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8.1 Fourier Series

This section explains three Fourier seriesines, cosines, and exponentialg¥*.
Square wavesl(or 0 or —1) are great examples, with delta functions in the derivative
We look at a spike, a step function, and a ramp—and smoothetifins too.

Start with sinx. It has perio®x since sifix 4+ 27) = sinx. Itis an odd function since
sin(—x) = —sinx, and it vanishes at = 0 andx = x. Every function simx has those
three properties, and Fourier lookedr#inite combinations of the sines

o0
Fourier sine series  S(x) = b; Sinx + by Sin2x + b3 SiN3x + --- = Z b,sinnx (1)

n=1

If the numbersby, by, b3, ... drop off quickly enough (we are foreshadowing the
importance of their decay rate) then the sfitw) will inherit all three properties:

Periodic S(x + 27) = S(x) 0odd S(—x) = —S(x) S(0) = S(x) =0

200 years ago, Fourier startled the mathematicians in Francaipgesting thaany odd
periodic functionS(x) could be expressed as an infinite series of sines. This ide@dt
an enormous development of Fourier series. Our first stepfiad the number by that
multiplies sin kx. The function S(x) is “transformed” to a sequence ofb’s.

Suppose(x) = Y b, sinnx. Multiply both sides bginkx. Integrate from0 to = :
2 3 2
/ S(x)sinkx dx = / by sinx sinkx dx +---+/ by sinkx sinkxdx +--- (2)
0 0 0
On the right side, all integrals are zero except the higldidlone withn = k. This

property of ‘orthogonality” will dominate the whole chapter. For sines, integtab is a
fact of calculus:

1
Sines are orthogonal / sinnx sinkxdx =0 if n#k. 3)
0

Zero comes quickly if we integratfcosmx dx = [S"‘%]g = 0 — 0. So we use this:

1 1
Product of sines sinnx sinkx = 3 cogn —k)x — 3 cogn+k)x. (4)

Integrating co$n — k)x and cogn + k)x gives zero, proving orthogonality of the sines.

H H _ i i i 2 1 1 .
The exception is when= k. Then we are integratin@inkx)* = 5 — 5 coS2kx:

1 1 1 T
/ sinkx sinkx dx = / —dx — / —COS2kxdx = —. (5)
0 0o 2 0o 2 2

The highlighted term in equation (2) {&/2)b. Multiply both sides by2 /7 to find by
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Sine coefficients

S(=x) = —S(x) br = %/0 S(x)sinkxdx = %/_ﬂ S(x)sinkx dx. (6)

Notice thatS(x) sinkx is even(equal integrals from-z to 0 and fromo to ).
I will go immediately to the most important example of a Feurisine series.

S(x) is anodd square wavewith SW(x) = 1for0 < x < m. Itis drawn in
Figure 8.1 as an odd function (with peridg) that vanishes at = 0 andx = .
SW(x) =1
—7 0 n 2 ~

Figure 8.1: The odd square wave W (x + 27) = SW(x) = {l or0 or —1}.

Example 1  Find the Fourier sine coefficientg of the odd square wav&W(x).

Solution  Fork = 1,2, ... use formula (6) withS(x) = 1 betweerD andx:

2 [T . 2—coskx1™ 2(2 02 020
m:-/ammﬁ}{iﬂl}:—{ —————— SN
7 Jo b4 k 0o T

The even-numbered coefficierits, are all zero because ¢z = cos0 = 1. The odd-
numbered coefficients, = 4 /xk decrease at the ratg k. We will see that sameé/ k
decay rate for all functions formed frosmooth pieces and jumps

Put those coefficients/ 7k and zero into the Fourier sine series £/ (x):

(8)

4 [sin sin3 sin5 sin7
Square wave  SW(x) = — il + al + al + * 4.
b4 1 3 5 7

Figure 8.2 graphs this sum after one term, then two termsttzem five terms. You can
see the all-importarteibbs phenomenonappearing as these “partial sums” include more
terms. Away from the jumps, we safely approg&W(x) = 1 or —1. At x = n/2, the
series gives a beautiful alternating formula for the number

411 1 1 1 1 1 1 1
1—;[T—§+§—$+:| so that 7[—4<I—§+§—5+"'). (9)

The Gibbs phenomenon is the overshoot that moves closerlaser ¢o the jumps
Its height approachek18... and it does not decrease with more terms of the series.
This overshoot is the one greatest obstacle to calculatiail a@iscontinuous functions
(like shock waves). We try hard to avoid Gibbs but sometimesan't.
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. 4 (sinx  sin3x 4 (sinx sin9x
Solid curve— | —— + S5terms:— [ — +--- +
b4 1 3 b1 1 9
4 sin -~ Gibbs overshoot—
Dashed— —r [/ e A SW = 1
T 1 4 A\
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N TN ’ - 2\ 7
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Figure 8.2: The sumk; sinx + --- + by Sin N x overshoot the square wave near jumps.

