
434 Chapter 8. Fourier and Laplace Transforms

8.1 Fourier Series

This section explains three Fourier series:sines, cosines, and exponentialseikx .
Square waves (1 or 0 or �1) are great examples, with delta functions in the derivative.
We look at a spike, a step function, and a ramp—and smoother functions too.

Start with sinx. It has period2� since sin.xC 2�/ D sinx. It is an odd function since
sin.�x/ D � sinx, and it vanishes atx D 0 andx D �. Every function sinnx has those
three properties, and Fourier looked atinfinite combinations of the sines:

Fourier sine series S.x/ D b1 sinx C b2 sin2x C b3 sin3x C � � � D
1X

nD1

bn sinnx (1)

If the numbersb1; b2; b3; : : : drop off quickly enough (we are foreshadowing the
importance of their decay rate) then the sumS.x/ will inherit all three properties:

Periodic S.x C 2�/ D S.x/ Odd S.�x/ D �S.x/ S.0/ D S.�/ D 0

200 years ago, Fourier startled the mathematicians in France bysuggesting thatany odd
periodic functionS.x/ could be expressed as an infinite series of sines. This idea started
an enormous development of Fourier series. Our first step is to find the number bk that
multiplies sin kx. The function S.x/ is “transformed” to a sequence ofb’s.

SupposeS.x/ D
P

bn sinnx. Multiply both sides bysinkx. Integrate from0 to � :
Z �

0

S.x/ sinkx dx D
Z �

0

b1 sinx sinkx dxC � � � C
Z �

0

bk sinkx sinkx dxC � � � (2)

On the right side, all integrals are zero except the highlighted one withn D k. This
property of “orthogonality” will dominate the whole chapter. For sines, integralD 0 is a
fact of calculus :

Sines are orthogonal
Z �

0

sinnx sinkx dx D 0 if n ¤ k : (3)

Zero comes quickly if we integrate
R

cosmx dx D
�

sinmx
m

��
0 D 0 � 0. So we use this:

Product of sines sinnx sinkx D 1

2
cos.n � k/x � 1

2
cos.nC k/x : (4)

Integrating cos.n � k/x and cos.nC k/x gives zero, proving orthogonality of the sines.
The exception is whenn D k. Then we are integrating.sinkx/2 D 1

2
� 1

2
cos2kx:

Z �

0

sinkx sinkx dx D
Z �

0

1

2
dx �

Z �

0

1

2
cos2kx dx D �

2
: (5)

The highlighted term in equation (2) is.�=2/bk. Multiply both sides by2=� to findbk.



8.1. Fourier Series 435

Sine coefficients
S.�x/ D �S.x/

bk D
2

�

Z �

0

S.x/ sinkx dx D 1

�

Z �

��
S.x/ sinkx dx: (6)

Notice thatS.x/ sinkx is even(equal integrals from�� to 0 and from0 to �).
I will go immediately to the most important example of a Fourier sine series.

S.x/ is an odd square wavewith SW.x/ D 1 for 0 < x < �. It is drawn in
Figure 8.1 as an odd function (with period2�) that vanishes atx D 0 andx D �.

x

SW.x/ D 1

�� 0 � 2�

Figure 8.1: The odd square wave withSW.x C 2�/ D SW.x/ D f1 or 0 or�1g.

Example 1 Find the Fourier sine coefficientsbk of the odd square waveSW.x/.

Solution Fork D 1; 2; : : : use formula (6) withS.x/ D 1 between0 and�:

bk D
2

�

Z �

0

sinkx dx D 2

�

�� coskx

k

��

0
D 2

�

�
2

1
;

0

2
;

2

3
;

0

4
;

2

5
;

0

6
; : : :

�
(7)

The even-numbered coefficientsb2k are all zero because cos2k� D cos0 D 1. The odd-
numbered coefficientsbk D 4=�k decrease at the rate1=k. We will see that same1=k

decay rate for all functions formed fromsmooth pieces and jumps.

