots + q_n x_n$. Solve for one eigenvector at a time, using the solution $y(t) = (e^{at} - 1)q/a$ to the scalar equation y' = ay + q.

Then
$$\boldsymbol{y}(t) = (e^{At} - I)A^{-1}\boldsymbol{q}$$
 is a combination of eigenvectors when all $\lambda_i \neq 0$.

For each eigenvector \boldsymbol{x} , a solution to $\boldsymbol{y}' = A\boldsymbol{y} + \boldsymbol{x}$ is $\boldsymbol{y}(t) = \frac{e^{\lambda t} - 1}{\lambda} \boldsymbol{x}$ by Problem 16. Then by linearity $\boldsymbol{y}(t) = \Sigma \frac{e^{\lambda_i t} - 1}{\lambda_i} q_i \boldsymbol{x}_i$ is the solution when $\boldsymbol{q} = q_1 \boldsymbol{x}_1 + \dots + q_n \boldsymbol{x}_n$. This is the same as $\boldsymbol{y}_p(t) = (e^{At} - I)A^{-1}\boldsymbol{q}$.

19 Solve for y(t) as a combination of the eigenvectors $x_1 = (1,0)$ and $x_2 = (1,1)$:

$$\mathbf{y}' = A\mathbf{y} + \mathbf{q}$$
 $\begin{bmatrix} y_1'\\ y_2' \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix} \begin{bmatrix} y_1\\ y_2 \end{bmatrix} + \begin{bmatrix} 4\\ 3 \end{bmatrix}$ with $\begin{array}{c} y_1(0) = 0\\ y_2(0) = 0 \end{array}$

Write $\boldsymbol{q} = \begin{bmatrix} 4\\ 3 \end{bmatrix}$ as a combination $3\boldsymbol{x}_1 + \boldsymbol{x}_2$ of the eigenvectors of A. By Problem 18, $\boldsymbol{y}_p(t) = \frac{e^t - 1}{1} 3\boldsymbol{x}_1 + \frac{e^{2t} - 1}{2} \boldsymbol{x}_2.$

20 Solve $y' = Ay = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} y$ in three steps. First find the λ 's and x's.

- (1) Write y(0) = (3, 1) as a combination $c_1 x_1 + c_2 x_2$
- (2) Multiply c_1 and c_2 by $e^{\lambda_1 t}$ and $e^{\lambda_2 t}$.
- (3) Add the solutions $c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2$.

Th eigenvalues come from det $\begin{bmatrix} 2-\lambda & 3\\ 2 & 1-\lambda \end{bmatrix} = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1) = 0.$ Then $\lambda = 4$ and -1. The eigenvectors are found to be $\boldsymbol{x}_1 = \begin{bmatrix} 3\\ 2 \end{bmatrix}$ and $\boldsymbol{x}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}$. Step (1) $\boldsymbol{y}(0) = \begin{bmatrix} 3\\ 1 \end{bmatrix} = \frac{4}{5} \begin{bmatrix} 3\\ 2 \end{bmatrix} + \frac{3}{5} \begin{bmatrix} 1\\ -1 \end{bmatrix}$. Step (2) Two solutions $\frac{4}{5}e^{4t} \begin{bmatrix} 3\\ 2 \end{bmatrix} + \frac{3}{5}e^{-t} \begin{bmatrix} 1\\ -1 \end{bmatrix}$. Step (3) $\boldsymbol{y}(t) = \frac{4}{5}e^{4t} \begin{bmatrix} 3\\ 2 \end{bmatrix} + \frac{3}{5}e^{-t} \begin{bmatrix} 1\\ -1 \end{bmatrix}$.

21 Write five terms of the infinite series for e^{At} . Take the t derivative of each term. Show that you have four terms of Ae^{At} . Conclusion: $e^{At}y(0)$ solves dy/dt = Ay.

$$e^{At} = I + At + \frac{1}{2}(At)^2 + \frac{1}{6}(At)^3 + \frac{1}{24}(At)^4 + \cdots$$
$$\frac{d}{dt}(e^{At} = A + A^2t + \frac{1}{2}A^3t^2 + \frac{1}{4}A^4t^3 + \cdots = Ae^{At}.$$

Problems 22-25 are about time-varying systems y' = A(t)y. Success then failure.

