
Chapter 6

Eigenvalues and Eigenvectors

6.1 Introduction to Eigenvalues

Eigenvalues are the key to a system ofn differential equations: dy=dt D ay becomes
dy=dt D Ay . Now A is a matrix andy is a vector.y1.t/; : : : ; yn.t//. The vector
y changes with time. Here is a system of two equations with its2 by 2 matrixA :

y1
0 D 4y1 C y2

y2
0 D 3y1 C 2y2

is

�
y1

y2

�0
D
�

4 1

3 2

� �
y1

y2

�
: (1)

How to solve this coupled system,y 0 D Ay with y1 andy2 in both equations ? The
good way is to find solutions that “uncouple” the problem.We wanty1 and y2 to grow
or decay in exactly the same way(with the samee�t ) :

Look for
y1.t/ D e�ta

y2.t/ D e�tb
In vector notation this is y.t/ D e�tx (2)

That vectorx D .a; b/ is called aneigenvector. The growth rate� is aneigenvalue. This
section will show how to findx and�. Here I will jump tox and� for the matrix in (1).

First eigenvectorx =

�
a

b

�
D
�

1

1

�
and first eigenvalue� D 5 in y D e5t x

y1 D e5t

y2 D e5t
has

y1
0 D 5 e5t D 4y1 C y2

y2
0 D 5 e5t D 3y1 C 2y2

Second eigenvectorx =

�
a

b

�
D
�

1

�3

�
and second eigenvalue� D 1 in y D etx

This y D e�tx is a
second solution

y1 D et

y2 D �3 et
has

y1
0 D et D 4y1 C y2

y2
0 D �3 et D 3y1 C 2y2
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Those twox’s and�’s combine with anyc1, c2 to give the complete solution toy 0 D Ay :

Complete solution y.t/ D c1

�
e5t

e5t

�
C c2

�
et

�3 et

�
D c1e5t

�
1

1

�
C c2et

�
1

�3

�
: (3)

This is exactly what we hope to achieve for other equationsy 0 D Ay with constantA.
The solutions we want have the special formy.t/ D e�t x. Substitute that solution

into y 0 D Ay, to see the equationAx D �x for an eigenvalue� and its eigenvectorx :

d

dt
.e�t x/ D A.e�t x/ is �e�tx D Ae�t x: Divide both sides bye�t :

Eigenvalue and eigenvector ofA Ax D �x (4)

Those eigenvalues (5 and1 for this A) are a new way to see into the heart of a matrix.
This chapter enters a different part of linear algebra, based onAx D �x. The last page of
Chapter 6 has eigenvalue-eigenvector information about many different matrices.

Finding Eigenvalues from det .A � �I/ D 0

Almost all vectors change direction, when they are multiplied by A. Certain very
exceptional vectorsx are in the same direction asAx. Those are the “eigenvectors.”
The vectorAx (in the same direction asx) is a number� times the originalx.

The eigenvalue� tells whether the eigenvectorx is stretched or shrunk or reversed
or left unchanged—when it is multiplied byA. We may find� D 2 or 1

2
or �1 or 1.

The eigenvalue� could be zero !Ax D 0x puts this eigenvectorx in the nullspace ofA.
If A is the identity matrix, every vector hasAx D x. All vectors are eigenvectors ofI .

Most2 by 2 matrices havetwo eigenvector directions andtwo eigenvalues�1 and�2.

To find the eigenvalues, write the equationAx D �x in the good form.A � �I/x D 0.
If .A � �I/x D 0, thenA � �I is asingular matrix . Its determinant must bezero.

The determinant ofA � �I D
�

a � � b

c d � �

�
is .a � �/.d � �/ � bc D 0:

Our goal is to shiftA by the right amount�I , so that.A � �I/x D 0 has a solution.
Thenx is the eigenvector,� is the eigenvalue, andA � �I is not invertible. So we look
for numbers� that makedet.A � �I/ D 0. I will start with the matrixA in equation (1).

