Chapter 4

Linear Equations and Inverse
Matrices

4.1 Two Pictures of Linear Equations

The central problem of linear algebra is to solve a systengaftons. Those equations
are linear, which means that the unknowns are only multdhig numbers—we never see
x2 or x timesy. Our first linear system is deceptively small, onlyBy 2.” But you will
see how far it leads :

Two equations x — 2y =1 (1)
Two unknowns 2x + y =
We begina row at a time The first equatiorx — 2y = 1 produces a straight line in the
xy plane. The pointt = 1, y = 0 is on the line because it solves that equation. The
pointx = 3, y = 1 is also on the line becau8e- 2 = 1. Forx = 101 we findy = 50.

The slope of this line in Figure 4.1 |§ becausey increases byl whenx changes
by 2. But slopes are important in calculus and this is linearlaigé

Y A

Figure 4.1:Row picture The point(3, 1) where the two lines meet is the solution.
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The second line in this “row picture” comes from the secoruedign2x +y = 7. You
can’'t miss the intersection point where the two lines m&he pointx = 3,y = 1 lies on
both lines It solves both equations at once. This is the solution tawarequations.

ROWS The row picture shows two lines meeting at a single poftite solution).

Turn now to the column picture. | want to recognize the sameali system as a
“vector equation.” Instead of numbers we need tovesaors If you separate the original
system into its columns instead of its rows, you get a veajaaéon :

Combination equalsh x|: ; } + y[ _? } = [ ; ] =b. 2)

This has two column vectors on the left side. The probleto ind the combination of
those vectors that equals the vector on the righte are multiplying the first column by
x and the second column by, and adding vectors. With the right choices= 3 and
y = 1 (the same numbers as before), this prodd¢eslumn 1) + 1(column 2) = b.

COLUMNS  The column picture combines the column vectors on the leftesi
of the equations to produce the vectéron the right side.

6 -3 (columnl) 3
I H
4+ _
multiply by 3
column2 , | 1
5 [2] columnl1
| 4
— —t—
-2 -1 0 1 2 3 -2 -1 0 1 2 3

Figure 4.2:Column picture A combinatior3 (columnl1) + 1 (column2) gives the vectob.

Figure 4.2 is the “column picture” of two equations in two aokvns. The left side
shows the two separate columns, and colunsymultiplied by3. This multiplication by a
scalar(a number) is one of the two basic operations in linear alebr

Scalar multiplication 3[ é } = [ 2 }
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If the components of a vecterarev; andv,, thencv has componentsv; andcv,.

The other basic operation igctor addition We add the first components and the
second components separatély- 2 and6 + 1 give the vector sunil, 7) as desired :

. 3 -2 1
Vector addition [ 6 }+[ ) } = [ 7 }

The right side of Figure 4.2 shows this addition. The sum@live diagonal is the vector
b = (1,7) on the right side of the linear equations.

To repeat: The left side of the vector equation Ismaar combinationof the columns.
The problem is to find the right coefficients= 3 andy = 1. We are combining scalar
multiplication and vector addition into one step. That camakion step is crucially impor-
tant, because it contains both of the basic operations aonganultiply and add

Linear combination 3 1 n -2 | |1
of the 2 columns 2 1| | 7]

Of course the solutiow = 3,y = 1 is the same as in the row picture. | don’t know
which picture you prefer! Two intersecting lines are mormaifar at first. You may like the
row picture better, but only for a day. My own preference i€donbine column vectors.
It is a lot easier to see a combination of four vectors in fdimensional space, than to
visualize how four “planes” might possibly meet at a poirEvén one three-dimensional
plane in four-dimensional space is hard enough. . .

Thecoefficient matrixon the left side of equation (1) is ti2eby 2 matrix A4 :

Coefficient matrix A= [ ; _% }

This is very typical of linear algebra, to look at a matrix lmyms and also by columns.
Its rows give the row picture and its columns give the colunatyse. Same numbers,
different pictures, same equations. We write those equsiis a matrix problemv = b :

. . 1 -2 X 1
Matrix multiplies vector [ 1 }[ y } = [ 7 }

The row picture deals with the two rows df The column picture combines the columns.
The numberss = 3 andy = 1 go into the solution vector. Here is matrix-vector
multiplication, matrix4 times vectow. Please look at this multiplicatiodv !