22 Suppose the constant matrix C has Cx = λx, and p(t) is the integral of a(t). Substitute y = e^{λp(t)}x to show that dy/dt = a(t)Cy. Eigenvectors still solve this special time-varying system: constant matrix C multiplied by the scalar a(t). Here the time-varying coefficient matrix has the special form a(t)C, with the matrix C constant in time. Its eigenvalues and eigenvectors are a(t)λ and x (main point: λ and x are constant). Then we can solve y' = a(t)Cy starting with an eigenvector:

$$\boldsymbol{y}(t) = e^{\int a(t)\lambda \, dt} \boldsymbol{x}$$
 solves $\frac{d\boldsymbol{y}}{dt} = a(t)\lambda \boldsymbol{y} = a(t)C\boldsymbol{y}.$

A combination of these solutions is also a solution—and can match y(0).

23 Continuing Problem 22, show from the series for $M(t) = e^{p(t)C}$ that dM/dt = a(t)CM. Then M is the fundamental matrix for the special system y' = a(t)Cy. If a(t) = 1 then its integral is p(t) = t and we recover $M = e^{Ct}$.

This question puts together the "fundamental matrix" M(t) from Problem 22. Write $p(t) = \int a(t) dt$.

$$M = e^{p(t)C} = I + p(t)C + \frac{1}{2}p^2(t)C^2 + \cdots \quad \text{and} \quad \frac{dp}{dt} = a(t) \text{ give}$$
$$\frac{dM}{dt} = a(t)C + a(t)C^2p(t) + \cdots = a(t)CM.$$

24 The integral of $A = \begin{bmatrix} 1 & 2t \\ 0 & 0 \end{bmatrix}$ is $P = \begin{bmatrix} t & t^2 \\ 0 & 0 \end{bmatrix}$. The exponential of P is $e^P = \begin{bmatrix} e^t & t(e^t - 1) \\ 0 & 1 \end{bmatrix}$. From the chain rule we might hope that the derivative of

6.5. Second Order Systems and Symmetric Matrices

 $e^{P(t)}$ is $P'e^{P(t)} = Ae^{P(t)}$. Compute the derivative of $e^{P(t)}$ and compare with the wrong answer $Ae^{P(t)}$. (One reason this feels wrong: Writing the chain rule as $(d/dt)e^P = e^P dP/dt$ would give $e^P A$ instead of Ae^P . That is wrong too.)

Now the matrix A(t) does not have the special form A = a(t)C of problems 22–23. The problem shows that the simple formula doesn't solve y' = A(t)y. We can't just integrate A(t) and use the matrix $e^{\int A(t)dt}$.

$$P = \int A(t) dt = \begin{bmatrix} t & t^2 \\ 0 & 0 \end{bmatrix} \text{ has } P^2 = \begin{bmatrix} t^2 & t^3 \\ 0 & 0 \end{bmatrix} \text{ and } P^n = \begin{bmatrix} t^n & t^{n+1} \\ 0 & 0 \end{bmatrix}$$

Then $\frac{dP}{dt} = \begin{bmatrix} 1 & 2t \\ 0 & 0 \end{bmatrix} = A$ and $e^P = I + P + \frac{1}{2}P^2 + \dots = \begin{bmatrix} e^t & te^t - t \\ 0 & 1 \end{bmatrix}.$

But the derivative of e^P is not $e^P \frac{dP}{dt}$. This matrix $e^{P(t)}$ is not solving y' = A(t)y. 25 Find the solution to y' = A(t)y in Problem 24 by solving for y_2 and then y_1 :

Solve
$$\begin{bmatrix} dy_1/dt \\ dy_2/dt \end{bmatrix} = \begin{bmatrix} 1 & 2t \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
 starting from $\begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix}$

Certainly $y_2(t)$ stays at $y_2(0)$. Find $y_1(t)$ by "undetermined coefficients" A, B, C: $y'_1 = y_1 + 2ty_2(0)$ is solved by $y_1 = y_p + y_n = At + B + Ce^t$.

Choose A, B, C to satisfy the equation and match the initial condition $y_1(0)$.