Fourier Cosine Series

The cosine series appliesagen functionsC(x) = C(—x). They are symmetric acroés

o0
Cosine series  C(x) = ag + a1 COSx + a; COS2x + --- = agp + Z apcosnx. (10)
n=1
Every cosine has periatlz. Figure 8.3 shows two even functions, tlepeating ramp
RR(x) and theup-down train UD(x) of delta functions. That sawtooth rangR is the
integral of the square wave. The delta function#/ib give the derivative of the square
wave. (For sines, the integral and derivative are cosinRR)and UD will be valuable
examples, one smoother th&m, one less smooth.
First we find formulas for the cosine coefficiemg anda;. The constant termy is
the average value of the functiéh(x) :

1 [* 1 [T
ap = average ap = —/ Cx)dx = 2—/ C(x)dx. (12)
T Jo T J—m

| just integrated every term in the cosine series (10) ffbto =. On the right side, the
integral ofa is apm (divide both sides byt). All other integrals are zero:

b1 H T
/ cosnx dx = I:Slnnx:| =0-0=0. (12)
0 n 0

In words, the constant functiohnis orthogonal to cosx over the intervalo, x].
The other cosine coefficientg come from theorthogonality of cosinesAs with sines,
we multiply both sides of (10) by c@sc and integrate fron to r:

b4

ai cosx coskx dx—+-+ / ay(coskx)? dx +-
0

4

b1 b3
/ C(x)coskx dx 2/ ao COSkx dx—}—/
0 0 0

You know what is coming. On the right side, only the highligghterm can be nonzero. For
k > 0, that bold nonzero term ig /2. Multiply both sides by2 /x to find ay :

. . 5 [ |
g?ff)eioce‘gc)lents ax = ;/0 C(x)coskxdx = = /_n C(x)coskx dx. (13)



8.1. Fourier Series 437

26(x) 26(x — 2m)

Up-down UD(x)
- 0 m 2 —n 0 m 2
Derivative of | Square Wave

Repeating RampR R (x)
Integral of Square Wave —28(x + ) —28(x — )

Figure 8.3: The repeating ramRR and the up-dowrlUD (periodic spikes) are even.
The slope ofRR is —1 then1: odd square wavS W. The next derivative isUD : + 26.

Example 2  Find the cosine coefficients of the ranRR (x) and the up-dowlVD(x).
Solution  The simplest way is to start with the sine series for the suave :

4 [sinx sin3x sin5x sin7x
SW(x)=;1+3+5+7

Take the derivative of every term to produce cosines in thdayn delta function:

+ } = slope of RR

4
Up-down spikes UD(x) = — [cosx + c0S3x + €cOS5x + cOS7x + ---]. (14)
b

Those coefficients don’t decay at all. The terms in the sat@st approach zero, so
officially the series cannot converge. Nevertheless it isemt and important. Ak = 0,
the cosines are all and their sum istoco. At x = x, the cosines are alt1. Then
their sum is—oo. (The downward spike is25(x — 7).) The true way to recogniz¥x)
is by the integral tesf §(x) f(x) dx = f(0) and Example 3 will do this.

For the repeating ramp, we integrate the square wave setes¥ (x) and adday.
The average ramp heightdag = /2, halfway from0 to r :

N ) RR m  mw[cosx COS3x CcOoS5x  COSTx
amp series (x) = 272 [ P + 32 + 5 + 7
The constant of integration ig. Those coefficients; drop off like1/k2. They could

be computed directly from formula (13) usirfgx coskx dx, and integration by parts (or
an appeal tdvlathematiceaor Maplée). It was much easier to integrate every sine separately
in SW(x), which makes clear the crucial poinEach “degree of smoothness” in the
function brings a faster decay rate of its Fourier coefficiens ay and by.
Every integration divides those numbersky

+} (15)

No decay Delta functions (with spikes)
1/k decay Stepfunctions (with jumps)
1/k? decay Ramp functions (with corners)
1/k* decay Spline functions (jumps inf"")

rk decay withr < 1 Analytic functions likel/(2 — cosx)
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The Fourier Series for a Delta Function
Example 3  Find the (cosine) coefficients of thielta functioné(x), made2x-periodic.