Dot products with rows P 1 -2 3] (1
Combination of columns A=y [ 2 1 }[ 1 } - [ 7 } ©)
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Linear Combinations of Vectors

Before | go to three dimensions, let me show you the most itapboperation on vectors.
We can see a vector like = (3, 1) as a pair of numbers, or as a point in the plane, or
as an arrow that starts fro(f, 0). The arrow ends at the poif8, 1) in Figure 4.3.

v=|:3] I I !
! B

column vector point3, 1) arrow to(3, 1)
Figure 4.3: The vectow is given by two numbers or a point or an arrow frédn0).

A first step is to multiply that vector by any number If ¢ = 2 then the vector is
doubled t@wv. If ¢ = —1 then it changes direction tev. Always the “scalarc multiplies
each separate component (hgrend 1) of the vectorv. The arrow doubles the length to
show2wv and it reverses direction to shew :

2v

2"’:[3] —1’:[_?} IR S
_ _’U‘/l

column vectors arrows t, 2) and(-3, —1)

Figure 4.4: Multiply the vectov = (3, 1) by scalarg = 2 and—1 to getcv = (3¢, ¢).

If we have another vectav = (-1, 1), we can add it taw. Vector additionv + w
can use numbers (the normal way) or it can use the arrows $t@hzev + w). The
arrows in Figure 4.5 go head to tai\t the end of v, place the start ofw.

Figure 4.5: Thesumaf = (3,1) andw = (—1,1) isv + w = (2,2). This is alsow + v.

Allow me to say, addingy + w and multiplyingcv will soon be second nature. In
themselves they are not impressive. What really counts isnwou do both at once.
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Multiply cv and alsod w, then add to get thBnear combination cv + d w.

Linear combination 2v + 3w 2[ i } + 3[ _1 } = [ 2 }

This is the basic operation of linear algebra! If you have wdimensional vectors like
v = (1,1,1,1,2) andw = (3,0,0,1,0), you can multiplyv by 2 andw by 1. You
can combine to gélv + w = (5,2,2,3,4). Every combinatiorv + dw is a vector in
the big5-dimensional spack®.

| admit that there is no picture to show these vectoRInSomehow | imagine arrows
going towv andw. If you think of all the vectors-v, they form a line inR>. The line
goes in both directions fror, 0, 0,0, 0) because: can be positive or negative or zero.

Similarly there is a line of all vectorgw. The hard but all-important part is to imagine
all the combinationsv + dw. Add all vectors on one line to all vectors on the other line,
and what do you get? It is a “2-dimensional plane” inside tlge3dimensional space.
| don't lose sleep trying to visualize that plane. (Thereaspnoblem in working with the
five numbers.) For linear combinations in high dimensiotgelara wins.

Dot Product of v and w

The other important operation on vectors is a kind of mdttggion. This is not ordinary
multiplication and we don’t writew. The output fronw andw will be one number and it
is called thedot product v - w.

DEFINITION Thedot product of v = (v1, v2) andw = (w1, wy) is the numbew - w :

Vew = VW + Vaws. 4)

The dot productob = (3,1) andw = (—1,1)isv-w = 3)(—1) + (1)(1) = 2.

Example 1 The column vectorsl, 2) and(—2, 1) have azerodot product:

Dot product is zero 1 27 ~
Perpendicular vectors [ 2 } : [ 1 } =-—2+2=0

In mathematics, zero is always a special number. For dotyatsdit means thahese two
vectors are perpendiculaiThe angle between themd8°.

The clearest example of two perpendicular vectois is (1,0) along thex axis and
J = (0, 1) up they axis. Again the dot productis j = 040 = 0. Those vectors andj
form a right angle. They are the columns of thby 2 identity matrix 7.