The wrong answer in Problem 24 included the incorrect factor te^t in $e^{P(t)}$. To solve y' = A(t)y in Problem 24 we can start with its second equation :

$$\boldsymbol{y}' = A(t)\boldsymbol{y}$$
 is $\begin{aligned} dy_1/dt &= y_1 + 2ty_2 \\ dy_2/dt &= 0 \end{aligned}$

Then $y_2(t) = y_2(0) = \text{constant}$ and the first equation becomes $dy_1/dt = y_1 + 2ty_2(0)$. A particular solution has the form $y_1 = At + B$. Substitute this y_1 to find A and B:

 $\frac{dy_1}{dt} = y_1 + 2ty_2(0)$ gives $A = At + B + 2ty_2(0)$ and then $A = -2y_2(0) = B$. Now add a null solution Ce^t to start from $y_1(0)$:

$$y_1(t) = (y_1(0) + 2y_2(0))e^t - 2y_2(0)t - 2y_2(0).$$

This correct solution has no factor te^t .

Problem Set 6.5, page 379

Problems 1–14 are about eigenvalues. Then come differential equations.

1 Which of A, B, C have two real λ 's ? Which have two independent eigenvectors ?

$$A = \begin{bmatrix} 7 & -11 \\ -11 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & -11 \\ 11 & 7 \end{bmatrix} \qquad C = \begin{bmatrix} 7 & -11 \\ 0 & 7 \end{bmatrix}$$

A is symmetric: Real λ 's with a full set of two eigenvectors.

B = 7I +antisymmetric: Complex $\lambda = 7 \pm 11i$, full set of (complex) eigenvectors. $C = 7I - 11 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$: Eigenvalues 7, 7 but only one eigenvector. **2** Show that A has real eigenvalues if $b \ge 0$ and nonreal eigenvalues if b < 0:

$$A = \left[\begin{array}{cc} 0 & b \\ 1 & 0 \end{array} \right] \quad \text{and} \quad A = \left[\begin{array}{cc} 1 & b \\ 1 & 1 \end{array} \right].$$

The eigenvalues of $\begin{bmatrix} 0 & b \\ 1 & 0 \end{bmatrix}$ have $\lambda^2 - b = 0$. Then $\lambda = \pm \sqrt{b}$ if $b \ge 0$. $\begin{bmatrix} 1 & b \\ 1 & 1 \end{bmatrix}$ has $\lambda = \mathbf{1} \pm \sqrt{b}$.

3 Find the eigenvalues and the unit eigenvectors of the symmetric matrices

(a)
$$S = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \text{ and } (b) \quad S = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}.$$

(a)
$$\det \begin{bmatrix} 2-\lambda & 2 & 2 \\ 2 & -\lambda & 0 \\ 2 & 0 & -\lambda \end{bmatrix} = (2-\lambda)\lambda^2 + 4\lambda + 4\lambda = -\lambda^3 + 2\lambda^2 + 8\lambda$$

$$= -\lambda(\lambda - 4)(\lambda + 2). \quad \lambda = \mathbf{0}, \mathbf{4}, -\mathbf{2}.$$

Unit (orthonormal!) eigenvectors $\frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \quad \frac{1}{\sqrt{6}} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \quad \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}.$
(b)
$$\det \begin{bmatrix} 1-\lambda & 0 & 2 \\ 0 & -1-\lambda & -2 \\ 2 & -2 & -\lambda \end{bmatrix} = \lambda(1-\lambda^2) + 4(1+\lambda) - 4(1-\lambda) = 9\lambda - \lambda^3$$

$$= -\lambda(\lambda - 3)(\lambda + 3).$$

$$\lambda = \mathbf{0}, \mathbf{3}, -\mathbf{3} \text{ with orthonormal eigenvectors } \frac{1}{3} \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \quad \frac{1}{3} \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}, \quad \frac{1}{3} \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

Find an orthogonal matrix Q that diagonalizes $S = \begin{bmatrix} -2 & 6 \\ 6 & 7 \end{bmatrix}.$ What is Λ ?

The eigenvalues from $\lambda^2 - 5\lambda - 50 = 0 = (\lambda - 10)(\lambda + 5)$ are $\lambda_1 = 10$ and $\lambda_2 = 5$. The unit eigenvectors are in Q:

$$Q = \left[\begin{array}{cc} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{array} \right] \qquad \text{with} \qquad \Lambda = \left[\begin{array}{cc} 10 & 0 \\ 0 & -5 \end{array} \right].$$

5 Show that this A (symmetric but complex) has only one line of eigenvectors:

$$A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}$$
 is not even diagonalizable. Its eigenvalues are 0 and 0.

 $A^{\mathrm{T}} = A$ is not so special for complex matrices. *The good property is* $\overline{A}^{\mathrm{T}} = A$. det $(A - \lambda I) = \lambda^2$ gives $\lambda = \mathbf{0}$, **0**. But $A - \lambda I = A$ has **rank 1**: Only one line of eigenvectors in its nullspace.

