
Chapter 4

Linear Equations and Inverse
Matrices

4.1 Two Pictures of Linear Equations

The central problem of linear algebra is to solve a system of equations. Those equations
are linear, which means that the unknowns are only multiplied by numbers—we never see
x2 or x timesy. Our first linear system is deceptively small, only “2 by 2.” But you will
see how far it leads :

Two equations x � 2y D 1

Two unknowns 2x C y D 7
(1)

We begina row at a time. The first equationx � 2y D 1 produces a straight line in the
xy plane. The pointx D 1, y D 0 is on the line because it solves that equation. The
pointx D 3, y D 1 is also on the line because3 � 2 D 1. Forx D 101 we findy D 50.

The slope of this line in Figure 4.1 is1
2
, becausey increases by1 whenx changes

by 2. But slopes are important in calculus and this is linear algebra !

y

.3; 1/

x � 2y D 1 2x C y D 7

x

Figure 4.1:Row picture: The point.3; 1/ where the two lines meet is the solution.
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198 Chapter 4. Linear Equations and Inverse Matrices

The second line in this “row picture” comes from the second equation2xCy D 7. You
can’t miss the intersection point where the two lines meet.The pointx D 3; y D 1 lies on
both lines. It solves both equations at once. This is the solution to ourtwo equations.

ROWS The row picture shows two lines meeting at a single point(the solution).

Turn now to the column picture. I want to recognize the same linear system as a
“vector equation.” Instead of numbers we need to seevectors. If you separate the original
system into its columns instead of its rows, you get a vector equation :

Combination equalsb x

�
1

2

�
C y

�
�2

1

�
D
�

1

7

�
D b: (2)

This has two column vectors on the left side. The problem isto find the combination of
those vectors that equals the vector on the right. We are multiplying the first column by
x and the second column byy, and adding vectors. With the right choicesx D 3 and
y D 1 (the same numbers as before), this produces3.column 1/C 1.column 2/ D b.

COLUMNS The column picture combines the column vectors on the left side
of the equations to produce the vectorb on the right side.
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Figure 4.2:Column picture: A combination3 (column1) + 1 (column2) gives the vectorb.

Figure 4.2 is the “column picture” of two equations in two unknowns. The left side
shows the two separate columns, and column1 is multiplied by3. This multiplication by a
scalar(a number) is one of the two basic operations in linear algebra :

Scalar multiplication 3

�
1

2

�
D
�

3

6

�
:
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If the components of a vectorv arev1 andv2, thencv has componentscv1 andcv2.
The other basic operation isvector addition. We add the first components and the

second components separately.3 � 2 and6C 1 give the vector sum.1; 7/ as desired :

Vector addition
�

3

6

�
C
�
�2

1

�
D
�

1

7

�
:

The right side of Figure 4.2 shows this addition. The sum along the diagonal is the vector
b D .1; 7/ on the right side of the linear equations.

To repeat : The left side of the vector equation is alinear combinationof the columns.
The problem is to find the right coefficientsx D 3 andy D 1. We are combining scalar
multiplication and vector addition into one step. That combination step is crucially impor-
tant, because it contains both of the basic operations on vectors :multiply and add.

Linear combination
of the 2 columns

3

�
1

2

�
C
�
�2

1

�
D
�

1

7

�
:

Of course the solutionx D 3; y D 1 is the same as in the row picture. I don’t know
which picture you prefer ! Two intersecting lines are more familiar at first. You may like the
row picture better, but only for a day. My own preference is tocombine column vectors.
It is a lot easier to see a combination of four vectors in four-dimensional space, than to
visualize how four “planes” might possibly meet at a point. (Even one three-dimensional
plane in four-dimensional space is hard enough. . .)

Thecoefficient matrixon the left side of equation (1) is the2 by 2 matrixA :

Coefficient matrix A D
�

1 �2

2 1

�
:

This is very typical of linear algebra, to look at a matrix by rows and also by columns.
Its rows give the row picture and its columns give the column picture. Same numbers,
different pictures, same equations. We write those equations as a matrix problemAv D b :

Matrix multiplies vector
�

1 �2

2 1

� �
x

y

�
D
�

1

7

�
:

The row picture deals with the two rows ofA. The column picture combines the columns.
The numbersx D 3 and y D 1 go into the solution vectorv. Here is matrix-vector
multiplication, matrixA times vectorv. Please look at this multiplicationAv !

