Chapter 6

Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues

Eigenvalues are the key to a system mtifferential equations dy/dt = ay becomes
dy/dt = Ay. Now A is a matrix andy is a vector(y;(z),...,y(t)). The vector
y changes with time. Here is a system of two equations with g 2 matrix A :

/ — 4 + /
n y1i+ 2 is |:y1]:|:4 1]|:y1]' )
y2' =3y1 +2y2 y2 320l »
How to solve this coupled system, = Ay with y; andy, in both equations? The

good way is to find solutions that “uncouple” the problekive wanty; and y, to grow
or decay in exactly the same wéwith the same*?):

y1(t) = e*a . .
Look for © At In vector notation this is y(@) =e*x  (2)
ya2(t) =e

That vectorx = (a, b) is called areigenvector The growth ratel is aneigenvalue This
section will show how to findc andA. Here | will jump tox andA for the matrix in (1).

First eigenvectox = [ 4 } = [ i } and first eigenvalug =5 iny = e>'x

b
y1=e> h yi'=5e"=4y, + »
— ,5t as ’r 5t
y=e y2'=5e =3y1 + 2y
Second eigenvectar = [ Cbl } = [ _é ] and second eigenvalde=1 iny = e'x
Thisy = e*xisa Y1 = e ' = e =4y +
has

second solution y, = —3et Vo' = =3ef =3y, + 2y,
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Those twax's andA’s combine with any;, ¢, to give the complete solutionty’ = Ay :

. et e 1 1
Complete solution y(t) = c; [es,] +c [_3 e,] =cre”! [1} + e’ [_3] )

This is exactly what we hope to achieve for other equatiphs= Ay with constantA.
The solutions we want have the special foprfr) = ¢*x. Substitute that solution
into y’ = Ay, to see the equatioAx = Ax for an eigenvalue and its eigenvectar :

d
E(e’ux) = A(e*x) is Xe*x = Ae*x.  Divide both sides by?.
Eigenvalue and eigenvector oA Ax = Ax 4)

Those eigenvalues (and1 for this A) are a new way to see into the heart of a matrix.
This chapter enters a different part of linear algebra, dhasedx = Ax. The last page of
Chapter 6 has eigenvalue-eigenvector information about may different matrices.

Finding Eigenvalues fromdet (4 —AI) =0

Almost all vectors change direction, when they are mukigliby A. Certain very
exceptional vectorx are in the same direction astx. Those are the “eigenvectors.”
The vectordx (in the same direction as) is a numbeR times the originak .

The eigenvalué. tells whether the eigenvectar is stretched or shrunk or reversed
or left unchanged—when it is multiplied hy. We may findA = 2 or % or —1 or 1.
The eigenvalua could be zero 4x = Ox puts this eigenvector in the nullspace ofd.

If A is the identity matrix, every vector hatse = x. All vectors are eigenvectors éf
Most2 by 2 matrices havéwo eigenvector directions artdio eigenvalued; andA,.

To find the eigenvalues, write the equatidr = Ax in the good form(A — Al)x = 0.
If (A—Al)x = 0,thenA — AI is asingular matrix. Its determinant must bzero.

b

The determinantofi — A/ = @ =2l
c d— A

] is (a—A)d —A)—be = 0.

Our goal is to shift4 by the right amouni/, so that(4 — A7)x = 0 has a solution.
Thenx is the eigenvectod}, is the eigenvalue, and — A7 is not invertible. So we look
for numbersh that makedet(A — A1) = 0. | will start with the matrix4 in equation (1).

Examplel ForAd = [ i ; } subtractA from the diagonal and find the determinant:

4—A 1

det(4 — AI) = det[ 3 y_

]=12_6A+5=()~—5)(A—1)- ®)

| factored the quadratic, to see the two eigenvalugs= 5 andA, = 1. The matrices
A — 51 andA — I aresingular. We have found tha’s from det(4 — A1) = 0.
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For each of the eigenvaluésand1, we now find areigenvectorx :

amsmeme s [1A] [x]-[8] wmaae]!]
(A-1H)x =0 s [i i] ["}2[8} andx:[—”

Those were the vectolg, b) in our special solutiony = e*'x. Both components of
have the growth rat, so the differential equation was easily solved= e*’x.

