8.1 Fourier Series

This section explains three Fourier series: sines, cosines, and exponentials $\boldsymbol{e}^{i \boldsymbol{k} \boldsymbol{x}}$. Square waves (1 or 0 or -1) are great examples, with delta functions in the derivative. We look at a spike, a step function, and a ramp-and smoother functions too.

Start with $\sin x$. It has period $2 \pi \operatorname{since} \sin (x+2 \pi)=\sin x$. It is an odd function since $\sin (-x)=-\sin x$, and it vanishes at $x=0$ and $x=\pi$. Every function $\sin n x$ has those three properties, and Fourier looked at infinite combinations of the sines:

$$
\begin{equation*}
\text { Fourier sine series } S(x)=b_{1} \sin x+b_{2} \sin 2 x+b_{3} \sin 3 x+\cdots=\sum_{n=1}^{\infty} \boldsymbol{b}_{\boldsymbol{n}} \sin \boldsymbol{n} \boldsymbol{x} \tag{1}
\end{equation*}
$$

If the numbers $b_{1}, b_{2}, b_{3}, \ldots$ drop off quickly enough (we are foreshadowing the importance of their decay rate) then the sum $S(x)$ will inherit all three properties:

$$
\text { Periodic } S(x+2 \pi)=S(x) \quad \text { Odd } \quad S(-x)=-S(x) \quad S(0)=S(\pi)=0
$$

200 years ago, Fourier startled the mathematicians in France by suggesting that any odd periodic function $S(x)$ could be expressed as an infinite series of sines. This idea started an enormous development of Fourier series. Our first step is to find the number $\boldsymbol{b}_{\boldsymbol{k}}$ that multiplies $\sin \boldsymbol{k x}$. The function $\boldsymbol{S}(\boldsymbol{x})$ is "transformed" to a sequence of \boldsymbol{b} 's.

Suppose $S(x)=\sum b_{n} \sin n x$. Multiply both sides by $\sin k x$. Integrate from 0 to π :

$$
\begin{equation*}
\int_{0}^{\pi} S(x) \sin k x d x=\int_{0}^{\pi} b_{1} \sin x \sin k x d x+\cdots+\int_{0}^{\pi} b_{k} \sin k x \sin k x d x+\cdots \tag{2}
\end{equation*}
$$

On the right side, all integrals are zero except the highlighted one with $n=k$. This property of "orthogonality" will dominate the whole chapter. For sines, integral $=0$ is a fact of calculus :

$$
\begin{equation*}
\text { Sines are orthogonal } \quad \int_{0}^{\pi} \sin n x \sin k x d x=0 \text { if } n \neq k \tag{3}
\end{equation*}
$$

Zero comes quickly if we integrate $\int \cos m x d x=\left[\frac{\sin m x}{m}\right]_{0}^{\pi}=0-0$. So we use this:

$$
\begin{equation*}
\text { Product of sines } \quad \sin n x \sin k x=\frac{1}{2} \cos (n-k) x-\frac{1}{2} \cos (n+k) x . \tag{4}
\end{equation*}
$$

Integrating $\cos (n-k) x$ and $\cos (n+k) x$ gives zero, proving orthogonality of the sines.
The exception is when $n=k$. Then we are integrating $(\sin k x)^{2}=\frac{1}{2}-\frac{1}{2} \cos 2 k x$:

$$
\begin{equation*}
\int_{0}^{\pi} \sin k x \sin k x d x=\int_{0}^{\pi} \frac{1}{2} d x-\int_{0}^{\pi} \frac{1}{2} \cos 2 k x d x=\frac{\pi}{2} . \tag{5}
\end{equation*}
$$

The highlighted term in equation (2) is $(\boldsymbol{\pi} / \mathbf{2}) \boldsymbol{b}_{\boldsymbol{k}}$. Multiply both sides by $2 / \pi$ to find $b_{\boldsymbol{k}}$.

$$
\begin{align*}
& \text { Sine coefficients } \tag{6}\\
& \boldsymbol{S}(-\boldsymbol{x})=-\boldsymbol{S}(\boldsymbol{x})
\end{align*} \boldsymbol{b}_{\boldsymbol{k}}=\frac{2}{\pi} \int_{0}^{\pi} S(x) \sin k x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \boldsymbol{S}(\boldsymbol{x}) \sin \boldsymbol{k} \boldsymbol{x} d \boldsymbol{x} .
$$

Notice that $S(x) \sin k x$ is even (equal integrals from $-\pi$ to 0 and from 0 to π).
I will go immediately to the most important example of a Fourier sine series. $S(x)$ is an odd square wave with $S W(x)=1$ for $0<x<\pi$. It is drawn in Figure 8.1 as an odd function (with period 2π) that vanishes at $x=0$ and $x=\pi$.

Figure 8.1: The odd square wave with $S W(x+2 \pi)=S W(x)=\{1$ or 0 or -1$\}$.