Example 1 ForA D
�

4 1

3 2

�
, subtract� from the diagonal and find the determinant :

det.A � �I/ D det

�
4 � � 1

3 2 � �

�
D �2 � 6�C 5 D .� � 5/.� � 1/: (5)

I factored the quadratic, to see the two eigenvalues�1 D 5 and�2 D 1. The matrices
A� 5I andA � I aresingular. We have found the�’s from det.A � �I/ D 0.
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For each of the eigenvalues5 and1, we now find aneigenvectorx :

.A � 5I / x D 0 is

�
�1 1

3 �3

� �
x

�
D
�

0

0

�
and x D

�
1

1

�

.A � 1I / x D 0 is

�
3 1

3 1

� �
x

�
D
�

0

0

�
and x D

�
1

�3

�

Those were the vectors.a; b/ in our special solutionsy D e�t x. Both components ofy
have the growth rate�, so the differential equation was easily solved :y D e�t x.

Two eigenvectors gave two solutions. Combinationsc1y1 C c2y2 give all solutions.

Example 2 Find the eigenvalues and eigenvectors of theMarkov matrixA D
�

:8 :3

:2 :7

�
.

det.A� �I/ D det

�
:8 � � :3

:2 :7 � �

�
D �2 � 3

2
�C 1

2
D .� � 1/

�
� � 1

2

�
:

I factored the quadratic into� � 1 times� � 1
2
, to see the two eigenvalues� D 1 and 1

2.
The eigenvectorsx1 andx2 are in the nullspaces ofA� I andA � 1

2
I .

.A� I / x1 D 0 is Ax1 D x1 The first eigenvector is x1 D .:6; :4/

.A� 1
2
I / x2 D 0 is Ax2 D 1

2
x2 The second eigenvector isx2 D .1;�1/

x1 D
"

:6

:4

#
and Ax1 D

"
:8 :3

:2 :7

#"
:6

:4

#
D x1 (Ax D x means that�1 D 1)

x2 D
"

1

�1

#
and Ax2 D

"
:8 :3

:2 :7

#"
1

�1

#
D
"

:5

�:5

#
(this is 1

2
x2 so�2 D 1

2
).

If x1 is multiplied again byA, we still getx1. Every power ofA will give Anx1 D x1.
Multiplying x2 by A gave1

2
x2, and if we multiply again we get. 1

2
/2 timesx2.

WhenA is squared, the eigenvectorsx stay the same.A2x D A.�x/ D �.Ax/ D �2x.

Notice�2. This pattern keeps going, because the eigenvectors stay intheir own directions.
They never get mixed. The eigenvectors ofA100 are the samex1 andx2. The eigenvalues
of A100 are1100 D 1 and. 1

2
/100 D very small number.

We mention that this particularA is a Markov matrix. Its entries are positive and
every column adds to1. Those facts guarantee that the largest eigenvalue must be� D 1.
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� D 1 Ax1 D x1 D
"

:6

:4

#

Ax2 D �2x2 D
"

:5

�:5

#
� D :5

x2 D
"

1

�1

#

A2x1 D .1/2x1

A2x2 D .:5/2x2 D
"

:25

�:25

#

Ax D �x

Anx D �nx
A D

�
:8 :3

:2 :7

�

�2 D :25

�2 D 1

Figure 6.1: The eigenvectors keep their directions.A2 has eigenvalues12 and.:5/2.

The eigenvectorAx1 D x1 is thesteady state—which all columns ofAk will approach.

Giant Markov matrices are the key to Google’s search algorithm. It ranks web pages.
Linear algebra has made Google one of the most valuable companies in the world.

Powers of a Matrix

When the eigenvalues ofA are known, we immediately know the eigenvalues of all
powersAk and shiftsA C cI and all functions ofA. Each eigenvector ofA is also an
eigenvector ofAk andA�1 andAC cI :

If Ax D �x then Akx D �kx and A�1x D 1

�
x and .AC cI /x D .�C c/x: (6)

Start again withA2x, which isA timesAx D �x. ThenA�x is the same as�Ax for any
number�, and�Ax is �2x. We have proved thatA2x D �2x.

