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7.2 Positive Definite Matrices and the SVD

This chapter about applications ofATA depends on two important ideas in linear algebra.
These ideas have big parts to play, we focus on them now.

1. Positive definite symmetric matrices (bothATA andATCA are positive definite)

2. Singular Value Decomposition (A D U †V T gives perfect bases for the 4 subspaces)

Those are orthogonal matricesU and V in the SVD. Their columns are orthonormal
eigenvectors ofAAT and ATA. The entries in the diagonal matrix† are thesquare
rootsof the eigenvalues. The matricesAAT andATA have the same nonzero eigenvalues.

Section 6.5 showed that the eigenvectors of these symmetricmatrices are orthogonal.
I will show now thatthe eigenvalues ofATA are positive, if A has independent columns.

Start withATAx D �x. Then xTATAx D �xTx. Therefore� D jjAxjj2=jjxjj2 > 0

I separatedxTATAx into .Ax/T.Ax/ D jjAxjj2. We don’t have� D 0 becauseATA is
invertible (sinceA has independent columns). The eigenvalues must be positive.

Those are the key steps to understanding positive definite matrices. They give us three
tests onS—three ways to recognize when a symmetric matrixS is positive definite :

Positive
definite
symmetric

1. All the eigenvalues ofS are positive.

2. The “energy” xTSx is positive for all nonzero vectorsx.

3. S has the formS D ATA with independent columns inA.

There is also a test on the pivots.all > 0/ and a test onn determinants.all > 0/.

Example 1 Are these matrices positive definite ? When their eigenvalues are positive,
construct matricesA with S D ATA and find the positive energyxTSx.

(a) S D
�

4 0

0 1

�
(b) S D

�
5 4

4 5

�
(c) S D

�
4 5

5 4

�

Solution The answers areyes, yes, andno. The eigenvalues of those matricesS are

(a) 4 and1 : positive (b) 9 and1 : positive (c) 9 and�1 : not positive.

A quicker test than eigenvalues usestwo determinants : the1 by 1 determinantS11 and
the2 by 2 determinant ofS . Example (b) hasS11 D 5 and detS D 25 � 16 D 9 (pass).
Example (c) hasS11 D 4 but detS D 16� 25 D �9 (fail the test).
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Positive energy is equivalent to positive eigenvalues, whenS is symmetric. Let me
test the energyxTSx in all three examples. Two examples pass and the third fails :

Œx1 x2�

�
4 0

0 1

� �
x1

x2

�
D 4x2

1 C x2
2 > 0 Positive energy whenx ¤ 0

Œx1 x2�

�
5 4

4 5

� �
x1

x2

�
D 5x2

1 C 8x1x2 C 5x2
2 Positive energy whenx ¤ 0

Œx1 x2�

�
4 5

5 4

� �
x1

x2

�
D 4x2

1 C 10x1x2 C 4x2
2 Energy�2 when x D .1;�1/

Positive energy is a fundamental property. This is the best definition ofpositive definiteness.

When the eigenvalues are positive, there will be many matricesA that giveATA D S .
One choice ofA is symmetric and positive definite ! ThenATA is A2, and this choice
A D

p
S is a true square root ofS . The successful examples (a) and (b) haveS D A2 :

�
4 0

0 1

�
D
�

2 0

0 1

� �
2 0

0 1

�
and

�
5 4

4 5

�
D
�

2 1

1 2

� �
2 1

1 2

�

We know that all symmetric matrices have the formS D VƒV T with orthonormal
eigenvectors inV . The diagonal matrixƒ has a square root

p
ƒ, when all eigenvalues are

positive. In this caseA D
p

S D V
p

ƒV T is the symmetric positive definite square root :

ATA D
p

S
p

S D .V
p

ƒV T/.V
p

ƒV T/ D V
p

ƒ
p

ƒV T D S becauseV TV D I:

Starting from this unique square root
p

S , other choices ofA come easily. Multiply
p

S

by any matrixQ that has orthonormal columns (so thatQTQ D I ). ThenQ
p

S is another
choice forA (not a symmetric choice). In fact all choices come this way :

ATA D .Q
p

S/T .Q
p

S/ D
p

SQTQ
p

S D S: (1)

I will choose a particularQ in Example 1, to get particular choices ofA.

Example 1 (continued) ChooseQ D
�

0 �1

1 0

�
to multiply

p
S . ThenA D Q

p
S .