Example 1 Find the Fourier sine coefficients b_{k} of the odd square wave $S W(x)$.
Solution For $k=1,2, \ldots$ use formula (6) with $S(x)=1$ between 0 and π :

$$
\begin{equation*}
b_{k}=\frac{2}{\pi} \int_{0}^{\pi} \sin k x d x=\frac{2}{\pi}\left[\frac{-\cos k x}{k}\right]_{0}^{\pi}=\frac{2}{\pi}\left\{\frac{\mathbf{2}}{\mathbf{1}}, \frac{0}{2}, \frac{\mathbf{2}}{\mathbf{3}}, \frac{0}{4}, \frac{\mathbf{2}}{\mathbf{5}}, \frac{0}{6}, \ldots\right\} \tag{7}
\end{equation*}
$$

The even-numbered coefficients $b_{2 k}$ are all zero because $\cos 2 k \pi=\cos 0=1$. The oddnumbered coefficients $b_{k}=\mathbf{4} / \boldsymbol{\pi} \boldsymbol{k}$ decrease at the rate $1 / k$. We will see that same $1 / k$ decay rate for all functions formed from smooth pieces and jumps.

Put those coefficients $4 / \pi k$ and zero into the Fourier sine series for $S W(x)$:
Square wave $\quad \boldsymbol{S} \boldsymbol{W}(\boldsymbol{x})=\frac{4}{\pi}\left[\frac{\sin x}{\mathbf{1}}+\frac{\sin 3 x}{\mathbf{3}}+\frac{\sin 5 x}{\mathbf{5}}+\frac{\sin 7 x}{\mathbf{7}}+\cdots\right]$
Figure 8.2 graphs this sum after one term, then two terms, and then five terms. You can see the all-important Gibbs phenomenon appearing as these "partial sums" include more terms. Away from the jumps, we safely approach $S W(x)=1$ or -1 . At $x=\pi / 2$, the series gives a beautiful alternating formula for the number π :

$$
\begin{equation*}
1=\frac{4}{\pi}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right] \quad \text { so that } \quad \pi=4\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right) \tag{9}
\end{equation*}
$$

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps. Its height approaches $1.18 \ldots$ and it does not decrease with more terms of the series. This overshoot is the one greatest obstacle to calculation of all discontinuous functions (like shock waves). We try hard to avoid Gibbs but sometimes we can't.

Solid curve $\frac{4}{\pi}\left(\frac{\sin x}{1}+\frac{\sin 3 x}{3}\right)$
5 terms: $\frac{4}{\pi}\left(\frac{\sin x}{1}+\cdots+\frac{\sin 9 x}{9}\right)$

Figure 8.2: The sums $b_{1} \sin x+\cdots+b_{N} \sin N x$ overshoot the square wave near jumps.

Fourier Cosine Series

The cosine series applies to even functions $C(x)=C(-x)$. They are symmetric across 0 :

$$
\begin{equation*}
\text { Cosine series } \quad C(x)=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+\cdots=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \boldsymbol{x} \tag{10}
\end{equation*}
$$

Every cosine has period 2π. Figure 8.3 shows two even functions, the repeating ramp $R R(x)$ and the up-down train $U D(x)$ of delta functions. That sawtooth ramp $R R$ is the integral of the square wave. The delta functions in $U D$ give the derivative of the square wave. (For sines, the integral and derivative are cosines.) $R R$ and $U D$ will be valuable examples, one smoother than $S W$, one less smooth.

First we find formulas for the cosine coefficients a_{0} and a_{k}. The constant term a_{0} is the average value of the function $C(x)$:

$$
\begin{equation*}
a_{0}=\text { average } \quad a_{0}=\frac{1}{\pi} \int_{0}^{\pi} C(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} C(x) d x \tag{11}
\end{equation*}
$$

I just integrated every term in the cosine series (10) from 0 to π. On the right side, the integral of a_{0} is $a_{0} \pi$ (divide both sides by π). All other integrals are zero:

$$
\begin{equation*}
\int_{0}^{\pi} \cos n x d x=\left[\frac{\sin n x}{n}\right]_{0}^{\pi}=0-0=0 \tag{12}
\end{equation*}
$$

In words, the constant function 1 is orthogonal to $\cos n x$ over the interval $[0, \pi]$.
The other cosine coefficients a_{k} come from the orthogonality of cosines. As with sines, we multiply both sides of (10) by $\cos k x$ and integrate from 0 to π :
$\int_{0}^{\pi} C(x) \cos k x d x=\int_{0}^{\pi} a_{0} \cos k x d x+\int_{0}^{\pi} a_{1} \cos x \cos k x d x+\cdot \cdot+\int_{0}^{\pi} \boldsymbol{a}_{\boldsymbol{k}}(\boldsymbol{\operatorname { c o s }} \boldsymbol{k} \boldsymbol{x})^{\mathbf{2}} \boldsymbol{d} \boldsymbol{x}+\cdot \cdot$
You know what is coming. On the right side, only the highlighted term can be nonzero. For $k>0$, that bold nonzero term is $\boldsymbol{a}_{\boldsymbol{k}} \boldsymbol{\pi} / \mathbf{2}$. Multiply both sides by $2 / \pi$ to find a_{k} :

$$
\begin{align*}
& \text { Cosine coefficients } \\
& \boldsymbol{C}(-\boldsymbol{x})=\boldsymbol{C}(\boldsymbol{x})
\end{align*} a_{k}=\frac{2}{\pi} \int_{0}^{\pi} C(x) \cos k x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \boldsymbol{C}(\boldsymbol{x}) \cos \boldsymbol{k} \boldsymbol{x} d \boldsymbol{x}
$$

Figure 8.3: The repeating ramp $R R$ and the up-down $U D$ (periodic spikes) are even. The slope of $R R$ is -1 then $1:$ odd square wave $S W$. The next derivative is $\boldsymbol{U} \boldsymbol{D}: \pm 2 \delta$.

