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3.2 Sources, Sinks, Saddles, and Spirals

The pictures in this section show solutions toAy00 C By0 C Cy D 0. These are linear
equations with constant coefficientsA; B; and C . The graphs show solutionsy on the
horizontal axis and their slopesy0 D dy=dt on the vertical axis. These pairs.y.t/; y0.t//
depend on time,but time is not in the pictures. The paths showwherethe solution goes,
but they don’t show when.

Each specific solution starts at a particular point.y.0/; y0.0// given by the initial
conditions. The point moves along its path as the timet moves forward fromt D 0.
We know that the solutions toAy00 C By0 C Cy D 0 depend on the two solutions to
As2 C Bs C C D 0 (an ordinary quadratic equation fors). When we find the rootss1 and
s2, we have found all possible solutions :

y D c1es1t C c2es2t y0 D c1s1es1t C c2s2es2t (1)

The numberss1 ands2 tell us which picture we are in. Then the numbersc1 andc2 tell us
which path we are on.

Sinces1 ands2 determine the picture for each equation, it is essential to see the six
possibilities. We write all six here in one place, to comparethem. Later they will appear in
six different places, one with each figure. The first three have real solutionss1 ands2. The
last three have complex pairss D a˙ i!.

Sources Sinks Saddles Spiral out Spiral in Center
s1 > s2 > 0 s1 < s2 < 0 s2 < 0 < s1 a D Res > 0 a D Re s < 0 a D Res D 0

In addition to those six, there will be limiting casess D 0 ands1 D s2 (as in resonance).

Stability This word is important for differential equations.Do solutions decay to zero?
The solutions are controlled byes1t and es2t (and in Chapter 6 bye�1t and e�2t ).
We can identify the two pictures (out of six) that are displaying full stability : the sinks.

A center s D ˙i! is at the edge of stability(ei!t is neither decaying or growing).

2 : Sinks are stable
5: Spiral sinks are stable

s1 < s2 < 0

Res1 D Res2 < 0

Then y.t/! 0

Then y.t/! 0

Special note. May I mention here that the same six pictures also apply to a system of
two first order equations. Instead ofy andy0, the equations have unknownsy1 andy2.
Instead of the constant coefficientsA; B; C , the equations will have a2 by 2 matrix.
Instead of the rootss1 and s2, that matrix will have eigenvalues�1 and �2. Those
eigenvalues are the roots of an equationA�2 CB�C C D 0, just likes1 ands2.

We will see the same six possibilities for the�’s, and the same six pictures. The
eigenvalues of the2 by 2 matrix give the growth rates or decay rates, in place ofs1 ands2.
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The eigenvalue is� and the eigenvector isv D .v1; v2/. The solution isy.t/ D ve�t .
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The First Three Pictures

We are starting with the case ofreal rootss1 ands2. In the equationAy00CBy0CCy D 0,
this means thatB2 � 4AC . ThenB is relatively large. The square root in the quadratic
formula produces a real number

p
B2 � 4AC . If A; B; C have the same sign, we have

overdamping andnegative rootsand stability. The solutions decay to.0; 0/ : asink.

If A andC have opposite sign toB as iny00�3y0C2y D 0, we have negative damping
andpositive rootss1; s2. The solutions grow (this is instability : asourceat .0; 0/).

SupposeA andC have different signs, as iny00 � 3y0 � 2y D 0. Thens1 ands2 also
havedifferent signs and the picture shows asaddle. The moving point.y.t/; y0.t// can
start in toward.0; 0/ before it turns out to infinity. The positives gives est ! 1.
Second example for a saddle: y00 � 4y D 0 leads tos2 � 4 D .s � 2/.s C 2/ D 0.
The rootss1 D 2 and s2 D �2 have opposite signs. Solutionsc1e2t C c2e�2t grow
unlessc1 D 0. Only that one line withc1 D 0 has arrows inward.

In every case withB2 � 4AC , the roots are real. The solutionsy.t/ have growing
exponentials or decaying exponentials. We don’t see sines and cosines and oscillation.

The first figure shows growth :0 < s2 < s1. Sincees1t grows faster thanes2t , the
larger numbers1 will dominate. The solution path for.y; y0/ will approach the straight
line of slopes1. That is because the ratio ofy0 D c1s1es1t to y D c1es1t is exactlys1.

If the initial condition is on the “s1 line” then the solution (y; y0) stays on that line:
c2 D 0. If the initial condition is exactly on the “s2 line” then the solution stays on that
secondary line :c1 D 0. You can see that ifc1 ¤ 0, thec1es1t part takes over ast !1.