Put those coefficients4=�k and zero into the Fourier sine series forSW.x/:

Square wave SW.x/ D 4

�

�
sinx

1
C sin3x

3
C sin5x

5
C sin7x

7
C � � �

�
(8)

Figure 8.2 graphs this sum after one term, then two terms, andthen five terms. You can
see the all-importantGibbs phenomenonappearing as these “partial sums” include more
terms. Away from the jumps, we safely approachSW.x/ D 1 or �1. At x D �=2, the
series gives a beautiful alternating formula for the number� :

1 D 4

�

�
1

1
� 1

3
C 1

5
� 1

7
C � � �

�
so that � D 4

�
1

1
� 1

3
C 1

5
� 1

7
C � � �

�
: (9)

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps.
Its height approaches1:18 : : : and it does not decrease with more terms of the series.
This overshoot is the one greatest obstacle to calculation of all discontinuous functions
(like shock waves). We try hard to avoid Gibbs but sometimes we can’t.
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�
sinx
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�

Gibbs overshoot�! SW D 1

�
2

Figure 8.2: The sumsb1 sinx C � � � C bN sinNx overshoot the square wave near jumps.

Fourier Cosine Series

The cosine series applies toeven functionsC.x/ D C.�x/. They are symmetric across0 :

Cosine series C.x/ D a0 C a1 cosx C a2 cos2x C � � � D a0 C
1X

nD1

an cosnx: (10)

Every cosine has period2�. Figure 8.3 shows two even functions, therepeating ramp
RR.x/ and theup-down train UD.x/ of delta functions. That sawtooth rampRR is the
integral of the square wave. The delta functions inUD give the derivative of the square
wave. (For sines, the integral and derivative are cosines.)RR andUD will be valuable
examples, one smoother thanSW , one less smooth.

First we find formulas for the cosine coefficientsa0 andak . The constant terma0 is
the average value of the functionC.x/ :

a0 D average a0 D
1

�

Z �

0

C.x/ dx D 1

2�

Z �

��
C.x/ dx: (11)

I just integrated every term in the cosine series (10) from0 to �. On the right side, the
integral ofa0 is a0� (divide both sides by�). All other integrals are zero :

Z �

0

cosnx dx D
�

sinnx

n

��

0

D 0 � 0 D 0: (12)

In words, the constant function1 is orthogonal to cosnx over the intervalŒ0; ��.
The other cosine coefficientsak come from theorthogonality of cosines. As with sines,

we multiply both sides of (10) by coskx and integrate from0 to �:
Z �

0

C.x/ coskx dx D
Z �

0

a0 coskx dxC
Z �

0

a1 cosx coskx dxC��C
Z �

0

ak.coskx/2 dxC��

You know what is coming. On the right side, only the highlighted term can be nonzero. For
k > 0, that bold nonzero term isak�=2. Multiply both sides by2=� to findak :

Cosine coefficients
C.�x/ D C.x/

ak D
2

�

Z �

0

C.x/ coskx dx D 1

�

Z �

��
C.x/ coskx dx : (13)
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x
�� 0 � 2�

RR.x/Djxj

Repeating RampRR.x/

Integral of Square Wave

x�� 0 � 2�

�2ı.x C �/

2ı.x/

�2ı.x � �/

2ı.x � 2�/

Up-down UD.x/

Derivative of Square Wave

Figure 8.3: The repeating rampRR and the up-downUD (periodic spikes) are even.
The slope ofRR is �1 then1 : odd square waveSW . The next derivative isUD : ˙ 2ı.

Example 2 Find the cosine coefficients of the rampRR.x/ and the up-downUD.x/.