Example 2 Find the cosine coefficients of the ramp $R R(x)$ and the up-down $U D(x)$.
Solution The simplest way is to start with the sine series for the square wave:

$$
S W(x)=\frac{4}{\pi}\left[\frac{\sin x}{1}+\frac{\sin 3 x}{3}+\frac{\sin 5 x}{5}+\frac{\sin 7 x}{7}+\cdots\right]=\text { slope of } R R
$$

Take the derivative of every term to produce cosines in the up-down delta function :

$$
\begin{equation*}
\text { Up-down spikes } \quad \boldsymbol{U} \boldsymbol{D}(\boldsymbol{x})=\frac{4}{\pi}[\cos x+\cos 3 x+\cos 5 x+\cos 7 x+\cdots] \tag{14}
\end{equation*}
$$

Those coefficients don't decay at all. The terms in the series don't approach zero, so officially the series cannot converge. Nevertheless it is correct and important. At $x=0$, the cosines are all 1 and their sum is $+\infty$. At $x=\pi$, the cosines are all -1 . Then their sum is $-\infty$. (The downward spike is $-2 \delta(x-\pi)$.) The true way to recognize $\delta(x)$ is by the integral test $\int \delta(x) f(x) d x=f(0)$ and Example 3 will do this.

For the repeating ramp, we integrate the square wave series for $S W(x)$ and add a_{0}. The average ramp height is $a_{0}=\pi / 2$, halfway from 0 to π :
Ramp series $\boldsymbol{R} \boldsymbol{R}(\boldsymbol{x})=\frac{\pi}{2}-\frac{\pi}{4}\left[\frac{\cos x}{\mathbf{1}^{\mathbf{2}}}+\frac{\cos 3 x}{\mathbf{3}^{\mathbf{2}}}+\frac{\cos 5 x}{\mathbf{5}^{\mathbf{2}}}+\frac{\cos 7 x}{\mathbf{7}^{\mathbf{2}}}+\cdots\right]$.
The constant of integration is a_{0}. Those coefficients a_{k} drop off like $1 / k^{2}$. They could be computed directly from formula (13) using $\int x \cos k x d x$, and integration by parts (or an appeal to Mathematica or Maple). It was much easier to integrate every sine separately in $S W(x)$, which makes clear the crucial point: Each "degree of smoothness" in the function brings a faster decay rate of its Fourier coefficients a_{k} and $b_{\boldsymbol{k}}$. Every integration divides those numbers by k.

```
No decay
1/k decay
1/k2}\mathrm{ decay
1/k}\mp@subsup{|}{}{4}\mathrm{ decay
r}\mp@subsup{}{}{k}\mathrm{ decay with r}<
```

Delta functions (with spikes)
Step functions (with jumps)
Ramp functions (with corners)
Spline functions (jumps in $f^{\prime \prime \prime}$)
Analytic functions like $1 /(2-\cos x)$

The Fourier Series for a Delta Function

Example 3 Find the (cosine) coefficients of the delta function $\boldsymbol{\delta}(\boldsymbol{x})$, made 2π-periodic.
Solution The spike in $\delta(x)$ occurs at $x=0$. All the integrals are 1 , because the cosine of 0 is 1 . We divide by 2π for a_{0} and by π for the other cosine coefficients a_{k}.

$$
\text { Average } a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta(x) d x=\frac{\mathbf{1}}{\mathbf{2} \boldsymbol{\pi}} \quad \text { Cosines } a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(x) \cos k x d x=\frac{\mathbf{1}}{\boldsymbol{\pi}}
$$

Then the series for the delta function has all cosines in equal amounts : No decay.

$$
\begin{equation*}
\text { Delta function } \quad \delta(x)=\frac{1}{2 \pi}+\frac{1}{\pi}[\cos x+\cos 2 x+\cos 3 x+\cdots] \tag{16}
\end{equation*}
$$

This series cannot truly converge (its terms don't approach zero). But we can graph the sum after $\cos 5 x$ and after $\cos 10 x$. Figure 8.4 shows how these "partial sums" are doing their best to approach $\delta(x)$. They oscillate faster while going higher.

There is a neat formula for the sum δ_{N} that stops at $\cos N x$. Start by writing each term $2 \cos x$ as $e^{i x}+e^{-i x}$. We get a geometric progression from $e^{-i N x}$ up to $e^{i N x}$.

$$
\begin{equation*}
\delta_{N}=\frac{1}{2 \pi}\left[1+e^{i x}+e^{-i x}+\cdots+e^{i N x}+e^{-i N x}\right]=\frac{1}{2 \pi} \frac{\sin \left(N+\frac{1}{2}\right) x}{\sin \frac{1}{2} x} . \tag{17}
\end{equation*}
$$

This is the function graphed in Figure 8.4.