A D
�

0 �1

1 0

� �
2 0

0 1

�
D
�

0 �1

2 0

�
has S D ATA D

�
4 0

0 1

�

A D
�

0 �1

1 0

� �
2 1

1 2

�
D
�
�1 �2

2 1

�
has S D ATA D

�
5 4

4 5

�
:
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Positive Semidefinite Matrices

Positivesemidefinitematrices include positive definite matrices, and more. Eigenvalues of
S can be zero. Columns ofA can be dependent. The energyxTSx can be zero—but not
negative. This gives new equivalent conditions on a (possibly singular) matrixS D ST.

10 All eigenvalues ofS satisfy� � 0 (semidefinite allows zero eigenvalues).

20 The energy is nonnegative for everyx : xTSx � 0 (zero energy is allowed).

30 S has the formATA (everyA is allowed; its columns can be dependent).

Example 2 The first two matrices are singular and positive semidefinite—but not the
third :

(d) S D
�

0 0

0 1

�
(e) S D

�
4 4

4 4

�
(f) S D

�
�4 4

4 �4

�
.

The eigenvalues are1; 0 and8; 0 and�8; 0. The energiesxTSx arex2
2 and4.x1 C x2/2

and�4.x1 � x2/2. So the third matrix is actuallynegativesemidefinite.

Singular Value Decomposition

Now we start withA, square or rectangular. Applications also start this way—the matrix
comes from the model. The SVD splits any matrix intoorthogonalU timesdiagonal†
times orthogonalV

T
. Those orthogonal factors will give orthogonal bases for the four

fundamental subspaces associated withA.
Let me describe the goal for anym by n matrix, and then how to achieve that goal.

Find orthonormal bases v1; : : : ; vn for Rn and u1; : : : ; um for Rm so that

Av1 D �1u1 : : : Avr D �rur AvrC1 D 0 : : : Avn D 0 (2)

The rank ofA is r . Those requirements in (4) are expressed by a multiplicationAV D U †.
Ther nonzero singular values�1 � �2 � : : : � �r > 0 are on the diagonal of† :

AV D U † A

2
4v1 : : : vr : : : vn

3
5 D

2
4 u1 : : : ur : : : um

3
5

2
664

�1 0
: : :

�r

0 0

3
775 (3)

The lastn � r vectors inV are a basis for the nullspace ofA. The lastm � r vectors inU

are a basis for the nullspace ofAT. The diagonal matrix† is m by n, with r nonzeros.
Remember thatV �1 D V T, because the columnsv1; : : : ; vn are orthonormal inRn :

Singular Value Decomposition AV D U † becomes A D U †V T : (4)
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The SVD has orthogonal matricesU andV , containing eigenvectors ofAA
T

andA
T
A.

Comment. A square matrix is diagonalized by its eigenvectors :Axi D �i xi is like
Avi D �iui . But even ifA hasn eigenvectors, they may not be orthogonal. We needtwo
bases—an input basis ofv’s in Rn and an output basis ofu’s in Rm. With two bases, any
m by n matrix can be diagonalized. The beauty of those bases is thatthey can be chosen
orthonormal. ThenU TU D I andV TV D I .

Thev’s are eigenvectors of the symmetric matrixS D ATA. We can guarantee their
orthogonality, so thatvT

j vi D 0 for j ¤ i . That matrixS is positive semidefinite, so its
eigenvalues are�2

i � 0. The key to the SVD is thatAvj is orthogonal toAvi :

Orthogonal u’s .Avj /T.Avi / D v
T
j .ATAvi / D v

T
j .�2

i vi / D
�

�2
i if j D i

0 if j ¤ i
(5)

This says that the vectorsui D Avi=�i are orthonormal fori D 1; : : : ; r . They are a basis
for the column space ofA. And theu’s are eigenvectors of the symmetric matrixAAT,
which is usually different fromS D ATA (but the eigenvalues�2

1 ; : : : ; �2
r are the same).

Example 3 Find the input and output eigenvectorsv andu for the rectangular matrixA :

A D
�

2 2 0

�1 1 0

�
D U †V T:

Solution ComputeS D ATA and its unit eigenvectorsv1; v2; v3. The eigenvalues�2

are8; 2; 0 so the positive singular values are�1 D
p

8 and�2 D
p

2 :

ATA D

2
4

5 3 0

3 5 0

0 0 0

3
5 has v1 D

1

2

2
4
p

2p
2

0

3
5 ; v2 D

1

2

2
4
p

2

�
p

2

0

3
5 ; v3 D

2
4

0

0

1

3
5 :

The outputsu1 D Av1=�1 andu2 D Av2=�2 are also orthonormal, with�1 D
p

8 and
�2 D

p
2. Those vectorsu1 andu2 are in the column space ofA :

u1 D
�

2 2 0

�1 1 0

�
v1p

8
D
�

1

0

�
and u2 D

�
2 2 0

�1 1 0

�
v2p

2
D
�

0

1

�
:

ThenU D I and the Singular Value Decomposition for this2 by 3 matrix isU †V T :

A D
�

2 2 0

�1 1 0

�
D
�

1 0

0 1

� " p
8 0 0

0
p

2 0

#
1

2

2
4
p

2
p

2 0p
2 �

p
2 0

0 0 2

3
5

T

:
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The Fundamental Theorem of Linear Algebra

I think of the SVD as the final step in the Fundamental Theorem.First come thedimen-
sionsof the four subspaces in Figure 7.3. Then come theorthogonalityof those pairs of
subspaces. Now come theorthonormal bases ofv’s andu’s that diagonalizeA :

SVD
Avj D �j uj for j � r

Avj D 0 for j > r

ATuj D �j vj for j � r

ATuj D 0 for j > r

Multiplying Avj D �j uj by AT and dividing by�j gives that equationATuj D �j vj .

vrC1 vn

ur

u1

urC1

v1

Av1 D �1u1 �1u1

Rn

Rm

um

vr Avr D �rur
�rur

Avn D 0

dim r

row
space
of A

column
space
of A

dim r

nullspace
of A

dim n � r dim m � r

nullspace
of AT

Figure 7.3: Orthonormal bases ofv’s andu’s that diagonalizeA : m by n with rankr .

The “norm” of A is its largest singular value :jjAjj D �1. This measures the largest
possible ratio ofjjAvjj to jjvjj. That ratio of lengths is a maximum whenv D v1 and
Av D �1u1. This singular value�1 is a much better measure for the size of a matrix than
the largest eigenvalue. An extreme case can have zero eigenvalues and just one eigenvector
(1; 1) for A. But ATA can still be large : ifv D .1;�1/ thenAv is 200 times larger.

A D
�

100 �100

100 �100

�
has �maxD 0: But �max D norm of A D 200: (6)
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The Condition Number

A valuable property ofA D U †V T is that it puts the pieces ofA in order of importance.
Multiplying a columnui times a row�iv

T
i produces one piece of the matrix. There will be

r nonzero pieces fromr nonzero� ’s, whenA has rankr . The pieces add up toA, when
we multiply columns ofU times rows of†V T :

The pieces
have rank 1

A D

2
4 u1 : : : ur

3
5
2
4

�1v
T
1

: : : : :

�rv
T
r

3
5 D u1.�1v

T
1/C � � � C ur .�rv

T
r /: (7)

The first piece gives the norm ofA which is �1. The last piece gives the norm ofA�1,
which is1=�n whenA is invertible. Thecondition number is �1 times1=�n :

Condition number of A c.A/ D jjAjj jjA�1jj D �1

�n

: (8)

This numberc.A/ is the key to numerical stability in solvingAv D b. WhenA is an
orthogonal matrix, the symmetricS D ATA is the identity matrix. So all singular values of
an orthogonal matrix are� D 1. At the other extreme, a singular matrix has�n D 0.
In that casec D 1. Orthogonal matrices have the best condition numberc D 1.

Data Matrices : Application of the SVD

“Big data” is the linear algebra problem of this century (and we won’t solve it here).
Sensors and scanners and imaging devices produce enormous volumes of information.
Making decisive sense of that data istheproblem for a world of analysts (mathematicians
and statisticians of a new type). Most often the data comes inthe form of a matrix.

The usual approach is by PCA—Principal Component Analysis. That is essentially
the SVD. The first piece�1u1v

T
1 holds the most information (in statistics this piece has

the greatest variance). It tells us the most. The Chapter 7 Notes include references.

REVIEW OF THE KEY IDEAS

1. Positive definite symmetric matrices have positive eigenvalues and pivots and energy.

2. S D ATA is positive definite if and only ifA has independent columns.

3. xTATAx D .Ax/T.Ax/ is zero whenAx D 0. ATA can be positivesemidefinite.

4. The SVD is a factorizationA D U †V T D (orthogonal) (diagonal) (orthogonal).

5. The columns ofV andU are eigenvectors ofATA andAAT (singular vectors ofA).

6. Those orthonormal bases achieveAvi D �i ui andA is diagonalized.

7. The largest piece ofA D �1u1v
T
1 C � � � C �rurv

T
r gives the normjjAjj D �1.
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Problem Set 7.2

1 For a2 by 2 matrix, suppose the1 by 1 and2 by 2 determinantsa andac � b2 are
positive. Thenc > b2=a is also positive.

(i) �1 and�2 have thesame signbecause their product�1�2 equals .