Solution The simplest way is to start with the sine series for the square wave :

SW.x/ D 4

�

�
sinx

1
C sin3x

3
C sin5x

5
C sin7x

7
C � � �

�
D slope ofRR

Take the derivative of every term to produce cosines in the up-down delta function :

Up-down spikes UD.x/ D 4

�
Œcosx C cos3x C cos5x C cos7x C � � � � : (14)

Those coefficients don’t decay at all. The terms in the seriesdon’t approach zero, so
officially the series cannot converge. Nevertheless it is correct and important. Atx D 0,
the cosines are all1 and their sum isC1. At x D �, the cosines are all�1. Then
their sum is�1. (The downward spike is�2ı.x � �/.) The true way to recognizeı.x/

is by the integral test
R

ı.x/f .x/ dx D f .0/ and Example 3 will do this.
For the repeating ramp, we integrate the square wave series for SW.x/ and adda0.

The average ramp height isa0 D �=2, halfway from0 to � :

Ramp series RR.x/ D �

2
� �

4

�
cosx

12
C cos3x

32
C cos5x

52
C cos7x

72
C � � �

�
: (15)

The constant of integration isa0. Those coefficientsak drop off like1=k2. They could
be computed directly from formula (13) using

R
x coskx dx, and integration by parts (or

an appeal toMathematicaor Maple). It was much easier to integrate every sine separately
in SW.x/, which makes clear the crucial point: Each “degree of smoothness” in the
function brings a faster decay rate of its Fourier coefficients ak and bk.
Every integration divides those numbers byk.

No decay
1=k decay
1=k2 decay
1=k4 decay
rk decay withr < 1

Delta functions (with spikes)
Stepfunctions (with jumps)
Ramp functions (with corners)
Spline functions (jumps inf 000)
Analytic functions like1=.2� cosx/
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The Fourier Series for a Delta Function

Example 3 Find the (cosine) coefficients of thedelta functionı.x/, made2�-periodic.

Solution The spike inı.x/ occurs atx D 0. All the integrals are1, because the
cosine of0 is 1. We divide by2� for a0 and by� for the other cosine coefficientsak .

Average a0 D
1

2�

Z �

��
ı.x/ dx D 1

2�
Cosines ak D

1

�

Z �

��
ı.x/ coskx dx D 1

�

Then the series for the delta function hasall cosines in equal amounts: No decay.

Delta function ı.x/ D 1

2�
C 1

�
Œ cosx C cos2x C cos3x C � � � � : (16)

This series cannot truly converge (its terms don’t approachzero). But we can graph the
sum after cos5x and after cos10x. Figure 8.4 shows how these “partial sums” are doing
their best to approachı.x/. They oscillate faster while going higher.

There is a neat formula for the sumıN that stops at cosNx. Start by writing each term
2 cosx aseix C e�ix . We get a geometric progression frome�iNx up toeiNx.

ıN D
1

2�

h
1C eix C e�ix C � � � C eiNx C e�iNx

i
D 1

2�

sin.N C 1
2
/x

sin 1
2
x

: (17)

This is the function graphed in Figure 8.4.

�� �0

ı5.x/

ı10.x/

height 11=2�

height21=2�

height�1=2�

height1=2�

Figure 8.4: The sumsıN .x/ D .1C 2 cosx C � � � C 2 cosNx/=2� try to approachı.x/.
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Complete Series: Sines and Cosines

Over the half-periodŒ0; ��, the sines are not orthogonal to all the cosines. In fact the
integral of sinx times1 is not zero. So for functionsF.x/ that are not odd or even, we must
move to thecomplete series(sines plus cosines) on the full interval. Since our functions
are periodic, that “full interval” can beŒ��; �� or Œ0; 2��. We have botha’s andb’s.

Complete Fourier seriesF.x/ D a0 C
1X

nD1

an cosnx C
1X

nD1

bn sinnx : (18)

On every “2� interval” the sines and cosines are orthogonal. We find the Fourier
coefficientsak and bk in the usual way:Multiply (18) by 1 and coskx and sinkx.
Then integrate both sides from�� to � to geta0 and ak and bk.

a0 D
1

2�

Z �

��
F.x/ dx ak D

1

�

Z �

��
F.x/ coskx dx bk D

1

�

Z �

��
F.x/ sinkx dx

Orthogonality kills off infinitely many integrals and leaves only the one we want.
Another approach is to splitF.x/ D C.x/ C S.x/ into an even part and an odd part.