Two eigenvectors gave two solutions. Combinationg, + c2y, give all solutions.

Example 2  Findthe eigenvalues and eigenvectors ofNfagkov matrix A = [ g ; }

det(A—M):det|: 'SEA 7'2}:1 ——A+l a-1(a-1).

| factored the quadratic intd — 1 timesA — % to see the two eigenvaluds= 1 and %
The eigenvectors; andx, are in the nullspaces of — 7 andA4 — %I.

(A—I)x; =0 is Ax; =x; Thefirsteigenvectoris x; = (.6,.4)

(A—L1Ix, =0 is Ax,=1x, Thesecond eigenvectorist; = (1,-1)

.6 8 3] .6
x, = and Ax; = =x; (Ax =x meansthak,; = 1)
4 2 7] 4

_| ! and Ax, = 83 ol 2 (thisisi x, sod, =
270 2500 7= T s 2 ¥25042 =

If x; is multiplied again by4, we still getx;. Every power of4 will give A"x; = x;.
Multiplying x, by 4 gave%xz, and if we multiply again we ge{t%)2 timesx,.

).

N[

When 4 is squared, the eigenvectoxsstay the samed?x = A(Ax) = A(Ax) =

Notice A2. This pattern keeps going, because the eigenvectors stagiirown directions.
They never get mixed. The eigenvectors4df? are the same; andx,. The eigenvalues
of A1%% are1'% = 1 and(3)'°° = very small number.

We mention that this particulad is a Markov matrix. Its entries are positive and
every column adds tb. Those facts guarantee that the largest eigenvalue mustbad.
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A2 — 12
P /Axl_x1_|:.j:| 2o / X1 ()XI
7 : ~
< iz a5
\ * A2X2 = (.5)2X2 = |:_§§i|

A=5 4 ixz = daxs = [_2}
Nt

Figure 6.1: The eigenvectors keep their directiofishas eigenvaluels® and(.5)?.

A= 8 3 Ax = Ax
I A"x = A"x

The eigenvectodx; = x; is thesteady state-which all columns ofd* will approach.

Giant Markov matrices are the key to Google’s search algaritlt ranks web pages.
Linear algebra has made Google one of the most valuable ategia the world.

Powers of a Matrix

When the eigenvalues of are known, we immediately know the eigenvalues of all
powersA¥ and shifts4 + ¢ and all functions ofd. Each eigenvector ofl is also an
eigenvector ofA¥ and4~! and4 + ¢I :

1
If Ax = Ax then A*x = A*x and A 'x = 7% and (A+chx = +o)x. (6)

Start again with42x, which is4 timesAx = Ax. ThenA\x is the same asAx for any
numberd, andAAx is A2x. We have proved that?x = A2x.

For higher powerst* x, continue multiplyingdx = Ax by A. Step by step you reach
Akx = A*x. For the eigenvalues of !, first multiply by A~! and then divide by :

: 1
Eigenvalues ofd ! are g Ar=Aix x= M'x Ax=-x (D)

We are assuming that~! exists! If 4 is invertible them will never be zero.

Invertible matrices have all A # 0. Singular matrices have the eigenvalug = 0.
The shift fromA to A + ¢ just adds to every eigenvaluedpn’t changex) :

Shift of 4 If Ax =Ax then (A+cl)x =Ax +cx =X +c)x. (8)
As long as we keep the same eigenveatpwe can allow any function of :

Functionsof A (A2 +24+50)x = (A2 +24+5x  e’x =ex. (9)
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| slipped ine? = I + 4 + 342 + --- to show that infinite series produce matrices too.