4

6.5. Second Order Systems and Symmetric Matrices

6 Find *all* orthogonal matrices from all x_1, x_2 to diagonalize $S = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$.

 $\lambda^2 - 25\lambda = 0$ gives eigenvalues **0** and **25**. The (real) eigenvectors in Q can be

$$Q = \frac{1}{5} \begin{bmatrix} 4 & 3 \\ -3 & 4 \end{bmatrix} \text{ or } \frac{1}{5} \begin{bmatrix} -4 & 3 \\ 3 & 4 \end{bmatrix} \text{ or } \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -3 & -4 \end{bmatrix} \text{ or } \frac{1}{5} \begin{bmatrix} -4 & -3 \\ 3 & -4 \end{bmatrix}.$$

- 7 (a) Find a symmetric matrix $S = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$ that has a negative eigenvalue.
 - (b) How do you know that S must have a negative pivot?
 - (c) How do you know that S can't have two negative eigenvalues?

The determinant of S is negative if $b^2 > 1$. This determinant is (pivot 1)(pivot 2). Also det $S = \lambda_1$ times λ_2 . So exactly one eigenvalue is negative if $b^2 > 1$.

8 If $A^2 = 0$ then the eigenvalues of A must be _____. Give an example with $A \neq 0$. But if A is symmetric, diagonalize it to prove that the matrix is A = 0.

If $A\mathbf{x} = \lambda \mathbf{x}$ then $A^2\mathbf{x} = \lambda^2\mathbf{x}$. Here $A^2 = 0$ so λ must be zero.

Nonsymmetric example : $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not diagonalizable.

The only symmetric example is $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ because $A = Q\Lambda Q^{\mathrm{T}}$ and $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

9 If $\lambda = a + ib$ is an eigenvalue of a real matrix A, then its conjugate $\overline{\lambda} = a - ib$ is also an eigenvalue. (If $A\mathbf{x} = \lambda \mathbf{x}$ then also $A\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$.) Prove that every real 3 by 3 matrix has at least one real eigenvalue.

A real 3 by 3 matrix has $\det(A - \lambda I) = -\lambda^3 + c_2\lambda^2 + c_1\lambda + c_2 = 0$. If λ_1 satisfies this equation so does $\lambda_2 = \overline{\lambda_1}$ (take the conjugate of every term). But the sum $\lambda_1 + \lambda_2 + \lambda_3 =$ trace of A = real number. So λ_3 must be real.

10 Here is a quick "proof" that the eigenvalues of *all* real matrices are real:

False proof
$$A \boldsymbol{x} = \lambda \boldsymbol{x}$$
 gives $\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x} = \lambda \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ so $\lambda = \frac{\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}}$ is real.

Find the flaw in this reasoning—a hidden assumption that is not justified. You could test those steps on the 90° rotation matrix $\begin{bmatrix} 0 & -1; & 1 & 0 \end{bmatrix}$ with $\lambda = i$ and $\boldsymbol{x} = (i, 1)$.

The flaw is to expect that $x^{T}Ax$ and $x^{T}x$ are real and $x^{T}x > 0$. When complex numbers are involved, it is $\overline{x}^{T}x$ that is real and positive for every vector $x \neq 0$.

11 Write A and B in the form $\lambda_1 x_1 x_1^{\mathrm{T}} + \lambda_2 x_2 x_2^{\mathrm{T}}$ of the spectral theorem $Q \Lambda Q^T$:

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix} \quad (\text{keep } \|\boldsymbol{x}_1\| = \|\boldsymbol{x}_2\| = 1).$$

A has $\lambda = 4, 2$ with unit eigenvectors in Q. Multiply columns times rows:

$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = Q\Lambda Q^{\mathrm{T}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & \\ 2 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$= 4 \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} + 2 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

B has $\lambda = 0,25$ with these unit eigenvectors in Q:

$$\begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix} = \begin{bmatrix} 4/5 & 3/5 \\ -3/5 & 4/5 \end{bmatrix} \begin{bmatrix} 0 \\ 25 \end{bmatrix} \begin{bmatrix} 4/5 & -3/5 \\ 3/5 & 4/5 \end{bmatrix} = 0 + 25 \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix} \begin{bmatrix} 3/4 & 4/5 \end{bmatrix}.$$

12 What number b in $\begin{bmatrix} 2 & b \\ 1 & 0 \end{bmatrix}$ makes $A = Q\Lambda Q^{T}$ possible? What number makes $A = V\Lambda V^{-1}$ impossible? What number makes A^{-1} impossible?

b = 1 makes A symmetric and then $A = Q\Lambda Q^{T}$. b = -1 makes $\lambda = 1$, 1 with only one eigenvector. b = 0 makes the matrix singular.