For higher powersAkx, continue multiplyingAx D �x by A. Step by step you reach
Akx D �kx. For the eigenvalues ofA�1, first multiply by A�1 and then divide by� :

Eigenvalues ofA�1 are
1

�
Ax D �x x D �A�1x A�1x D 1

�
x (7)

We are assuming thatA�1 exists ! IfA is invertible then� will never be zero.

Invertible matrices have all � ¤ 0. Singular matrices have the eigenvalue� D 0.

The shift fromA to AC cI just addsc to every eigenvalue (don’t changex) :

Shift of A If Ax D �x then .AC cI /x D Ax C cx D .�C c/x: (8)

As long as we keep the same eigenvectorx, we can allow any function ofA :

Functions of A .A2 C 2AC 5I /x D .�2 C 2�C 5/x eAx D e�x: (9)
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I slipped ineA D I C A C 1
2
A2 C � � � to show that infinite series produce matrices too.

Let me show you the powers of the Markov matrixA in Example 2. That starting matrix
is unrecognizable after a few steps.
"

:8 :3

:2 :7

# "
:70 :45

:30 :55

# "
:650 :525

:350 :475

#
� � �

"
:6000 :6000

:4000 :4000

#

A A2 A3 A100

(10)

A100 was found by using� D 1 and its eigenvectorŒ:6; :4�, not by multiplying 100 matrices.
The eigenvalues ofA are1 and 1

2
, so the eigenvalues ofA100 are1 and. 1

2
/100. That last

number is extremely small, and we can’t see it in the first30 digits ofA100.

How could you multiplyA99 times another vector likev D .:8; :2/ ? This is not an
eigenvector, butv is a combination of eigenvectors. This is a key idea, to express any
vectorv by using the eigenvectors.

Separate into eigenvectors
v D x1 C .:2/x2

v D
"

:8

:2

#
D
"

:6

:4

#
C
"

:2

�:2

#
: (11)

Each eigenvector is multiplied by its eigenvalue, when we multiply the vector byA.
After 99 steps,x1 is unchanged andx2 is multiplied by. 1

2
/99 :

A99

"
:8

:2

#
is A99.x1 C :2x2/ D x1 C .:2/.

1

2
/99x2 D

"
:6

:4

#
C

2
4

very
small
vector

3
5 :

This is the first column ofA100, becausev D .:8; :2/ is the first column ofA. The number
we originally wrote as:6000 was not exact. We left out.:2/. 1

2
/99 which wouldn’t show up

for 30 decimal places.
The eigenvectorx1 D .:6; :4/ is a “steady state” that doesn’t change (because�1 D 1/.

The eigenvectorx2 is a “decaying mode” that virtually disappears (because�2 D 1=2/.
The higher the power ofA, the more closely its columns approach the steady state.

Bad News About AB and A CB

Normally the eigenvalues ofA andB (separately) do not tell us the eigenvalues ofAB.
We also don’t know aboutA C B. When A and B have different eigenvectors,
our reasoning fails. The good results forA2 are wrong forAB andA C B, whenAB

is different fromBA. The eigenvalues won’t come fromA andB separately :

A D
�

0 1

0 0

�
B D

�
0 0

1 0

�
AB D

�
1 0

0 0

�
BA D

�
0 0

0 1

�
AC B D

�
0 1

1 0

�

All the eigenvalues ofA andB are zero. ButAB has an eigenvalue� D 1, andA C B

has eigenvalues1 and�1. But one rule holds :AB and BA have the same eigenvalues.
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Determinants

The determinant is a single number with amazing properties.It is zero when the matrix has
no inverse. That leads to the eigenvalue equation det.A � �I/ D 0. WhenA is invertible,
the determinant ofA�1 is 1=.detA/. Every entry inA�1 is a ratio of two determinants.