Then we can use the earlier cosine and sine formulas. The two parts are

C.x/ D Feven.x/ D F.x/C F.�x/

2
S.x/ D Fodd.x/ D F.x/ � F.�x/

2
: (19)

The even part gives thea’s and the odd part gives theb’s. Test on a square pulse from
x D 0 to x D h—this one-sided thin box function is not odd or even.

Example 4 Find thea’s andb’s if F.x/ D tall box D
�

1=h for 0 < x < h

0 for h < x < 2�

Solution The integrals fora0 andak andbk stop atx D h whereF.x/ drops to zero.
The coefficients decay like1=k because of the jump atx D 0 and the drop atx D h :

Coefficients of square pulse a0 D
1

2�

Z h

0

1=h dx D 1

2�
D average

ak D
1

�h

Z h

0

coskx dx D sinkh

�kh
bk D

1

�h

Z h

0

sinkx dx D 1 � coskh

�kh
:

Important As h approaches zero, the box gets thinner and taller. Its width is h and its
height is1=h and its area is1. The box approaches a delta function ! And its Fourier
coefficients approach the coefficients of the delta functionash! 0 :

a0 D
1

2�
ak D

sin kh

�kh
approaches

1

�
bk D

1 � coskh

�kh
approaches0: (20)
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Energy in Function = Energy in Coefficients

There is an extremely important equation (the energy identity) that comes from integrat-
ing .F.x//2. When we square the Fourier series ofF.x/, and integrate from�� to �,
all the “cross terms” drop out. The only nonzero integrals come from 12 and cos2 kx

and sin2 kx. Those integrals give2� and� and�, multiplied bya2
0 anda2

k
andb2

k
:

Energy
�R

��

.F.x//2dx D 2�a2
0
C �.a2

1
C b2

1
C a2

2
C b2

2
C � � � /: (21)

The energy inF.x/ equals the energy in the coefficients. The left side is like the length
squared of a vector, exceptthe vector is a function. The right side comes from an in-
finitely long vector ofa’s andb’s. The lengths are equal, which says that the Fourier trans-
form from function to vector is like an orthogonal matrix. Normalized by

p
2� and

p
�,

sines and cosines are an orthonormal basis in function space.

Complex Exponentials ckeikx

This is a small step and we have to take it. In place of separateformulas fora0 andak

andbk, we will haveone formulafor all the complex coefficientsck . And the function
F.x/ might be complex (as in quantum mechanics). The Discrete Fourier Transform will
be much simpler when we useN complex exponentials for a vector.

We practice with the complex infinite series for a2�-periodic function :

Complex Fourier series F.x/ D c0 C c1eix C c�1e�ix C � � � D
1X

nD�1
cneinx (22)

If every cn D c�n, we can combineeinx with e�inx into 2 cosnx. Then (22) is the
cosine series for an even function. If everycn D �c�n, we useeinx � e�inx D 2i sinnx.
Then (22) is the sine series for an odd function and thec’s are pure imaginary.

To find ck, multiply (22) by e�ikx (noteikx) and integrate from �� to �:

�Z

��

F.x/e�ikxdx D
�Z

��

c0e�ikxdx C
�Z

��

c1eixe�ikxdx C � � C
�Z

��

ckeikxe�ikxdx C � �

The complex exponentials are orthogonal.Every integral on the right side is zero,
except for the highlighted term (whenn D k andeikxe�ikx D 1). The integral of1 is 2�.
That surviving term gives the formula forck :

Fourier coefficients

�Z

��

F.x/e�ikx dx D 2�ck for k D 0;˙1; : : : l (23)

Notice thatc0 D a0 is still the average ofF.x/. The orthogonality ofeinx andeikx is
checked by integratingeinx timese�ikx . Remember to use that complex conjugatee�ikx .
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Example 5 For a delta function, all integrals are1 and everyck is 1=2�. Flat transform!

