DIFFERENTIAL EQUATIONS
 AND
 LINEAR ALGEBRA

MANUAL FOR INSTRUCTORS

Gilbert Strang
 Massachusetts Institute of Technology

Book Website
Email address
Course page
OpenCourseWare
Home page
Publisher
Direct email
math.mit.edu/dela diffeqla@gmail.com web.mit.edu/18.06 video lectures: ocw.mit.edu math.mit.edu/~gs www.wellesleycambridge.com
gs@math.mit.edu

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 6.1, page 333

$1 A$ has eigenvalues 1 and $\frac{1}{2}, A^{2}$ has eigenvalues 1 and $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}, A^{\infty}$ has eigenvalues 1 and 0 (notice $\left(\frac{1}{2}\right)^{\infty}=0$).
(a) Exchange the rows of A to get B :
$B=\left[\begin{array}{ll}.2 & .7 \\ .8 & .3\end{array}\right]$ has eigenvalues 1 and $-\frac{1}{2}$.
B is still a Markov matrix, so $\lambda=1$ is still an eigenvalue. The sum down the main diagonal (the "trace") is now .5 so the second eigenvalue must be -.5 . Then trace $=.2+.3=1-.5$.

Zero eigenvalues remain zero after elimination because the matrix remains singular and its determinant remains zero.
$2 A$ has $\lambda_{1}=-1$ and $\lambda_{2}=5$ with eigenvectors $x_{1}=(-2,1)$ and $x_{2}=(1,1)$. The matrix $A+I$ has the same eigenvectors, with eigenvalues increased by 1 to $\mathbf{0}$ and $\mathbf{6}$. That zero eigenvalue correctly indicates that $A+I$ is singular.
$3 A$ has $\lambda_{1}=2$ and $\lambda_{2}=-1$ (check trace and determinant) with $\boldsymbol{x}_{1}=(1,1)$ and $\boldsymbol{x}_{2}=(2,-1) . A^{-1}$ has the same eigenvectors, with eigenvalues $1 / \lambda=\frac{1}{2}$ and -1 .
$4 A$ has $\lambda_{1}=-3$ and $\lambda_{2}=2$ (check trace $=-1$ and determinant $\left.=-6\right)$ with $x_{1}=$ $(3,-2)$ and $x_{2}=(1,1) . A^{2}$ has the same eigenvectors as A, with eigenvalues $\lambda_{1}^{2}=9$ and $\lambda_{2}^{2}=4$.
$5 A$ and B have eigenvalues 1 and $3 . A+B$ has $\lambda_{1}=3, \lambda_{2}=5$. Eigenvalues of $A+B$ are not equal to eigenvalues of A plus eigenvalues of B.
$6 A$ and B have $\lambda_{1}=1$ and $\lambda_{2}=1 . A B$ and $B A$ have $\lambda=2 \pm \sqrt{3}$. Eigenvalues of $A B$ are not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of $A B$ and $B A$ are equal (this is proved in section 6.6, Problems 18-19).
$7 U$ is triangular so its eigenvalues are the diagonal entries $u_{11}, u_{22}, \ldots, u_{n n}$. (This is because det $(U-\lambda I)$ will be just the product $\left(u_{11}-\lambda\right)\left(u_{22}-\lambda\right) \ldots\left(u_{n n}-\lambda\right)$ from the main diagonal.)
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ with $\lambda=2$ and $0 \quad U=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ has $\lambda=1$ and 0.
8
8 (a) Multiply $A \boldsymbol{x}$ to see $\lambda \boldsymbol{x}$ which reveals λ
(b) Solve $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ to find \boldsymbol{x}.

9 (a) Multiply by A : $A(A \boldsymbol{x})=A(\lambda \boldsymbol{x})=\lambda A \boldsymbol{x}$ gives $A^{2} \boldsymbol{x}=\lambda^{2} \boldsymbol{x} \quad$ (b) Multiply by $A^{-1}: \boldsymbol{x}=A^{-1} A \boldsymbol{x}=A^{-1} \lambda \boldsymbol{x}=\lambda A^{-1} \boldsymbol{x}$ gives $A^{-1} \boldsymbol{x}=\frac{1}{\lambda} \boldsymbol{x} \quad$ (c) Add $I \boldsymbol{x}=\boldsymbol{x}$: $(A+I) \boldsymbol{x}=(\boldsymbol{\lambda}+\mathbf{1}) \boldsymbol{x}$.
$10 A$ has $\lambda_{1}=1$ and $\lambda_{2}=.4$ with $\boldsymbol{x}_{1}=(1,2)$ and $\boldsymbol{x}_{2}=(1,-1) . A^{\infty}$ has $\lambda_{1}=1$ and $\lambda_{2}=0$ (same eigenvectors). A^{100} has $\lambda_{1}=1$ and $\lambda_{2}=(.4)^{100}$ which is near zero. So A^{100} is very near A^{∞} : same eigenvectors and close eigenvalues.
11 With $\lambda=0,1,2$ the rank is $\mathbf{2}$. The eigenvalues of B^{2} are $0,1,4$. The eigenvalues of $\left(B^{2}+I\right)^{-1}$ are $(0+1)^{-1}=1,(1+1)^{-1}=\frac{1}{2},(4+1)^{-1}=\frac{1}{5}$.

12 The projection matrix P has $\lambda=1,0,1$ with eigenvectors $(1,2,0),(2,-1,0),(0,0,1)$. Add the first and last vectors: $(1,2,1)$ also has $\lambda=1$. Note $P^{2}=P$ leads to $\lambda^{2}=\lambda$ so $\lambda=0$ or 1 .
13 (a) $P \boldsymbol{u}=\left(\boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{u}=\boldsymbol{u}\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{u}\right)=\boldsymbol{u}$ so $\lambda=1 \quad$ (b) $P \boldsymbol{v}=\left(\boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}\right) \boldsymbol{v}=\boldsymbol{u}\left(\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}\right)=$ 0 (c) $\boldsymbol{x}_{1}=(-1,1,0,0), \boldsymbol{x}_{2}=(-3,0,1,0), \boldsymbol{x}_{3}=(-5,0,0,1)$ all have $P \boldsymbol{x}=0 \boldsymbol{x}=$ 0.

14 Two eigenvectors of this rotation matrix are $\boldsymbol{x}_{1}=(1, i)$ and $\boldsymbol{x}_{2}=(1,-i)$ (more generally $c \boldsymbol{x}_{1}$, and $d \boldsymbol{x}_{2}$ with $c d \neq 0$).
15 These matrices all have $\lambda_{1}=0$ and $\lambda_{2}=0$ (which we can see from trace $=0$ and determinant $=0$):
$A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has $A^{2}=0 \quad A=\left[\begin{array}{ll}a & -a \\ a & -a\end{array}\right]$ has $A^{2}=0$.
$16 \lambda=0,0,6$ (notice rank 1 and trace 6) with $\boldsymbol{x}_{1}=(0,-2,1), \boldsymbol{x}_{2}=(1,-2,0), \boldsymbol{x}_{3}=$ $(1,2,1)$.
$17\left[\begin{array}{ll}5 & 1 \\ 4 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}6 \\ 6\end{array}\right]$ so $\lambda_{1}=6$. Then $\lambda_{2}=1$ to make trace $=5+2=6+1$. $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}a+b \\ c+d\end{array}\right]=(a+b)\left[\begin{array}{l}1 \\ 1\end{array}\right]$ so $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector.
The other eigenvalue is $d-b$ to make trace $=a+d=(a+b)+(d-b)$.
18 These 3 matrices have $\lambda=4$ and 5 , trace 9 , $\operatorname{det} 20$: $\left[\begin{array}{ll}4 & 0 \\ 0 & 5\end{array}\right],\left[\begin{array}{rr}3 & 2 \\ -1 & 6\end{array}\right],\left[\begin{array}{rr}2 & 2 \\ -3 & 7\end{array}\right]$.
19 (a) \boldsymbol{u} is a basis for the nullspace, \boldsymbol{v} and \boldsymbol{w} give a basis for the column space
(b) $\boldsymbol{x}=\left(0, \frac{1}{3}, \frac{1}{5}\right)$ is a particular solution. Add any $c \boldsymbol{u}$ from the nullspace
(c) If $A \boldsymbol{x}=\boldsymbol{u}$ had a solution, \boldsymbol{u} would be in the column space: wrong dimension 3.

20 (a) $A=\left[\begin{array}{rr}0 & -1 \\ -\mathbf{2 8} & \mathbf{1 1}\end{array}\right]$ has trace 11 and determinant 28 , so $\lambda=4$ and 7 .
(b) $A=\left[\begin{array}{cc}0 & 1 \\ -\lambda_{1} \lambda_{2} & \lambda_{1}+\lambda_{2}\end{array}\right]$ has trace $\lambda_{1}+\lambda_{2}$ and determinant $\lambda_{1} \lambda_{2}$ so its eigenvalues must be λ_{1} and λ_{2}. This is a typical companion matrix.
$21(A-\lambda I)$ has the same determinant as $(A-\lambda I)^{\mathrm{T}}$. $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ have different because every square matrix has $\operatorname{det} M=\operatorname{det} M^{\mathrm{T}}$. $\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ eigenvectors.
$22 \lambda=1$ (for Markov), 0 (for singular), $-\frac{1}{2}$ (so sum of eigenvalues $=$ trace $=\frac{1}{2}$).
23 If you know n independent eigenvectors and their eigenvalues, you know the matrix A. In Section 6.2, the \boldsymbol{x} 's and $\boldsymbol{\lambda}$'s go into V and Λ, and the matrix must be $A=V \Lambda V^{-1}$. In this section, Problem 23 suggests that $A \boldsymbol{v}=B \boldsymbol{v}$ for every vector \boldsymbol{v} (which proves $A=B$) because

$$
\boldsymbol{v}=c_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \boldsymbol{x}_{n} \quad A \boldsymbol{v}=c_{1} \lambda_{1} \boldsymbol{x}_{1}+\cdots+c_{n} \lambda_{n} \boldsymbol{x}_{n}=B \boldsymbol{v}
$$

24 The block matrix has $\lambda=1,2$ from B and 5,7 from D. All entries of C are multiplied by zeros in $\operatorname{det}(A-\lambda I)$, so C has no effect on the eigenvalues.
$25 A$ has rank 1 with eigenvalues $0,0,0,4$ (the 4 comes from the trace of A). C has rank 2 (ensuring two zero eigenvalues) and $(1,1,1,1)$ is an eigenvector with $\lambda=2$. With trace 4 , the other eigenvalue is also $\lambda=2$, and its eigenvector is $(1,-1,1,-1)$.
$26 B$ has $\lambda=-1,-1,-1,3$ and C has $\lambda=1,1,1,-3$. Both have det $=-3$.
27 Triangular matrix: $\lambda(A)=1,4,6 ; \lambda(B)=2, \sqrt{3},-\sqrt{3}$; Rank-1 matrix: $\lambda(C)=$ $0,0,6$.
$\mathbf{2 8} \operatorname{det}\left[\begin{array}{ccc}0-\lambda & 1 & 0 \\ 0 & 0-\lambda & 1 \\ 1 & 0 & 0-\lambda\end{array}\right]=-\lambda^{3}+1=0$ for $\lambda=1, e^{2 \pi i / 3}, e^{-2 \pi i / 3}$.
Those complex eigenvalues λ_{2}, λ_{3} are $\cos 120^{\circ} \pm i \sin 120^{\circ}=\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$.
The trace of P is $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$.
$\operatorname{det}\left[\begin{array}{ccc}0-\lambda & 0 & 1 \\ 0 & 1-\lambda & 0 \\ 1 & 0 & 0-\lambda\end{array}\right]=-\lambda^{3}+\lambda^{2}+\lambda-1=0$ for $\lambda=1,1,-1$. The trace is
$1+1-1=\mathbf{1}$. Three eigenvectors are $(1,1,1)$ and $(1,0,1)$ and $(1,0,-1)$. Since P is symmetric we could have chosen orthogonal eigenvectors-change the first to $(0,1,0)$.
29 Set $\lambda=0$ in $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$ to find $\operatorname{det} A=\left(\lambda_{1}\right)\left(\lambda_{2}\right) \cdots\left(\lambda_{n}\right)$.
$30 \lambda_{1}=\frac{1}{2}\left(a+d+\sqrt{(a-d)^{2}+4 b c}\right)$ and $\lambda_{2}=\frac{1}{2}(a+d-\sqrt{ })$ add to $a+d$. If A has $\lambda_{1}=3$ and $\lambda_{2}=4$ then $\operatorname{det}(A-\lambda I)=(\lambda-3)(\lambda-4)=\lambda^{2}-7 \lambda+12$.

Problem Set 6.2, page 345

Questions 1-7 are about the eigenvalue and eigenvector matrices Λ and V.

1 (a) Factor these two matrices into $A=V \Lambda V^{-1}$:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
1 & 1 \\
3 & 3
\end{array}\right]
$$

(b) If $A=V \Lambda V^{-1}$ then $A^{3}=(V)\left(\Lambda^{3}\right)\left(V^{-1}\right)$ and $A^{-1}=(V)\left(\Lambda^{-1}\right)\left(V^{-1}\right)$.

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right] ;\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{rr}
\frac{3}{4} & -\frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{array}\right] .
$$

2 If A has $\lambda_{1}=2$ with eigenvector $\boldsymbol{x}_{1}=\left[\begin{array}{l}\mathbf{1} \\ \mathbf{0}\end{array}\right]$ and $\lambda_{2}=5$ with $\boldsymbol{x}_{2}=\left[\begin{array}{l}\mathbf{1} \\ \mathbf{1}\end{array}\right]$, use $V \Lambda V^{-1}$ to find A. No other matrix has the same λ 's and \boldsymbol{x} 's.
Put the eigenvectors in V and eigenvalues in Λ.

$$
A=V \Lambda S^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right] .
$$

3 Suppose $A=V \Lambda V^{-1}$. What is the eigenvalue matrix for $A+2 I$? What is the eigenvector matrix? Check that $A+2 I=(V)(\Lambda+2 I)(V)^{-1}$.
If $A=V \Lambda V^{-1}$ then the eigenvalue matrix for $A+2 I$ is $\Lambda+2 I$ and the eigenvector matrix is still $V . \quad V(\Lambda+2 I) V^{-1}=V \Lambda V^{-1}+V(2 I) V^{-1}=A+2 I$.
4 True or false : If the columns of V (eigenvectors of A) are linearly independent, then
(a) A is invertible
(b) A is diagonalizable
(c) V is invertible
(d) V is diagonalizable.
(a) False: don't know λ 's
(b) True
(c) True
(d) False: need eigenvectors of V

5 If the eigenvectors of A are the columns of I, then A is a \qquad matrix. If the eigenvector matrix V is triangular, then V^{-1} is triangular. Prove that A is also triangular. With $V=I, A=V \Lambda V^{-1}=\Lambda$ is a diagonal matrix. If V is triangular, then V^{-1} is triangular, so $V \Lambda V^{-1}$ is also triangular.
6 Describe all matrices V that diagonalize this matrix A (find all eigenvectors):

$$
A=\left[\begin{array}{ll}
4 & 0 \\
1 & 2
\end{array}\right]
$$

Then describe all matrices that diagonalize A^{-1}.
The columns of V are nonzero multiples of $(2,1)$ and $(0,1)$: in either order. The same matrices V will diagonize A^{-1}.
7 Write down the most general matrix that has eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
$A=V \Lambda V^{-1}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}\lambda_{1} & \\ & \lambda_{2}\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right] / 2=\left[\begin{array}{ll}\lambda_{1}+\lambda_{2} & \lambda_{1}-\lambda_{2} \\ \lambda_{1}-\lambda_{2} & \lambda_{1}+\lambda_{2}\end{array}\right] / 2=$ $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ for any a and b.