Dot products with rows
Combination of columns

Av D b is

�
1 �2

2 1

� �
3

1

�
D
�

1

7

�
: (3)
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Linear Combinations of Vectors

Before I go to three dimensions, let me show you the most important operation on vectors.
We can see a vector likev D .3; 1/ as a pair of numbers, or as a point in the plane, or
as an arrow that starts from.0; 0/. The arrow ends at the point.3; 1/ in Figure 4.3.

v D
�

3

1

� 1

1 2 3

v

.0; 0/

column vector point.3; 1/ arrow to.3; 1/

Figure 4.3: The vectorv is given by two numbers or a point or an arrow from.0; 0/.

A first step is to multiply that vector by any numberc. If c D 2 then the vector is
doubled to2v. If c D �1 then it changes direction to�v. Always the “scalar”c multiplies
each separate component (here3 and1) of the vectorv. The arrow doubles the length to
show2v and it reverses direction to show�v :

2v D
�

6

2

�
� v D

�
�3

�1

�
v

�v

2v

column vectors arrows to.6; 2/ and.�3;�1/

Figure 4.4: Multiply the vectorv D .3; 1/ by scalarsc D 2 and�1 to getcv D .3c; c/.

If we have another vectorw D .�1; 1/, we can add it tov. Vector additionv C w

can use numbers (the normal way) or it can use the arrows (to visualizev C w). The
arrows in Figure 4.5 go head to tail :At the end of v, place the start ofw.

v Cw D
�

3

1
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�1

1
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D
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2

2

�
w v

v Cw

Figure 4.5: The sum ofv D .3; 1/ andw D .�1; 1/ is vCw D .2; 2/. This is alsowC v.

Allow me to say, addingv C w and multiplyingcv will soon be second nature. In
themselves they are not impressive. What really counts is when you do both at once.



4.1. Two Pictures of Linear Equations 201

Multiply cv and alsodw, then add to get thelinear combination cv C dw.

Linear combination 2v C 3w 2

�
3

1

�
C 3

�
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1

�
D
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3

5

�
:

This is the basic operation of linear algebra ! If you have two5-dimensional vectors like
v D .1; 1; 1; 1; 2/ and w D .3; 0; 0; 1; 0/, you can multiplyv by 2 and w by 1. You
can combine to get2v C w D .5; 2; 2; 3; 4/. Every combinationcv C dw is a vector in
the big5-dimensional spaceR5.

I admit that there is no picture to show these vectors inR5. Somehow I imagine arrows
going tov andw. If you think of all the vectorscv, they form a line inR5. The line
goes in both directions from.0; 0; 0; 0; 0/ becausec can be positive or negative or zero.

Similarly there is a line of all vectorsdw. The hard but all-important part is to imagine
all the combinationscv C dw. Add all vectors on one line to all vectors on the other line,
and what do you get ? It is a “2-dimensional plane” inside the big 5-dimensional space.
I don’t lose sleep trying to visualize that plane. (There is no problem in working with the
five numbers.) For linear combinations in high dimensions, algebra wins.

Dot Product of v and w

The other important operation on vectors is a kind of multiplication. This is not ordinary
multiplication and we don’t writevw. The output fromv andw will be one number and it
is called thedot product v �w.

DEFINITION Thedot product of v D .v1; v2/ andw D .w1; w2/ is the numberv �w :

v �w D v1w1 C v2w2: (4)

The dot product ofv D .3; 1/ andw D .�1; 1/ is v �w D .3/.�1/C .1/.1/ D �2.

Example 1 The column vectors.1; 2/ and.�2; 1/ have azerodot product :

Dot product is zero
Perpendicular vectors

�
1

2

�
�
�
�2

1

�
D �2C 2 D 0:

In mathematics, zero is always a special number. For dot products, it means thatthese two
vectors are perpendicular. The angle between them is90ı.

The clearest example of two perpendicular vectors isi D .1; 0/ along thex axis and
j D .0; 1/ up they axis. Again the dot product isi �j D 0C0 D 0. Those vectorsi andj

form a right angle. They are the columns of the2 by 2 identity matrix I .
The dot product ofv D .3; 1/ andw D .1; 2/ is 5. Soonv � w will reveal the angle

betweenv andw (not90ı/. Please check thatw � v is also5.
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Multiplying a Matrix A and a Vector v

Linear equations have the formAv D b. The right sideb is a column vector. On the
left side, the coefficient matrixA multiplies the unknown column vectorv (we don’t use
a “dot” for Av). The all-important fact is thatAv is computed bydot products in the
row picture, andAv is acombination of the columns in the column picture.