Solution  The spike ind(x) occurs atx = 0. All the integrals arel, because the
cosine of0 is 1. We divide by2x for ag and byr for the other cosine coefficients .

1 [7 1 . 1 (T 1
Average ag = —/ 8(x)dx = —  Cosines a; = — 8(x)coskx dx = —

2 J_ g 2 T J_x T
Then the series for the delta function tedlscosines in equal amountdNo decay

1 1
Delta function 8(x) = o + —[cosx + cos2x + coS3x +---]. (16)
T T

This series cannot truly converge (its terms don't appraag). But we can graph the
sum after coSx and after co$0x. Figure 8.4 shows how these “partial sums” are doing
their best to approadi(x). They oscillate faster while going higher.

There is a neat formula for the suiy that stops at co¥ x. Start by writing each term
2 cosx ase’™ + e~'*, We get a geometric progression frem V> up toe’ N>,

1 sin(N + 1)x

17
2r  sinix (A7)

1 . . . .
5N:E[l—i—e”‘—}—e_’x—}—---—}—e’Nx—i-e_’Nx]:

This is the function graphed in Figure 8.4.

810(x) height21/2n

85(x) | A height 11/2x

heightl/2x
. height —1/2x

Figure 8.4: The sum&y (x) = (1 +2cosx + --- +2cosNx)/2x try to approacts(x).
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Complete Series: Sines and Cosines

Over the half-period0, 7], the sines are not orthogonal to all the cosines. In fact the
integral of sinx timesl1 is not zero. So for functionB(x) that are not odd or even, we must
move to thecomplete seriegsines plus cosing®on the full interval. Since our functions
are periodic, that “full interval” can bp-r, ] or [0, 2r]. We have botla’s andb’s.

o0 o0
Complete Fourier series F(x) = ag + »  a,Cosnx + Y bysinnx. (18)

n=1 n=1

On every 27 interval” the sines and cosines are orthogonal. We find th&i€o
coefficientsa, and by in the usual way:Multiply (18) by 1 and coskx and sinkx.
Then integrate both sides from—zx to 7 to getao and a; and by.

1 T 1 [" 1 [*
ayg = —/ F(x)dx ay = —/ F(x)coskxdx by = —/ F(x)sinkx dx
27 J—x b g b —

Orthogonality Kills off infinitely many integrals and leavenly the one we want.
Another approach is to splf (x) = C(x) + S(x) into an even part and an odd part.
Then we can use the earlier cosine and sine formulas. Thedws gre

F(x)+ F(—x F(x)— F(—x
C() = Four) = TOETED 500 = gg() = T2 g
The even part gives the's and the odd part gives thgs. Test on a square pulse from

x = 0 to x = h—this one-sided thin box function is not odd or even.

1/h forO<x<h

Example 4  Find thea's andb’s if F(x) = tall box = % 0 forh < x < 2ot

Solution  The integrals fouy anda, andb, stop atx = & where F(x) drops to zero.
The coefficients decay liké/k because of the jump at = 0 and the drop ak = #:

h

1
Coefficients of square pulse apg = — 1/hdx = — = average
2 0 2r
1 [k sinkh 1 [h 1— coskh
= — coskx dx = by = — sinkx dx = ————.
o nh/o rax wkh k Jth/o rax wkh

Important  As h approaches zero, the box gets thinner and taller. Its widkhaind its
height is1/k and its area id. The box approaches a delta function! And its Fourier
coefficients approach the coefficients of the delta funciieih — 0:

1 inkh 1 1- kh
ap = — ar = il approaches— by = J T Coskh approached). (20)
wkh T wkh
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Energy in Function = Energy in Coefficients

There is an extremely important equatidhg energy identity that comes from integrat-
ing (F(x))2. When we square the Fourier seriesfofx), and integrate from- to r,
all the “cross terms” drop out. The only nonzero integralmedrom 12 and co$ kx
and sirf kx. Those integrals giver andr andz, multiplied bya2 anda? andb? :