Let me show you the powers of the Markov matdixn Example 2. That starting matrix

is unrecognizable after a few steps.
8 3 70 45 .650 .525 .6000 .6000
2 7 30 .55 350 475 4000 .4000 (10)
A A2 A3 4100

A'%% was found by using = 1 and its eigenvectdré, .4], not by multiplying 100 matrices.
The eigenvalues off arel and?, so the eigenvalues of!?° are1 and(1)!°°. That last
number is extremely small, and we can't see it in the fitstligits of 4199,

How could you multiply4°° times another vector like = (.8,.2)? This is not an
eigenvector, bub is a combination of eigenvectarsThis is a key idea, to express any
vectorv by using the eigenvectors.

Separate into eigenvectors .8 .6 2
= = . 11
v=1x1+(2)x> Y [2} [.4 Tl (11)

Each eigenvector is multiplied by its eigenvaluezhen we multiply the vector by .
After 99 stepsx; is unchanged and, is multiplied by(3)® :

8] . 1 6 very
A%° [ 2] is A% (x, + 2x3) =x; + (.2)(5)9%2 = [ 4} + | small
: : vector

This is the first column oft1°°, because = (.8, .2) is the first column ofd. The number
we originally wrote as6000 was not exact. We left oyt2)(3)?® which wouldn’t show up
for 30 decimal places.

The eigenvectar; = (.6, .4) is a “steady statethat doesn’t change (because = 1).
The eigenvectox, is a “decaying modethat virtually disappears (becauze = 1/2).
The higher the power ofl, the more closely its columns approach the steady state.

Bad News About AB and A + B

Normally the eigenvalues od and B (separately) do not tell us the eigenvaluesdds.
We also don't know aboutd + B. When A and B have different eigenvectors,
our reasoning fails. The good results fdf are wrong forAB and A + B, whenAB

is different fromBA. The eigenvalues won't come frohand B separately :

0 1 0 0 1 0 0 0 0 1
a=lo o) o=V o] am=[s o) ma=[o 1] ava=[V o]
All the eigenvalues oA and B are zero. Butd B has an eigenvalué = 1, andA4 + B
has eigenvaluesand—1. But one rule holds A B and BA have the same eigenvalues
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Determinants

The determinant is a single number with amazing propeiitiészero when the matrix has
no inverse. That leads to the eigenvalue equatiofdetA/) = 0. WhenA is invertible,
the determinant ofi™! is 1/(detA). Every entry inA~! is a ratio of two determinants.

| want to summarize the algebra, leaving the details for mgpnganion textbook
Introduction to Linear Algebra The difficulty with det4 — A7) = 0 is that ann by n
determinant involves ! terms. Fom = 5 this is 120 terms—generally impossible to use.

Forn = 3 there are six terms, three with plus signs and three with miritach of
those six terms includeme number from every row and every column

Determinant fromn! = 6 terms

4 5 Three plus signs, three minus signs
+(M () +2)6)(7) +3)(H(®)
- - - 4 -3)5)(7) —D©)®) —(2HO)

That shows how to find the six terms. For this particular madkre total must be det = 0,
because the matrix happens to be singular: revrow3 equals2(row?2).
Let me start with five useful properties of determinantsalbsquare matrices.

1. Subtracting a multiple of one row from another row leavesddahchanged.
2. The determinant reverses sign when two rows are exchanged.

3. If Ais triangular then ded = product of diagonal entries.

4. The determinant ofl B equals(detA) times(detB).

5. The determinant oftT equals the determinant af.

By combiningl, 2, 3 you will see how the determinant comes from elimination:
The determinant equals £ (product of the pivots). (22)

Propertyl saysthatd andU have the same determinant, unless rows are exchanged
Property2 says that an odd number of exchanges would leavel det—detU .
Property3 says that deV is the product of the pivots on its main diagonal.

When elimination taked to U, we find detd = + (product of the pivots). This is how
all numerical software (lik®éATLAB or Python or Julia) would compute det

Plus and minus signs play a big part in determinants. Halhefit! terms have plus
signs, and half come with minus signs. For= 3, one row exchange pu— 5 — 7
orl—6—8or2—4—9on the main diagonal. A minus sign from one row exchange.
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Two row exchanges (an even number) take you backR}@](7) and @) (4) (8). This
indicates how th&4 terms would go fom = 4, twelve terms withplusand twelve with
minus

Even permutation matrices have det= 1 and odd permutations have det= —1.