I put those words “combination of the columns” in boldface, because this is an essential
idea that is sometimes missed. One definition is usually enough in linear algebra, butAv

has two definitions—the rows and the columns produce the sameoutput vectorAv.
The rules stay the same ifA hasn columnsa1; : : : ; an. Thenv hasn components.

The vectorAv is still a combination of the columns,Av D v1a1 C v2a2 C � � � C vnan.
The numbers inv multiply the columns in A. Let me start withn D 2.

By rows Av D
�

.row 1/ � v

.row 2/ � v

�
By columns Av D v1.column1/Cv2.column2/:

Example 2 In equation (3) I wrote “dot products with rows” and “combination of
columns.” Now you know what those mean. They are the two ways to look atAv :

Dot products with rows
Combination of columns

�
a v1 C b v2

c v1 C d v2

�
D v1

�
a

c

�
C v2

�
b

d

�
: (5)

You might naturally ask,which way to findAv ? My own answer is this : I compute
by rows and I visualize (and understand) by columns. Combinations of columns are truly
fundamental. But to calculate the answerAv, I have to find one component at a time.
Those components ofAv are the dot products with the rows ofA.

�
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4 5

� �
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�
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�
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4

�
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5

�
:

Singular Matrices and Parallel Lines

The row picture and column picture can fail—and they will fail together. For a2 by 2

matrix, the row picture fails when the lines from row1 and row2 are parallel. The lines
don’t meet andAv D b has no solution :

A D
�

2 3

4 6

�
2v1 � 3v2 D 6

4v1 � 6v2 D 0

Parallel lines
no solution

The row picture shows the problem and so does the algebra :2 times equation1 produces
4v1 � 6v2 D 12. But equation 2 requires4v1 � 6v2 D 0. Notice that this line goes
through the center point.0; 0/ because the right side is zero.
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How does the column picture fail ?Columns1 and 2 point in the same direction.
When the rows are “dependent”, the columns are also dependent. All combinations of
the columns.2; 4/ and.3; 6/ lie in the same direction. Since the right sideb D .6; 0/ is
not on that line,b is not a combination of those two column vectors ofA. Figure 4.6 (a)
shows that there isno solutionto the equation.

line of columns

b D
�

6

0

�
b not on line

�
3

6

�

�
2

4

�
line of columns

b is on line

b D
�

6

12

�

Figure 4.6: Column pictures (a)No solution (b) Infinity of solutions

Example 3 Same matrixA, nowb D .6; 12/, infinitely many solutions toAv D b

A D
�

2 3

4 6

�
2v1 � 3v2 D 6

4v1 � 6v2 D 12

In the row picture, the two lines are the same.All pointson that line solve both equations.
Two times equation1 gives equation2. Those close lines are one line.

In the column picture above, the right sideb D .6; 12/ falls right onto the line of the
columns. Later we will say :b is in the column space ofA. There are infinitely many ways
to produce.6; 12/ as a combination of the columns. They come from infinitely many ways
to produceb D .0; 0/ (choose anyc). Add one way to produceb D .6; 12/ D 3.2; 4/.

�
0

0

�
D 3c

�
2

4

�
C 2c

�
�3

�6

� �
6

12

�
D 3

�
2

4

�
C 0

�
�3

�6

�
: (6)

The vectorvn D .3c; 2c/ is a null solution andvp D .3; 0/ is a particular solution .
Avn equals zero andAvp equals b. ThenA.vp C vn/ D b. Together,vp andvn

give thecomplete solution, all the ways to produceb D .6; 12/ from the columns ofA :

Complete solution toAv D b vcompleteD vp C vn D
�

3

0

�
C
�

3c

2c

�
: (7)
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Equations and Pictures in Three Dimensions

In three dimensions, a linear equation likex C y C 2z D 6 produces aplane. The plane
would go through.0; 0; 0/ if the right side were0. In this case the “6” moves us to a
parallel plane that misses the center point.0; 0; 0/.

A second linear equation will produce another plane. Normally the two planes meet in
a line. Then a third plane (from a third equation) normally cuts through that line at apoint.
That point will lie on all three planes, so it solves all threeequations.

This is therow picture, three planes in three–dimensional space. They meet at the
solution. One big problem is that this row picture is hard to draw. Three planes are too
many to see clearly how they meet (maybe Picasso could do it).

