3.2. Sources, Sinks, Saddles, and Spirals 161

3.2 Sources, Sinks, Saddles, and Spirals

The pictures in this section show solutions4¢” + By’ + Cy = 0. These are linear
equations with constant coefficients B, and C. The graphs show solutions on the
horizontal axis and their slopgs = dy/dt on the vertical axis. These paifs(z), y'(t))
depend on timebut time is not in the picturesThe paths showherethe solution goes,
but they don’t show when.

Each specific solution starts at a particular pdint0), y’(0)) given by the initial
conditions. The point moves along its path as the timmaoves forward fromr = 0.
We know that the solutions tdy” + By’ + Cy = 0 depend on the two solutions to
As? + Bs + C = 0 (an ordinary quadratic equation fox. When we find the roots; and
s2, we have found all possible solutions:

s1t

+ 252" (1)

The numbers; ands; tell us which picture we are in. Then the numberandc; tell us
which path we are on.

Sinces; ands, determine the picture for each equation, it is essentiabéothe six
possibilities. We write all six here in one place, to compghem. Later they will appear in
six different places, one with each figure. The first threeehr@al solutions; ands,. The
last three have complex pais=a + iw.

y = Cleslt + Czeszt y/ =c1851€

Sources Sinks Saddles Spiral out Spiral in Center
s1 >85>0 51<52<0 50<0<s1 a=Res>0 a=Res<0 a=Res=0

In addition to those six, there will be limiting cases= 0 ands; = s, (as in resonance).

Stability This word is important for differential equationBo solutions decay to zefd
The solutions are controlled by*'’ and e*2 (and in Chapter 6 by’ and e*2!).
We can identify the two pictures (out of six) that are dispgyfull stability: the sinks.

A centers = %iw is at the edge of stability(e!®? is neither decaying or growing).

2. Sinks are stable 5s1<52<0 Then y(t) - 0
5. Spiral sinks are stable Res; = Res; <0 Then y(@) — 0

Special note May | mention here that the same six pictures also apply tgstem of
two first order equationsinstead ofy andy’, the equations have unknowms and y,.
Instead of the constant coefficients B, C, the equations will have & by 2 matrix.
Instead of the roots; ands,, that matrix will have eigenvalues; and A,. Those
eigenvalues are the roots of an equatiodA? + BA + C = 0, just likes; ands,.

We will see the same six possibilities for thiés, and the same six pictures. The
eigenvalues of the by 2 matrix give the growth rates or decay rates, in place Gfnds,.

[ i } = [ a b }[ " } hassolutions[ y1() }: [ U1 }e“
Vs c d || » y2(t) va ‘

The eigenvalue i4 and the eigenvector is = (v;, v2). The solution isy () = ve?!.
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The First Three Pictures

We are starting with the case @al rootss; ands,. In the equatiomy” + By’ +Cy = 0,
this means thaB? > 44 C. ThenB is relatively large. The square root in the quadratic
formula produces a real numbefB2 —4AC. If A, B,C have the same sign, we have
overdamping andegative rootsand stability. The solutions decay (@, 0) : asink.

If A andC have opposite signtB as iny” —3y’ +2y = 0, we have negative damping
andpositive rootssy, s,. The solutions grow (this is instability : sourceat (0, 0)).

Supposed andC have different signs, as in” — 3y’ —2y = 0. Thens; ands; also
havedifferent signs and the picture showssaddle The moving pointy(z), y’(¢)) can
start in toward(0, 0) before it turns out to infinity. The positive gives e’ — oo.
Second example for a saddle” — 4y = 0 leads tos?> —4 = (s — 2)(s +2) = 0.
The rootss; = 2 ands, = —2 have opposite signs. Solutionge?’ + cye~2! grow
unlessc; = 0. Only that one line witlr; = 0 has arrows inward.

In every case withB2 > 4AC, the roots are real. The solutiongt) have growing
exponentials or decaying exponentials. We don't see simégasines and oscillation.