I want to summarize the algebra, leaving the details for my companion textbook
Introduction to Linear Algebra. The difficulty with det.A � �I/ D 0 is that ann by n

determinant involvesn Š terms. Forn D 5 this is120 terms—generally impossible to use.

For n D 3 there are six terms, three with plus signs and three with minus. Each of
those six terms includesone number from every row and every column:

2
64

1 2 3

4 5 6

7 8 9

3
75

1 2

4 5

7 8

CCC���

Determinant fromnŠ D 6 terms

Three plus signs, three minus signs

C.1/.5/.9/ C.2/.6/.7/ C.3/.4/.8/

�.3/.5/.7/ �.1/.6/.8/ �.2/.4/.9/

That shows how to find the six terms. For this particular matrix the total must be detA D 0,
because the matrix happens to be singular : row1C row3 equals2.row2/.

Let me start with five useful properties of determinants, forall square matrices.

1. Subtracting a multiple of one row from another row leaves detA unchanged.

2. The determinant reverses sign when two rows are exchanged.

3. If A is triangular then detA D product of diagonal entries.

4. The determinant ofAB equals.detA/ times.detB/.

5. The determinant ofAT equals the determinant ofA.

By combining1; 2; 3 you will see how the determinant comes from elimination :

The determinant equals ˙ (product of the pivots): (12)

Property1 says thatA andU have the same determinant, unless rows are exchanged.
Property2 says that an odd number of exchanges would leave detA D �detU .
Property3 says that detU is the product of the pivots on its main diagonal.

When elimination takesA to U , we find detA D ˙ (product of the pivots). This is how
all numerical software (likeMATLAB or Python or Julia ) would compute detA.

Plus and minus signs play a big part in determinants. Half of then Š terms have plus
signs, and half come with minus signs. Forn D 3, one row exchange puts3 � 5 � 7

or 1 � 6 � 8 or 2 � 4 � 9 on the main diagonal. A minus sign from one row exchange.
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Two row exchanges (an even number) take you back to (2) (6) (7) and (3) (4) (8). This
indicates how the24 terms would go forn D 4, twelve terms withplusand twelve with
minus.

Even permutation matrices have detP D 1 and odd permutations have detP D �1.

Inverse of A If det A ¤ 0, you can solveAv D b and findA�1 using determinants :

Cramer’s Rule v1 D
detB1

detA
v2 D

detB2

detA
� � � vn D

detBn

detA
(13)

The matrixBj replaces thej th column ofA by the vectorb. Cramer’s Rule is expensive !

To find the columns ofA�1, we solveAA�1 D I . That is the Gauss-Jordan idea : For
each columnb in I , solveAv D b to find a columnv of A�1.

In this special case, whenb is a column ofI , the numbers detBj in Cramer’s Rule are
calledcofactors. They reduce to determinants of sizen � 1, becauseb has so many zeros.
Every entry ofA�1 is a cofactor ofA divided by the determinant ofA.

I will close with three examples, to introduce the “trace” ofa matrix and to show
that real matrices can have imaginary (or complex) eigenvalues and eigenvectors.

Example 3 Find the eigenvalues and eigenvectors ofS D
"

2 1

1 2

#
.

Solution You can see thatx D .1; 1/ will be in the same direction asSx D .3; 3/.
Thenx is an eigenvector ofS with � D 3. We want the matrixS � �I to be singular.

S D
"

2 1

1 2

#
det.S � �I/ D det

"
2 � � 1

1 2 � �

#
D �2 � 4�C 3 D 0:

Notice that3 is the determinant ofS (without�). And 4 is the sum2C 2 down the central
diagonal ofS . The diagonal sum4 is the “trace” of A. It equals �1 C �2 D 3C 1.