Thecolumn pictureof Av D b is easier. It starts with three column vectors in three-
dimensional space. We want to combine those columns ofA to produce the vector
v1.column 1/ C v2.column 2/ C v3.column 3/ D b. Normally there is one way to do
it. That gives the solution.v1; v2; v3/ — which is also the meeting point in the row picture.

I want to give an example of success (one solution) and an example of failure (no
solution). Both examples are simple, but they really go deeply into linear algebra.

Example 4 Invertible matrixA, one solutionv for any right sideb.

Av D b is

2
4

1 0 0

�1 1 0

0 �1 1

3
5
2
4

v1

v2

v3

3
5 D

2
4

1

3

5

3
5 : (8)

This matrix islower triangular . It has zeros above the main diagonal. Lower triangular
systems are quickly solved by forward substitution, top to bottom. The top equation gives
v1, then move down. Firstv1 D 1. Then�v1C v2 D 3 givesv2 D 4. Then�v2C v3 D 5

givesv3 D 9.
Figure 4.7 shows the three columnsa1; a2; a3. When you combine them with1; 4; 9

you produceb D .1; 3; 5/. In reverse,v D .1; 4; 9/ must be the solution toAv D b.

3

a3 D
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1
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�1
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1

a1 D
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1

�1

0

3
5

3

2

c2

1
c1

c3

Figure 4.7: Independent columns a1; a2; a3 not in a plane. Dependent columns
c1; c2; c3 are three vectors all in the same plane.
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Example 5 Singular matrix : no solution toCv D b or infinitely many solutions
(depending onb).

w1 � w3 D b1

�w1 C w2 D b2

�w2 C w3 D b3

2
4

1 0 �1

�1 1 0

0 �1 1

3
5
2
4

w1

w2

w3

3
5 D

2
4

1

3

5

3
5 or

2
4

0

0

0

3
5 or

2
4

1

2

�3

3
5 : (9)

This matrixC is a “circulant.” The diagonals are constants, all1’s or all 0’s or all �1’s.
The diagonals circle around so each diagonal has three equalentries. Circulant matrices
will be perfect for the Fast Fourier Transform (FFT) in Chapter 8.

To see ifC w D b has a solution, add those three equations to get0 D b1 C b2 C b3.

Left side .w1 � w3 /C .�w3 C w2 /C .�w2 C w3 / D 0: (10)

C w D b cannot have a solution unless0 D b1Cb2Cb3. The components ofb D .1; 3; 5/

do not add to zero, soC w D .1; 3; 5/ has no solution.
Figure 4.7 shows the problem.The three columns ofC lie in a plane. All combina-

tions Cw of those columns will lie in that same plane. If the right side vectorb is not
in the plane, thenC w D b cannot be solved. The vectorb D .1; 3; 5/ is off the plane,
because the equation of the plane requiresb1 C b2 C b3 D 0.

Of courseC w D .0; 0; 0/ always has the zero solutionw D .0; 0; 0/. But when the
columns ofC are in a plane (as here), there are additional nonzero solutions toC w D 0.
Those three equations arew1 D w3 andw1 D w2 andw2 D w3. The null solutions
arewn D .c; c; c/. When all three components are equal, we haveC wn D 0.

The vectorb D .1; 2;�3/ is also in the plane of the columns, because it does have
b1 C b2 C b3 D 0. In this good case there must be aparticular solution to C wp D b.
There are many particular solutionswp, since any solution can be a particular solution.
I will choose the particularwp D .1; 3; 0/ that ends inw3 D 0 :

C wp D

2
4

1 0 �1

�1 1 0

0 �1 1

3
5
2
4

1

3

0

3
5 D

2
4

1

2

�3

3
5 Thecomplete solutionis

wcompleteD wp C anywn

Summary These two matricesA andC , with third columnsa3 andc3, allow me to
mention two key words of linear algebra :independence and dependence. This book will
develop those ideas much further. I am happy if you see them early in the two examples :

a1; a2; a3 are independent

c1; c2; c3 are dependent

A is invertible

C is singular

Av D b has one solutionv

C w D 0 has many solutionswn

Eventually we will haven column vectors inn-dimensional space. The matrix will be
n by n. The key question is whetherAv D 0 has only the zero solution. Then the columns
don’t lie in any “hyperplane.” When columns are independent, the matrix is invertible.
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Problem Set 4.1

Problems 1–8 are about the row and column pictures ofAv D b.