Inverse of A If det A # 0, you can solvetv = b and findA~! using determinants:

_ detB; _ detB, _ detB,

Cramer’s Rule = = =
' deta 27 deta U= et

(13)

The matrixB; replaces thgth column ofA by the vecto. Cramer’s Rule is expensive !

To find the columns oft—!, we solveA4™! = I. That is the Gauss-Jordan idea: For
each columm in I, solveAv = b to find a columrv of A™!,

In this special case, whénis a column off , the numbers de#; in Cramer’s Rule are
calledcofactors They reduce to determinants of size- 1, becausé has so many zeros.
Every entry ofA~! is a cofactor of4 divided by the determinant of.

I will close with three examples, to introduce the “trace” afmatrix and to show
that real matrices can have imaginary (or complex) eigemghnd eigenvectors.

1

5|

Solution You can see that = (1, 1) will be in the same direction aSx = (3, 3).
Thenx is an eigenvector of with A = 3. We want the matrix§ — A/ to be singular.

Example 3  Find the eigenvalues and eigenvectorsof

s=|2! det(S — AI) = det 2= i aas3=0
12 N 1 2-A| o

Notice that3 is the determinant af (withoutl). And4 is the sun2 + 2 down the central
diagonal ofS. The diagonal sum4 is the “trace” of 4. ltequalsi; + A2 =3+1.

Now factorA? — 41 + 3 into (A — 3)(A — 1). The matrixS — AI is singular (zero
determinant) foi = 3 andA = 1. Each eigenvalue has an eigenvector:

(=19
Aa=1 (S—1)x; =[i ” [—”2[8}

The eigenvalue8 and 1 arereal. The eigenvectorsl, 1) and (1,—1) are orthogonal
Those properties always come together for symmetric nestiiection 6.5).

Here is amntisymmetrignatrix with AT = —A. It rotates all real vectors b = 90°.
Real vectors can’t be eigenvectors of a rotation matrix bseat changes their direction.

/‘{1 =3 (S—3I)x1
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Example 4  This real matrix has imaginary eigenvaluies-i and complex eigenvectors:

o —-17_ 1 N S b R
A_[l O}_—A de(A—M)_det[ 1 _A_—A +1=0.

That determinant? + 1 is zero forA = i and—i. The eigenvectors aig, —i) and(1,i):

0 —1 1T _[i]_.[1 o -1 (1] _[—7_ _.[1
VS I N A 1ol T T
Somehow those complex vectorg andx, don't get rotated (I don’t really know how).

Multiplying the eigenvaluesi)(—i) gives detd = 1. Adding the eigenvalues gives
(i) + (—i) = 0. This equals the suith+ 0 down the diagonal ofl.

Product of eigenvalues = determinant Sum of eigenvalues = “trace” (14)

Those are true statements for all square matri¢é® trace is the sumay; + -+ + ann
down the main diagonal of A. This sum and product are is especially valuableXor
by 2 matrices, when the determinab{A, = ad — bc and the tracé.; + A, = a+d
completely determing; andi,. Look now at rotation of a plane through any angle

Example 5 Rotation comes from an orthogonal matéx Theni; = ¢’ andi, = 79 :

0= cosf —siné A1 = cosd + i sinf A1+ Ay =2cosf = trace
“ | sind  cosH Ay = cosh —isinf A1 Az = 1 = determinant

| multiplied (11)(1,) to get cod + si? 6 = 1. In polar forme’? timese™? is 1.
The eigenvectors of are(1, —i) and(1, i) for all rotation angle®.

Before ending this section, | need to tell you the truth. has$ easy to find eigenvalues
and eigenvectors of large matrices. The equatiofddetAl) = 0 is more or less limited
to 2 by 2 and3 by 3. For larger matrices, we can gradually make them trianguigrout
changing the eigenvaluegor triangular matrices the eigenvalues are on the diagonal
A good code to computé andx is free in LAPACK. TheMATLAB command isig (A).