Now factor�2 � 4� C 3 into .� � 3/.� � 1/. The matrixS � �I is singular (zero
determinant) for� D 3 and� D 1. Each eigenvalue has an eigenvector :

�1 D 3 .S � 3I / x1 D
�
�1 1

1 �1

� �
1

1

�
D
�

0

0

�

�2 D 1 .S � I / x2 D
�

1 1

1 1

� �
1

�1

�
D
�

0

0

�

The eigenvalues3 and 1 are real. The eigenvectors.1; 1/ and .1;�1/ are orthogonal.
Those properties always come together for symmetric matrices (Section 6.5).

Here is anantisymmetricmatrix with AT D �A. It rotates all real vectors by� D 90ı.
Real vectors can’t be eigenvectors of a rotation matrix because it changes their direction.
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Example 4 This real matrix has imaginary eigenvaluesi ,�i and complex eigenvectors :

A D
�

0 �1

1 0

�
D �AT det.A � �I/ D det

�
�� �1

1 ��

�
D �2 C 1 D 0:

That determinant�2C 1 is zero for� D i and�i . The eigenvectors are.1;�i/ and.1; i/ :

�
0 �1

1 0

� �
1

�i

�
D
�

i

1

�
D i

�
1

�i

� �
0 �1

1 0

� �
1

i

�
D
�
�i

1

�
D �i

�
1

i

�

Somehow those complex vectorsx1 andx2 don’t get rotated (I don’t really know how).
Multiplying the eigenvalues.i/.�i/ gives detA D 1. Adding the eigenvalues gives

.i/C .�i/ D 0. This equals the sum0C 0 down the diagonal ofA.

Product of eigenvalues = determinant Sum of eigenvalues = “trace” (14)

Those are true statements for all square matrices.The trace is the suma11 C � � � C ann

down the main diagonal ofA. This sum and product are is especially valuable for2

by 2 matrices, when the determinant�1�2 D ad � bc and the trace�1 C �2 D aC d

completely determine�1 and�2. Look now at rotation of a plane through any angle� .

Example 5 Rotation comes from an orthogonal matrixQ. Then�1 D ei� and�2 D e�i� :

Q D
�

cos� �sin�

sin� cos�

�
�1 D cos� C i sin�

�2 D cos� � i sin�

�1 C �2 D 2 cos� D trace
�1 �2 D 1 D determinant

I multiplied .�1/.�2/ to get cos2 � C sin2 � D 1. In polar formei� times e�i� is 1.
The eigenvectors ofQ are.1;�i/ and.1; i/ for all rotation angles� .

Before ending this section, I need to tell you the truth. It isnot easy to find eigenvalues
and eigenvectors of large matrices. The equation det.A � �I/ D 0 is more or less limited
to 2 by 2 and3 by 3. For larger matrices, we can gradually make them triangularwithout
changing the eigenvalues.For triangular matrices the eigenvalues are on the diagonal.
A good code to compute� andx is free in LAPACK. TheMATLAB command iseig .A/.

REVIEW OF THE KEY IDEAS

1. Ax D �x says that eigenvectorsx keep the same direction when multiplied byA.

2. Ax D �x also says that det.A� �I/ D 0. This equation determinesn eigenvalues.

3. The eigenvalues ofA2 andA�1 are�2 and��1, with the same eigenvectors asA.

4. Singular matrices have� D 0. Triangular matrices have�’s on their diagonal.
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5. The sum down the main diagonal ofA (the trace) is the sum of the eigenvalues.

6. The determinant is the product of the�’s. It is also˙ (product of the pivots).

Problem Set 6.1

1 Example 2 has powers of this Markov matrixA :

A D
�

:8 :3

:2 :7

�
and A2 D

�
:70 :45

:30 :55

�
and A1 D

�
:6 :6

:4 :4

�
:

(a) A has eigenvalues1 and 1
2
. Find the eigenvalues ofA2 andA1.

(b) What are the eigenvectors ofA1 ? One eigenvector is in the nullspace.

(c) Check the determinant ofA2 andA1. Compare with.det A/2 and.det A/1.