Questions 8-10 are about Fibonacci and Gibonacci numbers.

8 Diagonalize the Fibonacci matrix by completing V^{-1} :

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
\end{array}\right]
$$

Do the multiplication $V \Lambda^{k} V^{-1}\left[\begin{array}{l}\mathbf{1} \\ \mathbf{0}\end{array}\right]$ to find its second component. This is the k th Fibonacci number $F_{k}=\left(\lambda_{1}^{k}-\lambda_{2}^{k}\right) /\left(\lambda_{1}-\lambda_{2}\right)$.

$$
\begin{aligned}
& A=V \Lambda V^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{rr}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right] . V \Lambda^{k} V^{-1}= \\
& \frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & \lambda_{2}^{k}
\end{array}\right]\left[\begin{array}{rr}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \text { nd component is } F_{k} \\
\left(\lambda_{1}^{k}-\lambda_{2}^{k}\right) /\left(\lambda_{1}-\lambda_{2}\right)
\end{array}\right] .
\end{aligned}
$$

9 Suppose G_{k+2} is the average of the two previous numbers G_{k+1} and G_{k} :

$$
\begin{aligned}
G_{k+2} & =\frac{1}{2} G_{k+1}+\frac{1}{2} G_{k} \\
G_{k+1} & =G_{k+1}
\end{aligned} \quad \text { is } \quad\left[\begin{array}{l}
G_{k+2} \\
G_{k+1}
\end{array}\right]=\left[\begin{array}{l}
A
\end{array}\right]\left[\begin{array}{c}
G_{k+1} \\
G_{k}
\end{array}\right]
$$

(a) Find A and its eigenvalues and eigenvectors.
(b) Find the limit as $n \rightarrow \infty$ of the matrices $A^{n}=V \Lambda^{n} V^{-1}$.
(c) If $G_{0}=0$ and $G_{1}=1$ show that the Gibonacci numbers approach $\frac{2}{3}$.
(a) $A=\left[\begin{array}{rr}.5 & .5 \\ 1 & 0\end{array}\right]$ has $\lambda_{1}=1, \lambda_{2}=-\frac{1}{2}$ with $\boldsymbol{x}_{1}=(1,1), \boldsymbol{x}_{2}=(1,-2)$
(b) $A^{n}=\left[\begin{array}{rr}1 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{cc}1^{n} & 0 \\ 0 & (-.5)^{n}\end{array}\right]\left[\begin{array}{rr}\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}\end{array}\right] \rightarrow A^{\infty}=\left[\begin{array}{cc}\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$

10 Prove that every third Fibonacci number in $0,1,1,2,3, \ldots$ is even.
The rule $F_{k+2}=F_{k+1}+F_{k}$ produces the pattern: even, odd, odd, even, odd, odd, \ldots

Questions 11-14 are about diagonalizability.

11 True or false: If the eigenvalues of A are $2,2,5$ then the matrix is certainly
(a) invertible
(b) diagonalizable
(c) not diagonalizable.
(a) True (no zero eigenvalues) (b) False (repeated $\lambda=2$ may have only one line of eigenvectors) (c) False (repeated λ may have a full set of eigenvectors)
12 True or false : If the only eigenvectors of A are multiples of $(1,4)$ then A has
(a) no inverse
(b) a repeated eigenvalue
(c) no diagonalization $V \Lambda V^{-1}$.
(a) False: don't know λ
(b) True: an eigenvector is missing
(c) True.

13 Complete these matrices so that $\operatorname{det} A=25$. Then check that $\lambda=5$ is repeatedthe trace is 10 so the determinant of $A-\lambda I$ is $(\lambda-5)^{2}$. Find an eigenvector with $A \boldsymbol{x}=5 \boldsymbol{x}$. These matrices will not be diagonalizable because there is no second line of eigenvectors.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
8 & \\
& 2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
9 & 4 \\
& 1
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{rr}
10 & 5 \\
-5 &
\end{array}\right] \\
A=\left[\begin{array}{rr}
8 & 3 \\
-3 & 2
\end{array}\right] \text { (or other), } A=\left[\begin{array}{rr}
9 & 4 \\
-4 & 1
\end{array}\right], A=\left[\begin{array}{rr}
10 & 5 \\
-5 & 0
\end{array}\right] ; \quad \begin{array}{l}
\text { only eigenvectors } \\
\text { are } \boldsymbol{x}=(c,-c) .
\end{array}
\end{gathered}
$$

14 The matrix $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$ is not diagonalizable because the rank of $A-3 I$ is \qquad . Change one entry to make A diagonalizable. Which entries could you change?
The rank of $A-3 I$ is $r=1$. Changing any entry except $a_{12}=1$ makes A diagonalizable (A will have unequal eigenvalues, so eigenvectors are independent.)

Questions 15-19 are about powers of matrices.

$15 A^{k}=V \Lambda^{k} V^{-1}$ approaches the zero matrix as $k \rightarrow \infty$ if and only if every λ has absolute value less than \qquad . Which of these matrices has $A^{k} \rightarrow 0$?

$$
A_{1}=\left[\begin{array}{cc}
.6 & .9 \\
.4 & .1
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{cc}
.6 & .9 \\
.1 & .6
\end{array}\right]
$$

$A^{k}=V \Lambda^{k} V^{-1}$ approaches zero if and only if every $|\boldsymbol{\lambda}|<\mathbf{1} ; A_{1}^{k} \rightarrow A_{1}^{\infty}, A_{2}^{k} \rightarrow 0$.

16 (Recommended) Find Λ and V to diagonalize A_{1} in Problem 15. What is the limit of Λ^{k} as $k \rightarrow \infty$? What is the limit of $V \Lambda^{k} V^{-1}$? In the columns of this limiting matrix you see the \qquad _.

$$
\Lambda=\left[\begin{array}{rr}
1 & 0 \\
0 & .2
\end{array}\right] \text { and } V=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] ; \Lambda^{k} \rightarrow\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } V \Lambda^{k} V^{-1} \rightarrow\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]:{ }_{\text {state }} .
$$

17 Find Λ and V to diagonalize A_{2} in Problem 15. What is $\left(A_{2}\right)^{10} \boldsymbol{u}_{0}$ for these \boldsymbol{u}_{0} ?

$$
\begin{gathered}
\boldsymbol{u}_{0}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \quad \text { and } \quad \boldsymbol{u}_{0}=\left[\begin{array}{r}
3 \\
-1
\end{array}\right] \quad \text { and } \boldsymbol{u}_{0}=\left[\begin{array}{l}
6 \\
0
\end{array}\right] . \\
\Lambda=\left[\begin{array}{rr}
.9 & 0 \\
0 & .3
\end{array}\right], S=\left[\begin{array}{rr}
3 & -3 \\
1 & 1
\end{array}\right] ; A_{2}^{10}\left[\begin{array}{l}
3 \\
1
\end{array}\right]=(.9)^{10}\left[\begin{array}{l}
3 \\
1
\end{array}\right], A_{2}^{10}\left[\begin{array}{r}
3 \\
-1
\end{array}\right]=(.3)^{10}\left[\begin{array}{r}
3 \\
-1
\end{array}\right], \\
A_{2}^{10}\left[\begin{array}{l}
6 \\
0
\end{array}\right]=(.9)^{10}\left[\begin{array}{l}
3 \\
1
\end{array}\right]+(.3)^{10}\left[\begin{array}{r}
3 \\
-1
\end{array}\right] \text { because }\left[\begin{array}{l}
6 \\
0
\end{array}\right] \text { is the sum of }\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\left[\begin{array}{r}
3 \\
-1
\end{array}\right] .
\end{gathered}
$$

18 Diagonalize A and compute $V \Lambda^{k} V^{-1}$ to prove this formula for A^{k} :

$$
\begin{gathered}
A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \quad \text { has } A^{k}=\frac{1}{2}\left[\begin{array}{ll}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right] . \\
{\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \text { and } A^{k}=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 3^{k}
\end{array}\right]} \\
{\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] . \text { Multiply those last three matrices to get } A^{k}=\frac{1}{2}\left[\begin{array}{cc}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right] .}
\end{gathered}
$$

19 Diagonalize B and compute $V \Lambda^{k} V^{-1}$ to prove this formula for B^{k} :

$$
\begin{gathered}
B=\left[\begin{array}{ll}
5 & 1 \\
0 & 4
\end{array}\right] \quad \text { has } \quad B^{k}=\left[\begin{array}{lc}
5^{k} & 5^{k}-4^{k} \\
0 & 4^{k}
\end{array}\right] . \\
B^{k}=\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]^{k}\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
5^{k} & 5^{k}-4^{k} \\
0 & 4^{k}
\end{array}\right] .
\end{gathered}
$$

20 Suppose $A=V \Lambda V^{-1}$. Take determinants to prove $\operatorname{det} A=\operatorname{det} \Lambda=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. This quick proof only works when A can be \qquad _. $\operatorname{det} A=(\operatorname{det} V)(\operatorname{det} \Lambda)\left(\operatorname{det} V^{-1}\right)=\operatorname{det} \Lambda=\lambda_{1} \cdots \lambda_{n}$. This proof works when A is diagonalizable.
21 Show that trace $V T=$ trace $T V$, by adding the diagonal entries of $V T$ and $T V$:

$$
V=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{cc}
q & r \\
s & t
\end{array}\right]
$$

Choose T as ΛV^{-1}. Then $V \Lambda V^{-1}$ has the same trace as $\Lambda V^{-1} V=\Lambda$. The trace of A equals the trace of Λ, which is certainly the sum of the eigenvalues.
trace $V T=(a q+b s)+(c r+d t)$ is equal to $(q a+r c)+(s b+t d)=$ trace $T V$. Diagonalizable trace of $V \Lambda V^{-1}=$ trace of $\left(\Lambda V^{-1}\right) V=$ trace of Λ : sum of the λ 's.
$22 A B-B A=I$ is impossible since the left side has trace $=$ \qquad . But find an elimination matrix so that $A=E$ and $B=E^{\mathrm{T}}$ give

$$
A B-B A=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \quad \text { which has trace zero. }
$$

$A B-B A=I$ is impossible since trace $A B-$ trace $B A=$ zero \neq trace I. $A B-B A=C$ is possible when trace $(C)=0$.
$E=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ has $E E^{\mathrm{T}}-E^{\mathrm{T}} E=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$.
23 If $A=V \Lambda V^{-1}$, diagonalize the block matrix $B=\left[\begin{array}{cc}A & 0 \\ 0 & 2 A\end{array}\right]$. Find its eigenvalue and eigenvector (block) matrices.
If $A=V \Lambda V^{-1}$ then $B=\left[\begin{array}{cc}A & 0 \\ 0 & 2 A\end{array}\right]=\left[\begin{array}{ll}V & 0 \\ 0 & V\end{array}\right]\left[\begin{array}{cc}\Lambda & 0 \\ 0 & 2 \Lambda\end{array}\right]\left[\begin{array}{cc}V^{-1} & 0 \\ 0 & V^{-1}\end{array}\right]$. So B has the additional eigenvalues $2 \lambda_{1}, \ldots, 2 \lambda_{n}$.
24 Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector matrix V. Show that the A 's form a subspace ($c A$ and $A_{1}+A_{2}$ have this same V). What is this subspace when $V=I$? What is its dimension?
The A 's form a subspace since $c A$ and $A_{1}+A_{2}$ all have the same V. When $V=I$ the A 's with those eigenvectors give the subspace of diagonal matrices. Dimension 4.
25 Suppose $A^{2}=A$. On the left side A multiplies each column of A. Which of our four subspaces contains eigenvectors with $\lambda=1$? Which subspace contains eigenvectors with $\lambda=0$? From the dimensions of those subspaces, A has a full set of independent eigenvectors. So every matrix with $A^{2}=A$ can be diagonalized.
If A has columns $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ then column by column, $A^{2}=A$ means every $A \boldsymbol{x}_{i}=\boldsymbol{x}_{i}$. All vectors in the column space (combinations of those columns \boldsymbol{x}_{i}) are eigenvectors with $\lambda=1$. Always the nullspace has $\lambda=0$ (A might have dependent columns, so there could be less than n eigenvectors with $\lambda=1$). Dimensions of those spaces add to n by the Fundamental Theorem, so A is diagonalizable (n independent eigenvectors altogether).
26 (Recommended) Suppose $A \boldsymbol{x}=\lambda \boldsymbol{x}$. If $\lambda=0$ then \boldsymbol{x} is in the nullspace. If $\lambda \neq 0$ then \boldsymbol{x} is in the column space. Those spaces have dimensions $(n-r)+r=n$. So why doesn't every square matrix have n linearly independent eigenvectors?
Two problems: The nullspace and column space can overlap, so \boldsymbol{x} could be in both. There may not be r independent eigenvectors in the column space.
27 The eigenvalues of A are 1 and 9 , and the eigenvalues of B are -1 and 9:

$$
A=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
4 & 5 \\
5 & 4
\end{array}\right]
$$

Find a matrix square root of A from $R=V \sqrt{\Lambda} V^{-1}$. Why is there no real matrix square root of B ?
$R=V \sqrt{\Lambda} V^{-1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ has $R^{2}=A . \sqrt{B}$ needs $\lambda=\sqrt{9}$ and $\sqrt{-1}$, trace is not real.
Note that $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$ can have $\sqrt{-1}=i$ and $-i$, trace 0 , real square root $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$.

28 The powers A^{k} approach zero if all $\left|\lambda_{i}\right|<1$ and they blow up if any $\left|\lambda_{i}\right|>1$. Peter Lax gives these striking examples in his book Linear Algebra:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right] \quad B=\left[\begin{array}{rr}
3 & 2 \\
-5 & -3
\end{array}\right] \quad C=\left[\begin{array}{rr}
5 & 7 \\
-3 & -4
\end{array}\right] \quad D=\left[\begin{array}{rr}
5 & 6.9 \\
-3 & -4
\end{array}\right] \\
\left\|\boldsymbol{A}^{\mathbf{1 0 2 4}}\right\|>\mathbf{1 0}^{\mathbf{7 0 0}} \quad \boldsymbol{B}^{\mathbf{1 0 2 4}}=\boldsymbol{I} \quad \boldsymbol{C}^{\mathbf{1 0 2 4}}=-\boldsymbol{C} \quad\left\|\boldsymbol{D}^{\mathbf{1 0 2 4}}\right\|<\mathbf{1 0}^{-\mathbf{7 8}}
\end{gathered}
$$

Find the eigenvalues $\lambda=e^{i \theta}$ of B and C to show $B^{4}=I$ and $C^{3}=-I$.
B has $\lambda=i$ and $-i$, so B^{4} has $\lambda^{4}=1$ and 1 and $B^{4}=I . C$ has $\lambda=(1 \pm \sqrt{3} i) / 2$. This is $\exp (\pm \pi i / 3)$ so $\lambda^{3}=-1$ and -1 . Then $C^{3}=-I$ and $C^{1024}=-C$.