The first figure shows growth® < s, < s;. Sincee®!? grows faster thar*2?, the
larger number; will dominate. The solution path foty, y’) will approach the straight
line of slopes;. That is because the ratio of = ¢ys1e*1? to y = c1e*!? is exactlys;.

If the initial condition is on the §; line” then the solution ¥, y’) stays on that line:
¢, = 0. If the initial condition is exactly on thes line” then the solution stays on that
secondary line¢; = 0. You can see that if; # 0, thecie’!? part takes over as— co.

" Y

Reverse all
the arrows in
the left figure.
Paths goin
\ toward (0, 0)

=\

0<s2 <51 s1<s52<0 s2 <0 <sq
Source : Unstable Sink : Stable Saddle : Unstable

Figure 3.6:Real rootss; and s,. The paths of the pointy(z), y'(¢)) lead out when roots
are positive and lead in when roots are negative. With< 0 < 51, the s,-line leads in
but all other paths eventually go out near thdine: The picture shows a saddle paint
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Example for a sourcey” — 3y’ +2y = Oleadstos? —3s +2 = (s —2)(s — 1) = 0.
The rootsl and2 are positive. The solutions grow aa#f dominates.

Example for a sink y” 4+ 3y’ +2y = 0leadstos®> +3s +2 = (s + 2)(s + 1) = 0.
The roots—-2 and—1 are negative. The solutions decay @né dominates.

The Second Three Pictures

We move to the case @bmplex rootss; ands,. In the equatioMy” + By’ + Cy = 0,
this means thaB? < 44AC. Then4 andC have the same signs aidis relatively small
(underdamping). The square root in the quadratic formujag(2an imaginary number.
The exponents, ands, are now a complex pag + iw:

Complex roots of B VB2 —4AC .
2 S|, =——+ ————=qa+iw. (2)
As“*+Bs+C =0 2A 2A

The path of(y, y) spirals around the center Because of?’, the spiral goes out
if a > 0: spiral source Solutions spiral in ifa < 0: spiral sink. The frequencyw
controls how fast the solutions oscillate and how quickly ¢hirals go aroun@, 0).

In casea = —B/2A is zero (no damping), we havecanter at (0, 0). The only terms
left in y aree’®’ ande™'*?, in other words cost and sinwt. Those paths are ellipses in
the last part of Figure 3.7. The solution&) areperiodic, because increasingy 2z /w
will not change cosor and sinwt. That circling time2z /w is theperiod.

o

Reverse all
the arrows in
the left figure.
Paths goin
toward (0, 0).

d

a=Res>0 a=Res <0 a=Res=0
Spiral source : Unstable Spiral sink : Stable Center: Neutrdly stable

Figure 3.7:Complex rootss; and s;. The paths go once arouit@, 0) whenz increases
by 27 /w. The paths spiral in whed and B have the same signs and= —B/2A4 is
negative. They spiral out whenis positive. If B = 0 (no damping) andtAC > 0,
we have a center. The simplest centey is- sin¢, y’ = cost (circle) fromy” + y = 0.
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First Order Equations for y; and y»

On the first page of this section, a “Special Note” mentioneadtfaer application of the
same pictures. Instead of graphing the patkygf), y’(¢)) for one second order equation,
we could follow the path ofy; (¢), y2 (¢)) for two first order equations. The two equations
look like this:

d dt =a +b
First order systemy’ = Ay y1/ y1+by: -
dy2/dt =cy1+dy;

The starting values; (0) and y,(0) are given. The poin€y;, y2) will move along a
path in one of the six figures, depending on the numbghsc, d .

Looking ahead, those four numbers will go int@ &y 2 matrix A. Equation (3) will
becomedy/dt = Ay. The symboly in boldface stands for the vectgr = (y1, y2).
And most important for the six figureshe exponents; and s, in the solutiony (¢)
will be theeigenvaluesi; and A, of the matrixA.