2 Find the eigenvalues and the eigenvectors of these two matrices :

A D
�

1 4

2 3

�
and AC I D

�
2 4

2 4

�
:

AC I has the eigenvectors asA. Its eigenvalues are by 1.

3 Compute the eigenvalues and eigenvectors ofA and alsoA�1 :

A D
�

0 2

1 1

�
and A�1 D

�
�1=2 1

1=2 0

�
:

A�1 has the eigenvectors asA. WhenA has eigenvalues�1 and�2, its inverse
has eigenvalues . Check that�1 C �2 D trace of A D 0C 1.

4 Compute the eigenvalues and eigenvectors ofA andA2 :

A D
�
�1 3

2 0

�
and A2 D

�
7 �3

�2 6

�
:

A2 has the same asA. WhenA has eigenvalues�1 and�2, the eigenvalues
of A2 are . In this example, why is�2

1 C �2
2 D 13 ?

5 Find the eigenvalues ofA andB (easy for triangular matrices) andAC B :

A D
�

3 0

1 1

�
and B D

�
1 1

0 3

�
and ACB D

�
4 1

1 4

�
:

Eigenvalues ofA C B (are equal to) (might not be equal to) eigenvalues ofA plus
eigenvalues ofB.
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6 Find the eigenvalues ofA andB andAB andBA :

A D
�

1 0

1 1

�
and B D

�
1 2

0 1

�
and AB D

�
1 2

1 3

�
and BA D

�
3 2

1 1

�
:

(a) Are the eigenvalues ofAB equal to eigenvalues ofA times eigenvalues ofB ?

(b) Are the eigenvalues ofAB equal to the eigenvalues ofBA ? Yes!

7 Elimination produces a triangular matrixU . The eigenvalues ofU are on its diago-
nal (why?). They arenot the eigenvalues ofA. Give a2 by 2 example ofA andU .

8 (a) If you know thatx is an eigenvector, the way to find� is to .

(b) If you know that� is an eigenvalue, the way to findx is to .

9 What do you do to the equationAx D �x, in order to prove (a), (b), and (c) ?

(a) �2 is an eigenvalue ofA2, as in Problem 4.

(b) ��1 is an eigenvalue ofA�1, as in Problem 3.

(c) �C 1 is an eigenvalue ofAC I , as in Problem 2.

10 Find the eigenvalues and eigenvectors for both of these Markov matricesA andA1.
Explain from those answers whyA100 is close toA1 :

A D
�

:6 :2

:4 :8

�
and A1 D

�
1=3 1=3

2=3 2=3

�
:

11 A 3 by 3 matrixB has eigenvalues0; 1; 2. This information allows you to find :

(a) the rank ofB (b) the eigenvalues ofB2 (c) the eigenvalues of.B2CI /�1.

12 Find three eigenvectors for this matrixP . Projection matrices only have�D1 and0.
Eigenvectors arein or orthogonal tothe subspace thatP projects onto.

Projection matrix P2 D P D PT P D

2
4

:2 :4 0

:4 :8 0

0 0 1

3
5 :

If two eigenvectorsx andy share the same repeated eigenvalue�, so do all their
combinationscx C dy. Find an eigenvector ofP with no zero components.

13 From the unit vectoru D
�

1
6
; 1

6
; 3

6
; 5

6

�
construct the rank one projection matrix

P D uuT. This matrix hasP 2 D P becauseuTu D 1.

(a) Explain whyP uD .uuT/u equalsu. Thenu is an eigenvector with�D1.

(b) If v is perpendicular tou show thatPv D 0. Then� D 0.

(c) Find three independent eigenvectors ofP all with eigenvalue� D 0.
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14 Solve det.Q � �I/ D 0 by the quadratic formula to reach� D cos� ˙ i sin� :

Q D
�

cos� � sin�

sin� cos�

�
rotates thexy plane by the angle� . No real�’s.

Find the eigenvectors ofQ by solving.Q � �I/x D 0. Usei2 D �1.

15 Find three2 by 2 matrices that have�1 D �2 D 0. The trace is zero and the
determinant is zero.A might not be the zero matrix but check thatA2 is all zeros.