2
Energy [ (F(x))%dx =2ma} + m(a? + b2 + a2 + b2 +--+). (21)

The energy inF(x) equals the energy in the coefficients. The left side is likelémgth
squared of a vector, excefite vector is a functian The right side comes from an in-
finitely long vector ofa’s andb’s. The lengths are equal, which says that the Fourier trans-
form from function to vector is like an orthogonal matrix. iualized by+/27 and /7,
sines and cosines are an orthonormal basis in function space

Complex Exponentials cxek*

This is a small step and we have to take it. In place of sepévateulas forap anday
and by, we will haveone formulafor all the complex coefficients,. And the function
F(x) might be complex (as in quantum mechanics). The Discretei€éolransform will
be much simpler when we u$é complex exponentials for a vector.

We practice with the complex infinite series foRa-periodic function:

o0
Complex Fourier series F(x) = co + c1e'* +c_je™™* +... = Z cne'™  (22)

n=—oo

If everyc, = c_,, we can combine’”* with e~"* into 2 cosnx. Then (22) is the
cosine series for an even function. If evefy= —c_,, we usee'™* — ¢™'"* = 2j sinnx.
Then (22) is the sine series for an odd function and-th@re pure imaginary.

To find ¢, multiply (22) by e~*%* (note’¥*) and integrate from —x to x:

4 4 1 T
/ F(x)e_ikxdx = / coe ¥ dx + / cre®e KXy 4 .. +f cre*xemtkx gy 4 ..
—TIT —TT —TT -

The complex exponentials are orthogonglery integral on the right side is zerq
except for the highlighted term (Wwhen= k ande’**¢~k* = 1). The integral ofl is 2.
That surviving term gives the formula fog:

T
Fourier coefficients f F(x)e ™ dx =2me;  for k=0,%+1,...1 (23)

-

Notice thatco = ao is still the average of(x). The orthogonality obkinx andefk_" is
checked by integrating”* timese—*¥*. Remember to use that complex conjugat&™.
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Example 5 For a delta function, all integrals ateand every; is 1/2x. Flat transform!

1 fors<x<s+h

Example 6  Findcy for the2z-periodic shifted box'(x) = { 0 elsewhere if—r. 7]

Solution  The integrals (23) havé = 1 fromstos + A :

. +h .
1 s+h , 1 [e-ikx]® ) | — o—ikh
- 1. —ikx dx — — ,—iks ) 24
* 27 J ¢ ~ 27 |: —ik ¢ 2rik (24)

N

Notice above all the simple effect of the shift bys. It “modulates” eachcy by ek,
The energy is unchanged, the integra) Bf? just shifts, ande ~%$| = 1.

(25)

shit F(x) to F(x—s) < Multiplyevery c; by e~k

Example 7 A centered box has shift = —4/2. It becomes balanced around= 0.
This even function equalson the interval from-4/2 to h/2:

Jikhj2 1= ek 1 sin(kh/2)
2rik 2r k/[2
Divide by A for a tall box. The ratio of sitk//2) to kh/2 is called the 8inc” of kh/2.

Fcentered_ 1 & kh ikx _ | 1/h for —h/2<x <h/2
Tall box h 2w ; Smc(?) 7 Tl 0 elsewhereif—x, ]

h
Centered by s = —3 Cr =

That division byh produces area= 1. Every coefficient approach% ash — 0.
The Fourier series for the tall thin box again approache&theier series fod(x).

The Rules for Derivatives and Integrals

The derivative ob’¥* is ike’**. This great fact puts the Fourier functios~ in first
place for applications. They are eigenfunctionsd@t/x (and the eigenvalues ake= i k).
Differential equations with constant coefficients are naty solved by Fourier series.

Multiply by ik The derivative of F(x) = cxe’** isdF/dx =) ikcge'**

The second derivative has coefficiets)?cy = —k?ci. High frequencies are growing
stronger. And in the opposite direction (when we integrat@ divide byik and high
frequencies get weaker. The solution becomes smootheséleok at this example:

Responsel / (k% + 1) B @ e - pikx
to frequency k Tz Ty =¢"" issolvedby y(x) = 5 —

This was a typical problem in Chapter 2. The transfer fumcisol / (k% + 1). There we
learned : The forcing functioa'** is exponential so the solution is exponential.
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All we are doing now is superposition Allow all the exponentials at once'!