29 If A and B have the same λ 's with the same full set of independent eigenvectors, their factorizations into \qquad are the same. So $A=B$.
The factorizations of A and B into $V \Lambda V^{-1}$ are the same. So $A=B$. (This is the same as Problem 6.1.25, expressed in matrix form.)

30 Suppose the same V diagonalizes both A and B. They have the same eigenvectors in $A=V \Lambda_{1} V^{-1}$ and $B=V \Lambda_{2} V^{-1}$. Prove that $A B=B A$.
$A=V \Lambda_{1} V^{-1}$ and $B=V \Lambda_{2} V^{-1}$. Diagonal matrices always give $\Lambda_{1} \Lambda_{2}=\Lambda_{2} \Lambda_{1}$. Then $A B=B A$ from $V \Lambda_{1} V^{-1} V \Lambda_{2} V^{-1}=V \boldsymbol{\Lambda}_{\mathbf{1}} \mathbf{\Lambda}_{\mathbf{2}} V^{-1}=V \boldsymbol{\Lambda}_{\mathbf{2}} \boldsymbol{\Lambda}_{\mathbf{1}} V^{-1}$. This is $V \Lambda_{2} V^{-1} V \Lambda_{1} V^{-1}=B A$.
31 (a) If $A=\left[\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{0} & \mathbf{d}\end{array}\right]$ then the determinant of $A-\lambda I$ is $(\lambda-a)(\lambda-d)$. Check the "Cayley-Hamilton Theorem" that $(A-a I)(A-d I)=$ zero matrix.
(b) Test the Cayley-Hamilton Theorem on Fibonacci's $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. The theorem predicts that $A^{2}-A-I=0$, since the polynomial $\operatorname{det}(A-\lambda I)$ is $\lambda^{2}-\lambda-1$.
(a) $A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ has $\lambda=a$ and $\lambda=d:(A-a I)(A-d I)=\left[\begin{array}{cc}0 & b \\ 0 & d-a\end{array}\right]\left[\begin{array}{cc}a-d & b \\ 0 & 0\end{array}\right]$ $=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] . \quad$ (b) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ has $A^{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $A^{2}-A-I=0$ is true, matching $\lambda^{2}-\lambda-1=0$ as the Cayley-Hamilton Theorem predicts.
32 Substitute $A=V \Lambda V^{-1}$ into the product $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$. The Cayley-Hamilton Theorem says that this product is always $p(A)=$ zero matrix, even if A is not diagonalizable.
When $A=V \Lambda V^{-1}$ is diagonalizable, the matrix $A-\lambda_{j} I=V\left(\Lambda-\lambda_{j} I\right) V^{-1}$ will have 0 in the j, j diagonal entry of $\Lambda-\lambda_{j} I$. In the product $p(A)=\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right)$, each inside V^{-1} cancels V. This leaves V times (product of diagonal matrices $\Lambda-\lambda_{j} I$) times V^{-1}. That product is the zero matrix because the factors produce a zero in each diagonal position. Then $p(A)=$ zero matrix, which is the Cayley-Hamilton Theorem. (If A is not diagonalizable, one proof is to take a sequence of diagonalizable matrices approaching A.)
Comment I have also seen the following reasoning but I am not convinced:

Apply the formula $A C^{\mathrm{T}}=(\operatorname{det} A) I$ from Section 5.3 to $A-\lambda I$ with variable λ. Its cofactor matrix C will be a polynomial in λ, since cofactors are determinants:

$$
(A-\lambda I) \operatorname{cof}(A-\lambda I)^{\mathrm{T}}=\operatorname{det}(A-\lambda I) I=p(\lambda) I
$$

"For fixed A, this is an identity between two matrix polynomials." Set $\lambda=A$ to find the zero matrix on the left, so $p(A)=$ zero matrix on the right-which is the CayleyHamilton Theorem.
I am not certain about the key step of substituting a matrix for λ. If other matrices B are substituted, does the identity remain true? If $A B \neq B A$, even the order of multiplication seems unclear ...

Challenge Problems

33 The nth power of rotation through θ is rotation through $n \theta$:

$$
A^{n}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]^{n}=\left[\begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right] .
$$

Prove that neat formula by diagonalizing $A=V \Lambda V^{-1}$. The eigenvectors (columns of $V)$ are $(1, i)$ and $(i, 1)$. You need to know Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.
The eigenvalues of $A=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ are $\lambda=e^{i \theta}$ and $e^{-i \theta}$ (trace $2 \cos \theta$ and $\operatorname{det}=1)$. Their eigenvectors are $(1,-i)$ and $(1, i)$:

$$
\begin{aligned}
A^{n} & =V \Lambda^{n} V^{-1}=\left[\begin{array}{rr}
1 & 1 \\
-i & i
\end{array}\right]\left[\begin{array}{ll}
e^{i n \theta} & \\
& e^{-i n \theta}
\end{array}\right]\left[\begin{array}{rr}
i & -1 \\
i & 1
\end{array}\right] / 2 i \\
& =\left[\begin{array}{rr}
\left(e^{i n \theta}+e^{-i n \theta}\right) / 2 & \cdots \\
\left(e^{i n \theta}-e^{-i n \theta}\right) / 2 i & \cdots
\end{array}\right]=\left[\begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right] .
\end{aligned}
$$

Geometrically, n rotations by θ give one rotation by $n \theta$.
34 The transpose of $A=V \Lambda V^{-1}$ is $A^{\mathrm{T}}=\left(V^{-1}\right)^{\mathrm{T}} \Lambda V^{\mathrm{T}}$. The eigenvectors in $A^{\mathrm{T}} \boldsymbol{y}=\lambda \boldsymbol{y}$ are the columns of that matrix $\left(V^{-1}\right)^{\mathrm{T}}$. They are often called left eigenvectors.

How do you multiply three matrices $V \Lambda V^{-1}$ to find this formula for A ?

$$
\text { Sum of rank- } 1 \text { matrices } A=V \Lambda V^{-1}=\lambda_{1} \boldsymbol{x}_{1} \boldsymbol{y}_{1}^{\mathrm{T}}+\cdots+\lambda_{n} \boldsymbol{x}_{n} \boldsymbol{y}_{n}^{\mathrm{T}}
$$

Columns of V times rows of ΛV^{-1} will give r rank-1 matrices $(r=\operatorname{rank}$ of $A)$.
35 The inverse of $A=\mathbf{e y e}(n)+\operatorname{ones}(n)$ is $A^{-1}=\mathbf{e y e}(n)+C *$ ones (n). Multiply $A A^{-1}$ to find that number C (depending on n).
Note that ones $(n) * \operatorname{ones}(n)=n * \operatorname{ones}(n)$. This leads to $C=1 /(n+1)$.

$$
\begin{aligned}
A A^{-1} & =(\operatorname{eye}(n)+\operatorname{ones}(n)) *(\operatorname{eye}(n)+C * \operatorname{ones}(n)) \\
& =\operatorname{eye}(n)+(1+C+C n) * \operatorname{ones}(n)=\operatorname{eye}(n)
\end{aligned}
$$

Problem Set 6.3, page 357

1 Find all solutions $\boldsymbol{y}=c_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+c_{2} e^{\lambda_{2} t} \boldsymbol{x}_{2}$ to $\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}3 & 1 \\ 3 & 5\end{array}\right] \boldsymbol{y}$. Which solution starts from $\boldsymbol{y}(0)=c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}=(2,2)$?
The eigenvalues come from $\operatorname{det}(A-\lambda I)=0$. This is

$$
\lambda^{2}-8 \lambda+12=(\lambda-2)(\lambda-6)=0 \text { so } \lambda=\mathbf{2}, \mathbf{6}
$$

Eigenvectors: $(A-2 I) \boldsymbol{x}_{1}=\mathbf{0}$ and $(A-6 I) \boldsymbol{x}_{2}=0$ give $\boldsymbol{x}_{1}=(1,-1)$ and $\boldsymbol{x}_{2}=(1,3)$
Solutions are $\boldsymbol{y}(t)=c_{1} e^{2 t}\left[\begin{array}{r}1 \\ -1\end{array}\right]+c_{2} e^{-6 t}\left[\begin{array}{l}1 \\ 3\end{array}\right]$
Constants c_{1}, c_{2} come from $\left[\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\boldsymbol{y}(\mathbf{0})=\left[\begin{array}{l}2 \\ 2\end{array}\right]$. Then $\boldsymbol{c}_{\mathbf{1}}=\boldsymbol{c}_{\mathbf{2}}=\mathbf{1}$.

2 Find two solutions of the form $\boldsymbol{y}=e^{\lambda t} \boldsymbol{x}$ to $\boldsymbol{y}^{\prime}=\left[\begin{array}{rr}3 & 10 \\ 2 & 4\end{array}\right] \boldsymbol{y}$.
The eigenvalues come from $\lambda^{2}-7 \lambda-8=0$. Factor into $(\lambda-8)(\lambda+1)$ to see $\lambda=8$, and -1 .

$$
\begin{aligned}
(A-8 I) \boldsymbol{x}_{1} & =\left[\begin{array}{rr}
-5 & 10 \\
2 & -1
\end{array}\right] \boldsymbol{x}_{1}=\mathbf{0} \text { gives } \boldsymbol{x}_{1}=\left[\begin{array}{r}
2 \\
1
\end{array}\right] \\
(A+I) \boldsymbol{x}_{2} & =\left[\begin{array}{rr}
4 & 10 \\
2 & 5
\end{array}\right] \boldsymbol{x}_{2}=\mathbf{0} \text { gives } \boldsymbol{x}_{2}=\left[\begin{array}{r}
5 \\
-2
\end{array}\right]
\end{aligned}
$$

The two solutions are $y(t)=e^{8 t} \boldsymbol{x}_{1}$ and $e^{-t} \boldsymbol{x}_{2}$
3 If $a \neq d$, find the eigenvalues and eigenvectors and the complete solution to $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$. This equation is stable when a and d are \qquad -.

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \boldsymbol{y}
$$

The eigenvalues are $\lambda=a$ and $\lambda=d$. The eigenvectors come from

$$
\begin{aligned}
& (A-a I) \boldsymbol{x}_{1}=\left[\begin{array}{cc}
0 & b \\
0 & d-a
\end{array}\right] \boldsymbol{x}_{1}=\mathbf{0} . \quad \boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& (A-d I) \boldsymbol{x}_{2}=\left[\begin{array}{cc}
a-d & b \\
0 & 0
\end{array}\right] \boldsymbol{x}_{2}=\mathbf{0} . \quad \boldsymbol{x}_{2}=\left[\begin{array}{c}
b \\
d-a
\end{array}\right]
\end{aligned}
$$

Two solutions are $y=e^{a t} \boldsymbol{x}_{1}$ and $y=e^{d t} \boldsymbol{x}_{2}$. Stability for negative a and d.
4 If $a \neq-b$, find the solutions $e^{\lambda_{1} t} \boldsymbol{x}_{1}$ and $e^{\lambda_{2} t} \boldsymbol{x}_{2}$ to $y^{\prime}=A \boldsymbol{y}$:

$$
A=\left[\begin{array}{ll}
a & b \\
a & b
\end{array}\right] . \quad \text { Why is } \boldsymbol{y}^{\prime}=A \boldsymbol{y} \text { not stable? }
$$

A is singular so $\lambda_{1}=0 . \quad$ Trace is $a+b$ so $\lambda_{2}=a+b . \quad(A-0 I) \boldsymbol{x}_{1}=\mathbf{0}$ gives $\boldsymbol{x}_{1}=\left[\begin{array}{r}b \\ -a\end{array}\right] \quad(A-(a+b) I) \boldsymbol{x}_{2}=\left[\begin{array}{rr}-b & b \\ a & -a\end{array}\right] \boldsymbol{x}_{2}=0$ gives $\boldsymbol{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
The system is not stable because $\lambda=0$ is an eigenvalue. If $\lambda_{2}=a+b$ is negative, the system is "neutral" and the solution approaches a steady state (a multiple of \boldsymbol{x}_{1}).
5 Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and the eigenvectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ of A. Write $\boldsymbol{y}(0)=(0,1,0)$ as a combination $c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}+c_{3} \boldsymbol{x}_{3}=V \boldsymbol{c}$ and solve $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$. What is the limit of $\boldsymbol{y}(t)$ as $t \rightarrow \infty$ (the steady state)? Steady states come from $\lambda=0$.

$$
A=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

Calculation gives $\operatorname{det}(A-\lambda I)=-(\lambda+1) \lambda(\lambda+3)$ and eigenvalues $\lambda=0,-1,-3$.
$\lambda=0$ has eigenvector $\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad \lambda=-1$ has $\boldsymbol{x}_{2}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right] \quad \lambda=-3$ has $\boldsymbol{x}_{3}=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$
Notice: Those eigenvectors are orthogonal (because A is symmetric). Then $\boldsymbol{y}(0)$ is

$$
(0,1,0)=\frac{1}{3}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{3}\right) \text { so } \boldsymbol{y}(t)=\frac{1}{3} e^{0 t} \boldsymbol{x}_{1}-\frac{1}{3} e^{-3 t} \boldsymbol{x}_{2} \text { approaches } y(\infty)=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

6 The simplest 2 by 2 matrix without two independent eigenvectors has $\lambda=0,0$:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]^{\prime}=A \boldsymbol{y}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \text { has a first solution }\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=e^{0 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Find a second solution to these equations $y_{1}{ }^{\prime}=y_{2}$ and $y_{2}{ }^{\prime}=0$. That second solution starts with t times the first solution to give $y_{1}=t$. What is y_{2} ?

Note A complete discussion of $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ for all cases of repeated λ 's would involve the Jordan form of A : too technical. Section 6.4 shows that a triangular form is sufficient, as Problems 6 and 8 confirm. We can solve for y_{2} and then y_{1}.
The first solution to $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=0$ is $\left(y_{1}(t), y_{2}(t)\right)=(1,0)=$ eigenvector. A second solution has $\left(y_{1}, y_{2}\right)=(t, 1)$. The factor t appears when there is no \boldsymbol{x}_{2}.
7 Find two λ 's and \boldsymbol{x} 's so that $\boldsymbol{y}=e^{\lambda t} \boldsymbol{x}$ solves

$$
\frac{d \boldsymbol{y}}{d t}=\left[\begin{array}{ll}
4 & 3 \\
0 & 1
\end{array}\right] \boldsymbol{y}
$$

What combination $\boldsymbol{y}=c_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+c_{2} e^{\lambda_{2} t} \boldsymbol{x}_{2}$ starts from $\boldsymbol{y}(0)=(5,-2)$?

$$
\boldsymbol{y}_{1}=e^{4 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right], \boldsymbol{y}_{2}=e^{t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] . \text { If } \boldsymbol{y}(0)=\left[\begin{array}{r}
5 \\
-2
\end{array}\right] \text {, then } \boldsymbol{y}(t)=3 e^{4 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2 e^{t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

8 Solve Problem 7 for $\boldsymbol{y}=(y, z)$ by back substitution, z before y :

$$
\text { Solve } \frac{d z}{d t}=z \text { from } z(0)=-2 . \text { Then solve } \frac{d y}{d t}=4 y+3 z \text { from } y(0)=5
$$

The solution for y will be a combination of $e^{4 t}$ and $e^{t} . \lambda=4$ and 1. $z(t)=-2 e^{t}$.
Then $d y / d t=4 y-6 e^{t}$ with $y(0)=5$ gives $y(t)=3 e^{4 t}+2 e^{t}$ as in Problem 7.