Figure 8.4: The sums $\delta_{N}(x)=(1+2 \cos x+\cdots+2 \cos N x) / 2 \pi$ try to approach $\delta(x)$.

Complete Series: Sines and Cosines
Over the half-period $[0, \pi]$, the sines are not orthogonal to all the cosines. In fact the integral of $\sin x$ times 1 is not zero. So for functions $F(x)$ that are not odd or even, we must move to the complete series (sines plus cosines) on the full interval. Since our functions are periodic, that "full interval" can be $[-\pi, \pi]$ or $[0,2 \pi]$. We have both a 's and b 's.

$$
\begin{equation*}
\text { Complete Fourier series } F(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x \tag{18}
\end{equation*}
$$

On every " 2π interval" the sines and cosines are orthogonal. We find the Fourier coefficients a_{k} and b_{k} in the usual way: Multiply (18) by 1 and $\cos k x$ and $\sin k x$. Then integrate both sides from $-\pi$ to π to get a_{0} and a_{k} and b_{k}.

$$
\boldsymbol{a}_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F(x) d x \quad \boldsymbol{a}_{\boldsymbol{k}}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos k x d x \quad \boldsymbol{b}_{\boldsymbol{k}}=\frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin k x d x
$$

Orthogonality kills off infinitely many integrals and leaves only the one we want.
Another approach is to split $F(x)=C(x)+S(x)$ into an even part and an odd part. Then we can use the earlier cosine and sine formulas. The two parts are

$$
\begin{equation*}
C(x)=F_{\mathrm{even}}(x)=\frac{F(x)+F(-x)}{2} \quad S(x)=F_{\mathrm{odd}}(x)=\frac{F(x)-F(-x)}{2} \tag{19}
\end{equation*}
$$

The even part gives the a 's and the odd part gives the b 's. Test on a square pulse from $x=0$ to $x=h$-this one-sided thin box function is not odd or even.

Example $4 \quad$ Find the a 's and b 's if $\boldsymbol{F}(\boldsymbol{x})=$ tall box $= \begin{cases}\mathbf{1} / \boldsymbol{h} & \text { for } 0<x<h \\ \mathbf{0} & \text { for } h<x<2 \pi\end{cases}$
Solution The integrals for a_{0} and a_{k} and b_{k} stop at $x=h$ where $F(x)$ drops to zero. The coefficients decay like $1 / k$ because of the jump at $x=0$ and the drop at $x=h$:

Coefficients of square pulse $\quad a_{0}=\frac{1}{2 \pi} \int_{0}^{h} 1 / h d x=\frac{1}{2 \pi}=$ average

$$
\boldsymbol{a}_{\boldsymbol{k}}=\frac{1}{\pi h} \int_{0}^{h} \cos k x d x=\frac{\sin \boldsymbol{k} \boldsymbol{h}}{\boldsymbol{\pi} \boldsymbol{k} \boldsymbol{h}} \quad \boldsymbol{b}_{\boldsymbol{k}}=\frac{1}{\pi h} \int_{0}^{h} \sin k x d x=\frac{\boldsymbol{1}-\boldsymbol{\operatorname { c o s } \boldsymbol { k } \boldsymbol { h }}}{\boldsymbol{\pi} \boldsymbol{k} \boldsymbol{h}} .
$$

Important As h approaches zero, the box gets thinner and taller. Its width is h and its height is $1 / h$ and its area is 1 . The box approaches a delta function! And its Fourier coefficients approach the coefficients of the delta function as $h \rightarrow 0$:

$$
\begin{equation*}
a_{0}=\frac{\mathbf{1}}{\mathbf{2 \pi}} \quad a_{k}=\frac{\sin k h}{\pi k h} \text { approaches } \frac{\mathbf{1}}{\boldsymbol{\pi}} \quad b_{k}=\frac{1-\cos k h}{\pi k h} \text { approaches } \mathbf{0} . \tag{20}
\end{equation*}
$$

Energy in Function = Energy in Coefficients

There is an extremely important equation (the energy identity) that comes from integrating $(F(x))^{2}$. When we square the Fourier series of $F(x)$, and integrate from $-\pi$ to π, all the "cross terms" drop out. The only nonzero integrals come from 1^{2} and $\cos ^{2} k x$ and $\sin ^{2} k x$. Those integrals give 2π and π and π, multiplied by a_{0}^{2} and a_{k}^{2} and b_{k}^{2} :

$$
\begin{equation*}
\text { Energy } \int_{-\pi}^{\pi}(F(x))^{2} d x=2 \pi a_{0}^{2}+\pi\left(a_{1}^{2}+b_{1}^{2}+a_{2}^{2}+b_{2}^{2}+\cdots\right) \tag{21}
\end{equation*}
$$

The energy in $F(x)$ equals the energy in the coefficients. The left side is like the length squared of a vector, except the vector is a function. The right side comes from an infinitely long vector of a 's and b 's. The lengths are equal, which says that the Fourier transform from function to vector is like an orthogonal matrix. Normalized by $\sqrt{2 \pi}$ and $\sqrt{\pi}$, sines and cosines are an orthonormal basis in function space.