B REVIEW OF THE KEY IDEAS =

1. Ax = Ax says that eigenvectoxskeep the same direction when multiplied By
2. Ax = Ax also says that det — A7) = 0. This equation determineseigenvalues.
3. The eigenvalues o2 andA~! areA? andA~!, with the same eigenvectors 4s

4. Singular matrices havke = 0. Triangular matrices havi&s on their diagonal.
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5. The sum down the main diagonal df(the trac§ is the sum of the eigenvalues.

6. The determinant is the product of thé&. It is also+ (product of the pivots).

Problem Set 6.1

1 Example 2 has powers of this Markov matrix:

8 3 , [70 45 o [6 6
A_[.z .7} and 4 _[.30 .55} and 4 _[.4 .4]

(@) A has eigenvaluelsand%. Find the eigenvalues of? and 4.
(b) What are the eigenvectors 4f° ? One eigenvector is in the nullspace.
(c) Check the determinant of?> and A*°. Compare with(det 4)? and(det A)°.

2 Find the eigenvalues and the eigenvectors of these twogeatri

1 4 2 4
Az[2 3} and A+I=[2 4]

A + I has the eigenvectors ad. Its eigenvalues are by 1.

3 Compute the eigenvalues and eigenvectors ahd alsod~! :

0 2 L [=12 01
A:|:1 1} and A1=|: 12 0i|.

A1 hasthe eigenvectors ad. When4 has eigenvalues; andA,, its inverse
has eigenvalues . Checkthatt; + A, =traceof 4 =0 + 1.

4 Compute the eigenvalues and eigenvectors ahd 42 :

-1 3 , [ 7 -3
A_[ ) Oi| andA—[_2 6i|.
A? has the same asA. When4 has eigenvalues,; and,, the eigenvalues

of A% are . In this example, why id? + 13 = 13?

5 Find the eigenvalues of and B (easy for triangular matrices) ant+ B :

30 1 1 4 1
A_[l 1} and B_[O 3} and A+B—[1 4]

Eigenvalues ofd + B (are equal t) (might not be equal foeigenvalues o plus
eigenvalues oB.
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10

11

12

13
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Find the eigenvalues of andB andAB andBA :

1 0 1 2 1 2 3 2
A_[l 1} and B_[O 1} and AB_[1 3] and BA_[1 1]

(a) Are the eigenvalues of B equal to eigenvalues of times eigenvalues af ?
(b) Are the eigenvalues of B equal to the eigenvalues &4 ? Yed

Elimination produces a triangular matrix. The eigenvalues df are on its diago-
nal Wwhy?). They arenot the eigenvalues of. Give a2 by 2 example of4 andU.

(a) If you know thatx is an eigenvector, the way to firidis to .
(b) If you know that} is an eigenvalue, the way to findis to .
What do you do to the equatiotx = Ax, in order to prove (a), (b), and (c) ?

(a) A? is an eigenvalue ofi?, as in Problem 4.
(b) A~ is an eigenvalue ofi—!, as in Problem 3.
(c) A + 1is an eigenvalue oft + 7, as in Problem 2.

Find the eigenvalues and eigenvectors for both of these dariatrices4d and A°.
Explain from those answers w4 is close to4 :

[6 2 o _[1/3 173
A_[.4 .8} and 4 _[2/3 2/3]

A 3 by 3 matrix B has eigenvalugs 1, 2. This information allows you to find :
(a) therankofB  (b) the eigenvalues @2 (c) the eigenvalues @B2 + 1)~ 1.

Find three eigenvectors for this mat# Projection matrices only have=1 and0.
Eigenvectors ar@n or orthogonal tothe subspace thdt projects onto.

Projection matrix P2 = P = PT P =

orio
o o
=

If two eigenvectorsc and y share the same repeated eigenvaluso do all their
combinationgx + dy. Find an eigenvector aP with no zero components.

From the unit vectow = (¢, :.2.2) construct the rank one projection matrix

P = uu. This matrix hasP? = P because:'u = 1.