Companion Matrices

Here is the connection between a second order equation aniirstvorder equations. All
equations on this page are linear and all coefficients arstant | just want you to see the
special ‘tompanion matrikthat appears in the first order equatigris= Ay.

Notice thaty is printed inboldface typebecause it is &ector. It has two components
y1 andy, (those are in lightface type). The firgt is the same as the unknownin the
second order equation. The second compomngid the velocitydy /dt :

yi=Yy

2 =)' y”" +4y’+3y =0 becomes y,’ + 4y, +3y; = 0. (4)

On the right you see one of the first order equations conrgegtinand y,. We need
a second equation (two equations for two unknowns)s hiding at the far left! There
you see thay1” = y». In the original second order problem this is the triviatestaent
y" = y’. In the vector formy’ = Ay it gives the first equation in our system.
The first row of our matrix i® 1. Wheny andy’ becomey; andy;,

’
" / _ Y1 = Y2 _ 0 1 N
y'+4y"4+3y =0 becomes yo = —=3y1—4y, |:—3 —4] |:y2j| (5)

That first row0 1 makes this @ by 2 companion matrix. It is the companion to the
second order equation. The key point is that the first orded second order
problems have the same “characteristic equation” becdesedre the same problem.

The equations? + 45 +3 = 0 gives the exponents s; = -3 and s, = —1
The equationA? + 41 +3 = 0 gives the eigenvaluesA; = =3 and A, = —1
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The problems are the same, the exponertsand —1 are the same, the figures will be
the same. Those figures showsimk because-3 and —1 are real and both negative.
Solutions approacf0, 0). These equations astable

The companion matrixfor y” + By’ + Cy =0is A = [ —C(‘) —l; ]
Rowlofy’ = Ayisy,/ = y,. Row2is y, = —Cy; — By,. When you replace, by y/,
this means that,” + By, + Cy; = 0: correct

Stability for 2 by 2 Matrices

| can explain when & by 2 systemy’ = Ay is stable. This requires that all solutions
y() = (y1(2), y2(¢t)) approach zero as — oo. When the matrix4 is a companion
matrix, this2 by 2 system comes from one second order equatitni- By’ + Cy = 0.

In that case we know that stability depends on the rootd &f Bs + C = 0. Companion
matrices are stable whenB > 0 and C > 0.

From the quadratic formula, the roots hayet s, = —B ands;s, = C.
If s; ands, are negative, this means that> 0 andC > 0.
If s1 =a +iwands, = a —iw anda < 0, this again mean8 > 0 andC > 0

Those complex roots add 19 + s, = 2a. Negativea (stability) means positivé8, since
s1 + s = —B. Those roots multiply ta;5s, = a? 4+ w?. This means thaf is positive,
sincesys, = C.

For companion matrices, stability is decided By> 0 andC > 0. What is the
stability test for any 2 by 2 matrix ? This is the key question, and Chapter 6 will answer
it properly. We will find the equation for the eigenvalues afyanatrix (Section 6.1). We
will test those eigenvalues for stability (Section 6.4).gétivalues and eigenvectors are
a major topic, the most important link between differenéquations and linear algebra.
Fortunately, the eigenvalues dby 2 matrices are especially simple.

The eigenvalues of the matrix = [ z Z

The numbef isa + d. The numbeD isad — bc.

} havel2 —TA+ D = 0.

Companion matrices hawe = 0 andb = 1 ande¢ = —C andd = —B. Then the
characteristic equatiok® — TA + D = 0 is exactlys®> + Bs + C = 0.

0 1

Companion matrices have[ C —-B

i| T =a+d =—-—B and D =ad—bc =C.

The stability test B > 0 and C > 0 is turning into the stability test T < 0 and D > 0.

This is the test for ang by 2 matrix. Stability require§” < 0andD > 0. Let me give
four examples and then collect together the main facts adiahtlity.
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A = _g ; is unstable becauseT = 0 + 3 is positive
[0 17 . : .

Ay = 3|8 unstable becauseD = —(1)(2) is negative
[0 17.