9 (a) If every column of A adds to zero, why is $\lambda=0$ an eigenvalue?
(b) With negative diagonal and positive off-diagonal adding to zero, $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ will be a "continuous" Markov equation. Find the eigenvalues and eigenvectors, and the steady state as $t \rightarrow \infty$:

$$
\text { Solve } \frac{d \boldsymbol{y}}{d t}=\left[\begin{array}{rr}
-2 & 3 \\
2 & -3
\end{array}\right] \boldsymbol{y} \quad \text { with } \quad \boldsymbol{y}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right] . \quad \text { What is } \boldsymbol{y}(\infty) ?
$$

(a) If every column of A adds to zero, this means that the rows add to the zero row. So the rows are dependent, and A is singular, and $\lambda=0$ is an eigenvalue.
(b) The eigenvalues of $A=\left[\begin{array}{rr}-2 & 3 \\ 2 & -3\end{array}\right]$ are $\lambda_{1}=0$ with eigenvector $\boldsymbol{x}_{1}=(3,2)$ and $\lambda_{2}=-5$ (to give trace $=-5$) with $\boldsymbol{x}_{2}=(1,-1)$. Then the usual 3 steps:

1. Write $\boldsymbol{y}(0)=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ as $\left[\begin{array}{l}3 \\ 2\end{array}\right]+\left[\begin{array}{r}1 \\ -1\end{array}\right]=\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$
2. Follow those eigenvectors by $e^{0 t} \boldsymbol{x}_{1}$ and $e^{-5 t} \boldsymbol{x}_{2}$
3. The solution $\boldsymbol{y}(t)=\boldsymbol{x}_{1}+e^{-5 t} \boldsymbol{x}_{2}$ has steady state $\boldsymbol{x}_{1}=(3,2)$.

10 A door is opened between rooms that hold $v(0)=30$ people and $w(0)=10$ people. The movement between rooms is proportional to the difference $v-w$:

$$
\frac{d v}{d t}=w-v \quad \text { and } \quad \frac{d w}{d t}=v-w
$$

Show that the total $v+w$ is constant (40 people). Find the matrix in $d \boldsymbol{y} / d t=A \boldsymbol{y}$ and its eigenvalues and eigenvectors. What are v and w at $t=1$ and $t=\infty$?
$d(v+w) / d t=(w-v)+(v-w)=0$, so the total $v+w$ is constant. $A=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]$
has $\begin{aligned} & \lambda_{1}=0 \\ & \lambda_{2}=-2\end{aligned}$ with $\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \boldsymbol{x}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right] ; \quad \begin{array}{rl}v(1)=20+10 e^{-2} & v(\infty)=20 \\ w(1)=20-10 e^{-2} & w(\infty)=20\end{array}$
11 Reverse the diffusion of people in Problem 10 to $d \boldsymbol{z} / d t=-A \boldsymbol{z}$:

$$
\frac{d v}{d t}=v-w \quad \text { and } \quad \frac{d w}{d t}=w-v
$$

The total $v+w$ still remains constant. How are the λ 's changed now that A is changed to $-A$? But show that $v(t)$ grows to infinity from $v(0)=30$.

$$
\frac{d}{d t}\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \text { has } \lambda=0 \text { and }+2: v(t)=20+10 e^{2 t} \rightarrow \infty \text { as } t \rightarrow \infty
$$

$12 A$ has real eigenvalues but B has complex eigenvalues:

$$
A=\left[\begin{array}{ll}
a & 1 \\
1 & a
\end{array}\right] \quad B=\left[\begin{array}{rr}
b & -1 \\
1 & b
\end{array}\right] \quad(a \text { and } b \text { are real })
$$

Find the stability conditions on a and b so that all solutions of $d \boldsymbol{y} / d t=A \boldsymbol{y}$ and $d \boldsymbol{z} / d t=B \boldsymbol{z}$ approach zero as $t \rightarrow \infty$.
$A=\left[\begin{array}{cc}a & 1 \\ 1 & a\end{array}\right]$ has real eigenvalues $a+1$ and $a-1$. These are both negative if $\boldsymbol{a}<\mathbf{- 1}$, and the solutions of $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ approach zero. $B=\left[\begin{array}{rr}b & -1 \\ 1 & b\end{array}\right]$ has complex eigenvalues $b+i$ and $b-i$. These have negative real parts if $\boldsymbol{b}<\mathbf{0}$, and all solutions of $\boldsymbol{z}^{\prime}=B \boldsymbol{z}$ approach zero.
13 Suppose P is the projection matrix onto the 45° line $y=x$ in \mathbf{R}^{2}. Its eigenvalues are 1 and 0 with eigenvectors $(1,1)$ and $(1,-1)$. If $d \boldsymbol{y} / d t=-P \boldsymbol{y}$ (notice minus sign) can you find the limit of $\boldsymbol{y}(t)$ at $t=\infty$ starting from $\boldsymbol{y}(0)=(3,1)$?
A projection matrix has eigenvalues $\lambda=1$ and $\lambda=0$. Eigenvectors $P \boldsymbol{x}=\boldsymbol{x}$ fill the subspace that P projects onto: here $\boldsymbol{x}=(1,1)$. Eigenvectors $P \boldsymbol{x}=\mathbf{0}$ fill the perpendicular subspace: here $\boldsymbol{x}=(1,-1)$. For the solution to $\boldsymbol{y}^{\prime}=-P \boldsymbol{y}$,

$$
\boldsymbol{y}(0)=\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]+\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \boldsymbol{y}(t)=e^{-t}\left[\begin{array}{l}
2 \\
2
\end{array}\right]+e^{0 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { approaches }\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

14 The rabbit population shows fast growth (from $6 r$) but loss to wolves (from $-2 w$). The wolf population always grows in this model ($-w^{2}$ would control wolves):

$$
\frac{d r}{d t}=6 r-2 w \quad \text { and } \quad \frac{d w}{d t}=2 r+w
$$

Find the eigenvalues and eigenvectors. If $r(0)=w(0)=30$ what are the populations at time t ? After a long time, what is the ratio of rabbits to wolves?
$\left[\begin{array}{rr}6 & -2 \\ 2 & 1\end{array}\right]$ has $\lambda_{1}=5, \boldsymbol{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \lambda_{2}=2, \boldsymbol{x}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right] ;$ rabbits $r(t)=20 e^{5 t}+10 e^{2 t}$, $w(t)=10 e^{5 t}+20 e^{2 t}$. The ratio of rabbits to wolves approaches 20/10; $e^{5 t}$ dominates.
15 (a) Write $(4,0)$ as a combination $c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}$ of these two eigenvectors of A :

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
i
\end{array}\right]=i\left[\begin{array}{l}
1 \\
i
\end{array}\right] \quad\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{r}
1 \\
-i
\end{array}\right]=-i\left[\begin{array}{r}
1 \\
-i
\end{array}\right]
$$

(b) The solution to $d \boldsymbol{y} / d t=A \boldsymbol{y}$ starting from (4,0) is $c_{1} e^{i t} \boldsymbol{x}_{1}+c_{2} e^{-i t} \boldsymbol{x}_{2}$. Substitute $e^{i t}=\cos t+i \sin t$ and $e^{-i t}=\cos t-i \sin t$ to find $\boldsymbol{y}(t)$.
(a) $\left[\begin{array}{l}4 \\ 0\end{array}\right]=2\left[\begin{array}{l}1 \\ i\end{array}\right]+2\left[\begin{array}{c}1 \\ -i\end{array}\right]$.
(b) Then $\boldsymbol{y}(t)=2 e^{i t}\left[\begin{array}{l}1 \\ i\end{array}\right]+2 e^{-i t}\left[\begin{array}{r}1 \\ -i\end{array}\right]=\left[\begin{array}{c}4 \cos t \\ 4 \sin t\end{array}\right]$.

Questions 16-19 reduce second-order equations to first-order systems for (y, y^{\prime}).

16 Find A to change the scalar equation $y^{\prime \prime}=5 y^{\prime}+4 y$ into a vector equation for $\boldsymbol{y}=$ $\left(y, y^{\prime}\right)$:

$$
\frac{d \boldsymbol{y}}{d t}=\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=[\quad]\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right]=A \boldsymbol{y}
$$

What are the eigenvalues of A ? Find them also by substituting $y=e^{\lambda t}$ into $y^{\prime \prime}=$ $5 y^{\prime}+4 y$.
$\frac{d}{d t}\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}y^{\prime} \\ y^{\prime \prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right] . A=\left[\begin{array}{ll}0 & 1 \\ 4 & 5\end{array}\right]$ has $\operatorname{det}(A-\lambda I)=\lambda^{2}-5 \lambda-4=0$.
Directly substituting $y=e^{\lambda t}$ into $y^{\prime \prime}=5 y^{\prime}+4 y$ also gives $\lambda^{2}=5 \lambda+4$ and the same two values of λ. Those values are $\lambda=\frac{1}{2}(5 \pm \sqrt{41})$ by the quadratic formula.
17 Substitute $y=e^{\lambda t}$ into $y^{\prime \prime}=6 y^{\prime}-9 y$ to show that $\lambda=3$ is a repeated root. This is trouble; we need a second solution after $e^{3 t}$. The matrix equation is

$$
\frac{d}{d t}\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-9 & 6
\end{array}\right]\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right]
$$

Show that this matrix has $\lambda=3,3$ and only one line of eigenvectors. Trouble here too. Show that the second solution to $y^{\prime \prime}=6 y^{\prime}-9 y$ is $y=t e^{3 t}$.
$A=\left[\begin{array}{rr}0 & 1 \\ -9 & 6\end{array}\right]$ has trace 6 , det $9, \lambda=3$ and 3 with one independent eigenvector $(1,3)$.
18 (a) Write down two familiar functions that solve the equation $d^{2} y / d t^{2}=-9 y$. Which one starts with $y(0)=3$ and $y^{\prime}(0)=0$?
(b) This second-order equation $y^{\prime \prime}=-9 y$ produces a vector equation $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$:

$$
\boldsymbol{y}=\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right] \quad \frac{d \boldsymbol{y}}{d t}=\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-9 & 0
\end{array}\right]\left[\begin{array}{c}
y \\
y^{\prime}
\end{array}\right]=A \boldsymbol{y}
$$

Find $\boldsymbol{y}(t)$ by using the eigenvalues and eigenvectors of $A: \boldsymbol{y}(0)=(3,0)$.
(a) $y(t)=\cos 3 t$ and $\sin 3 t$ solve $y^{\prime \prime}=-9 y$. It is $\mathbf{3} \cos 3 t$ that starts with $y(0)=3$ and $y^{\prime}(0)=0 . \quad$ (b) $A=\left[\begin{array}{rr}0 & 1 \\ -9 & 0\end{array}\right]$ has det $=9: \lambda=3 i$ and $-3 i$ with $\boldsymbol{x}=(1,3 i)$ and $(1,-3 i)$. Then $\boldsymbol{y}(t)=\frac{3}{2} e^{3 i t}\left[\begin{array}{c}1 \\ 3 i\end{array}\right]+\frac{3}{2} e^{-3 i t}\left[\begin{array}{r}1 \\ -3 i\end{array}\right]=\left[\begin{array}{r}3 \cos 3 t \\ -9 \sin 3 t\end{array}\right]$.
19 If c is not an eigenvalue of A, substitute $\boldsymbol{y}=e^{c t} \boldsymbol{v}$ and find a particular solution to $d \boldsymbol{y} / d t=A \boldsymbol{y}-e^{c t} \boldsymbol{b}$. How does it break down when c is an eigenvalue of A ?
Substituting $\boldsymbol{y}=e^{c t} \boldsymbol{v}$ gives $c e^{c t} \boldsymbol{v}=A e^{c t} \boldsymbol{v}-e^{c t} \boldsymbol{b}$ or $(A-c I) \boldsymbol{v}=\boldsymbol{b}$ or $\boldsymbol{v}=$ $(A-c I)^{-1} \boldsymbol{b}=$ particular solution. If c is an eigenvalue then $A-c I$ is not invertible.
20 A particular solution to $d \boldsymbol{y} / d t=A \boldsymbol{y}-\boldsymbol{b}$ is $\boldsymbol{y}_{p}=A^{-1} \boldsymbol{b}$, if A is invertible. The usual solutions to $d \boldsymbol{y} / d t=A \boldsymbol{y}$ give \boldsymbol{y}_{n}. Find the complete solution $\boldsymbol{y}=\boldsymbol{y}_{p}+\boldsymbol{y}_{n}$:
(a) $\frac{d y}{d t}=y-4$
(b) $\frac{d \boldsymbol{y}}{d t}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \boldsymbol{y}-\left[\begin{array}{l}4 \\ 6\end{array}\right]$.
$\boldsymbol{y}_{p}=4$ and $\boldsymbol{y}(t)=c e^{t}+4 ; \quad \boldsymbol{y}_{p}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$ and $\boldsymbol{y}(t)=c_{1} e^{t}\left[\begin{array}{l}1 \\ t\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}4 \\ 2\end{array}\right]$.

21 Find a matrix A to illustrate each of the unstable regions in the stability picture:
(a) $\lambda_{1}<0$ and $\lambda_{2}>0$
(b) $\lambda_{1}>0$ and $\lambda_{2}>0$
(c) $\lambda=a \pm i b$ with $a>0$.
(a) $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$. These show the unstable cases
$\begin{array}{lll}\text { (a) } \lambda_{1}<0 \text { and } \lambda_{2}>0 & \text { (b) } \lambda_{1}>0 \text { and } \lambda_{2}>0 & \text { (c) } \lambda=a \pm i b \text { with } a>0\end{array}$

22 Which of these matrices are stable? Then $\operatorname{Re} \lambda<0$, trace <0, and det >0.

$$
A_{1}=\left[\begin{array}{ll}
-2 & -3 \\
-4 & -5
\end{array}\right] \quad A_{2}=\left[\begin{array}{ll}
-1 & -2 \\
-3 & -6
\end{array}\right] \quad A_{3}=\left[\begin{array}{rr}
-1 & 2 \\
-3 & -6
\end{array}\right]
$$

A_{1} is unstable (trace $=-7$ but determinant $=-2 ; \lambda_{1}<0$ but $\lambda_{2}>0$).
A_{2} is unstable (singular so $\lambda_{1}=0$).
A_{3} is stable (trace $=-7$ and determinant $12 ; \lambda_{1}<0$ and $\lambda_{2}<0$).
23 For an n by n matrix with trace $(A)=T$ and $\operatorname{det}(A)=D$, find the trace and determinant of $-A$. Why is $\boldsymbol{z}^{\prime}=-A \boldsymbol{z}$ unstable whenever $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ is stable?
If trace $(A)=T$ then trace $(-A)=-T$
If determinant $(A)=D$ then determinant $(-A)=(-1)^{n} D$
The eigenvalues of $-A$ are - (eigenvalues of A).
24 (a) For a real 3 by 3 matrix with stable eigenvalues $(\operatorname{Re} \lambda<0)$, show that trace <0 and det <0. Either three real negative λ or else $\lambda_{2}=\bar{\lambda}_{1}$ and λ_{3} is real.
(b) The trace and determinant of a 3 by 3 matrix do not determine all three eigenvalues ! Show that A is unstable even with trace <0 and determinant <0 :

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & -5
\end{array}\right]
$$

(a) If all three real parts are negative (stability), trace $=$ sum of real parts <0.