The dot product ob = (3,1) andw = (1,2) is 5. Soonv - w will reveal the angle
betweerw andw (not90°). Please check thad - v is also5.
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Multiplying a Matrix A and a Vector v

Linear equations have the foraw = b. The right sideb is a column vector. On the
left side, the coefficient matrid multiplies the unknown column vecter (we don’t use
a “dot” for Av). The all-important fact is thalv is computed bydot products in the
row picture andAwv is acombination of the columns in the column picture

| put those words “combination of the columns” in boldface¢ause this is an essential
idea that is sometimes missed. One definition is usually gmaulinear algebra, butiv
has two definitions—the rows and the columns produce the sampeit vectordv.

The rules stay the same # hasn columnsa,,...,a,. Thenv hasn components.
The vectorAdwv is still a combination of the columnslv = via; + vaaz + -+ + vya,.
The numbers inv multiply the columns in A. Let me start withh = 2.

(rowl)-v

By rows Av = [ (oW 2) - v

} By columns Awv = v;(columnl)+wv;(column2).

Example 2 In equation (3) | wrote “dot products with rows” and “combiice of
columns.” Now you know what those mean. They are the two waysak atAwv :

Dot products with rows avi+bvy | a n b )
Combination of columns coi4+duvs | T e 21 g |

You might naturally askwhich way to finddv ? My own answer is this: | compute
by rows and | visualize (and understand) by columns. Contioing of columns are truly
fundamental. But to calculate the answép, | have to find one component at a time.
Those components ofv are the dot products with the rows af

2 3 v | | 2vi+3v2 | 2 3
[4 SHUZ]_[4v1+5v2}_”1[4]+“2[5]'

Singular Matrices and Parallel Lines

The row picture and column picture can fail—and they will taigether. For & by 2
matrix, the row picture fails when the lines from rawand row2 are parallel. The lines
don’t meet anddv = b has no solution:

2 3 2v1 — 3V, =6 Parallel lines
4 6 4v; — 6V, =0 no solution

The row picture shows the problem and so does the algebtimes equatiorl produces
4v; — 6v, = 12. But equation 2 require$v; — 6v, = 0. Notice that this line goes
through the center poirt0, 0) because the right side is zero.
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How does the column picture fail Tolumnsl and 2 point in the same directian
When the rows are “dependent”, the columns are also dependdincombinations of
the columng2, 4) and (3, 6) lie in the same direction. Since the right sible= (6,0) is
not on that linep is nota combination of those two column vectorsAf Figure 4.6 (a)
shows that there iso solutionto the equation.

[

571 57T
2 line of columns line of columns

+ 3]
3 -+

b noton line bisonline
2 -+

6 6
= [0] = 2]
3 4 5 6

Figure 4.6: Column pictures (&o solution (b) Infinity of solutions

Example 3 Same matrix4, nowb = (6, 12), infinitely many solutions todv = b

A = 2 3 21)1—31)2:6
o 4 6 41)1—61)2:12 | |

In the row picture, the two lines are the samd. pointson that line solve both equations.
Two times equation gives equatio?. Those close lines are one line.

In the column picture above, the right sile= (6, 12) falls right onto the line of the
columns. Later we will sayb is in the column space of. There are infinitely many ways
to producg6, 12) as a combination of the columns. They come from infinitely ynaays
to produceb = (0,0) (choose any). Add one way to produck = (6, 12) = 3(2, 4).

-s[2l2] [1-R]ea)

The vectorv, = (3c¢,2c¢) is anull solution andv, = (3,0) is aparticular solution.
Av, equals zero andAv, equalsb. ThenA(v, + v,) = b. Togetherv, andv,
give thecomplete solution all the ways to producg = (6, 12) from the columns of4 :

Complete solutiontodv = b veomplete= vp + Vn = [ (3) } + [ Zz } (7)
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Equations and Pictures in Three Dimensions

In three dimensions, a linear equation liket y + 2z = 6 produces glane The plane
would go through(0, 0, 0) if the right side were). In this case the6” moves us to a
parallel plane that misses the center p&ino, 0).