Az = 5 3 is stable becauseT = -3 andD = +2

Ay = :i _i is stable becauseT = —1 — 1 is negative

and D =1+ 1 is positive

The eigenvalues always come frarh— TA + D = 0. For that last matrix4, this eigen-
value equation isA\? + 21 + 2 = 0. The eigenvalues ar@; = —-14i and
Ay = —1—1i. They add tol’ = —2 and they multiply toD = +2. This is a spiral
sink and it is stable

Stability for y [ a

bl e T =a +d <0
2 by 2 matrices =l e d} is stable if

D =ad —bc>0

The six pictures foy, y ') become six pictures fay, y»). The first three pictures have
real eigenvalues fronf? > 4D. The second three pictures have complex eigenvalue:
from T2 < 4D. This corresponds perfectly to the tests §df + By’ + Cy = 0 and its
companion matrix:

Real eigenvalues T2 >4D B? > 4C Overdamping
Complex eigenvalues T2 < 4D B? <4C Underdamping

That gives one picture of eigenvalues Real or complexThe second picture is different:
Stable or unstableBoth of those splittings are decided Byand D (or —B andC).

1. Source T >0, D>0, T? > 4D Ustable

2. Sink T <0, D>0, T?>4D Stable

3. Saddle D <0 and T?>4D Unstable

4. Spiralsource T >0, D >0, T? <4D Unstable

5. Spiral Sink T <0, D>0, T? <4D Stable

6. Center T =0, D>0, T? <4D Neutral
That neutrally stable center has eigenvaldgs= iw andA, = —iw and undamped
oscillation.

Section 3.3 will use this information to decide the stapitif nonlinearequations.
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Eigenvectors of Companion Matrices

Eigenvalues ofd come with eigenvectors. If we stay a little longer with a c@mion
matrix, we can see its eigenvectors. Chapter 6 will deveh@se ideas for any matrix,
and we need more linear algebra to understand them prod@ulyour vectors(y, y»)
come from(y, y’) in a differential equation, and that connection makes thergiectors
of a companion matrix especially simple.

The fundamental idea for constant coefficient linear eguatiis always the same:
Look for exponential solutions For a second order equation those solutions are
y = e, For a system of two first order equations those solutionsyate ve*’. The
vectorv = (v, v2) is the eigenvector that goes with the eigenvaluk.

At

— A
Substitute ;1 ~ zljh into the equations il, _ g;l 1%2 and factor oue’’.
2 = VUp 2 = 1 2

Because*! is the same for botly; andy,, it will appear in every term. When all factors
e* are removed, we will see the equations fgrandv,. That vectorv = (v, v2) Will
satisfy the eigenvector equatietv = Av. This is the key to Chapter 6.
Here | only look at eigenvectors for companion matricesglisev has a specially nice
form. The equations arg/ = y, andy, = —Cy; — By,.
y1=vieH

. Aviett = vye
i Then
Substitute [y € AvpeM = —Cuvje* — Buye.

At

Cancel every?*!. The first equation becomé®; = v,. This is our answer:

Eigenvectors of companion matrices are multiples of théorac = [ l } .

B REVIEW OF THE KEY IDEAS =

1. If BZ#£4AC #0, six pictures show the paths 6f, y') for Ay” + By’ + Cy = 0.
2. Real solutions tols? + Bs + C = 0 lead to sources and sinks and saddleg® 21).
3. Complex roots = a + iw give spirals aroundo, 0) (or closed loops ift = 0).

0 1

’
. y _
4. Rootss become eigenvaluésfor [y’} = [—C _B

} [;,} Same six pictures.
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Problem Set 3.2

1 Draw Figure 3.6 for a sink (the missing middle figure) with= c;e™2 + coe™.
Which term dominates as— oo ? The paths approach the dominating line as they
go in toward zeroThe slopes of the lines are-2 and —1 (the numbers; ands,).