Also det $=\lambda_{1} \lambda_{2} \lambda_{3}<0$ from 3 negative λ 's or from $(a+i b)(a-i b) \lambda_{3}=\left(a^{2}+b^{2}\right) \lambda_{3}<0$.
If a real matrix has a complex eigenvalue $\lambda=a+i b$, then $\bar{\lambda}=a-i b$ is also an eigenvalue. The third eigenvalue must be real to make the trace real.
(b) The triangular matrix A has $\lambda=1,1,-5$ even with trace $=-3$ and det $=-5$. There must be a third test for 3 by 3 matrices and that test must fail for this matrix.
25 You might think that $\boldsymbol{y}^{\prime}=-A^{2} \boldsymbol{y}$ would always be stable because you are squaring the eigenvalues of A. But why is that equation unstable for $A=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$?
This real matrix A has $\lambda=i$ and $-i$. Then $\lambda^{2}=-1$ and -1 . So $\boldsymbol{y}^{\prime}=-A^{2} \boldsymbol{y}$ has eigenvalues 1 and 1 (unstable).
26 Find the three eigenvalues of A and the three roots of $s^{3}-s^{2}+s-1=0$ (including $s=1$). The equation $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$ becomes

$$
\left[\begin{array}{l}
y \\
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]^{\prime}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
y \\
y^{\prime} \\
y^{\prime \prime}
\end{array}\right] \quad \text { or } z^{\prime}=A \boldsymbol{z}
$$

Each eigenvalue λ has an eigenvector $\boldsymbol{x}=\left(1, \lambda, \lambda^{2}\right)$.
$s^{3}-s^{2}+s-1=0$ comes from substituting $y=e^{s t}$ into $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$. $\lambda^{3}-\lambda^{2}+\lambda-1=0$ comes from computing $\operatorname{det}(A-\lambda I)$ for the 3 by 3 matrix.
One root is $s=1$ (and $\lambda=1$). The full cubic polynomial is $s^{3}-s^{2}+s-1=(s-1)\left(s^{2}+1\right)$ with roots $\mathbf{1}, \boldsymbol{i},-\boldsymbol{i}$.
Eigenvectors $\left(1, \lambda, \lambda^{2}\right)=(1,1,1),(1, i,-1),(1,-i,-1)$ for this companion matrix.
27 Find the two eigenvalues of A and the double root of $s^{2}+6 s+9=0$:

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0 \text { becomes }\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
0 & 1 \\
9 & 6
\end{array}\right]\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right] \quad \text { or } z^{\prime}=A z
$$

The repeated eigenvalue gives only one solution $\boldsymbol{z}=e^{\lambda t} \boldsymbol{x}$. Find a second solution \boldsymbol{z} from the second solution $y=t e^{\lambda t}$.
The matrix has $\operatorname{det}(A-\lambda I)=\lambda^{2}+6 \lambda+9$. This is $(\boldsymbol{\lambda}+\mathbf{3})^{2}$ so eigenvalues $\lambda=$ roots $s=-\mathbf{3}, \mathbf{- 3}$. The two solutions are $y=e^{-3 t}$ and $y=t e^{-3 t}$. Those $\lambda=\operatorname{roots} s=-\mathbf{3},-3$.
$\operatorname{translate}$ to $\boldsymbol{z}=\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]=e^{-3 t}\left[\begin{array}{r}1 \\ -3\end{array}\right]$ and $\boldsymbol{z}=\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]=e^{-3 t}\left[\begin{array}{c}t \\ 1-3 t\end{array}\right]$
28 Explain why a 3 by 3 companion matrix has eigenvectors $\boldsymbol{x}=\left(\mathbf{1}, \boldsymbol{\lambda}, \boldsymbol{\lambda}^{\mathbf{2}}\right)$. First Way: If the first component is $x_{1}=1$, the first row of $A \boldsymbol{x}=\lambda \boldsymbol{x}$ gives the second component $x_{2}=$ \qquad . Then the second row of $A x=\lambda x$ gives the third component $x_{3}=\lambda^{2}$.
Second Way: $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ starts with $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=y_{3} . \quad \boldsymbol{y}=e^{\lambda t} \boldsymbol{x}$ solves those equations. At $t=0$ the equations become $\lambda x_{1}=x_{2}$ and \qquad -.
$A \boldsymbol{x}=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ -D & -C & -B\end{array}\right]\left[\begin{array}{l}1 \\ \lambda \\ \lambda^{2}\end{array}\right]=\lambda\left[\begin{array}{l}1 \\ \lambda \\ \lambda^{2}\end{array}\right]$ because rows 1 and 2 are true and row 3 is $-D-C \lambda-B \lambda^{2}=\lambda^{3}$. That is $\lambda^{3}+B \lambda^{2}+C \lambda+D=0$ corresponding to $y^{\prime \prime \prime}+B y^{\prime \prime}+C y^{\prime}+D y=0$.
29 Find A to change the scalar equation $y^{\prime \prime}=5 y^{\prime}-4 y$ into a vector equation for $\boldsymbol{z}=$ $\left(y, y^{\prime}\right)$:

$$
\frac{d \boldsymbol{z}}{d t}=\left[\begin{array}{l}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=[\quad]\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]=A \boldsymbol{z}
$$

What are the eigenvalues of the companion matrix A ? Find them also by substituting $y=e^{\lambda t}$ into $y^{\prime \prime}=5 y^{\prime}-4 y$.

$$
\frac{d \boldsymbol{z}}{d t}=\left[\begin{array}{l}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
y^{\prime} \\
5 y^{\prime}-4 y
\end{array}\right]=\left[\begin{array}{rl}
0 & 1 \\
-4 & 5
\end{array}\right]\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]=A \boldsymbol{z}
$$

The eigenvalues come from $\lambda^{2}-5 \lambda+4=0$. Then $\lambda=1$ and 4 . Unstable because $y^{\prime \prime}-5 y^{\prime}+4 y$ has negative damping.
30 (a) Write down two familiar functions that solve the equation $d^{2} y / d t^{2}=-9 y$. Which one starts with $y(0)=3$ and $y^{\prime}(0)=0$?
(b) This second-order equation $y^{\prime \prime}=-9 y$ produces a vector equation $\boldsymbol{z}^{\prime}=A \boldsymbol{z}$:

$$
\boldsymbol{z}=\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right] \quad \frac{d \boldsymbol{z}}{d t}=\left[\begin{array}{l}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{rl}
0 & 1 \\
-9 & 0
\end{array}\right]\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]=A \boldsymbol{z}
$$

Find $\boldsymbol{z}(t)$ by using the eigenvalues and eigenvectors of $A: \boldsymbol{z}(0)=(3,0)$.
(a) $y_{1}=\cos 3 t$ and $y_{2}=\sin 3 t$ and their combinations solve $y^{\prime \prime}=-9 y$. The initial conditions $y(0)=3, y^{\prime}(0)=0$ are satisfied by $y=\mathbf{3} \boldsymbol{\operatorname { c o s }} \mathbf{3 t}$.
(b) The matrix A has det $\left[\begin{array}{rr}-\lambda & 1 \\ -9 & -\lambda\end{array}\right]=\lambda^{2}+9=0$ and $\lambda=\mathbf{3 i}, \mathbf{- 3 i}$. Eigenvectors $(1,3 i),(1,-3 i)$.
$\boldsymbol{z}(t)=c_{1} e^{3 i t}\left[\begin{array}{c}1 \\ 3 i\end{array}\right]+c_{2} e^{-3 i t}\left[\begin{array}{r}1 \\ -3 i\end{array}\right]$ gives $c_{1}+c_{2}=3$ and $3 i c_{1}-3 i c_{2}=0$ at $t=0$.
Then $c_{1}=c_{2}=\frac{3}{2}$ gives $\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]=\frac{3}{2} e^{3 i t}\left[\begin{array}{l}1 \\ 3 i\end{array}\right]+\frac{3}{2} e^{-3 i t}\left[\begin{array}{r}1 \\ -3 i\end{array}\right]=\left[\begin{array}{r}\mathbf{3} \cos \mathbf{3} \boldsymbol{t} \\ -\mathbf{9} \sin \mathbf{3} \boldsymbol{t}\end{array}\right]$.
31 (a) Change the third order equation $y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0$ to a first order system $\boldsymbol{z}^{\prime}=A \boldsymbol{z}$ for the unknown $\boldsymbol{z}=\left(y, y^{\prime}, y^{\prime \prime}\right)$. The companion matrix A is 3 by 3 .
(b) Substitute $y=e^{\lambda t}$ and also find $\operatorname{det}(A-\lambda I)$. Those lead to the same λ 's.
(c) One root is $\lambda=1$. Find the other roots and these complete solutions:

$$
y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}+c_{3} e^{\lambda_{3} t} \quad \boldsymbol{z}=C_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+C_{2} e^{\lambda_{2} t} \boldsymbol{x}_{2}+C_{3} e^{\lambda_{3} t} \boldsymbol{x}_{3}
$$

(a) $\boldsymbol{z}^{\prime}=\left[\begin{array}{l}y \\ y^{\prime} \\ y^{\prime \prime}\end{array}\right]^{\prime}=\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2\end{array}\right]\left[\begin{array}{l}y \\ y^{\prime} \\ y^{\prime \prime}\end{array}\right]=A \boldsymbol{z}$
(b) The characteristic equation is $\operatorname{det}(A-\lambda I)=-\left(\lambda^{3}-2 \lambda^{2}-\lambda+2\right)=0$.
(c) $\lambda=1$ is a root so we can factor out $(\lambda-1)$:
$\lambda^{3}-2 \lambda^{2}-\lambda+2=(\lambda-1)\left(\lambda^{2}-\lambda-2\right)=(\lambda-1)(\lambda-2)(\lambda+1)$ has roots $\mathbf{1}, \mathbf{2}, \mathbf{- 1}$.
The complete solution is $y=c_{1} e^{t}+c_{2} e^{2 t}+c_{3} e^{-t}$.
This vectorizes into $\boldsymbol{z}=C_{1} e^{t}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]+C_{3} e^{-t}\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$
32 These companion matrices have $\lambda=2,1$ and $\lambda=4,1$. Find their eigenvectors:

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & 3
\end{array}\right] \quad \text { and } B=\left[\begin{array}{rr}
0 & 1 \\
-4 & 5
\end{array}\right] \quad \text { Notice trace and determinant! }
$$

A has $\lambda^{2}-3 \lambda+2=0=(\lambda-2)(\lambda-1) . \lambda=\mathbf{2}, \mathbf{1}$ with eigenvectors $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
B has $\lambda^{2}-5 \lambda+4=0=(\lambda-4)(\lambda-1) . \lambda=\mathbf{4}, \mathbf{1}$ with eigenvectors $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Problem Set 6.4, page 369

1 If $A \boldsymbol{x}=\lambda \boldsymbol{x}$, find an eigenvalue and an eigenvector of $e^{A t}$ and also of $-e^{-A t}$.
If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then $\boldsymbol{e}^{\boldsymbol{A t}} \boldsymbol{x}=\boldsymbol{e}^{\boldsymbol{\lambda t}} \boldsymbol{x}$ and $-e^{-A t} \boldsymbol{x}=-e^{-\lambda t} \boldsymbol{x}$. Use the infinite series :

$$
\begin{aligned}
e^{A t} \boldsymbol{x} & =\left(I+A t+\frac{1}{2}(A t)^{2}+\cdots\right) \boldsymbol{x} \\
& =\left(I+\lambda t+\frac{1}{2}(\lambda t)^{2}+\cdots\right) \boldsymbol{x}=e^{\lambda t} \boldsymbol{x}
\end{aligned}
$$

2 (a) From the infinite series $e^{A t}=I+A t+\cdots$ show that its derivative is $A e^{A t}$.
(b) The series for $e^{A t}$ ends quickly if $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ because $A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

Find $e^{A t}$ and take its derivative (which should agree with $A e^{A t}$).
(a) The time derivative of the matrix $e^{A t}$ is $A e^{A t}$:
$\left.\frac{d}{d t}\left(I+A t+\frac{1}{2}(A t)^{2}+\frac{1}{6}(A t)^{3}+\cdots\right)=A+A^{2} t+\frac{1}{2} A^{3} t^{2}+\cdots\right)=A e^{A t}$.
(b) If $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ then $A^{2}=0$ and $e^{A t}=I+A t=\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right]$.