(i) That sign is positive because�1 C �2 equals .

Conclusion: The testsa > 0; ac � b2 > 0 guarantee positive eigenvalues�1; �2.

2 Which of S1, S2, S3, S4 has two positive eigenvalues? Usea andac � b2, don’t
compute the�’s. Find anx with xTS1x < 0, confirming thatA1 fails the test.

S1 D
�

5 6

6 7

�
S2 D

�
�1 �2

�2 �5

�
S3 D

�
1 10

10 100

�
S4 D

�
1 10

10 101

�
:

3 For which numbersb andc are these matrices positive definite ?

S D
�

1 b

b 9

�
S D

�
2 4

4 c

�
S D

�
c b

b c

�
:

4 What is the energyq D ax2 C 2bxy C cy2 D xTSx for each of these matrices ?
Complete the square to writeq as a sum of squaresd1. /2 C d2. /2.

S D
�

1 2

2 9

�
and S D

�
1 3

3 9

�
:

5 xTSx D 2x1x2 certainly has a saddle point and not a minimum at.0; 0/. What
symmetric matrixS produces this energy? What are its eigenvalues?

6 Test to see ifATA is positive definite in each case :

A D
�

1 2

0 3

�
and A D

2
4

1 1

1 2

2 1

3
5 and A D

�
1 1 2

1 2 1

�
:

7 Which3 by 3 symmetric matricesS andT produce these quadratic energies ?

xTSx D 2
�
x2

1 C x2
2 C x2

3 � x1x2 � x2x3

�
. Why isS positive definite?

xTT x D 2
�
x2

1 C x2
2 C x2

3 � x1x2 � x1x3 � x2x3

�
. Why isT semidefinite ?

8 Compute the three upper left determinants ofS to establish positive definiteness.
(The first is2.) Verify that their ratios give the second and third pivots.

PivotsD ratios of determinants S D

2
4

2 2 0

2 5 3

0 3 8

3
5 :



7.2. Positive Definite Matrices and the SVD 403

9 For what numbersc andd areS andT positive definite? Test the3 determinants :

S D

2
4

c 1 1

1 c 1

1 1 c

3
5 and T D

2
4

1 2 3

2 d 4

3 4 5

3
5 :

10 If S is positive definite thenS�1 is positive definite.Best proof : The eigenvalues
of S�1 are positive because . Second proof(only for 2 by 2) :

The entries ofS�1 D 1

ac � b2

�
c �b

�b a

�
pass the determinant tests :

11 If S and T are positive definite, their sumS C T is positive definite. Pivots and
eigenvalues are not convenient forS C T . Better to provexT.S C T /x > 0.

12 A positive definite matrixcannot have a zero(or even worse, a negative number)
on its diagonal. Show that this matrix fails to havexTSx > 0 :

�
x1 x2 x3

�
2
4

4 1 1

1 0 2

1 2 5

3
5
2
4

x1

x2

x3

3
5 is not positive when.x1; x2; x3/ D . ; ; /:

13 A diagonal entryajj of a symmetric matrix cannot be smaller than all the�’s. If it
were, thenA � ajj I would have eigenvalues and would be positive definite.
But A � ajj I has a on the main diagonal.

14 Show thatif all � > 0 then xTSx > 0. We must do this foreverynonzerox,
not just the eigenvectors. So writex as a combination of the eigenvectors and
explain why all “cross terms” arexT

i xj D 0. ThenxTSx is

.c1x1C� � �Ccnxn/T.c1�1x1C� � �Ccn�nxn/ D c2
1�1xT

1x1C� � �Cc2
n�nxT

nxn > 0:

15 Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix isP D I .

(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might notbe positive definite !

16 With positive pivots inD, the factorizationS D LDLT becomesL
p

D
p

DLT.
(Square roots of the pivots giveD D

p
D
p

D.) ThenA D
p

DLT yields the
Cholesky factorizationS D ATA which is “symmetrizedL U ” :

From A D
�

3 1

0 2

�
find S: From S D

�
4 8

8 25

�
find A D chol.S/:
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17 Without multiplyingS D
�
cos� � sin�

sin� cos�

��
2 0

0 5

��
cos� sin�

� sin� cos�

�
, find

(a) the determinant ofS (b) the eigenvalues ofS
(c) the eigenvectors ofS (d) a reason whyS is symmetric positive definite.