13 This A is nearly symmetric. But its eigenvectors are far from orthogonal:

$$A = \begin{bmatrix} 1 & 10^{-15} \\ 0 & 1+10^{-15} \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } [?]$$

What is the dot product of the two unit eigenvectors ? A small angle !

The unit eigenvector for $\lambda = 1 + 10^{-15}$ is $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$.

The two eigenvectors are at a 45° angle, far from orthogonal (even if A is nearly symmetric).

14 (Recommended) This matrix M is skew-symmetric and also orthogonal. Then all its eigenvalues are pure imaginary and they also have $|\lambda| = 1$. They can only be i or -i. Find all four eigenvalues from the trace of M:

$$M = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{bmatrix}$$
 can only have eigenvalues *i* or $-i$.

The four eigenvalues must be $\lambda = i, i, -i, -i$ to produce trace = zero.

15 The complete solution to equation (8) for two oscillating springs (Figure 6.3) is

$$\boldsymbol{y}(t) = (A_1 \cos t + B_1 \sin t) \begin{bmatrix} 1\\1 \end{bmatrix} + (A_2 \cos \sqrt{3}t + B_2 \sin \sqrt{3}t) \begin{bmatrix} 1\\-1 \end{bmatrix}.$$

Find the numbers A_1, A_2, B_1, B_2 if y(0) = (3, 5) and y'(0) = (2, 0). The numbers A_1, A_2 come from y(0) = (3, 5) since $\cos 0 = 1$:

$$A_1 = \begin{bmatrix} 1\\1 \end{bmatrix} + A_2 \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 3\\5 \end{bmatrix}$$
 gives $A_1 = 4$ and $A_2 = -1$.

6.5. Second Order Systems and Symmetric Matrices

The numbers B_1, B_2 come from y'(0) = (2, 0) since $(\sin t)' = 1$ at t = 0 and $(\sin \sqrt{3}t)' = \sqrt{3}$ at t = 0:

$$B_1 = \begin{bmatrix} 1\\1 \end{bmatrix} + \sqrt{3}B_2 \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 2\\0 \end{bmatrix} \quad \text{gives} \quad B_1 = B_2 = \frac{1}{\sqrt{3}}$$

16 If the springs in Figure 6.3 have different constants k_1, k_2, k_3 then y'' + Sy = 0 is

Upper mass
$$y_1'' + k_1y_1 - k_2(y_2 - y_1) = 0$$

Lower mass $y_2'' + k_2(y_2 - y_1) + k_3y_2 = 0$ $S = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix}$

For $k_1 = 1, k_2 = 4, k_3 = 1$ find the eigenvalues $\lambda = \omega^2$ of S and the complete sine/cosine solution y(t) in equation (7).

The matrix $S = \begin{bmatrix} 1+4 & -4 \\ -4 & 4+1 \end{bmatrix}$ has eigenvalues $\lambda_1 = 1 = \omega_1^2$ and $\lambda_2 = 9 = \omega_2^2$. The complete solution to $\mathbf{y}'' + S\mathbf{y} = \mathbf{0}$ is

$$\boldsymbol{y}(t) = (A_1 \cos t + B_1 \sin t) \begin{bmatrix} 1\\1 \end{bmatrix} + (A_2 \cos 3t + B_2 \sin 3t) \begin{bmatrix} 1\\-1 \end{bmatrix}.$$

17 Suppose the third spring is removed $(k_3 = 0 \text{ and nothing is below mass } 2)$. With $k_1 = 3, k_2 = 2$ in Problem 16, find S and its real eigenvalues and orthogonal eigenvectors. What is the sine/cosine solution y(t) if y(0) = (1, 2) gives the cosines and y'(0) = (2, -1) gives the sines?