Complex Exponentials $\boldsymbol{c}_{\boldsymbol{k}} \boldsymbol{e}^{i k x}$

This is a small step and we have to take it. In place of separate formulas for a_{0} and a_{k} and b_{k}, we will have one formula for all the complex coefficients c_{k}. And the function $F(x)$ might be complex (as in quantum mechanics). The Discrete Fourier Transform will be much simpler when we use N complex exponentials for a vector.

We practice with the complex infinite series for a 2π-periodic function:

$$
\begin{equation*}
\text { Complex Fourier series } F(x)=c_{0}+c_{1} e^{i x}+c_{-1} e^{-i x}+\cdots=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \tag{22}
\end{equation*}
$$

If every $c_{n}=c_{-n}$, we can combine $e^{i n x}$ with $e^{-i n x}$ into $2 \cos n x$. Then (22) is the cosine series for an even function. If every $c_{n}=-c_{-n}$, we use $e^{i n x}-e^{-i n x}=2 i \sin n x$. Then (22) is the sine series for an odd function and the c 's are pure imaginary.

To find $c_{\boldsymbol{k}}$, multiply (22) by $e^{-i k x}$ (not $e^{i k x}$) and integrate from $-\pi$ to π :

$$
\int_{-\pi}^{\pi} F(x) e^{-i k x} d x=\int_{-\pi}^{\pi} c_{0} e^{-i k x} d x+\int_{-\pi}^{\pi} c_{1} e^{i x} e^{-i k x} d x+\cdots+\int_{-\pi}^{\boldsymbol{\pi}} \boldsymbol{c}_{\boldsymbol{k}} e^{i \boldsymbol{k} \boldsymbol{x}} \boldsymbol{e}^{-i \boldsymbol{k} \boldsymbol{x}} d \boldsymbol{x}+\cdots
$$

The complex exponentials are orthogonal. Every integral on the right side is zero, except for the highlighted term (when $n=k$ and $e^{i k x} e^{-i k x}=1$). The integral of 1 is 2π. That surviving term gives the formula for c_{k} :

$$
\begin{equation*}
\text { Fourier coefficients } \int_{-\pi}^{\pi} F(x) e^{-i k x} d x=2 \pi c_{k} \quad \text { for } \quad k=0, \pm 1, \ldots l \tag{23}
\end{equation*}
$$

Notice that $c_{0}=a_{0}$ is still the average of $F(x)$. The orthogonality of $e^{i n x}$ and $e^{i k x}$ is checked by integrating $e^{i n x}$ times $e^{-i k x}$. Remember to use that complex conjugate $e^{-i k x}$.

Example 5 For a delta function, all integrals are 1 and every c_{k} is $1 / 2 \pi$. Flat transform !
Example 6 Find c_{k} for the 2π-periodic shifted box $F(x)= \begin{cases}1 & \text { for } s \leq x \leq s+h \\ 0 & \text { elsewhere in }[-\pi, \pi]\end{cases}$
Solution The integrals (23) have $F=1$ from s to $s+h$:

$$
\begin{equation*}
c_{k}=\frac{1}{2 \pi} \int_{s}^{s+h} 1 \cdot e^{-i k x} d x=\frac{1}{2 \pi}\left[\frac{e^{-i k x}}{-i k}\right]_{s}^{s+h}=e^{-i k s}\left(\frac{1-e^{-i k h}}{2 \pi i k}\right) \tag{24}
\end{equation*}
$$

Notice above all the simple effect of the shift by s. It "modulates" each c_{k} by $e^{-i k s}$. The energy is unchanged, the integral of $|F|^{2}$ just shifts, and $\left|e^{-i k s}\right|=1$.

$$
\begin{equation*}
\text { Shift } F(x) \text { to } F(x-s) \longleftrightarrow \text { Multiply every } c_{k} \text { by } e^{-i k s} \tag{25}
\end{equation*}
$$

Example 7 A centered box has shift $s=-h / 2$. It becomes balanced around $x=0$. This even function equals 1 on the interval from $-h / 2$ to $h / 2$:

$$
\text { Centered by } \boldsymbol{s}=-\frac{\boldsymbol{h}}{\mathbf{2}} \quad c_{k}=e^{i k h / 2} \frac{1-e^{-i k h}}{2 \pi i k}=\frac{1}{2 \pi} \frac{\sin (\boldsymbol{k} \boldsymbol{h} / \mathbf{2})}{\boldsymbol{k} / \mathbf{2}}
$$

Divide by h for a tall box. The ratio of $\sin (k h / 2)$ to $k h / 2$ is called the "sinc" of $k h / 2$.

Tall box

$$
\frac{F_{\text {centered }}}{h}=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} \operatorname{sinc}\left(\frac{k h}{2}\right) e^{i k x}= \begin{cases}1 / h & \text { for }-h / 2 \leq x \leq h / 2 \\ 0 & \text { elsewhere in }[-\pi, \pi]\end{cases}
$$

That division by h produces area $=1$. Every coefficient approaches $\frac{1}{2 \pi}$ as $h \rightarrow 0$. The Fourier series for the tall thin box again approaches the Fourier series for $\delta(x)$.