Reverse all
the arrows in
the left figure:

Paths go in
toward .0; 0/

0 < s2 < s1 s1 < s2 < 0 s2 < 0 < s1

Source : Unstable Sink : Stable Saddle : Unstable

Figure 3.6:Real rootss1 and s2. The paths of the point.y.t/; y0.t// lead out when roots
are positive and lead in when roots are negative. Withs2 < 0 < s1, thes2-line leads in
but all other paths eventually go out near thes1-line : The picture shows a saddle point.
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Example for a source: y00 � 3y0 C 2y D 0 leads tos2 � 3s C 2 D .s � 2/.s � 1/ D 0.
The roots1 and2 are positive. The solutions grow ande2t dominates.

Example for a sink: y00 C 3y0 C 2y D 0 leads tos2 C 3s C 2 D .s C 2/.s C 1/ D 0.
The roots�2 and�1 are negative. The solutions decay ande�t dominates.

The Second Three Pictures

We move to the case ofcomplex rootss1 ands2. In the equationAy00 C By0 C Cy D 0,
this means thatB2 < 4AC . ThenA andC have the same signs andB is relatively small
(underdamping). The square root in the quadratic formula (2) is an imaginary number.
The exponentss1 ands2 are now a complex paira˙ i! :

Complex roots of

As2 CBsC C D 0
s1; s2 D �

B

2A
˙
p

B2 � 4AC

2A
D a˙ i!: (2)

The path of.y; y0/ spirals around the center. Because ofeat , the spiral goes out
if a > 0 : spiral source. Solutions spiral in ifa < 0 : spiral sink. The frequency!
controls how fast the solutions oscillate and how quickly the spirals go around.0; 0/.

In casea D �B=2A is zero (no damping), we have acenter at (0, 0). The only terms
left in y areei!t ande�i!t , in other words cos!t and sin!t . Those paths are ellipses in
the last part of Figure 3.7. The solutionsy.t/ areperiodic, because increasingt by 2�=!

will not change cos!t and sin!t . That circling time2�=! is theperiod.

Reverse all
the arrows in
the left figure:

Paths go in
toward .0; 0/:

a D Res > 0 a D Res < 0 a D Res D 0

Spiral source : Unstable Spiral sink : Stable Center : Neutrally stable

Figure 3.7:Complex rootss1 and s2. The paths go once around.0; 0/ whent increases
by 2�=!. The paths spiral in whenA andB have the same signs anda D �B=2A is
negative. They spiral out whena is positive. If B D 0 (no damping) and4AC > 0,
we have a center. The simplest center isy D sin t; y0 D cos t (circle) fromy00 C y D 0.
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First Order Equations for y1 and y2

On the first page of this section, a “Special Note” mentioned another application of the
same pictures. Instead of graphing the path of.y.t/; y0.t// for one second order equation,
we could follow the path of.y1.t/; y2.t// for two first order equations. The two equations
look like this:

First order system y 0 D Ay
dy1=dt D ay1 C by2

dy2=dt D cy1 C dy2

(3)

The starting valuesy1.0/ andy2.0/ are given. The point.y1; y2/ will move along a
path in one of the six figures, depending on the numbersa; b; c; d .

Looking ahead, those four numbers will go into a2 by 2 matrix A. Equation (3) will
becomedy=dt D Ay . The symboly in boldface stands for the vectory D .y1; y2/.
And most important for the six figures,the exponentss1 and s2 in the solutiony.t/

will be theeigenvalues�1 and �2 of the matrixA.

Companion Matrices

Here is the connection between a second order equation and two first order equations. All
equations on this page are linear and all coefficients are constant. I just want you to see the
special “companion matrix” that appears in the first order equationsy 0 D Ay.

Notice thaty is printed inboldface typebecause it is avector. It has two components
y1 andy2 (those are in lightface type). The firsty1 is the same as the unknowny in the
second order equation. The second componenty2 is the velocitydy=dt :

y1 D y

y2 D y0 y 00 C 4y 0 C 3y D 0 becomes y2
0 C 4y2 C 3y1 D 0: (4)

On the right you see one of the first order equations connecting y1 and y2. We need
a second equation (two equations for two unknowns).It is hiding at the far left ! There
you see thaty1

0 D y2. In the original second order problem this is the trivial statement
y0 D y0. In the vector formy 0 D Ay it gives the first equation in our system.
The first row of our matrix is0 1. Wheny andy0 becomey1 andy2,

y00 C 4y0 C 3y D 0 becomes
y1

0 D y2

y2
0 D � 3y1� 4y2

D
�

0 1

�3 �4

� �
y1

y2

�
(5)

That first row0 1 makes this a2 by 2 companion matrix. It is the companion to the
second order equation. The key point is that the first order and second order
problems have the same “characteristic equation” because they are the same problem.