1 With A D I (the identity matrix) draw the planes in the row picture. Three sides of
a box meet at the solutionv D .x; y; z/ D .2; 3; 4/:

1x C 0y C 0z D 2

0x C 1y C 0z D 3

0x C 0y C 1z D 4

or

2
4

1 0 0

0 1 0

0 0 1

3
5
2
4

x

y

z

3
5 D

2
4

2

3

4

3
5 :

Draw the four vectors in the column picture. Two times column1 plus three times
column2 plus four times column3 equals the right sideb.

2 If the equations in Problem 1 are multiplied by2; 3; 4 they becomeDV D B:

2x C 0y C 0z D 4

0x C 3y C 0z D 9

0x C 0y C 4z D 16

or DV D

2
4

2 0 0

0 3 0

0 0 4

3
5
2
4

x

y

z

3
5 D

2
4

4

9

16

3
5 D B

Why is the row picture the same? Is the solutionV the same asv? What is changed
in the column picture—the columns or the right combination to giveB?

3 If equation 1 is added to equation 2, which of these are changed: the planes in the
row picture, the vectors in the column picture, the coefficient matrix, the solution?
The new equations in Problem 1 would bex D 2, x C y D 5, z D 4.

4 Find a point withz D 2 on the intersection line of the planesx C y C 3z D 6 and
x � y C z D 4. Find the point withz D 0. Find a third point halfway between.

5 The first of these equations plus the second equals the third:

x C y C z D 2

x C 2y C z D 3

2x C 3y C 2z D 5:

The first two planes meet along a line. The third plane contains that line, because
if x; y; z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole lineL ). Find three solutions onL .

6 Move the third plane in Problem 5 to a parallel plane2x C 3y C 2z D 9. Now the
three equations have no solution—why not? The first two planes meet along the line
L , but the third plane doesn’t that line.

7 In Problem 5 the columns are.1; 1; 2/ and.1; 2; 3/ and.1; 1; 2/. This is a “singular
case” because the third column is . Find two combinations of the columns that
giveb D .2; 3; 5/. This is only possible forb D .4; 6; c/ if c D .
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8 Normally 4 “planes” in 4-dimensional space meet at a . Normally 4

vectors in 4-dimensional space can combine to produceb. What combination
of .1; 0; 0; 0/; .1; 1; 0; 0/; .1; 1; 1; 0/; .1; 1; 1; 1/ producesb D .3; 3; 3; 2/?

Problems 9–14 are about multiplying matrices and vectors.

9 Compute eachAx by dot products of the rows with the column vector:

(a)

2
4

1 2 4

�2 3 1

�4 1 2

3
5
2
4

2

2

3

3
5 to

2
664

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 2

3
775

2
664

1

1

1

2

3
775

10 Compute eachAx in Problem 9 as a combination of the columns:

9(a) becomes Ax D 2

2
4

1

�2

�4

3
5C 2

2
4

2

3

1

3
5C 3

2
4

4

1

2

3
5 D

2
4

3
5.

How many separate multiplications forAx, when the matrix is “3 by 3”?

11 Find the two components ofAx by rows or by columns:

�
2 3

5 1

� �
4

2

�
and

�
3 6

6 12

� �
2

�1

�
and

�
1 2 4

2 0 1

�2
4

3

1

1

3
5 :

12 Multiply A timesx to find three components ofAx:
2
4

0 0 1

0 1 0

1 0 0

3
5
2
4

x

y

z

3
5 and

2
4

2 1 3

1 2 3

3 3 6

3
5
2
4

1

1

�1

3
5 and

2
4

2 1

1 2

3 3

3
5
�

1

1

�
:

13 (a) A matrix withm rows andn columns multiplies a vector with compo-
nents to produce a vector with components.

(b) The planes from them equationsAx D b are in -dimensional space.
The combination of the columns ofA is in -dimensional space.

14 Write 2xC3yCzC5t D 8 as a matrixA (how many rows?) multiplying the column
vectorx D .x; y; z; t/ to produceb. The solutionsx fill a plane or “hyperplane”
in 4-dimensional space.The plane is3-dimensional with no4D volume.

Problems 15–22 ask for matrices that act in special ways on vectors.

15 (a) What is the2 by 2 identity matrix?I times
� x

y
�

equals
� x

y
�
.

(b) What is the2 by 2 exchange matrix?P times
� x

y
�

equals
�

y
x

�
.
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16 (a) What2 by 2 matrixR rotates every vector by90ı ? R times
� x

y
�

is
�

y
�x

�
.