Ckeikx
K2+1

1. Derivative rule dF /dx has Fourier coefficientsi k¢ (energy moves to high).

2
d-y ty= chg”‘x is solved by  y(x) = Z

— I (26)

2. Shiftrule F(x — s) has Fourier coefficientse ~¥%¢;. (no change in energy).

Application: Laplace’s Equation in a Circle

Our first application is to Laplace’s equatiany + u,, = 0 (Section 7.4). The idea is
to constructu(x, y) as an infinite series, choosing its coefficients to maighy, y)
along the boundary. The shape of the boundary is crucialnenighke a circle of radius.
Begin with the solutions 1y cosf, rsind, r?cos26, r?sin26, ... to Laplace’s
equation. Combinations of these special solutions giveddlitions in the circle:

u(r,0) =ag + ayr cosd + byrsin® + ar?cos2d + byr?sin26 +--- (27)

It remains to choose the constantsandb; to makeu = u( on the boundary. For a circle,
6 andf + 2x give the same point. This means thg(0) is periodic:

Setr =1 ug(0) = ag + a; cosh + by sinb + a, cos26 + b, sin26 + - -- (28)

This is exactly the Fourier series fap. The constantsa, and b, must be the Fourier
coefficients ofug(0). Thus Laplace’s boundary value problem is completely shivie
an infinite series (27) is acceptable as the solution.

Example 8  Point sourceuy = §(6). The boundary is held aty, = 0, except for the
source atv = 1, y = 0 (wheref = 0). Find the temperature(r, ) inside the circle.

o

1 1 1 .
Delta function  ug(6) = -— + —(C0S + €026 + COS30 ++++) = — » " ¢/"?
2w 2

Inside the circle, each ca® is multiplied byr” to solve Laplace’s equation:

1 1
Inside the circle  u(r, ) = =+ —(rcosh + r?cos20 + r3cos3f + --) (29)
T T
Poisson managed to sum this infinite series! It involves esaf powers(re!?)”.
His sum gives the response at evéryd) to the point sourceat= 1,0 = 0:

1 1 —r2

Temperature inside circle ur,f) = —————
P (r, 0) 2w 1+ r2—2rcosd

(30)

At the centerr = 0, this produces the average o§ = §(8) which isay = 1/2x7.
On the boundary = 1, this givesu = 0 exceptu = oo at the point where cas= 1.
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Example 9  ug(f) = 1 on the top half of the circle anduy = —1 on the bottom half.

Solution ~ The boundary values, are a square wav8W. We know its sine series:

(31)

4 [sing in30 in50
Square wave forug(6) SW(H):—[Sm s Sl +}
T

1 + 3 + 5

Inside the circle, multiplying by, 3, 7>, . .. gives fast decay of high frequencies:

rsing N r3sin30 N r’sin50
1 3 5

Laplace’s equation has smooth solutions inside, even whéh) is not smooth.

Problem Set 8.1

Rapid decay inside u(r,6) = 4 [ 4 } (32)
T

1 (a) To prove that cosx is orthogonal to cokx whenk # n, use the formula
(cosnx) (coskx) = %cos(n + k)x + %cos(n — k)x. Integrate fromx = 0
tox = . Whatis [ cos kx dx ?

(b) FromoO to 7, cosx is not orthogonal to sinc. The period has to bz :
T w 27
Find/ (sinx) (cosx) dx and / (sinx) (cosx)dx and / (sinx) (cosx) dx.
0 - 0

2 SupposeF(x) = x for0 < x < m. Draw graphs fo27 < x < 27 to show
three extensions af: a2x-periodic even function and zr -periodic odd function
and arr-periodic function.

3 Find the Fourier series onr < x < = for

(@) fi(x) = sin® x, an odd function (sine series, only two terms)
(b) f2(x) = |sinx|, an even function (cosine series)
(c) f53(x) = xfor—m < x < & (sine series with jump at = )
4 Find the complex Fourier series = che”‘x on the interval-r < x < 7.

The even part of a function il?‘(f(x) + f(—=x)), so thatfeverx) = fever(—x). Find
the cosine series fofevenand the sine series fofqq. Notice the jump ak = .

5 From the energy formula (21), the square wave sine coeffeiatisfy

11 (1

ISW(x)|>dx = / ldx =2m.