A second linear equation will produce another plane. Nolgnhe two planes meet in
aline. Then a third plane (from a third equation) normally cutetigh that line at @oint
That point will lie on all three planes, so it solves all thespiations.

This is therow picture three planes in three—dimensional space. They meet at th
solution. One big problem is that this row picture is hard tavd Three planes are too
many to see clearly how they meet (maybe Picasso could do it).

The column pictureof Av = b is easier. It starts with three column vectors in three-
dimensional space. We want to combine those columng @b produce the vector
vi(column 1) + vy (column2) + vs(column3) = b. Normally there is one way to do
it. That gives the solutiofw,, v, v3) — which is also the meeting point in the row picture.

| want to give an example of success (one solution) and an gbeaof failure (no
solution). Both examples are simple, but they really go Heiepo linear algebra.

Example 4  Invertible matrix4, one solutiorw for any right sideb.

1 0 0 vy 1
Av=>b is -1 1 0 ) = 3 1. (8)
0 -1 1 U3 5

This matrix islower triangular . It has zeros above the main diagonal. Lower triangular
systems are quickly solved by forward substitution, topdtidm. The top equation gives
vy, then move down. First; = 1. Then—v; + v, = 3 givesv, = 4. Then—v, +v3 =5
givesvsz = 9.

Figure 4.7 shows the three colummg a5, a3. When you combine them with, 4, 9
you produceb = (1,3,5). Inreversep = (1,4,9) must be the solution talv = b.

a3 = 0

a; = —1
0 1

a, = 1

Figure 4.7: Independent columnsay,az,a3z not in a plane. Dependent columns
c1, ¢z, c3 are three vectors all in the same plane.
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Example 5  Singular matrix : no solution toCv = b or infinitely many solutions
(depending o).

wy — w3 = by 1 0 -1 w1 1 0 1
—wy + w2 = by -1 1 0 wy | =13 or [0 or 21. (9
—wy + w3 = b3 0 -1 1 w3 5 0 -3

This matrixC is a “circulant.” The diagonals are constants,l&dl or all 0’s or all —1's.
The diagonals circle around so each diagonal has three eqtrads. Circulant matrices
will be perfect for the Fast Fourier TransforfRT) in Chapter 8.

To see ifCw = b has a solution, add those three equations t®get b, + b, + bs.

Left side (wg —w3)+ (—ws + w2) + (—w2 + w3) =0. (10)

Cw = b cannot have a solution unle@s= b; + b, + b3. The components df = (1, 3,5)
do not add to zero, s6 w = (1, 3, 5) has no solution.

Figure 4.7 shows the problerihe three columns ofC lie in a plane. All combina-
tions Cw of those columns will lie in that same plane If the right side vectob is not
in the plane, thelw = b cannot be solved. The vectbr= (1, 3, 5) is off the plane,
because the equation of the plane requires b, + b3 = 0.

Of courseCw = (0,0, 0) always has the zero solutiam = (0,0, 0). But when the
columns ofC are in a plane (as here), there are additional nonzero spiitoCw = 0.
Those three equations arg = w3 andw; = w, andw, = ws. Thenull solutions
arew, = (c, ¢, c). When all three components are equal, we hawg, = 0.

The vectorb = (1,2,-3) is also in the plane of the columns, because it does have
b1 + ba + b3 = 0. In this good case there must bgarticular solution to Cw, = b.
There are many particular solutioms,, since any solution can be a particular solution.
I will choose the particulaw , = (1, 3,0) that ends inv; = 0:

I 0 -1 1 1 Thecomplete solutionis
Cwp=| -1 1 0 3= =
o 0 3 Wcomplete= Wp + anywy,

Summary These two matricegl and C, with third columnsas andc3, allow me to
mention two key words of linear algebrandependence and dependengéis book will
develop those ideas much further. | am happy if you see thelpieahe two examples:

ai,a,,as are independent A isinvertible Av = b has one solutionv
¢1, ¢z, c3 are dependent C is singular Cw = 0 has many solutionsw,

Eventually we will haven column vectors im-dimensional space. The matrix will be
n by n. The key question is whethelrv = 0 has only the zero solution. Then the columns
don'’tlie in any “hyperplane.” When columns are independtrd matrix is invertible.
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Problem Set 4.1

Problems 1-8 are about the row and column pictures olv = b.