The equations2C 4s C 3 D 0 gives the exponents s1 D �3 and s2 D �1

The equation�2C 4�C 3 D 0 gives the eigenvalues�1 D �3 and �2 D �1
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The problems are the same, the exponents�3 and�1 are the same, the figures will be
the same. Those figures show asink because�3 and�1 are real and both negative.
Solutions approach.0; 0/. These equations arestable.

The companion matrix for y 00 CBy 0 C Cy D 0 is A D
�

0 1

�C �B

�
:

Row1 of y 0 D Ay is y 0
1 D y2. Row2 is y 0

2 D �Cy1 �By2. When you replacey2 by y 0
1,

this means thaty 00
1 C By 0

1 C Cy1 D 0 : correct.

Stability for 2 by 2 Matrices

I can explain when a2 by 2 systemy 0 D Ay is stable. This requires that all solutions
y.t/ D .y1.t/; y2.t// approach zero ast ! 1. When the matrixA is a companion
matrix, this2 by 2 system comes from one second order equationy 00 C By 0 C Cy D 0.
In that case we know that stability depends on the roots ofs2CBsCC D 0. Companion
matrices are stable whenB > 0 and C > 0.

From the quadratic formula, the roots haves1 C s2 D �B ands1s2 D C .

If s1 ands2 are negative, this means thatB > 0 andC > 0.

If s1 D aC i! ands2 D a � i! anda < 0, this again meansB > 0 andC > 0

Those complex roots add tos1 C s2 D 2a. Negativea (stability) means positiveB, since
s1 C s2 D �B. Those roots multiply tos1s2 D a2 C !2. This means thatC is positive,
sinces1s2 D C .

For companion matrices, stability is decided byB > 0 and C > 0. What is the
stability test for any 2 by 2 matrix ? This is the key question, and Chapter 6 will answer
it properly. We will find the equation for the eigenvalues of any matrix (Section 6.1). We
will test those eigenvalues for stability (Section 6.4). Eigenvalues and eigenvectors are
a major topic, the most important link between differentialequations and linear algebra.
Fortunately, the eigenvalues of2 by 2 matrices are especially simple.

The eigenvalues of the matrixA D
�

a b

c d

�
have�2 � T �CD D 0.

The numberT is aC d . The numberD is ad � bc.

Companion matrices havea D 0 and b D 1 and c D �C and d D �B. Then the
characteristic equation�2 � T �CD D 0 is exactlys2 CBs C C D 0.

Companion matrices have

�
0 1

�C �B

�
T D aCd D �B and D D ad�bc D C:

The stability test B > 0 and C > 0 is turning into the stability test T < 0 and D > 0.

This is the test for any2 by 2 matrix. Stability requiresT < 0 andD > 0. Let me give
four examples and then collect together the main facts aboutstability.
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A1 D
�

0 1

�2 3

�
is unstable becauseT D 0C 3 is positive

A2 D
�

0 1

2 �3

�
is unstable becauseD D �.1/.2/ is negative

A3 D
�

0 1

�2 �3

�
is stable becauseT D �3 andD D C2

A4 D
�
�1 1

�1 �1

�
is stable becauseT D �1 � 1 is negative

and D D 1C 1 is positive

The eigenvalues always come from�2 � T �CD D 0. For that last matrixA4, this eigen-
value equation is�2 C 2� C 2 D 0. The eigenvalues are�1 D �1C i and
�2 D �1 � i . They add toT D �2 and they multiply toD D C2. This is a spiral
sink and it is stable.

Stability for
2 by 2 matrices

A D
�

a b

c d

�
is stable if

T D a C d < 0

D D ad � bc > 0

The six pictures for.y; y 0/ become six pictures for.y1; y2/. The first three pictures have
real eigenvalues fromT 2 � 4D. The second three pictures have complex eigenvalues
from T 2 < 4D. This corresponds perfectly to the tests fory 00 C By 0 C Cy D 0 and its
companion matrix :

Real eigenvalues T 2 � 4D B2 � 4C Overdamping

Complex eigenvalues T 2 < 4D B2 < 4C Underdamping

That gives one picture of eigenvalues� : Real or complex. The second picture is different :
Stable or unstable. Both of those splittings are decided byT andD (or�B andC ).

1: Source T > 0; D > 0; T 2 � 4D Ustable
2 : Sink T < 0; D > 0; T 2 � 4D Stable
3: Saddle D < 0 and T 2 � 4D Unstable
4: Spiral source T > 0; D > 0; T 2 < 4D Unstable
5: Spiral Sink T < 0; D > 0; T 2 < 4D Stable
6: Center T D 0; D > 0; T 2 < 4D Neutral

That neutrally stable center has eigenvalues�1 D i! and �2 D �i! and undamped
oscillation.