Example 6 Findck for the2�-periodic shifted boxF.x/ D
�

1 for s � x � s C h

0 elsewhere inŒ��; ��

Solution The integrals (23) haveF D 1 from s to s C h :

ck D
1

2�

Z s C h

s
1 � e�ikx dx D 1

2�

"
e�ikx

�ik

#s C h

s

D e�iks

 
1 � e�ikh

2�ik

!
: (24)

Notice above all the simple effect of the shift bys. It “modulates” eachck by e�iks.
The energy is unchanged, the integral ofjF j2 just shifts, andje�iksj D 1.

Shift F.x/ to F.x � s/  ! Multiply every ck by e�iks. (25)

Example 7 A centered box has shifts D �h=2. It becomes balanced aroundx D 0.
This even function equals1 on the interval from�h=2 to h=2:

Centered by s D �h

2
ck D eikh=2 1 � e�ikh

2�ik
D 1

2�

sin.kh=2/

k=2
:

Divide byh for a tall box. The ratio of sin.kh=2/ to kh=2 is called the “sinc” of kh=2.

Tall box
Fcentered

h
D 1

2�

1X

�1
sinc

�
kh

2

�
eikx D

�
1=h for � h=2 � x � h=2

0 elsewhere inŒ��; ��

That division byh produces areaD 1. Every coefficient approaches1
2�

as h ! 0.
The Fourier series for the tall thin box again approaches theFourier series forı.x/.

The Rules for Derivatives and Integrals

The derivative ofeikx is ikeikx. This great fact puts the Fourier functionseikx in first
place for applications. They are eigenfunctions ford=dx (and the eigenvalues are� D ik).
Differential equations with constant coefficients are naturally solved by Fourier series.

Multiply by ik The derivative of F.x/ D
X

ckeikx is dF=dx D
X

ikckeikx

The second derivative has coefficients.ik/2ck D �k2ck . High frequencies are growing
stronger. And in the opposite direction (when we integrate), we divide byik and high
frequencies get weaker. The solution becomes smoother. Please look at this example :

Response1=.k2 C 1/

to frequency k
� d 2y

dx2
C y D eikx is solved by y.x/ D eikx

k2 C 1

This was a typical problem in Chapter 2. The transfer function is 1=.k2 C 1/. There we
learned : The forcing functioneikx is exponential so the solution is exponential.
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All we are doing now is superposition. Allow all the exponentials at once !

�d 2y

dx2
C y D

X
ckeikx is solved by y.x/ D

X ckeikx

k2 C 1
: (26)

1. Derivative rule dF =dx has Fourier coefficientsikck (energy moves to highk).

2. Shift rule F.x � s/ has Fourier coefficientse�iksck (no change in energy).

Application: Laplace’s Equation in a Circle

Our first application is to Laplace’s equationuxx C uyy D 0 (Section 7.4). The idea is
to constructu.x; y/ as an infinite series, choosing its coefficients to matchu0.x; y/

along the boundary. The shape of the boundary is crucial, andwe take a circle of radius1.
Begin with the solutions 1,r cos� , r sin� , r2 cos2� , r2 sin2� , ... to Laplace’s

equation. Combinations of these special solutions give allsolutions in the circle:

u.r; �/ D a0 C a1r cos� C b1r sin� C a2r2 cos2� C b2r2 sin2� C � � � (27)

It remains to choose the constantsak andbk to makeu D u0 on the boundary. For a circle,
� and� C 2� give the same point. This means thatu0.�/ is periodic :

Setr D 1 u0.�/ D a0 C a1 cos� C b1 sin� C a2 cos2� C b2 sin2� C � � � (28)

This is exactly the Fourier series foru0. The constantsak and bk must be the Fourier
coefficients ofu0.�/. Thus Laplace’s boundary value problem is completely solved, if
an infinite series (27) is acceptable as the solution.