The Rules for Derivatives and Integrals

The derivative of $e^{i k x}$ is $i k e^{i k x}$. This great fact puts the Fourier functions $e^{i k x}$ in first place for applications. They are eigenfunctions for $d / d x$ (and the eigenvalues are $\lambda=i k$). Differential equations with constant coefficients are naturally solved by Fourier series.

Multiply by $i k$ The derivative of $F(x)=\sum c_{k} e^{i k x}$ is $d F / d x=\sum i k c_{k} e^{i k x}$

The second derivative has coefficients $(i k)^{2} c_{k}=-\boldsymbol{k}^{\mathbf{2}} c_{k}$. High frequencies are growing stronger. And in the opposite direction (when we integrate), we divide by $i k$ and high frequencies get weaker. The solution becomes smoother. Please look at this example :

$$
\begin{aligned}
& \text { Response } \mathbf{1} /\left(\boldsymbol{k}^{\mathbf{2}}+\mathbf{1}\right) \quad-\frac{d^{2} y}{d x^{2}}+y=e^{i k x} \quad \text { is solved by } \quad y(x)=\frac{e^{i k x}}{\boldsymbol{k}^{\mathbf{2}}+\mathbf{1}} \\
& \text { to frequency } \boldsymbol{k}
\end{aligned}
$$

This was a typical problem in Chapter 2. The transfer function is $1 /\left(k^{2}+1\right)$. There we learned: The forcing function $e^{i k x}$ is exponential so the solution is exponential.

All we are doing now is superposition. Allow all the exponentials at once !

$$
\begin{equation*}
-\frac{d^{2} y}{d x^{2}}+y=\sum c_{k} e^{i k x} \quad \text { is solved by } \quad y(x)=\sum \frac{c_{k} e^{i k x}}{\boldsymbol{k}^{2}+\mathbf{1}} \tag{26}
\end{equation*}
$$

1. Derivative rule $\boldsymbol{d} \boldsymbol{F} / \boldsymbol{d} \boldsymbol{x}$ has Fourier coefficients $\boldsymbol{i} \boldsymbol{k}_{\boldsymbol{k}}^{\boldsymbol{k}}$ (energy moves to high k).
2. Shift rule $\boldsymbol{F}(\boldsymbol{x}-\boldsymbol{s})$ has Fourier coefficients $\boldsymbol{e}^{-\boldsymbol{i} \boldsymbol{k} \boldsymbol{c}} \boldsymbol{c}_{\boldsymbol{k}}$ (no change in energy).

Application: Laplace's Equation in a Circle

Our first application is to Laplace's equation $u_{x x}+u_{y y}=0$ (Section 7.4). The idea is to construct $u(x, y)$ as an infinite series, choosing its coefficients to match $u_{0}(x, y)$ along the boundary. The shape of the boundary is crucial, and we take a circle of radius 1 .

Begin with the solutions $1, r \cos \theta, r \sin \theta, r^{2} \cos 2 \theta, r^{2} \sin 2 \theta, \ldots$ to Laplace's equation. Combinations of these special solutions give all solutions in the circle:

$$
\begin{equation*}
u(r, \theta)=a_{0}+a_{1} r \cos \theta+b_{1} r \sin \theta+a_{2} r^{2} \cos 2 \theta+b_{2} r^{2} \sin 2 \theta+\cdots \tag{27}
\end{equation*}
$$

It remains to choose the constants a_{k} and b_{k} to make $u=u_{0}$ on the boundary. For a circle, θ and $\theta+2 \pi$ give the same point. This means that $u_{0}(\theta)$ is periodic :

$$
\begin{equation*}
\text { Set } r=1 \quad u_{0}(\theta)=a_{0}+a_{1} \cos \theta+b_{1} \sin \theta+a_{2} \cos 2 \theta+b_{2} \sin 2 \theta+\cdots \tag{28}
\end{equation*}
$$

This is exactly the Fourier series for u_{0}. The constants a_{k} and b_{k} must be the Fourier coefficients of $u_{0}(\theta)$. Thus Laplace's boundary value problem is completely solved, if an infinite series (27) is acceptable as the solution.
Example 8 Point source $u_{0}=\delta(\theta)$. The boundary is held at $u_{0}=0$, except for the source at $x=1, y=0$ (where $\theta=0$). Find the temperature $u(r, \theta)$ inside the circle.

Delta function $\quad u_{0}(\theta)=\frac{1}{2 \pi}+\frac{1}{\pi}(\cos \theta+\cos 2 \theta+\cos 3 \theta+\cdots)=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} e^{i n \theta}$
Inside the circle, each $\cos n \theta$ is multiplied by r^{n} to solve Laplace's equation:

$$
\begin{equation*}
\text { Inside the circle } \quad u(r, \theta)=\frac{1}{2 \pi}+\frac{1}{\pi}\left(r \cos \theta+r^{2} \cos 2 \theta+r^{3} \cos 3 \theta+\cdots\right) \tag{29}
\end{equation*}
$$

Poisson managed to sum this infinite series! It involves a series of powers $\left(r e^{i \theta}\right)^{n}$. His sum gives the response at every (r, θ) to the point source at $r=1, \theta=0$:

At the center $r=0$, this produces the average of $u_{0}=\delta(\theta)$ which is $a_{0}=1 / 2 \pi$. On the boundary $r=1$, this gives $u=0$ except $u=\infty$ at the point where $\cos 0=1$.