When
$$k_1 = 3, k_2 = 2, k_3 = 0$$
, the matrix *S* becomes $S = \begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix}$ with $\lambda^2 - 7\lambda + 6 = (\lambda - 1)(\lambda - 6) = 0.$

The eigenvector for $\lambda_1 = \omega_1^2 = 1$ is $\boldsymbol{x}_1 = (1, 2)$. The orthogonal eigenvector for $\lambda_2 = \omega_2^2 = 6$ is $\boldsymbol{x}_2 = (2, -1)$. Then $A_1 = 1$ and $A_2 = 0, B_1 = 0$ and $B_2 = 1/\sqrt{6}$ come from $\boldsymbol{y}(0) = \boldsymbol{x}_1$ and $\boldsymbol{y}'(0) = \boldsymbol{x}_2$. The solution to $\boldsymbol{y}'' + S\boldsymbol{y} = \boldsymbol{0}$ is $\boldsymbol{y}(t) = (\cos t)\boldsymbol{x}_1 + (\sin \sqrt{6}t)\boldsymbol{x}_2/\sqrt{6}$.

18 Suppose the top spring is also removed $(k_1 = 0 \text{ and also } k_3 = 0)$. S is singular ! Find its eigenvalues and eigenvectors. If y(0) = (1, -1) and y' = (0, 0) find y(t). If y(0) changes from (1, -1) to (1, 1) what is y(t) ?

$$S = \begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \text{ has } \lambda_1 = 0 \text{ with } \boldsymbol{x}_1 = (1, 1) \text{ and } \lambda_2 = 2k_2 \text{ with } \boldsymbol{x}_2 = (1, -1).$$
$$\boldsymbol{y}(0) = (1, -1) \text{ and } \boldsymbol{y}'(0) = (0, 0) \text{ give } \boldsymbol{y}(t) = (\cos\sqrt{2k_2}t) \boldsymbol{x}_2.$$

- y(0) = (1, 1) and y'(0) = (0, 0) give $y(t) = x_1 = (1, 1)$: no movement! There is no force from springs 1 and 3 and no initial velocity y'(0).
- **19** The matrix in this question is skew-symmetric $(A^{T} = -A)$. Energy is conserved.

$$\frac{d\mathbf{y}}{dt} = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix} \mathbf{y} \quad \text{or} \quad \begin{array}{c} y_1' = cy_2 - by_3 \\ y_2' = ay_3 - cy_1 \\ y_3' = by_1 - ay_2 \end{array}$$

The derivative of $\|\boldsymbol{y}(t)\|^2 = y_1^2 + y_2^2 + y_3^2$ is $2y_1y_1' + 2y_2y_2' + 2y_3y_3'$. Substitute y_1', y_2', y_3' to get zero. The energy $\|\boldsymbol{y}(t)\|^2$ stays equal to $\|\boldsymbol{y}(0)\|^2$. $y_1y_1' + y_2y_2' + y_3y_3' = y_1(cy_2 - by_3) + y_2(ay_3 - cy_1) + y_3(by_1 - ay_2) = \mathbf{0}.$ Then $\|\mathbf{y}(t)\|^2$ stays constant, equal to $\|\mathbf{y}(0)\|^2$.

- **20** When $A = -A^{T}$ is skew-symmetric, e^{At} is orthogonal. Prove $(e^{At})^{T} = e^{-At}$ from the series $e^{At} = I + At + \frac{1}{2}A^{2}t^{2} + \cdots$.
 - $A = \begin{bmatrix} 0 & 1 \\ -9 & 0 \end{bmatrix} \text{ has det} = 9: \lambda = 3i \text{ and } -3i \text{ with } \boldsymbol{x} = (1,3i) \text{ and } (1,-3i). \text{ Then}$ $\boldsymbol{y}(t) = \frac{3}{2}e^{3it} \begin{bmatrix} 1 \\ 3i \end{bmatrix} + \frac{3}{2}e^{-3it} \begin{bmatrix} 1 \\ -3i \end{bmatrix} = \begin{bmatrix} 3\cos 3t \\ -9\sin 3t \end{bmatrix}.$
- **21** The mass matrix M can have masses $m_1 = 1$ and $m_2 = 2$. Show that the eigenvalues for $Kx = \lambda Mx$ are $\lambda = 2 \pm \sqrt{2}$, starting from det $(K \lambda M) = 0$:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 and $K = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix}$ are positive definite.