16 This matrix is singular with rank one. Find three�’s and three eigenvectors :

Rank one A D

2
4

1

2

1

3
5� 2 1 2

�
D

2
4

2 1 2

4 2 4

2 1 2

3
5 :

17 WhenaC bDc C d show that.1; 1/ is an eigenvector and find both eigenvalues :

Use the trace to find�2 A D
�

5 1

2 4

�
A D

�
a b

c d

�
:

18 If A has�1 D 4 and�2 D 5 then det.A � �I/ D .� � 4/.� � 5/ D �2 � 9�C 20.
Find three matrices that have tracea C d D 9 and determinant20, so� D 4 and5.

19 SupposeAu D 0u andAv D 3v andAw D 5w. The eigenvalues are0; 3; 5.

(a) Give a basis for the nullspace ofA and a basis for the column space.

(b) Find a particular solution toAx D v Cw. Find all solutions.

(c) AxDu has no solution. If it did then would be in the column space.

20 Choose the last row ofA to produce .a/ eigenvalues4 and7 .b/ any�1 and�2.

Companion matrix A D
�

0 1

� �

�
:

21 The eigenvalues ofA equal the eigenvalues ofAT . This is because det.A � �I/

equals det.AT � �I/. That is true because . Show by an example that the
eigenvectors ofA andAT arenot the same.

22 Construct any3 by 3 Markov matrixM : positive entries down each column add
to 1. Show thatM T.1; 1; 1/ D .1; 1; 1/. By Problem 21,� D 1 is also an eigenvalue
of M . Challenge : A3 by 3 singular Markov matrix with trace1

2
has what�’s ?

23 SupposeA andB have the same eigenvalues�1; : : :; �n with the same independent
eigenvectorsx1; : : :; xn. Then A D B. Reason: Any vectorv is a combination
c1x1 C � � � C cnxn. What isAv ? What isBv ?
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24 The blockB has eigenvalues1; 2 andC has eigenvalues3; 4 andD has eigenval-
ues5; 7. Find the eigenvalues of the 4 by 4 matrixA :

A D
�

B C

0 D

�
D

2
664

0 1 3 0

�2 3 0 4

0 0 6 1

0 0 1 6

3
775 :

25 Find the rank and the four eigenvalues ofA andC :

A D

2
664

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3
775 and C D

2
664

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

3
775 :

26 SubtractI from the previousA. Find the eigenvalues ofB and�B :

B D A� I D

2
664

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

3
775 and � B D

2
664

0 �1 �1 �1

�1 0 �1 �1

�1 �1 0 �1

�1 �1 �1 0

3
775 :

27 (Review) Find the eigenvalues ofA, B, andC :

A D

2
4

1 2 3

0 4 5

0 0 6

3
5 and B D

2
4

0 0 1

0 2 0

3 0 0

3
5 and C D

2
4

2 2 2

2 2 2

2 2 2

3
5 :

28 Every permutation matrix leavesx D .1; 1; : : :; 1/ unchanged. Then� D 1. Find
two more�’s (possibly complex) for these permutations, from det.P � �I/ D 0 :

P D

2
4

0 1 0

0 0 1

1 0 0

3
5 and P D

2
4

0 0 1

0 1 0

1 0 0

3
5 :

29 The determinant of A equals the product�1�2 � � ��n. Start with the polynomial
det.A� �I/ separated into itsn factors (always possible). Then set� D 0 :

det.A� �I/ D .�1 � �/.�2 � �/ � � � .�n � �/ so detA D :

30 The sum of the diagonal entries (thetrace) equals the sum of the eigenvalues :

A D
�

a b

c d

�
has det.A� �I/ D �2 � .aC d/�C ad � bc D 0:

The quadratic formula gives the eigenvalues�D .aCdC
p

/=2 and�D .
Their sum is . If A has�1 D 3 and �2 D 4 then det.A � �I/ D .