—TT

n(b%+b§+---)=/

—TT
Substitute the numbetg from equation (8) to find that? = 8(1 + % + % +)
6 If a square pulse is centeredxat= 0 to give

f(x)=1 for |x|<%, f(x)=0 for %<|x|<n,

draw its graph and find its Fourier coefficienfsandby,.
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10

11

12

13

14

15

16
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Plot the first three partial sums and the functiqer — x) :

8 (sinx sin3x  sin5x
+ +

— = — - ]1,0< < TT.
Y= =27 27 5 " ) reT

Why is 1/ k3 the decay rate for this function? What is its second dexie&ti

Sketch thez-periodic half wave withf(x) = sinx for0 < x < 7 andf(x) =0
for —7 < x < 0. Find its Fourier series.

Suppos&s(x) has perio®L instead of2zr. ThenG(x + 2L) = G(x). Integrals
go from—L to L or from0 to 2L. The Fourier formulas change by a factofL :
L

(o) . 1 .
The coefficients inG(x) = Y. Cre’*™*/L are C; = o7 G(x)e hmx/L gy,
et A
Derive this formula forCy : Multiply the first equation forG(x) by and
integrate both sides. Why is the integral on the right sideaétp2 L Cy, ?

For Geven use Problem 9 to find the cosine coefficigiptfrom (Cr, + C_x)/2:

L
o) k 1 k
Gever(x) = Y A cos—— has Ag = + / Geverfx) cos——dx.
0 L L L
0
Gevenis %(G(x) + G(—x)). Exception forAdy = Cy : Divide by 2L instead ofL.

1 .
Problem 10 tells us thai; = E(Ck + c—x) on the usual interval fronf to .
Find a similar formula fo; from c; a_ndc_k. In the reverse direction, find the
complex coefficienty in F(x) = che‘kx from the real coefficients, andby.

Find the solution to Laplace’s equation witly = 6 on the boundary. Why is this
the imaginary part o2(z — z2/2 4 2z3/3---) = 2log(1 + z)? Confirm that on the
unit circlez = ¢!, the imaginary part of log(1 + z) agrees witH9.

If the boundary condition for Laplace’s equationiig = 1 for0 < 6 < = and
up = 0 for —r < 6 < 0, find the Fourier series solutian(r, 6) inside the unit
circle. What isu at the originr = 07?

With boundary valueso () = 1 + Le’® + 1¢2/% 4 ... what is the Fourier series
solution to Laplace’s equation in the circle? Sum this getoimeeries.

(a) Verify that the fraction in Poisson’s formula (30) shés Laplace’s equation.
(b) Find the response(r, /) to an impulse at = 0,y = 1 (whered = 7).
With complex exponentials iff (x) = 3 cxe’**, the energy identity (21) changes to
[ 1F(x)[?dx = 21’y |cx|?. Derive this by integrating " cxe’**) (3" cie™"*¥).

—TT
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17

18

19

20

21

22

23

A centered square wave hagx) = 1 for |x| < /2.
(a) Find its energy | F(x)|? dx by direct integration
(b) Compute its Fourier coefficientg as specific numbers
(c) Find the sum in the energy identity (Problem 16).
F(x) =14 (cosx)/2 +---+ (cosnx)/2" + --- is analytic : infinitely smooth.
(@) If you takel0 derivatives, what is the Fourier seriesd® F/dx1°?

(b) Does that series still converge quickly ? Compak®with 2" for n = 21°.

If f(x) = 1for|x|] < n/2and f(x) = 0for z/2 < |x| < =, find its cosine
coefficients. Can you graph and compute the Gibbs overshtu jumps ?

Find all the coefficienta; andb; for F, I, andD on the interval-n < x < 7:

F(x)zS(x—%) I(x)z/ox8<x—%)dx D(x):j—XS(x—%).

For the one-sided tall box function in Example 4, with= 1/h for0 < x < h,
what is its odd paré(F(x) — F(—x))? | am surprised that the Fourier coefficients
of this odd part disappear asapproaches zero arfdx) approaches(x).

Find the seried'(x) = cheikx for F(x) = ¢* on—n < x < &. That function
e* looks smooth, but there must be a hidden jump to get coeffiigrproportional
to 1/k. Where is the jump ?

(a) (Old particular solution) Solvdy” + By’ + Cy = e'k*,

(b) (New particular solution) Solvdy” + By’ + Cy = 3" cxe'**.