Find the two eigenvectors \boldsymbol{x}_1 and \boldsymbol{x}_2 . Show that $\boldsymbol{x}_1^T \boldsymbol{x}_2 \neq 0$ but $\boldsymbol{x}_1^T M \boldsymbol{x}_2 = 0$. $K \boldsymbol{x} = \lambda M \boldsymbol{x}$ is $(K - \lambda M) \boldsymbol{x} = \boldsymbol{0}$ and we need the determinant of $K - \lambda M$ to be 0:

$$\det \begin{bmatrix} 2-\lambda & -2\\ -2 & 4-2\lambda \end{bmatrix} = 2(\lambda^2 - 4\lambda + 2) = 0 \qquad \lambda = \frac{4 \pm \sqrt{16-8}}{2} = \mathbf{2} \pm \sqrt{\mathbf{2}}.$$

The eigenvectors $x_1 = (\sqrt{2}, -1)$ and $x_2 = (\sqrt{2}, 1)$ come from

$$(K - \lambda_1 M) \mathbf{x}_1 = \begin{bmatrix} -\sqrt{2} & -2 \\ -2 & -2\sqrt{2} \end{bmatrix} \mathbf{x}_1 = \mathbf{0} \text{ and } (K - \lambda_2 M) \mathbf{x}_2 = \begin{bmatrix} \sqrt{2} & -2 \\ -2 & 2\sqrt{2} \end{bmatrix} \mathbf{x}_2 = \mathbf{0}.$$

Notice that x_1 is **not** orthogonal to x_2 —it is "*M*-orthogonal":

$$\boldsymbol{x}_{1}^{\mathrm{T}}M\boldsymbol{x}_{2} = \begin{bmatrix} \sqrt{2} & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix} = 0$$

22 What difference equation would you use to solve y'' = -Sy?

y'' = -Sy is well approximated by $y_{n+1} - 2y_n + y_{n-1} = -(\Delta t)^2 Sy_n$. The initial conditions come in as $y_0 = y(0)$ and $y_1 = y(0) + \Delta ty'(0)$ (but that is only a first order accurate approximation to the true $y(\Delta t)$).

23 The second order equation y'' + Sy = 0 reduces to a first order system $y_1' = y_2$ and $y_2' = -Sy_1$. If $Sx = \omega^2 x$ show that the companion matrix $A = [0 \ I \ ; -S \ 0]$ has eigenvalues $i\omega$ and $-i\omega$ with eigenvectors $(x, i\omega x)$ and $(x, -i\omega x)$.

The first-order equation with *block* companion matrix for y'' = -Sy is

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}' = \begin{bmatrix} y \\ y' \end{bmatrix}' = \begin{bmatrix} 0 & I \\ -S & 0 \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} 0 & I \\ -S & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

For the eigenvalues: If $S \boldsymbol{x} = \omega^2 \boldsymbol{x}$ then

$$\begin{bmatrix} 0 & I \\ -S & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{x} \\ \pm i\omega \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \pm i\omega \boldsymbol{x} \\ -\omega^2 \boldsymbol{x} \end{bmatrix} = \pm i\omega \begin{bmatrix} \boldsymbol{x} \\ \pm i\omega \boldsymbol{x} \end{bmatrix}.$$

So the block companion matrix A has eigenvalues $i\omega$ and $-i\omega$. Then we can compute and use the exponential e^{At} (if we want to).

190

6.5. Second Order Systems and Symmetric Matrices

24 Find the eigenvalues λ and eigenfunctions y(x) for the differential equation $y'' = \lambda y$ with $y(0) = y(\pi) = 0$. There are infinitely many !

This is an important problem in function space—instead of eigenvectors in \mathbb{R}^n we look for functions of x between x = 0 and $x = \pi$:

$$\frac{d^2y}{dt^2} = \lambda y(x) \text{ with boundary conditions } y(0) = y(\pi) = 0.$$

This equation is satisfied by $y(x) = a \cos\left(\sqrt{\lambda} x\right) + b \sin\left(\sqrt{\lambda} x\right)$.

The boundary condition y(0) = 0 makes a = 0.

 $\begin{array}{l} \text{The condition } y(\pi) = \sin \left(\sqrt{\lambda} \, \pi \right) = 0 \text{ makes } \sqrt{\lambda} = \mathbf{1} \text{ or } \mathbf{2} \text{ or } \mathbf{3} \text{ or } \dots \text{ Then} \\ \lambda = \mathbf{1^2} \text{ or } \mathbf{2^2} \text{ or any } \mathbf{n^2} \qquad y(x) = \sin(\sqrt{\lambda} \, x). \end{array}$