1 With A = I (the identity matrix) draw the planes in the row picture. désides of
a box meet at the solution = (x, y,z) = (2, 3, 4):

=
8]

Ix +0y +0z =2 1 00
Ox+1y+0z=3 or 010 y | =13
Ox+0y+1z=4 0 0 1

Draw the four vectors in the column picture. Two times coluhpius three times
column2 plus four times columa equals the right sidé.

2 If the equations in Problem 1 are multiplied By3, 4 they becomeDV = B:

2x4+0y+0z= 4 2 0 0 X 4
Ox+3y4+0z=9 or DV=| 0 3 0 y|=| 9|=8B
Ox +0y +4z =16 0 0 4 z 16

Why is the row picture the same? Is the solutlorihe same as? What is changed
in the column picture—the columns or the right combinatmugive B ?

3 If equation 1 is added to equation 2, which of these are ctdintpe planes in the
row picture, the vectors in the column picture, the coeffitimatrix, the solution?
The new equations in Problem 1 wouldbe=2,x + y =5,z = 4.

4 Find a point withz = 2 on the intersection line of the planest+ y + 3z = 6 and
x —y + z = 4. Find the point withz = 0. Find a third point halfway between.

5 The first of these equations plus the second equals the third:

X+ y+ z=2
x+2y+ z=3
2x + 3y + 2z =5.

The first two planes meet along a line. The third plane costtiat line, because
if x, y,z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line). Find three solutions oh.

6 Move the third plane in Problem 5 to a parallel plane+ 3y + 2z = 9. Now the
three equations have no solutionvhy no The first two planes meet along the line
L, but the third plane doesn’t that line.

7 In Problem 5 the columns af&, 1,2) and(1, 2, 3) and(1, 1, 2). This is a “singular
case” because the third columnis . Find two combinations of the columns that
giveb = (2,3,5). Thisis only possible fob = (4,6,¢) if ¢ =
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8 Normally 4 “planes” in 4-dimensional space meet at a . Normally 4
vectors in4-dimensional space can combine to proddce What combination
of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) producesbh = (3,3,3,2)?

Problems 9-14 are about multiplying matrices and vectors.

9 Compute eachix by dot products of the rows with the column vector:

@ | —2 3 1 2 to
1 ; 01 2 1 1
001 2 2

10 Compute eackix in Problem 9 as a combination of the columns:

1 2 4
9(a) becomes Ax =2 2 |+2| 3 [+3| 1 |[=
—4 1 2

How many separate multiplications fdre, when the matrix is 3 by 3"7?

11  Find the two components ofx by rows or by columns:

2] e [2 ][] e [3 2]

12 Multiply A timesx to find three components ofx:

—_—

0 0 1 X 2 1 3 1 2 1 1
010 y and 1 2 3 1 and 1 2 [1} .
1 00 z 3 36 —1 3 3
13 (&) A matrix withm rows andr columns multiplies a vector with compo-
nents to produce a vector with components.
(b) The planes from the: equationsdx = b are in -dimensional space.
The combination of the columns dfis in -dimensional space.

14  Write2x+3y +z+5t = 8 as a matrix4d (how many rows?) multiplying the column
vectorx = (x,y,z,t) to produceb. The solutionst fill a plane or “hyperplane”
in 4-dimensional spac&he plane i$-dimensional with n@D volume

Problems 15-22 ask for matrices that act in special ways on g#ors.

15 (a) What is the by 2 identity matrix?/ times[} | equalsy |.
(b) What is the2 by 2 exchange matrix? times[3 | equalg ¥ .
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16

17

18

19

20

21

22

23

24
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(a) What2 by 2 matrix R rotates every vector b0° ? R times| y | is [} ].
(b) What2 by 2 matrix R? rotates every vector by80° ?