The derivative of $e^{A t}=\left[\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right]$ is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ which agrees with $A e^{A t}$.
This derivative also agrees with A itself but that is an accident.
3 For $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ with eigenvectors in $V=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, compute $e^{A t}=V e^{\Lambda t} V^{-1}$.
$e^{A t}=V e^{\Lambda t} V^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}e^{t} & \\ & e^{2 t}\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\boldsymbol{e}^{\boldsymbol{t}} & \boldsymbol{e}^{2 t}-\boldsymbol{e}^{\boldsymbol{t}} \\ \mathbf{0} & e^{2 t}\end{array}\right]$.
Check $e^{A t}=I$ at $t=0$.
4 Why is $e^{(A+3 I) t}$ equal to $e^{A t}$ multiplied by $e^{3 t}$?
If $A B=B A$ then $e^{(A+B) t}=e^{A t} e^{B t}$. (This usually fails if $A B \neq B A$.)
Here $B=3 I$ always gives $A B=B A$ so $e^{(A+3 I) t}=e^{A t} e^{3 I t}=e^{A t} e^{3 t}$ is true.
5 Why is $e^{A^{-1}}$ not the inverse of e^{A} ? What is the correct inverse of e^{A} ?
The correct inverse of e^{A} is e^{-A}. In general $e^{A t} e^{A T}=e^{A(t+T)}$. Choose $t=1, T=-1$.
The matrix $e^{A^{-1}}$ is a series of powers of A^{-1} and $\left(e^{A}\right)\left(e^{A^{-1}}\right)=e^{A+A^{-1}}$: not wanted.
6 Compute $A^{n}=\left[\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right]^{n}$. Add the series to find $e^{A t}=\left[\begin{array}{cc}e^{t} & c\left(e^{t}-1\right) \\ 0 & 1\end{array}\right]$.
Start by assuming $\left[\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}1 & n c \\ 0 & 0\end{array}\right]$ (certainly true for $(n=1)$.
Then by induction $\left[\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right]^{n+1}=\left[\begin{array}{ll}1 & c \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 & n c \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}1 & (n+1) c \\ 0 & 0\end{array}\right]$.
The first equation is true for $n=1$. Then the second equation says that every matrix multiplication adds c to the off-diagonal entry. So the first equation is true for $n=$ $2,3,4, \ldots$

Now add up the series for $e^{A t}$:

$$
I+A t+\frac{1}{2}(A t)^{2}+\cdots=\left[\begin{array}{cc}
1+t+\frac{1}{2} t^{2}+\cdots & 0+c t+\frac{1}{2} 2 c t^{2}+\cdots \\
0 & 1+0+0+\cdots
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & c\left(e^{t}-1\right) \\
0 & 1
\end{array}\right]
$$

7 Find e^{A} and e^{B} by using Problem 6 for $c=4$ and $c=-4$. Multiply to show that the matrices $e^{A} e^{B}$ and $e^{B} e^{A}$ and e^{A+B} are all different.

$$
A=\left[\begin{array}{ll}
1 & 4 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{rr}
1 & -4 \\
0 & 0
\end{array}\right] \quad A+B=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
$$

With $t=1$ in Problem $6, A=\left[\begin{array}{ll}1 & 4 \\ 0 & 0\end{array}\right]$ has $e^{A}=\left[\begin{array}{cc}e & 4(e-1) \\ 0 & 1\end{array}\right]$

$$
B=\left[\begin{array}{rr}
1 & -4 \\
0 & 0
\end{array}\right] \text { has } e^{B}=\left[\begin{array}{cc}
e & -4(e-1) \\
0 & 1
\end{array}\right]
$$

Then $e^{A} e^{B}=\left[\begin{array}{cc}e^{2} & (-4 e+4)(e-1) \\ 0 & 1\end{array}\right]$ and $e^{B} e^{A}=\left[\begin{array}{cc}e^{2} & (4 e-4)(e-1) \\ 0 & 1\end{array}\right]$ and $e^{A+B}=\left[\begin{array}{cc}e^{2} & 0 \\ 0 & 1\end{array}\right]$. Those three off-diagonal entries are different because $A B$ and $B A$ have off-diagonals -4 and 4 .
8 Multiply the first terms $I+A+\frac{1}{2} A^{2}$ of e^{A} by the first terms $I+B+\frac{1}{2} B^{2}$ of e^{B}. Do you get the correct first three terms of e^{A+B} ? Conclusion: e^{A+B} is not always equal to $\left(e^{A}\right)\left(e^{B}\right)$. The exponent rule only applies when $A B=B A$.
$\left(I+A+\frac{1}{2} A^{2}\right)\left(I+B+\frac{1}{2} B^{2}\right)=I+A+B+\frac{1}{2} A^{2}+A B+\frac{1}{2} B^{2}+\cdots$
The correct three terms of e^{A+B} are $I+A+B+\frac{1}{2} A^{2}+\frac{1}{2} A B+\frac{1}{2} B A+\frac{1}{2} B^{2}$.
Then $A B$ agrees with $\frac{1}{2} A B+\frac{1}{2} B A$ only if $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$.
9 Write $A=\left[\begin{array}{ll}1 & 4 \\ 0 & \mathbf{0}\end{array}\right]$ in the form $V \Lambda V^{-1}$. Find $e^{A t}$ from $V e^{\Lambda t} V^{-1}$.
This is Problem 6 using diagonalization $A=V \Lambda V^{-1}$ by the eigenvector matrix V :

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 4 \\
0 & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & -4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right] \\
e^{A t}=\left[\begin{array}{rr}
1 & -4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
e^{t} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & 4\left(e^{t}-1\right) \\
0 & 1
\end{array}\right]
\end{gathered}
$$

10 Starting from $\boldsymbol{y}(0)$ the solution at time t is $e^{A t} \boldsymbol{y}(0)$. Go an additional time t to reach $e^{A t} e^{A t} \boldsymbol{y}(0)$. Conclusion: $e^{A t}$ times $e^{A t}$ equals \qquad -

The conclusion is that $e^{A t}$ times $e^{A t}$ equals $e^{2 A t}$. No problem with $A B \neq B A$ because here B is the same as A.
11 Diagonalize A by V and confirm this formula for $e^{A t}$ by using $V e^{\Lambda t} V^{-1}$:

$$
A=\left[\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right] \quad e^{A t}=\left[\begin{array}{ll}
e^{2 t} & 4\left(e^{3 t}-e^{2 t}\right) \\
0 & e^{3 t}
\end{array}\right] \quad \text { At } t=0 \text { this matrix is }
$$

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -4 \\
0 & 1
\end{array}\right]=V \Lambda V^{-1} \\
e^{A t}=\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{cc}
1 & -4 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
e^{2 t} & 4\left(e^{3 t}-e^{2 t}\right) \\
0 & e^{3 t}
\end{array}\right]=\boldsymbol{I} \text { at } \boldsymbol{t}=\mathbf{0} .
\end{gathered}
$$

12 (a) Find A^{2} and A^{3} and A^{n} for $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ with repeated eigenvalues $\lambda=1,1$.
(b) Add the infinite series to find $e^{A t}$. (The $V e^{\Lambda t} V^{-1}$ method won't work.)
(a) $A^{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $A^{3}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$ and $A^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right] . \quad$ (b) $e^{A t}=$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1+t+\frac{1}{2} t^{2}+\cdots & t+\frac{1}{2} 2 t^{2}+\frac{1}{6} 3 t^{3}+\cdots \\
0 & 1+t+\frac{1}{2} t^{2}+\cdots
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & t\left(1+t+\frac{1}{2} t^{2}+\cdots\right) \\
0 & e^{t}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
e^{t} & \boldsymbol{t} \boldsymbol{e}^{\boldsymbol{t}} \\
0 & e^{t}
\end{array}\right]
\end{aligned}
$$

Notice the factor t appearing as usual when there are equal roots (or equal eigenvalues).
13 (a) Solve $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ as a combination of eigenvectors of this matrix A :

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \boldsymbol{y} \quad \text { with } \boldsymbol{y}(0)=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

(b) Write the equations as $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=y_{1}$. Find an equation for $y_{1}^{\prime \prime}$ with y_{2} eliminated. Solve for $y_{1}(t)$ and compare with part (a).
(a) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ has $\lambda=1$ with $\boldsymbol{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\lambda=-1$ with $x_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.

Then $\boldsymbol{y}(0)=4 \boldsymbol{x}_{1}-\boldsymbol{x}_{2}$ and $\boldsymbol{y}(t)=4 e^{t}\left[\begin{array}{l}1 \\ 1\end{array}\right]-e^{-t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(b) If $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=y_{1}$ then $y_{1}^{\prime \prime}=y_{2}^{\prime}=y_{1}$.

The second order equation $y_{1}^{\prime \prime}=y_{1}$ has $y_{1}=c_{1} e^{t}+c_{2} e^{-t}$.
The initial conditions produce the solution of part (a).
14 Similar matrices A and $B=V^{-1} A V$ have the same eigenvalues if V is invertible.
Second proof $\quad \operatorname{det}\left(V^{-1} A V-\lambda I\right)=\left(\operatorname{det} V^{-1}\right)(\operatorname{det}(A-\lambda I))(\operatorname{det} V)$.
Why is this equation true? Then both sides are zero when $\operatorname{det}(A-\lambda I)=0$.
We use the rule $\operatorname{det} A B C=(\operatorname{det} A)(\operatorname{det} B)(\operatorname{det} C)$.
Here $A=V^{-1}$ and $C=V$ have $(\operatorname{det} A)(\operatorname{det} C)=1$.
This only leaves $\operatorname{det} B$ which is $\operatorname{det}(A-\lambda I)$.
Conclusion: $V^{\boldsymbol{- 1}} \boldsymbol{A} \boldsymbol{V}$ has the same eigenvalues as \boldsymbol{A}. Similar matrices!

15 If B is similar to A, the growth rates for $\boldsymbol{z}^{\prime}=B \boldsymbol{z}$ are the same as for $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$. That equation converts to the equation for \boldsymbol{z} when $B=V^{-1} A V$ and $\boldsymbol{z}=$ \qquad _.

If $\boldsymbol{y}^{\prime}=A \boldsymbol{y}$ just set $\boldsymbol{y}=V \boldsymbol{z}$ to get $V \boldsymbol{z}^{\prime}=A V \boldsymbol{z}$ which is $\boldsymbol{z}^{\prime}=V^{-1} A V \boldsymbol{z}$. Similar matrices come from a change of variable in the differential equation.
16 If $A \boldsymbol{x}=\lambda \boldsymbol{x} \neq \mathbf{0}$, what is an eigenvalue and eigenvector of $\left(e^{A t}-I\right) A^{-1}$?
The same \boldsymbol{x} is an eigenvector, with eigenvalue in

$$
\left(e^{A t}-I\right) A^{-1} \boldsymbol{x}=\frac{1}{\lambda}\left(e^{A t}-I\right) \boldsymbol{x}=\frac{e^{\lambda t}-1}{\lambda} \boldsymbol{x}
$$

17 The matrix $B=\left[\begin{array}{cc}0 & -4 \\ \mathbf{0} & \mathbf{0}\end{array}\right]$ has $B^{2}=0$. Find $e^{B t}$ from a (short) infinite series. Check that the derivative of $e^{B t}$ is $B e^{B t}$.

$$
e^{B t}=I+B t+0=\left[\begin{array}{cc}
1 & -4 t \\
0 & 1
\end{array}\right] . \text { The derivative is }\left[\begin{array}{rr}
0 & -4 \\
0 & 0
\end{array}\right] .
$$

The derivative is always $B e^{B t}$; here it also equals B.
18 Starting from $\boldsymbol{y}(0)=\mathbf{0}$, solve $\boldsymbol{y}^{\prime}=A \boldsymbol{y}+\boldsymbol{q}$ as a combination of the eigenvectors. Suppose the source is $\boldsymbol{q}=q_{1} \boldsymbol{x}_{1}+\cdots+q_{n} \boldsymbol{x}_{n}$. Solve for one eigenvector at a time, using the solution $y(t)=\left(e^{a t}-1\right) q / a$ to the scalar equation $y^{\prime}=a y+q$.
Then $\boldsymbol{y}(t)=\left(e^{A t}-I\right) A^{-1} \boldsymbol{q}$ is a combination of eigenvectors when all $\lambda_{i} \neq 0$.
For each eigenvector \boldsymbol{x}, a solution to $\boldsymbol{y}^{\prime}=A \boldsymbol{y}+\boldsymbol{x}$ is $\boldsymbol{y}(t)=\frac{e^{\lambda t}-1}{\lambda} \boldsymbol{x}$ by Problem 16 .
Then by linearity $\boldsymbol{y}(t)=\Sigma \frac{e^{\lambda_{i} t}-1}{\lambda_{i}} q_{i} \boldsymbol{x}_{i}$ is the solution when $\boldsymbol{q}=q_{1} \boldsymbol{x}_{1}+\cdots+q_{n} \boldsymbol{x}_{n}$.
This is the same as $\boldsymbol{y}_{p}(t)=\left(e^{A t}-I\right) A^{-1} \boldsymbol{q}$.
19 Solve for $\boldsymbol{y}(t)$ as a combination of the eigenvectors $\boldsymbol{x}_{1}=(1,0)$ and $\boldsymbol{x}_{2}=(1,1)$:

$$
\boldsymbol{y}^{\prime}=A \boldsymbol{y}+\boldsymbol{q} \quad\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]+\left[\begin{array}{l}
4 \\
3
\end{array}\right] \quad \text { with } \begin{aligned}
& y_{1}(0)=0 \\
& y_{2}(0)=0
\end{aligned}
$$

Write $\boldsymbol{q}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$ as a combination $3 \boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ of the eigenvectors of A. By Problem 18,

$$
\boldsymbol{y}_{p}(t)=\frac{e^{t}-1}{1} 3 \boldsymbol{x}_{1}+\frac{e^{2 t}-1}{2} \boldsymbol{x}_{2} .
$$

20 Solve $\boldsymbol{y}^{\prime}=A \boldsymbol{y}=\left[\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right] \boldsymbol{y}$ in three steps. First find the λ 's and \boldsymbol{x} 's.
(1) Write $\boldsymbol{y}(0)=(3,1)$ as a combination $c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}$
(2) Multiply c_{1} and c_{2} by $e^{\lambda_{1} t}$ and $e^{\lambda_{2} t}$.
(3) Add the solutions $c_{1} e^{\lambda_{1} t} \boldsymbol{x}_{1}+c_{2} e^{\lambda_{2} t} \boldsymbol{x}_{2}$.

Th eigenvalues come from det $\left[\begin{array}{cc}2-\lambda & 3 \\ 2 & 1-\lambda\end{array}\right]=\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+1)=0$.
Then $\lambda=4$ and -1 .
The eigenvectors are found to be $\boldsymbol{x}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\boldsymbol{x}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
Step (1) $\boldsymbol{y}(0)=\left[\begin{array}{l}3 \\ 1\end{array}\right]=\frac{4}{5}\left[\begin{array}{l}3 \\ 2\end{array}\right]+\frac{3}{5}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
Step (2) Two solutions $\frac{4}{5} e^{4 t}\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\frac{3}{5} e^{-t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
Step (3) $\boldsymbol{y}(t)=\frac{4}{5} e^{4 t}\left[\begin{array}{l}3 \\ 2\end{array}\right]+\frac{3}{5} e^{-t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
21 Write five terms of the infinite series for $e^{A t}$. Take the t derivative of each term. Show that you have four terms of $A e^{A t}$. Conclusion: $e^{A t} \boldsymbol{y}(0)$ solves $d \boldsymbol{y} / d t=A \boldsymbol{y}$.

$$
\begin{aligned}
e^{A t} & =I+A t+\frac{1}{2}(A t)^{2}+\frac{1}{6}(A t)^{3}+\frac{1}{24}(A t)^{4}+\cdots \\
\frac{d}{d t}\left(e^{A t}\right. & =A+A^{2} t+\frac{1}{2} A^{3} t^{2}+\frac{1}{4} A^{4} t^{3}+\cdots=\boldsymbol{A} \boldsymbol{e}^{\boldsymbol{A t}}
\end{aligned}
$$

Problems 22-25 are about time-varying systems $y^{\prime}=\boldsymbol{A}(t) y$. Success then failure.
22 Suppose the constant matrix C has $C \boldsymbol{x}=\lambda \boldsymbol{x}$, and $p(t)$ is the integral of $a(t)$. Substitute $\boldsymbol{y}=e^{\lambda p(t)} \boldsymbol{x}$ to show that $d \boldsymbol{y} / d t=a(t) C \boldsymbol{y}$. Eigenvectors still solve this special time-varying system: constant matrix C multiplied by the scalar $a(t)$. Here the time-varying coefficient matrix has the special form $a(t) C$, with the matrix C constant in time. Its eigenvalues and eigenvectors are $a(t) \lambda$ and \boldsymbol{x} (main point: λ and \boldsymbol{x} are constant). Then we can solve $\boldsymbol{y}^{\prime}=a(t) C \boldsymbol{y}$ starting with an eigenvector:

$$
\boldsymbol{y}(t)=e^{\int a(t) \lambda d t} \boldsymbol{x} \quad \text { solves } \quad \frac{d \boldsymbol{y}}{d t}=a(t) \lambda \boldsymbol{y}=a(t) C \boldsymbol{y}
$$