Example $9 u_{0}(\theta)=1$ on the top half of the circle and $u_{0}=-1$ on the bottom half.
Solution The boundary values u_{0} are a square wave $S W$. We know its sine series:

$$
\begin{equation*}
\text { Square wave for } \boldsymbol{u}_{\mathbf{0}}(\boldsymbol{\theta}) \quad S W(\theta)=\frac{4}{\pi}\left[\frac{\sin \theta}{1}+\frac{\sin 3 \theta}{3}+\frac{\sin 5 \theta}{5}+\cdots\right] \tag{31}
\end{equation*}
$$

Inside the circle, multiplying by r, r^{3}, r^{5}, \ldots gives fast decay of high frequencies :

$$
\begin{equation*}
\text { Rapid decay inside } \quad u(r, \theta)=\frac{4}{\pi}\left[\frac{r \sin \theta}{1}+\frac{r^{3} \sin 3 \theta}{3}+\frac{r^{5} \sin 5 \theta}{5}+\cdots\right] \tag{32}
\end{equation*}
$$

Laplace's equation has smooth solutions inside, even when $u_{0}(\theta)$ is not smooth.

Problem Set 8.1

1 (a) To prove that $\cos n x$ is orthogonal to $\cos k x$ when $k \neq n$, use the formula $(\cos n x)(\cos k x)=\frac{1}{2} \cos (n+k) x+\frac{1}{2} \cos (n-k) x$. Integrate from $x=0$ to $x=\pi$. What is $\int \cos ^{2} k x d x$?
(b) From 0 to $\pi, \cos x$ is not orthogonal to $\sin x$. The period has to be 2π :

$$
\text { Find } \int_{0}^{\pi}(\sin x)(\cos x) d x \text { and } \int_{-\pi}^{\pi}(\sin x)(\cos x) d x \text { and } \int_{0}^{2 \pi}(\sin x)(\cos x) d x
$$

2 Suppose $F(x)=x$ for $0 \leq x \leq \pi$. Draw graphs for $-2 \pi \leq x \leq 2 \pi$ to show three extensions of F : a 2π-periodic even function and a 2π-periodic odd function and a π-periodic function.

3 Find the Fourier series on $-\pi \leq x \leq \pi$ for
(a) $f_{1}(x)=\sin ^{3} x$, an odd function (sine series, only two terms)
(b) $f_{2}(x)=|\sin x|$, an even function (cosine series)
(c) $f_{3}(x)=x$ for $-\pi \leq x \leq \pi$ (sine series with jump at $x=\pi$)

4 Find the complex Fourier series $e^{x}=\sum c_{k} e^{i k x}$ on the interval $-\pi \leq x \leq \pi$. The even part of a function is $\frac{1}{2}(f(x)+f(-x))$, so that $f_{\text {even }}(x)=f_{\text {even }}(-x)$. Find the cosine series for $f_{\text {even }}$ and the sine series for $f_{\text {odd }}$. Notice the jump at $x=\pi$.

5 From the energy formula (21), the square wave sine coefficients satisfy

$$
\pi\left(b_{1}^{2}+b_{2}^{2}+\cdots\right)=\int_{-\pi}^{\pi}|S W(x)|^{2} d x=\int_{-\pi}^{\pi} 1 d x=2 \pi
$$

Substitute the numbers b_{k} from equation (8) to find that $\pi^{2}=8\left(1+\frac{1}{9}+\frac{1}{25}+\cdots\right)$.
6 If a square pulse is centered at $x=0$ to give

$$
f(x)=1 \quad \text { for } \quad|x|<\frac{\pi}{2}, \quad f(x)=0 \quad \text { for } \quad \frac{\pi}{2}<|x|<\pi
$$

draw its graph and find its Fourier coefficients a_{k} and b_{k}.

7 Plot the first three partial sums and the function $x(\pi-x)$:

$$
x(\pi-x)=\frac{8}{\pi}\left(\frac{\sin x}{1}+\frac{\sin 3 x}{27}+\frac{\sin 5 x}{125}+\cdots\right), 0<x<\pi
$$

Why is $1 / k^{3}$ the decay rate for this function? What is its second derivative?
8 Sketch the 2π-periodic half wave with $f(x)=\sin x$ for $0<x<\pi$ and $f(x)=0$ for $-\pi<x<0$. Find its Fourier series.

9 Suppose $G(x)$ has period $2 L$ instead of 2π. Then $G(x+2 L)=G(x)$. Integrals go from $-L$ to L or from 0 to $2 L$. The Fourier formulas change by a factor π / L :
The coefficients in $G(x)=\sum_{-\infty}^{\infty} \boldsymbol{C}_{k} e^{i k \pi x / L}$ are $\boldsymbol{C}_{k}=\frac{1}{2 L} \int_{-L}^{L} G(x) e^{-i k \pi x / L} d x$. Derive this formula for C_{k} : Multiply the first equation for $G(x)$ by \qquad and integrate both sides. Why is the integral on the right side equal to $2 L C_{k}$?