Example 8 Point sourceu0 D ı.�/. The boundary is held atu0 D 0, except for the
source atx D 1, y D 0 (where� D 0). Find the temperatureu.r; �/ inside the circle.

Delta function u0.�/ D 1

2�
C 1

�
.cos� C cos2� C cos3� C � � � / D 1

2�

1X

�1
ein�

Inside the circle, each cosn� is multiplied byrn to solve Laplace’s equation :

Inside the circle u.r; �/ D 1

2�
C 1

�
.r cos� C r2 cos2� C r3 cos3� C � � � / (29)

Poisson managed to sum this infinite series ! It involves a series of powers.rei�/n.
His sum gives the response at every.r; �/ to the point source atr D 1, � D 0:

Temperature inside circle u.r; �/ D 1

2�

1 � r2

1C r2 � 2r cos�
(30)

At the centerr D 0, this produces the average ofu0 D ı.�/ which is a0 D 1=2�.
On the boundaryr D 1, this givesu D 0 exceptu D1 at the point where cos0 D 1.
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Example 9 u0.�/ D 1 on the top half of the circle andu0 D �1 on the bottom half.

Solution The boundary valuesu0 are a square waveSW . We know its sine series :

Square wave foru0.�/ SW.�/ D 4

�

�
sin�

1
C sin3�

3
C sin5�

5
C � � �

�
(31)

Inside the circle, multiplying byr , r3, r5, : : : gives fast decay of high frequencies :

Rapid decay inside u.r; �/ D 4

�

�
r sin�

1
C r3 sin3�

3
C r5 sin5�

5
C � � �

�
(32)

Laplace’s equation has smooth solutions inside, even whenu0.�/ is not smooth.

Problem Set 8.1

1 (a) To prove that cosnx is orthogonal to coskx whenk ¤ n, use the formula
.cosnx/ .coskx/ D 1

2
cos.nC k/x C 1

2
cos.n � k/x. Integrate fromx D 0

to x D �. What is
R

cos2 kx dx ?

(b) From0 to �, cosx is not orthogonal to sinx. The period has to be2� :

Find

�Z

0

.sinx/ .cosx/ dx and

�Z

��

.sinx/ .cosx/ dx and

2�Z

0

.sinx/ .cosx/ dx:

2 SupposeF.x/ D x for 0 � x � �. Draw graphs for�2� � x � 2� to show
three extensions ofF : a 2�-periodic even function and a2�-periodic odd function
and a�-periodic function.

3 Find the Fourier series on�� � x � � for

(a) f1.x/ D sin3 x, an odd function (sine series, only two terms)

(b) f2.x/ D j sinxj, an even function (cosine series)

(c) f3.x/ D x for �� � x � � (sine series with jump atx D �)

4 Find the complex Fourier seriesex D
P

ckeikx on the interval�� � x � �.
The even part of a function is1

2
.f .x/C f .�x//, so thatfeven.x/ D feven.�x/. Find

the cosine series forfevenand the sine series forfodd. Notice the jump atx D �.

5 From the energy formula (21), the square wave sine coefficients satisfy

�.b2
1 C b2

2 C � � � / D
Z �

��

jSW.x/j2 dx D
Z �

��

1 dx D 2�:

Substitute the numbersbk from equation (8) to find that�2 D 8.1C 1
9
C 1

25
C � � � /.

6 If a square pulse is centered atx D 0 to give

f .x/ D 1 for jxj < �

2
; f .x/ D 0 for

�

2
< jxj < �;

draw its graph and find its Fourier coefficientsak andbk.
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7 Plot the first three partial sums and the functionx.� � x/ :

x.� � x/ D 8

�

�
sinx

1
C sin3x

27
C sin5x

125
C � � �

�
; 0 < x < �:

Why is1=k3 the decay rate for this function? What is its second derivative?

8 Sketch the2�-periodic half wave withf .x/ D sinx for 0 < x < � andf .x/ D 0

for �� < x < 0. Find its Fourier series.