A combination of these solutions is also a solution-and can match $\boldsymbol{y}(0)$.
23 Continuing Problem 22, show from the series for $M(t)=e^{p(t) C}$ that $d M / d t=a(t) C M$. Then M is the fundamental matrix for the special system $\boldsymbol{y}^{\prime}=a(t) C \boldsymbol{y}$. If $a(t)=1$ then its integral is $p(t)=t$ and we recover $M=e^{C t}$.
This question puts together the "fundamental matrix" $M(t)$ from Problem 22. Write $p(t)=\int a(t) d t$.

$$
\begin{gathered}
M=e^{p(t) C}=I+p(t) C+\frac{1}{2} p^{2}(t) C^{2}+\cdots \quad \text { and } \frac{d p}{d t}=a(t) \text { give } \\
\frac{d M}{d t}=a(t) C+a(t) C^{2} p(t)+\cdots=\boldsymbol{a}(\boldsymbol{t}) \boldsymbol{C M} .
\end{gathered}
$$

24 The integral of $A=\left[\begin{array}{cc}1 & 2 t \\ 0 & 0\end{array}\right]$ is $P=\left[\begin{array}{cc}t & t^{2} \\ 0 & 0\end{array}\right]$. The exponential of P is $e^{P}=\left[\begin{array}{cc}e^{t} & t\left(e^{t}-1\right) \\ 0 & 1\end{array}\right]$. From the chain rule we might hope that the derivative of
$e^{P(t)}$ is $P^{\prime} e^{P(t)}=A e^{P(t)}$. Compute the derivative of $e^{P(t)}$ and compare with the wrong answer $A e^{P(t)}$. (One reason this feels wrong: Writing the chain rule as $(d / d t) e^{P}=e^{P} d P / d t$ would give $e^{P} A$ instead of $A e^{P}$. That is wrong too.)
Now the matrix $A(t)$ does not have the special form $A=a(t) C$ of problems 22-23. The problem shows that the simple formula doesn't solve $\boldsymbol{y}^{\prime}=A(t) \boldsymbol{y}$. We can't just integrate $A(t)$ and use the matrix $e^{\int A(t) d t}$.
$P=\int A(t) d t=\left[\begin{array}{cc}t & t^{2} \\ 0 & 0\end{array}\right] \quad$ has $\quad P^{2}=\left[\begin{array}{cc}t^{2} & t^{3} \\ 0 & 0\end{array}\right] \quad$ and $\quad P^{n}=\left[\begin{array}{cc}t^{n} & t^{n+1} \\ 0 & 0\end{array}\right]$
Then $\frac{d P}{d t}=\left[\begin{array}{cc}1 & 2 t \\ 0 & 0\end{array}\right]=A$ and $e^{P}=I+P+\frac{1}{2} P^{2}+\cdots=\left[\begin{array}{cc}e^{t} & t e^{t}-t \\ 0 & 1\end{array}\right]$.
But the derivative of e^{P} is not $e^{P} \frac{d P}{d t}$. This matrix $e^{P(t)}$ is not solving $\boldsymbol{y}^{\prime}=A(t) \boldsymbol{y}$.
25 Find the solution to $\boldsymbol{y}^{\prime}=A(t) \boldsymbol{y}$ in Problem 24 by solving for y_{2} and then y_{1} :

$$
\text { Solve }\left[\begin{array}{l}
d y_{1} / d t \\
d y_{2} / d t
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 t \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \text { starting from }\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]
$$

Certainly $y_{2}(t)$ stays at $y_{2}(0)$. Find $y_{1}(t)$ by "undetermined coefficients" A, B, C : $y_{1}^{\prime}=y_{1}+2 t y_{2}(0)$ is solved by $y_{1}=y_{p}+y_{n}=A t+B+C e^{t}$.
Choose A, B, C to satisfy the equation and match the initial condition $y_{1}(0)$.
The wrong answer in Problem 24 included the incorrect factor $t e^{t}$ in $e^{P(t)}$.
To solve $\boldsymbol{y}^{\prime}=A(t) \boldsymbol{y}$ in Problem 24 we can start with its second equation:

$$
\boldsymbol{y}^{\prime}=A(t) \boldsymbol{y} \quad \text { is } \quad \begin{aligned}
& d y_{1} / d t=y_{1}+2 t y_{2} \\
& d y_{2} / d t=0
\end{aligned}
$$

Then $y_{2}(t)=y_{2}(0)=\mathrm{constant}$ and the first equation becomes $d y_{1} / d t=y_{1}+2 t y_{2}(0)$. A particular solution has the form $y_{1}=A t+B$. Substitute this y_{1} to find A and B :

$$
\frac{d y_{1}}{d t}=y_{1}+2 t y_{2}(0) \text { gives } A=A t+B+2 t y_{2}(0) \text { and then } A=-2 y_{2}(0)=B
$$

Now add a null solution $C e^{t}$ to start from $y_{1}(0)$:

$$
y_{1}(t)=\left(y_{1}(0)+2 y_{2}(0)\right) e^{t}-2 y_{2}(0) t-2 y_{2}(0)
$$

This correct solution has no factor $t e^{t}$.

Problem Set 6.5, page 379

Problems 1-14 are about eigenvalues. Then come differential equations.

1 Which of A, B, C have two real λ 's? Which have two independent eigenvectors?

$$
A=\left[\begin{array}{rr}
7 & -11 \\
-11 & 7
\end{array}\right] \quad B=\left[\begin{array}{rr}
7 & -11 \\
11 & 7
\end{array}\right] \quad C=\left[\begin{array}{rr}
7 & -11 \\
0 & 7
\end{array}\right]
$$

A is symmetric: Real λ 's with a full set of two eigenvectors.
$B=7 I+$ antisymmetric: Complex $\lambda=7 \pm 11 i$, full set of (complex) eigenvectors.
$C=7 I-11\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$: Eigenvalues 7, 7 but only one eigenvector.

2 Show that A has real eigenvalues if $b \geq 0$ and nonreal eigenvalues if $b<0$:

$$
A=\left[\begin{array}{cc}
0 & b \\
1 & 0
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
1 & b \\
1 & 1
\end{array}\right] .
$$

The eigenvalues of $\left[\begin{array}{ll}0 & b \\ 1 & 0\end{array}\right]$ have $\lambda^{2}-b=0$. Then $\lambda= \pm \sqrt{b} \quad$ if $\quad b \geq 0$.
$\left[\begin{array}{ll}1 & b \\ 1 & 1\end{array}\right]$ has $\lambda=\mathbf{1} \pm \sqrt{\boldsymbol{b}}$.
3 Find the eigenvalues and the unit eigenvectors of the symmetric matrices
(a) $S=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0\end{array}\right] \quad$ and
(b) $S=\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0\end{array}\right]$.
(a) $\operatorname{det}\left[\begin{array}{crr}2-\lambda & 2 & 2 \\ 2 & -\lambda & 0 \\ 2 & 0 & -\lambda\end{array}\right]=(2-\lambda) \lambda^{2}+4 \lambda+4 \lambda=-\lambda^{3}+2 \lambda^{2}+8 \lambda$
$=-\lambda(\lambda-4)(\lambda+2) . \quad \lambda=\mathbf{0}, \mathbf{4}, \mathbf{- 2}$.

Unit (orthonormal!) eigenvectors $\frac{1}{\sqrt{2}}\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right], \frac{1}{\sqrt{3}}\left[\begin{array}{r}1 \\ -1 \\ -1\end{array}\right]$.
(b) $\operatorname{det}\left[\begin{array}{ccc}1-\lambda & 0 & 2 \\ 0 & -1-\lambda & -2 \\ 2 & -2 & -\lambda\end{array}\right]=\lambda\left(1-\lambda^{2}\right)+4(1+\lambda)-4(1-\lambda)=9 \lambda-\lambda^{3}$
$=-\lambda(\lambda-3)(\lambda+3)$.
$=-\lambda(\lambda-3)(\lambda+3)$.
$\lambda=\mathbf{0}, \mathbf{3},-\mathbf{3}$ with orthonormal eigenvectors $\frac{1}{3}\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right], \frac{1}{3}\left[\begin{array}{r}2 \\ -1 \\ 2\end{array}\right], \frac{1}{3}\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$.
4 Find an orthogonal matrix Q that diagonalizes $S=\left[\begin{array}{rr}-2 & 6 \\ \mathbf{6} & \mathbf{7}\end{array}\right]$. What is Λ ?
The eigenvalues from $\lambda^{2}-5 \lambda-50=0=(\lambda-10)(\lambda+5)$ are $\lambda_{1}=\mathbf{1 0}$ and $\lambda_{2}=\mathbf{5}$.
The unit eigenvectors are in Q :

$$
Q=\left[\begin{array}{rr}
1 / \sqrt{5} & -2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right] \quad \text { with } \quad \Lambda=\left[\begin{array}{rr}
10 & 0 \\
0 & -5
\end{array}\right]
$$

5 Show that this A (symmetric but complex) has only one line of eigenvectors:

$$
A=\left[\begin{array}{rr}
i & 1 \\
1 & -i
\end{array}\right] \text { is not even diagonalizable. Its eigenvalues are } 0 \text { and } 0
$$

$A^{\mathrm{T}}=A$ is not so special for complex matrices. The good property is $\bar{A}^{\mathrm{T}}=A$.
$\operatorname{det}(A-\lambda I)=\lambda^{2}$ gives $\lambda=\mathbf{0}, \mathbf{0}$. But $A-\lambda I=A$ has rank $\mathbf{1}$: Only one line of eigenvectors in its nullspace.

6 Find all orthogonal matrices from all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ to diagonalize $S=\left[\begin{array}{rr}9 & 12 \\ 12 & 16\end{array}\right]$.
$\lambda^{2}-25 \lambda=0$ gives eigenvalues $\mathbf{0}$ and 25. The (real) eigenvectors in Q can be

$$
Q=\frac{1}{5}\left[\begin{array}{rr}
4 & 3 \\
-3 & 4
\end{array}\right] \quad \text { or } \frac{1}{5}\left[\begin{array}{rr}
-4 & 3 \\
3 & 4
\end{array}\right] \text { or } \frac{1}{5}\left[\begin{array}{rr}
4 & -3 \\
-3 & -4
\end{array}\right] \text { or } \frac{1}{5}\left[\begin{array}{rr}
-4 & -3 \\
3 & -4
\end{array}\right]
$$

7 (a) Find a symmetric matrix $S=\left[\begin{array}{ll}1 & b \\ b & 1\end{array}\right]$ that has a negative eigenvalue.
(b) How do you know that S must have a negative pivot?
(c) How do you know that S can't have two negative eigenvalues?

The determinant of S is negative if $\boldsymbol{b}^{\mathbf{2}}>\mathbf{1}$. This determinant is (pivot 1)(pivot 2). Also det $S=\lambda_{1}$ times λ_{2}. So exactly one eigenvalue is negative if $b^{2}>1$.
8 If $A^{2}=0$ then the eigenvalues of A must be \qquad . Give an example with $A \neq 0$. But if A is symmetric, diagonalize it to prove that the matrix is $A=0$.
If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then $A^{2} \boldsymbol{x}=\lambda^{2} \boldsymbol{x}$. Here $A^{2}=0$ so λ must be zero.
Nonsymmetric example : $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is not diagonalizable.
The only symmetric example is $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ because $A=Q \Lambda Q^{\mathrm{T}}$ and $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
9 If $\lambda=a+i b$ is an eigenvalue of a real matrix A, then its conjugate $\bar{\lambda}=a-i b$ is also an eigenvalue. (If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ then also $A \overline{\boldsymbol{x}}=\bar{\lambda} \overline{\boldsymbol{x}}$.) Prove that every real 3 by 3 matrix has at least one real eigenvalue.
A real 3 by 3 matrix has $\operatorname{det} \underline{(A-\lambda I)}=-\lambda^{3}+c_{2} \lambda^{2}+c_{1} \lambda+c_{2}=0$. If λ_{1} satisfies this equation so does $\lambda_{2}=\overline{\lambda_{1}}$ (take the conjugate of every term). But the sum $\lambda_{1}+$ $\lambda_{2}+\lambda_{3}=$ trace of $A=$ real number. So λ_{3} must be real.
10 Here is a quick "proof" that the eigenvalues of all real matrices are real:

$$
\text { False proof } \quad A \boldsymbol{x}=\lambda \boldsymbol{x} \quad \text { gives } \quad \boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}=\lambda \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \quad \text { so } \quad \lambda=\frac{\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}} \quad \text { is real. }
$$

Find the flaw in this reasoning-a hidden assumption that is not justified. You could test those steps on the 90° rotation matrix $\left[\begin{array}{llll}0 & -1 ; & 1 & 0\end{array}\right]$ with $\lambda=i$ and $\boldsymbol{x}=(i, 1)$.
The flaw is to expect that $\boldsymbol{x}^{\mathrm{T}} A \boldsymbol{x}$ and $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$ are real and $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}>0$. When complex numbers are involved, it is $\overline{\boldsymbol{x}}^{\mathrm{T}} \boldsymbol{x}$ that is real and positive for every vector $\boldsymbol{x} \neq \mathbf{0}$.
11 Write A and B in the form $\lambda_{1} \boldsymbol{x}_{1} \boldsymbol{x}_{1}^{\mathrm{T}}+\lambda_{2} \boldsymbol{x}_{2} \boldsymbol{x}_{2}^{\mathrm{T}}$ of the spectral theorem $Q \Lambda Q^{T}$:

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{rr}
9 & 12 \\
12 & 16
\end{array}\right] \quad\left(\text { keep }\left\|\boldsymbol{x}_{1}\right\|=\left\|\boldsymbol{x}_{2}\right\|=1\right)
$$

A has $\lambda=4,2$ with unit eigenvectors in Q. Multiply columns times rows:

$$
\begin{aligned}
{\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] } & =Q \Lambda Q^{\mathrm{T}}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & \\
& 2
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] \\
& =4\left[\begin{array}{r}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]+2\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

B has $\lambda=0,25$ with these unit eigenvectors in Q :

$$
\left[\begin{array}{rr}
9 & 12 \\
12 & 16
\end{array}\right]=\left[\begin{array}{rr}
4 / 5 & 3 / 5 \\
-3 / 5 & 4 / 5
\end{array}\right]\left[\begin{array}{ll}
0 & \\
& 25
\end{array}\right]\left[\begin{array}{rr}
4 / 5 & -3 / 5 \\
3 / 5 & 4 / 5
\end{array}\right]=0+25\left[\begin{array}{l}
3 / 5 \\
4 / 5
\end{array}\right]\left[\begin{array}{ll}
3 / 4 & 4 / 5
\end{array}\right] .
$$