18 For F1.x; y/ D 1
4
x4 C x2y C y2 andF2.x; y/ D x3 C xy � x find the second

derivative matricesH1 andH2 :

Test for minimum H D
"

@2F=@x2 @2F=@x@y

@2F=@y@x @2F=@y2

#
is positive definite

H1 is positive definite soF1 is concave up.D convex). Find the minimum point
of F1 and the saddle point ofF2 (look only where first derivatives are zero).

19 The graph ofz D x2 C y2 is a bowl opening upward. The graph ofz D x2 � y2 is
a saddle. The graph ofz D �x2 � y2 is a bowl opening downward. What is a test
ona; b; c for z D ax2 C 2bxy C cy2 to have a saddle point at.0; 0/ ?

20 Which values ofc give a bowl and whichc give a saddle point for the graph of
z D 4x2 C 12xy C cy2 ? Describe this graph at the borderline value ofc.

21 WhenS andT are symmetric positive definite,ST might not even be symmetric.
But its eigenvalues are still positive. Start fromST x D �x and take dot products
with T x. Then prove� > 0.

22 SupposeC is positive definite (soyTC y > 0 whenevery ¤ 0) andA has indepen-
dent columns (soAx ¤ 0 wheneverx ¤ 0). Apply the energy test toxTATCAx

to show thatATCA is positive definite :the crucial matrix in engineering.

23 Find the eigenvalues and unit eigenvectorsv1; v2 of ATA. Then findu1 D Av1=�1 :

A D
�

1 2

3 6

�
and ATA D

�
10 20

20 40

�
and AAT D

�
5 15

15 45

�
:

Verify thatu1 is a unit eigenvector ofAAT. Complete the matricesU; †; V .

SVD

�
1 2

3 6

�
D
h

u1 u2

i �
�1

0

� h
v1 v2

iT
:

24 Write down orthonormal bases for the four fundamental subspaces of thisA.

25 (a) Why is the trace ofATA equal to the sum of alla2
ij ?

(b) For every rank-one matrix, why is�2
1 D sum of alla2

ij ?
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26 Find the eigenvalues and unit eigenvectors ofATA andAAT. Keep eachAv D �u:

Fibonacci matrix A D
�

1 1

1 0

�

Construct the singular value decomposition and verify thatA equalsU †V T.

27 ComputeATA andAAT and their eigenvalues and unit eigenvectors forV andU:

Rectangular matrix A D
�

1 1 0

0 1 1

�
:

CheckAV D U † (this will decide˙ signs inU ). † has the same shape asA.

28 Construct the matrix with rank one that hasAv D 12u for v D 1
2
.1; 1; 1; 1/ and

u D 1
3
.2; 2; 1/. Its only singular value is�1 D .

29 SupposeA is invertible (with�1 > �2 > 0). ChangeA by as small a matrix as
possibleto produce a singular matrixA0. Hint : U andV do not change.

From A D
h

u1 u2

i �
�1

�2

� h
v1 v2

iT
find the nearestA0.

30 The SVD forAC I doesn’t use†C I . Why is�.AC I / not just�.A/C I ?

31 Multiply ATAv D �2
v by A. Put in parentheses to show thatAv is an eigenvector

of AAT. We divide by its lengthjjAvjj D � to get the unit eigenvectoru.

32 My favorite example of the SVD is whenAv.x/ D dv=dx, with the endpoint con-
ditions v.0/ D 0 and v.1/ D 0. We are looking for orthogonal functionsv.x/

so that their derivativesAv D dv=dx are also orthogonal. The perfect choice is
v1 D sin�x andv2 D sin2�x andvk D sink�x. Then eachuk is a cosine.

The derivative ofv1 is Av1 D � cos�x D �u1. The singular values are�1 D �

and�k D k�. Orthogonality of the sines (and orthogonality of the cosines) is the
foundation for Fourier series.

You may object toAV D U †. The derivativeA D d=dx is not a matrix ! The
orthogonal factorV has functions sink�x in its columns, not vectors. The matrix
U has cosine functions cosk�x. Since when is this allowed ? One answer is to
refer you to thechebfunpackage on the web. This extends linear algebra to matrices
whose columns are functions—not vectors.

Another answer is to replaced=dx by a first difference matrixA. Its shape will be
N C 1 by N . A has1’s down the diagonal and�1’s on the diagonal below. Then
AV D U † has discrete sines inV and discrete cosines inU . ForN D 2 those will
be sines and cosines of30ı and60ı in v1 andu1.

�� Can you construct the difference matrixA (3 by 2) andATA (2 by 2) ? The dis-
crete sines arev1 D .

p
3=2;
p

3=2/ andv2 D .
p

3=2;�
p

3=2/. Test thatAv1 is
orthogonal toAv2. What are the singular values�1 and�2 in † ?