(@) Explain whyPu = (uu")u equalse. Thenu is an eigenvector with =1.
(b) If v is perpendicular ta show thatPv = 0. ThenA = 0.
(c) Find three independent eigenvectorgPoéll with eigenvaluel = 0.
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14

15

16

17

18

19

20

21

22

23

Solve detQ — A7) = 0 by the quadratic formula to reaéh= cosf + i sing :

cos —sinb
o-|

sing cosd } rotates thexy plane by the anglé. No realA’s.

Find the eigenvectors @ by solving(Q — Al)x = 0. Usei? = —1.

Find three2 by 2 matrices that havé; = A, = 0. The trace is zero and the
determinant is zerad might not be the zero matrix but check th#t is all zeros.

This matrix is singular with rank one. Find thré& and three eigenvectors:

1 2 1 27]
Rank one A=|2|[212]=]4 2 4/].
1 21 2

Whena + b =c + d show thaf(1, 1) is an eigenvector and find both eigenvalues:

. 5 1 (a b
Use the trace to findi, A:[2 4} A= c d]

If A hasi,; =4 andi, = 5thendetd — A1) = (A —4)(A —5) = A2 — 91 + 20.
Find three matrices that have trace- d = 9 and determinar20, soA = 4 and5.

Supposedu = Ou andAv = 3v andAw = 5w. The eigenvalues afk 3, 5.

(a) Give a basis for the nullspace #fand a basis for the column space.
(b) Find a particular solution tdx = v + w. Find all solutions.
(c) Ax =u has no solution. If it did then would be in the column space.

Choose the last row of to produce (a) eigenvaluest and7 (b) anyi; andA,.

Companion matrix A= [2 }k} .
The eigenvalues ofd equal the eigenvalues oft . This is because det — A1)
equals dgt4™ — A7). That is true because . Show by an example that the
eigenvectors off andA" arenotthe same.

Construct any3 by 3 Markov matrix M : positive entries down each column add
to 1. Showthai (1,1,1) = (1,1, 1). By Problem 21\ = 1 is also an eigenvalue
of M. Challenge: A3 by 3 singular Markov matrix with tracgL has whatA’s ?

Supposed and B have the same eigenvalueg . . ., A, with the same independent
eigenvectorsy,. . .,x,. Then A = B. Reason Any vectorv is a combination
c1x1+ -+ cpxy. Whatisdv ? What isBv ?
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24

25

26

27

28

29

30
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The block B has eigenvalues, 2 andC has eigenvalue3, 4 and D has eigenval-
uess, 7. Find the eigenvalues of the 4 by 4 matrx

01 3 0

A_[B Cl]_|-23 04

10 D[ 0 0 6 1

0 0 1 6

Find the rank and the four eigenvaluesbandC :

1 1 1 1 1 01 0
1 1 1 1 01 0 1
A=l | @ C=1y 5 o
1 1 1 1 01 0 1

Subtract/ from the previousd. Find the eigenvalues & and—B :

0 —1 —1 —17]
-1 0 -1 -1
-1 -1 0 -1
-1 -1 -1 0

B=A-1= and — B =

P —
—_= O =
e
O = = =

(Review) Find the eigenvalues df B, andC :

1 2 3 0 0 1 2 2 27
A=1[10 4 5 and B=|0 2 0 and C =12 2 2.
0 0 6 300 2 2 2]

Every permutation matrix leavas = (1, 1,. . ., 1) unchanged. Thea = 1. Find
two morel’s (possibly complex) for these permutations, from(det- A7) = 0:

010 0 0 1
P={0 0 1 and P=|0 1 0.
1 00 1 00

The determinant of A equals the productA;A,---A,. Start with the polynomial
det(4 — AI) separated into its factors (always possible). Then set= 0:

detA—AI)= A —A)A—A)---(A, —A) so detd =
The sum of the diagonal entries (ttrace) equals the sum of the eigenvalues:

Az[z Z} has  detd — A1) = A* —(a + d)r +ad —be = 0.

The quadratic formula gives the eigenvalues (a +d + \/_)/2 andi =
Their sumis .If AhasA; =3andi, =4thendet(4d —AI) =