9 SupposeG.x/ has period2L instead of2�. ThenG.x C 2L/ D G.x/. Integrals
go from�L to L or from0 to 2L. The Fourier formulas change by a factor�=L :

The coefficients inG.x/ D
1P

�1
C keik�x=L are C k D

1

2L

LZ

�L

G.x/e�ik�x=Ldx:

Derive this formula forCk : Multiply the first equation forG.x/ by and
integrate both sides. Why is the integral on the right side equal to2LCk ?

10 ForGeven, use Problem 9 to find the cosine coefficientAk from .Ck C C�k/=2 :

Geven.x/ D
1P
0

Ak cos
k�x

L
has Ak D

1

L

LZ

0

Geven.x/ cos
k�x

L
dx:

Gevenis 1
2
.G.x/CG.�x//. Exception forA0 D C0 : Divide by2L instead ofL.

11 Problem 10 tells us thatak D
1

2
.ck C c�k/ on the usual interval from0 to �.

Find a similar formula forbk from ck andc�k . In the reverse direction, find the
complex coefficientck in F.x/ D

P
ckeikx from the real coefficientsak andbk .

12 Find the solution to Laplace’s equation withu0 D � on the boundary. Why is this
the imaginary part of2.z � z2=2C z3=3 � � � / D 2 log.1C z/? Confirm that on the
unit circlez D ei� , the imaginary part of2 log.1C z/ agrees with� .

13 If the boundary condition for Laplace’s equation isu0 D 1 for 0 < � < � and
u0 D 0 for �� < � < 0, find the Fourier series solutionu.r; �/ inside the unit
circle. What isu at the originr D 0 ?

14 With boundary valuesu0.�/ D 1C 1
2
ei� C 1

4
e2i� C � � � , what is the Fourier series

solution to Laplace’s equation in the circle? Sum this geometric series.

15 (a) Verify that the fraction in Poisson’s formula (30) satisfies Laplace’s equation.

(b) Find the responseu.r; �/ to an impulse atx D 0; y D 1 (where� D �
2

).

16 With complex exponentials inF.x/ D
P

ckeikx , the energy identity (21) changes to
�R

��

jF.x/j2 dx D 2�
P
jckj2. Derive this by integrating.

P
ckeikx/.

P
cke�ikx/.
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17 A centered square wave hasF.x/ D 1 for jxj � �=2.

(a) Find its energy
R
jF.x/j2 dx by direct integration

(b) Compute its Fourier coefficientsck as specific numbers

(c) Find the sum in the energy identity (Problem 16).

18 F.x/ D 1C .cosx/=2C � � � C .cosnx/=2n C � � � is analytic : infinitely smooth.

(a) If you take10 derivatives, what is the Fourier series ofd 10F=dx10?

(b) Does that series still converge quickly ? Comparen10 with 2n for n D 210.

19 If f .x/ D 1 for jxj � �=2 andf .x/ D 0 for �=2 < jxj < �, find its cosine
coefficients. Can you graph and compute the Gibbs overshoot at the jumps ?

20 Find all the coefficientsak andbk for F; I; andD on the interval�� � x � � :

F.x/ D ı
�
x � �

2

�
I.x/ D

Z x

0

ı
�
x � �

2

�
dx D.x/ D d

dx
ı
�
x � �

2

�
:

21 For the one-sided tall box function in Example 4, withF D 1=h for 0 � x � h,
what is its odd part1

2
.F.x/ � F.�x// ? I am surprised that the Fourier coefficients

of this odd part disappear ash approaches zero andF.x/ approachesı.x/.

22 Find the seriesF.x/ D
P

ckeikx for F.x/ D ex on�� � x � �. That function
ex looks smooth, but there must be a hidden jump to get coefficientsck proportional
to 1=k. Where is the jump ?

23 (a) (Old particular solution) SolveAy00 C By0 C Cy D eikx .

(b) (New particular solution) SolveAy00 C By0 C Cy D
P

ckeikx.