2 Draw Figure 3.7 for a spiral sink (the missing middle figuréhwootss = —1 + ;.
The solutions arey = Cie cost + Cre ! sint. They approach zero because
of the factore™. They spiral around the origin because of casd siry.

3 Which path does the solution take in Figure 3.6yif= ¢’ + ¢/2? Draw the
curve(y(t), y'(¢)) more carefully starting at= 0 where(y, y’) = (2, 1.5).

4 Which path does the solution take around the saddle in Fgy6rig y = /2 4¢7* ?
Draw the curve more carefully startingzat 0 where(y, y') = (2, —%).

5 Redraw the first part of Figure 3.6 when the roots are equal= s, = 1 and
y = cre’ + catel. There is nos,-line. Sketch the path fop = e + te’.

6  The solutiony = e?’ — 4e’ gives a source (Figure 3.6), with’ = 2¢% — 4¢’.
Starting atr = 0 with (y,y’) = (-3,—-2), where is(y, y’) whene! = 1.1 and
e! = 25ande! =27

7 The solutiony = e’(cost + sint) hasy’ = 2e’ cost. This spirals out because of
e'. Plot the pointgy, y’) att = 0 ands = /2 ands = , and try to connect them
with a spiral. Note that™/? ~ 4.8 ande™ ~ 23.

8 The rootss; ands, are+2i when the differential equation is . Starting from
y(0) = 1 andy’(0) = 0, draw the path ofy(z), y'()) around the center. Mark the
points whert = 7 /2, 7, 37/2, 2. Does the path go clockwise ?

9  Theequation” 4+ By’ +y =0leadstas®> + Bs + 1 = 0. ForB = -3, -2, —1,
0, 1, 2, 3 decide which of the six figures is involved. FBr= —2 and2, why do we
not have a perfect match with the source and sink figures ?

10 Fory” + y’ 4+ Cy = 0 with dampingB = 1, the characteristic equation will be
s> + 5 4+ C = 0. Which C gives the changeover fromsink (overdamping) to a
spiralsink (underdamping) ? Which figure hés< 0 ?

Problems 11-18 are aboutly/dt = Ay with companion matrices[ —C(‘) —l; ]

11 The eigenvalue equation %% + BA + C = 0. Which values ofB and C give
complex eigenvalues? Which valuesfandC giveA; = A, ?
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12

13

14

15

16

17

18

19

20

Find A, andA, if B = 8 andC = 7. Which eigenvalue is more important as
t — 0o ? Is this a sink or a saddle?

Why do the eigenvalues hawg + A, = —B? WhyisA 1A, =C ?

Which second order equations did these matrices come from ?

Al = [ (1) (1) } (saddle) Ay = [ _(1) (1) } (center)

The equationy” = 4y produces a saddle point @, 0). Finds; > 0 ands, < 0
in the solutiony = c1e51? + ce52!. If c1cp # 0, this solution will be (large) (small)
ast — oo and also as — —oo.

The only way to go toward the saddle, y’) = (0,0) ast — oo isc; = 0.

If B =5andC = 6the eigenvalues are; = 3 andA, = 2. The vectora = (1, 3)
andv = (1,2) areeigenvector®f the matrix4: Multiply Av to get3v and2w.

In Problem 16, write the two solutiong = ver to the equationy’ = Ay.
Write the complete solution as a combination of those twatgmhs.

The eigenvectors of a companion matrix have the ferma= (1,1). Multiply by
A to show thatdv = Av gives one trivial equation and the characteristic equation
A2+ BA+C =0.

0o 1 L1_ [ is A=A
—-C -B AT A —-C—-BL =22
Find the eigenvalues and eigenvectorsgiof [ i ; }

An equation is stable and all its solutions = c¢1e51" + ¢e%2" goto y(co) = 0
exactly when

(s1 <0o0rs; <0) (s1 <0ands; < 0) (Res; < 0and Res; < 0)?

If Ay” + By’ + Cy = D is stable, what iy (c0) ?