12 What number b in $\left[\begin{array}{ll}2 & \mathbf{b} \\ 1 & \mathbf{0}\end{array}\right]$ makes $A=Q \Lambda Q^{\mathrm{T}}$ possible? What number makes $A=$ $V \Lambda V^{-1}$ impossible? What number makes A^{-1} impossible?
$b=\mathbf{1}$ makes A symmetric and then $A=Q \Lambda Q^{\mathrm{T}} . b=\mathbf{- 1}$ makes $\lambda=1,1$ with only one eigenvector. $b=\mathbf{0}$ makes the matrix singular.
13 This A is nearly symmetric. But its eigenvectors are far from orthogonal:

$$
A=\left[\begin{array}{cc}
1 & 10^{-15} \\
0 & 1+10^{-15}
\end{array}\right] \quad \text { has eigenvectors }\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }[?]
$$

What is the dot product of the two unit eigenvectors ? A small angle !
The unit eigenvector for $\lambda=1+10^{-15}$ is $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
The two eigenvectors are at a 45° angle, far from orthogonal (even if A is nearly symmetric).
14 (Recommended) This matrix M is skew-symmetric and also orthogonal. Then all its eigenvalues are pure imaginary and they also have $|\lambda|=1$. They can only be i or $-i$. Find all four eigenvalues from the trace of M :

$$
M=\frac{1}{\sqrt{3}}\left[\begin{array}{rrrr}
0 & 1 & 1 & 1 \\
-1 & 0 & -1 & 1 \\
-1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right] \quad \text { can only have eigenvalues } i \text { or }-i
$$

The four eigenvalues must be $\lambda=\boldsymbol{i}, \boldsymbol{i},-\boldsymbol{i},-\boldsymbol{i}$ to produce trace $=$ zero.
15 The complete solution to equation (8) for two oscillating springs (Figure 6.3) is

$$
\boldsymbol{y}(t)=\left(A_{1} \cos t+B_{1} \sin t\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(A_{2} \cos \sqrt{3} t+B_{2} \sin \sqrt{3} t\right)\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Find the numbers $A_{1}, A_{2}, B_{1}, B_{2}$ if $\boldsymbol{y}(0)=(3,5)$ and $\boldsymbol{y}^{\prime}(0)=(2,0)$.
The numbers A_{1}, A_{2} come from $y(0)=(3,5)$ since $\cos 0=1$:

$$
A_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+A_{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \quad \text { gives } \quad A_{1}=4 \text { and } A_{2}=-1
$$

The numbers B_{1}, B_{2} come from $y^{\prime}(0)=(2,0)$ since $(\sin t)^{\prime}=1$ at $t=0$ and $(\sin \sqrt{3} t)^{\prime}=\sqrt{3}$ at $t=0:$

$$
B_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\sqrt{3} B_{2}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \quad \text { gives } \quad B_{1}=B_{2}=\frac{1}{\sqrt{3}}
$$

16 If the springs in Figure 6.3 have different constants k_{1}, k_{2}, k_{3} then $\boldsymbol{y}^{\prime \prime}+S \boldsymbol{y}=\mathbf{0}$ is

$$
\begin{array}{cc}
\text { Upper mass } & y_{1}^{\prime \prime}+k_{1} y_{1}-k_{2}\left(y_{2}-y_{1}\right)=0 \\
\text { Lower mass } & y_{2}^{\prime \prime}+k_{2}\left(y_{2}-y_{1}\right)+k_{3} y_{2}=0
\end{array} \quad S=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right]
$$

For $k_{1}=1, k_{2}=4, k_{3}=1$ find the eigenvalues $\lambda=\omega^{2}$ of S and the complete sine/cosine solution $\boldsymbol{y}(t)$ in equation (7).
The matrix $S=\left[\begin{array}{cc}1+4 & -4 \\ -4 & 4+1\end{array}\right]$ has eigenvalues $\lambda_{1}=1=\omega_{1}^{2}$ and $\lambda_{2}=9=\omega_{2}^{2}$.
The complete solution to $\boldsymbol{y}^{\prime \prime}+S \boldsymbol{y}=\mathbf{0}$ is

$$
\boldsymbol{y}(t)=\left(A_{1} \cos t+B_{1} \sin t\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(A_{2} \cos 3 t+B_{2} \sin 3 t\right)\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

17 Suppose the third spring is removed ($k_{3}=0$ and nothing is below mass 2). With $k_{1}=$ $3, k_{2}=2$ in Problem 16, find S and its real eigenvalues and orthogonal eigenvectors. What is the sine/cosine solution $\boldsymbol{y}(t)$ if $\boldsymbol{y}(0)=(1,2)$ gives the cosines and $\boldsymbol{y}^{\prime}(0)=$ $(2,-1)$ gives the sines ?
When $k_{1}=3, k_{2}=2, k_{3}=0$, the matrix S becomes $S=\left[\begin{array}{rr}5 & -2 \\ -2 & 2\end{array}\right]$ with $\lambda^{2}-7 \lambda+6=(\lambda-1)(\lambda-6)=0$.
The eigenvector for $\lambda_{1}=\omega_{1}^{2}=1$ is $\boldsymbol{x}_{1}=(1,2)$. The orthogonal eigenvector for $\lambda_{2}=\omega_{2}^{2}=6$ is $\boldsymbol{x}_{2}=(2,-1)$. Then $A_{1}=1$ and $A_{2}=0, B_{1}=0$ and $B_{2}=$ $1 / \sqrt{6}$ come from $\boldsymbol{y}(0)=\boldsymbol{x}_{1}$ and $\boldsymbol{y}^{\prime}(0)=\boldsymbol{x}_{2}$. The solution to $\boldsymbol{y}^{\prime \prime}+S \boldsymbol{y}=\mathbf{0}$ is $\boldsymbol{y}(t)=(\cos t) \boldsymbol{x}_{1}+(\sin \sqrt{6} t) \boldsymbol{x}_{2} / \sqrt{6}$.
18 Suppose the top spring is also removed ($k_{1}=0$ and also $k_{3}=0$). S is singular ! Find its eigenvalues and eigenvectors. If $\boldsymbol{y}(0)=(1,-1)$ and $\boldsymbol{y}^{\prime}=(0,0)$ find $\boldsymbol{y}(t)$. If $\boldsymbol{y}(0)$ changes from $(1,-1)$ to $(1,1)$ what is $\boldsymbol{y}(t)$?
$S=\left[\begin{array}{rr}k_{2} & -k_{2} \\ -k_{2} & k_{2}\end{array}\right]$ has $\lambda_{1}=0$ with $\boldsymbol{x}_{1}=(1,1)$ and $\lambda_{2}=2 k_{2}$ with $\boldsymbol{x}_{2}=(1,-1)$.

$$
\begin{aligned}
& \boldsymbol{y}(0)=(1,-1) \text { and } \boldsymbol{y}^{\prime}(0)=(0,0) \text { give } \boldsymbol{y}(t)=\left(\cos \sqrt{2 k_{2}} t\right) \boldsymbol{x}_{2} \\
& \boldsymbol{y}(0)=(1,1) \text { and } \boldsymbol{y}^{\prime}(0)=(0,0) \text { give } \boldsymbol{y}(t)=\boldsymbol{x}_{1}=(1,1): \text { no movement! }
\end{aligned}
$$

There is no force from springs 1 and 3 and no initial velocity $\boldsymbol{y}^{\prime}(0)$.
19 The matrix in this question is skew-symmetric $\left(A^{\mathrm{T}}=-A\right)$. Energy is conserved.

$$
\frac{d \boldsymbol{y}}{d t}=\left[\begin{array}{rrr}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right] \boldsymbol{y} \quad \text { or } \quad \begin{aligned}
& y_{1}^{\prime}=c y_{2}-b y_{3} \\
& y_{2}^{\prime}=a y_{3}-c y_{1} \\
& y_{3}^{\prime}=b y_{1}-a y_{2}
\end{aligned}
$$

The derivative of $\|\boldsymbol{y}(t)\|^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}$ is $2 y_{1} y_{1}^{\prime}+2 y_{2} y_{2}^{\prime}+2 y_{3} y_{3}^{\prime}$. Substitute $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$ to get zero. The energy $\|\boldsymbol{y}(t)\|^{2}$ stays equal to $\|\boldsymbol{y}(0)\|^{2}$.
$y_{1} y_{1}^{\prime}+y_{2} y_{2}^{\prime}+y_{3} y_{3}^{\prime}=y_{1}\left(c y_{2}-b y_{3}\right)+y_{2}\left(a y_{3}-c y_{1}\right)+y_{3}\left(b y_{1}-a y_{2}\right)=\mathbf{0}$.
Then $\|\boldsymbol{y}(t)\|^{2}$ stays constant, equal to $\|\boldsymbol{y}(0)\|^{2}$.
20 When $A=-A^{\mathrm{T}}$ is skew-symmetric, $e^{A t}$ is orthogonal. Prove $\left(e^{A t}\right)^{\mathrm{T}}=e^{-A t}$ from the series $e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\cdots$.
$A=\left[\begin{array}{rr}0 & 1 \\ -9 & 0\end{array}\right]$ has det $=9: \lambda=3 i$ and $-3 i$ with $\boldsymbol{x}=(1,3 i)$ and $(1,-3 i)$. Then
$\boldsymbol{y}(t)=\frac{3}{2} e^{3 i t}\left[\begin{array}{r}1 \\ 3 i\end{array}\right]+\frac{3}{2} e^{-3 i t}\left[\begin{array}{r}1 \\ -3 i\end{array}\right]=\left[\begin{array}{r}3 \cos 3 t \\ -9 \sin 3 t\end{array}\right]$.
21 The mass matrix M can have masses $m_{1}=1$ and $m_{2}=2$. Show that the eigenvalues for $K \boldsymbol{x}=\lambda M \boldsymbol{x}$ are $\lambda=2 \pm \sqrt{2}$, starting from $\operatorname{det}(K-\lambda M)=0$:

$$
M=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \text { and } K=\left[\begin{array}{rr}
2 & -2 \\
-2 & 4
\end{array}\right] \text { are positive definite. }
$$

Find the two eigenvectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2}. Show that $\boldsymbol{x}_{1}^{\mathrm{T}} \boldsymbol{x}_{2} \neq 0$ but $\boldsymbol{x}_{1}^{\mathrm{T}} M \boldsymbol{x}_{2}=0$.
$K \boldsymbol{x}=\lambda M \boldsymbol{x}$ is $(K-\lambda M) \boldsymbol{x}=\mathbf{0}$ and we need the determinant of $K-\lambda M$ to be 0 :

$$
\operatorname{det}\left[\begin{array}{cc}
2-\lambda & -2 \\
-2 & 4-2 \lambda
\end{array}\right]=2\left(\lambda^{2}-4 \lambda+2\right)=0 \quad \lambda=\frac{4 \pm \sqrt{16-8}}{2}=\mathbf{2} \pm \sqrt{\mathbf{2}}
$$

The eigenvectors $\boldsymbol{x}_{1}=(\sqrt{\mathbf{2}}, \mathbf{- 1})$ and $\boldsymbol{x}_{2}=(\sqrt{\mathbf{2}}, \mathbf{1})$ come from
$\left(K-\lambda_{1} M\right) \boldsymbol{x}_{1}=\left[\begin{array}{rr}-\sqrt{2} & -2 \\ -2 & -2 \sqrt{2}\end{array}\right] \boldsymbol{x}_{1}=\mathbf{0}$ and $\left(K-\lambda_{2} M\right) \boldsymbol{x}_{2}=\left[\begin{array}{rr}\sqrt{2} & -2 \\ -2 & 2 \sqrt{2}\end{array}\right] \boldsymbol{x}_{2}=\mathbf{0}$.
Notice that \boldsymbol{x}_{1} is not orthogonal to \boldsymbol{x}_{2}-it is " M-orthogonal":

$$
\boldsymbol{x}_{1}^{\mathrm{T}} M \boldsymbol{x}_{2}=\left[\begin{array}{ll}
\sqrt{2} & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{r}
\sqrt{2} \\
1
\end{array}\right]=0
$$

22 What difference equation would you use to solve $\boldsymbol{y}^{\prime \prime}=-\boldsymbol{S} \boldsymbol{y}$?
$y^{\prime \prime}=-S y$ is well approximated by $y_{n+1}-2 y_{n}+y_{n-1}=-(\Delta t)^{2} S y_{n}$. The initial conditions come in as $y_{0}=y(0)$ and $y_{1}=y(0)+\Delta t y^{\prime}(0)$ (but that is only a first order accurate approximation to the true $y(\Delta t)$).
23 The second order equation $\boldsymbol{y}^{\prime \prime}+S \boldsymbol{y}=\mathbf{0}$ reduces to a first order system $\boldsymbol{y}_{1}{ }^{\prime}=\boldsymbol{y}_{2}$ and $\boldsymbol{y}_{2}{ }^{\prime}=-S \boldsymbol{y}_{1}$. If $S \boldsymbol{x}=\omega^{2} \boldsymbol{x}$ show that the companion matrix $A=[0 I ;-S 0]$ has eigenvalues $i \omega$ and $-i \omega$ with eigenvectors $(\boldsymbol{x}, i \omega \boldsymbol{x})$ and $(\boldsymbol{x},-i \omega \boldsymbol{x})$.
The first-order equation with block companion matrix for $y^{\prime \prime}=-S y$ is

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]^{\prime}=\left[\begin{array}{rl}
0 & I \\
-S & 0
\end{array}\right]\left[\begin{array}{l}
y \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rl}
0 & I \\
-S & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

For the eigenvalues: If $S \boldsymbol{x}=\omega^{2} \boldsymbol{x}$ then

$$
\left[\begin{array}{rr}
0 & I \\
-S & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\pm i \omega \boldsymbol{x}
\end{array}\right]=\left[\begin{array}{c}
\pm i \omega \boldsymbol{x} \\
-\omega^{2} \boldsymbol{x}
\end{array}\right]= \pm i \omega\left[\begin{array}{c}
\boldsymbol{x} \\
\pm i \omega \boldsymbol{x}
\end{array}\right]
$$

So the block companion matrix A has eigenvalues $i \omega$ and $-i \omega$. Then we can compute and use the exponential $e^{A t}$ (if we want to).

24 Find the eigenvalues λ and eigenfunctions $y(x)$ for the differential equation $y^{\prime \prime}=\lambda y$ with $y(0)=y(\pi)=0$. There are infinitely many !
This is an important problem in function space-instead of eigenvectors in \mathbf{R}^{n} we look for functions of x between $x=0$ and $x=\pi$:

$$
\frac{d^{2} y}{d t^{2}}=\lambda y(x) \text { with boundary conditions } y(0)=y(\pi)=0
$$

This equation is satisfied by $y(x)=a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x)$.
The boundary condition $y(0)=0$ makes $a=0$.
The condition $y(\pi)=\sin (\sqrt{\lambda} \pi)=0$ makes $\sqrt{\lambda}=\mathbf{1}$ or $\mathbf{2}$ or $\mathbf{3}$ or \ldots Then

$$
\lambda=\mathbf{1}^{2} \text { or } \mathbf{2}^{2} \text { or any } \boldsymbol{n}^{2} \quad y(x)=\sin (\sqrt{\lambda} x)
$$