Find the matrixP that multiplies(x, y, z) to give (y, z, x). Find the matrixQ that
multiplies(y, z, x) to bring back(x, y, z).

What2 by 2 matrix E subtracts the first component from the second component:
What3 by 3 matrix does the same ?

3 3
E[é}:[g] and E 5 1= 2
7 7

What3 by 3 matrix E multiplies (x, y, z) to give (x, y, z + x) ? What matrix !
multiplies (x, y, z) to give (x, y,z — x) ? If you multiply (3,4, 5) by E and then
multiply by 71, the two results aré ) and( ).

What2 by 2 matrix P; projects the vectofx, y) onto thex axis to producéx, 0) ?
What matrix P, projects onto the axis to producg0, y) ? If you multiply (5, 7)
by P, and then multiply byP,, you get( ) and( ).

What2 by 2 matrix R rotates every vector througts® ? The vector(1,0) goes to
(v/2/2,+/2/2). The vector(0, 1) goes to(—+/2/2,+/2/2). Those determine the
matrix. Draw these particular vectors in the plane and findR.

Write the dot product of1, 4, 5) and(x, y, z) as a matrix multiplicatiomwv. The
matrix A has one row. The solutions v = Olie on a perpendicular to the
vector . The columns of4 are only in -dimensional space.

In MATLAB notation, write the commands that define this mattiand the column
vectorsv andd. What command would test whether or nté = 5 ?

L] e8] e

If you multiply the4 by 4 all-ones matrixA = ones(4) and the columi = ones(4,1),
what isAxv ? (Computer not needed.) If you multipB/= eye(4) + ones(4) times
w = zeros(4,1) + 2xones(4,1), what isBxw ?

Questions 25-27 review the row and column pictures in 2, 3, a4 dimensions.

25
26

27

Draw the row and column pictures for the equatians 2y = 0, x + y = 6.

For two linear equations in three unknowny, z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The coluiotuge is in (2 or 3)-
dimensional space. The solutions normally lie on a

For four linear equations in two unknownsand y, the row picture shows four
. The column picture is in -dimensional space. The equations have no
solution unless the vector on the right side is a combinaifon .
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Challenge Problems

28 Invent a3 by 3 magic matrix M3 with entries1,2,...,9. All rows and columns
and diagonals add to 15. The first row could$8, 4. What isM; times(1,1,1) ?
WhatisM, times(1, 1, 1, 1) if a 4 by 4 magic matrix has entriek ..., 16 ?

29  Suppose: andv are the first two columns of aby 3 matrix A. Which third columns
w would make this matrix singular ? Describe a typical coluriatyse of Av = b
in that singular case, and a typical row picture (for a ran@ym

30 Multiplying by A is a “linear transformation”. Those important words mean:

If wis a combination oft andv, thenAw is the same combination efu and Av.
Itis this “linearity” Aw = cAu + dAv that gives us the nanimear algebra

If u = [ (1) } andv = [ (1) } thenAu andAv are the columns ofi.

Combinew = cu + dv. If w = |: >

7 } how is Aw connected todu and Av ?

31 A 9by9 Sudoku matrix S has the numberk ..., 9in every row and column, and
in every3 by 3 block. For the all-ones vectar= (1,...,1), whatisSv ?

A better question isWhich row exchanges will produce another Sudoku matrix
? Also, which exchanges of block rows give another Sudokuiriat

Section 4.5 will look at all possible permutations (reondgs) of the rows. | see
6 orders for the firsB rows, all giving Sudoku matrices. Algopermutations of the
next3 rows, and of the last rows. And6 block permutations of the block rows ?

32  Suppose the second row dfis some number times the first row :

a b
A_[ca cb]'

Then ifa # 0, the second column of is what numbet! times the first column ?
A square matrix with dependent rows will also have dependentolumns This is
a crucial fact coming soon.