(b) What2 by 2 matrixR2 rotates every vector by180ı ?

17 Find the matrixP that multiplies.x; y; z/ to give.y; z; x/. Find the matrixQ that
multiplies.y; z; x/ to bring back.x; y; z/.

18 What 2 by 2 matrix E subtracts the first component from the second component ?
What3 by 3 matrix does the same ?

E

�
3

5

�
D
�

3

2

�
and E

2
4

3

5

7

3
5 D

2
4

3

2

7

3
5 :

19 What3 by 3 matrix E multiplies.x; y; z/ to give.x; y; z C x/ ? What matrixE�1

multiplies .x; y; z/ to give .x; y; z � x/ ? If you multiply .3; 4; 5/ by E and then
multiply by E�1, the two results are. / and. /.

20 What2 by 2 matrix P1 projects the vector.x; y/ onto thex axis to produce.x; 0/ ?
What matrixP2 projects onto they axis to produce.0; y/ ? If you multiply .5; 7/

by P1 and then multiply byP2, you get. / and. /.

21 What2 by 2 matrix R rotates every vector through45ı ? The vector.1; 0/ goes to
.
p

2=2;
p

2=2/. The vector.0; 1/ goes to.�
p

2=2;
p

2=2/. Those determine the
matrix. Draw these particular vectors in thexy plane and findR.

22 Write the dot product of.1; 4; 5/ and.x; y; z/ as a matrix multiplicationAv. The
matrixA has one row. The solutions toAv D 0 lie on a perpendicular to the
vector . The columns ofA are only in -dimensional space.

23 In MATLAB notation, write the commands that define this matrixA and the column
vectorsv andb. What command would test whether or notAv D b ?

A D
�

1 2

3 4

�
v D

�
5

�2

�
b D

�
1

7

�

24 If you multiply the4 by 4 all-ones matrixA = ones(4) and the columnv = ones(4,1),
what isA�v ? (Computer not needed.) If you multiplyB = eye(4) + ones(4) times
w = zeros(4,1) + 2�ones(4,1), what isB�w ?

Questions 25–27 review the row and column pictures in 2, 3, and 4 dimensions.

25 Draw the row and column pictures for the equationsx � 2y D 0, x C y D 6.

26 For two linear equations in three unknownsx; y; z, the row picture will show (2 or 3)
(lines or planes) in (2 or 3)-dimensional space. The column picture is in (2 or 3)-
dimensional space. The solutions normally lie on a .

27 For four linear equations in two unknownsx and y, the row picture shows four
. The column picture is in -dimensional space. The equations have no

solution unless the vector on the right side is a combinationof .
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Challenge Problems

28 Invent a3 by 3 magic matrix M3 with entries1; 2; : : : ; 9. All rows and columns
and diagonals add to 15. The first row could be8; 3; 4. What isM3 times.1; 1; 1/ ?
What isM4 times.1; 1; 1; 1/ if a 4 by 4 magic matrix has entries1; : : : ; 16 ?

29 Supposeu andv are the first two columns of a3 by 3 matrixA. Which third columns
w would make this matrix singular ? Describe a typical column picture ofAv D b

in that singular case, and a typical row picture (for a randomb).

30 Multiplying by A is a “linear transformation”. Those important words mean:

If w is a combination ofu andv, thenAw is the same combination ofAu andAv.

It is this “linearity” Aw D cAuC dAv that gives us the namelinear algebra.

If u D
�

1

0

�
andv D

�
0

1

�
thenAu andAv are the columns ofA.

Combinew D cuC dv. If w D
�

5
7

�
how isAw connected toAu and Av ?

31 A 9 by 9 Sudoku matrix S has the numbers1; : : : ; 9 in every row and column, and
in every3 by 3 block. For the all-ones vectorv D .1; : : : ; 1/, what isSv ?

A better question is:Which row exchanges will produce another Sudoku matrix
? Also, which exchanges of block rows give another Sudoku matrix ?

Section 4.5 will look at all possible permutations (reorderings) of the rows. I see
6 orders for the first3 rows, all giving Sudoku matrices. Also6 permutations of the
next3 rows, and of the last3 rows. And6 block permutations of the block rows ?

32 Suppose the second row ofA is some numberc times the first row :

A D
�

a b

ca cb

�
:

Then if a ¤ 0, the second column ofA is what numberd times the first column ?
A square matrix with dependent rows will also have dependentcolumns. This is
a crucial fact coming soon.