10 For $G_{\text {even, }}$ use Problem 9 to find the cosine coefficient A_{k} from $\left(C_{k}+C_{-k}\right) / 2$:
$G_{\text {even }}(x)=\sum_{0}^{\infty} A_{k} \cos \frac{k \pi x}{L} \quad$ has $A_{k}=\frac{1}{L} \int_{0}^{L} G_{\operatorname{even}}(x) \cos \frac{k \pi x}{L} d x$.
$G_{\text {even }}$ is $\frac{1}{2}(G(x)+G(-x))$. Exception for $A_{0}=C_{0}$: Divide by $2 L$ instead of L.
11 Problem 10 tells us that $\boldsymbol{a}_{\boldsymbol{k}}=\frac{\mathbf{1}}{\mathbf{2}}\left(\boldsymbol{c}_{\boldsymbol{k}}+\boldsymbol{c}_{-\boldsymbol{k}}\right)$ on the usual interval from 0 to $\boldsymbol{\pi}$. Find a similar formula for b_{k} from c_{k} and c_{-k}. In the reverse direction, find the complex coefficient c_{k} in $F(x)=\sum c_{k} e^{i k x}$ from the real coefficients a_{k} and b_{k}.
12 Find the solution to Laplace's equation with $u_{0}=\theta$ on the boundary. Why is this the imaginary part of $2\left(z-z^{2} / 2+z^{3} / 3 \cdots\right)=2 \log (1+z)$? Confirm that on the unit circle $z=e^{i \theta}$, the imaginary part of $2 \log (1+z)$ agrees with θ.

13 If the boundary condition for Laplace's equation is $u_{0}=1$ for $0<\theta<\pi$ and $u_{0}=0$ for $-\pi<\theta<0$, find the Fourier series solution $u(r, \theta)$ inside the unit circle. What is u at the origin $r=0$?
14 With boundary values $u_{0}(\theta)=1+\frac{1}{2} e^{i \theta}+\frac{1}{4} e^{2 i \theta}+\cdots$, what is the Fourier series solution to Laplace's equation in the circle? Sum this geometric series.

15 (a) Verify that the fraction in Poisson's formula (30) satisfies Laplace's equation.
(b) Find the response $u(r, \theta)$ to an impulse at $x=0, y=1$ (where $\theta=\frac{\pi}{2}$).

16 With complex exponentials in $F(x)=\sum c_{k} e^{i k x}$, the energy identity (21) changes to $\int_{-\pi}^{\pi}|F(x)|^{2} d x=2 \pi \sum\left|c_{k}\right|^{2}$. Derive this by integrating $\left(\sum c_{k} e^{i k x}\right)\left(\sum \bar{c}_{k} e^{-i k x}\right)$.

17 A centered square wave has $F(x)=1$ for $|x| \leq \pi / 2$.
(a) Find its energy $\int|F(x)|^{2} d x$ by direct integration
(b) Compute its Fourier coefficients c_{k} as specific numbers
(c) Find the sum in the energy identity (Problem 16).
$18 \quad F(x)=1+(\cos x) / 2+\cdots+(\cos n x) / 2^{n}+\cdots$ is analytic : infinitely smooth.
(a) If you take 10 derivatives, what is the Fourier series of $d^{10} F / d x^{10}$?
(b) Does that series still converge quickly? Compare n^{10} with 2^{n} for $n=2^{10}$.

19 If $f(x)=1$ for $|x| \leq \pi / 2$ and $f(x)=0$ for $\pi / 2<|x|<\pi$, find its cosine coefficients. Can you graph and compute the Gibbs overshoot at the jumps?

20 Find all the coefficients a_{k} and b_{k} for F, I, and D on the interval $-\pi \leq x \leq \pi$:

$$
F(x)=\delta\left(x-\frac{\pi}{2}\right) \quad I(x)=\int_{0}^{x} \delta\left(x-\frac{\pi}{2}\right) d x \quad D(x)=\frac{d}{d x} \delta\left(x-\frac{\pi}{2}\right) .
$$

21 For the one-sided tall box function in Example 4, with $F=1 / h$ for $0 \leq x \leq h$, what is its odd part $\frac{1}{2}(F(x)-F(-x))$? I am surprised that the Fourier coefficients of this odd part disappear as h approaches zero and $F(x)$ approaches $\delta(x)$.
22 Find the series $F(x)=\sum c_{k} e^{i k x}$ for $F(x)=e^{x}$ on $-\pi \leq x \leq \pi$. That function e^{x} looks smooth, but there must be a hidden jump to get coefficients c_{k} proportional to $1 / k$. Where is the jump?

23 (a) (Old particular solution) Solve $A y^{\prime \prime}+B y^{\prime}+C y=e^{i k x}$.
(b) (New particular solution) Solve $A y^{\prime \prime}+B y^{\prime}+C y=\sum c_{k} e^{i k x}$.