Section 3.3 will use this information to decide the stability of nonlinearequations.
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Eigenvectors of Companion Matrices

Eigenvalues ofA come with eigenvectors. If we stay a little longer with a companion
matrix, we can see its eigenvectors. Chapter 6 will develop these ideas for any matrix,
and we need more linear algebra to understand them properly.But our vectors.y1; y2/

come from.y; y0/ in a differential equation, and that connection makes the eigenvectors
of a companion matrix especially simple.

The fundamental idea for constant coefficient linear equations is always the same :
Look for exponential solutions. For a second order equation those solutions are
y D est . For a system of two first order equations those solutions arey D ve�t . The
vector v D .v1; v2/ is the eigenvector that goes with the eigenvalue�.

Substitute
y1 D v1e�t

y2 D v2e�t into the equations
y 0

1 D ay1 C by2

y 0
2 D cy1 C dy2

and factor oute�t :

Becausee�t is the same for bothy1 andy2, it will appear in every term. When all factors
e�t are removed, we will see the equations forv1 andv2. That vectorv D .v1; v2/ will
satisfy the eigenvector equationAv D �v. This is the key to Chapter 6.

Here I only look at eigenvectors for companion matrices, becausev has a specially nice
form. The equations arey 0

1 D y2 andy 0
2 D �Cy1 � By2.

Substitute
y1 D v1e�t

y2 D v2e�t Then
�v1e�t D v2e�t

�v2e�t D �C v1e�t � Bv2e�t :

Cancel everye�t . The first equation becomes�v1 D v2. This is our answer :

Eigenvectors of companion matrices are multiples of the vector v D
�

1

�

�
:

REVIEW OF THE KEY IDEAS

1. If B2¤4AC ¤0, six pictures show the paths of.y; y0/ for Ay00 C By0 C Cy D 0.

2. Real solutions toAs2CBsCC D 0 lead to sources and sinks and saddles at.0; 0/.

3. Complex rootss D a˙ i! give spirals around.0; 0/ (or closed loops ifa D 0).

4. Rootss become eigenvalues� for

�
y

y0
�0
D
�

0 1

�C �B

� �
y

y0
�
. Same six pictures.
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Problem Set 3.2

1 Draw Figure 3.6 for a sink (the missing middle figure) withy D c1e�2t C c2e�t .
Which term dominates ast ! 1? The paths approach the dominating line as they
go in toward zero.The slopes of the lines are�2 and�1 (the numberss1 ands2).

2 Draw Figure 3.7 for a spiral sink (the missing middle figure) with rootss D �1˙ i .
The solutions arey D C1e�t cost C C2e�t sint . They approach zero because
of the factore�t . They spiral around the origin because of cost and sint .

3 Which path does the solution take in Figure 3.6 ify D et C et=2 ? Draw the
curve.y.t/; y0.t// more carefully starting att D 0 where.y; y0/ D .2; 1:5/.

4 Which path does the solution take around the saddle in Figure3.6 if y D et=2Ce�t ?
Draw the curve more carefully starting att D 0 where.y; y0/ D .2;�1

2
/.

5 Redraw the first part of Figure 3.6 when the roots are equal :s1 D s2 D 1 and
y D c1et C c2tet . There is nos2-line. Sketch the path fory D et C tet .

6 The solutiony D e2t � 4et gives a source (Figure 3.6), withy 0 D 2e2t � 4et .
Starting att D 0 with .y; y 0/ D .�3;�2/, where is.y; y 0/ whenet D 1:1 and
et D :25 andet D 2 ?

7 The solutiony D et .cost C sint/ hasy 0 D 2et cost . This spirals out because of
et . Plot the points.y; y 0/ at t D 0 andt D �=2 andt D �, and try to connect them
with a spiral. Note thate�=2 � 4:8 ande� � 23.

8 The rootss1 ands2 are˙2i when the differential equation is . Starting from
y.0/ D 1 andy 0.0/ D 0, draw the path of.y.t/; y 0.t// around the center. Mark the
points whent D �=2, �, 3�=2, 2�. Does the path go clockwise ?

9 The equationy 00 C By 0 C y D 0 leads tos2 C Bs C 1 D 0. ForB D �3,�2, �1,
0, 1, 2, 3 decide which of the six figures is involved. ForB D �2 and2, why do we
not have a perfect match with the source and sink figures ?

10 For y 00 C y 0 C Cy D 0 with dampingB D 1, the characteristic equation will be
s2 C s C C D 0. Which C gives the changeover from asink (overdamping) to a
spiralsink(underdamping)? Which figure hasC < 0 ?

Problems 11–18 are aboutdy=dt D Ay with companion matrices
�

0 1

�C �B

�
.

11 The eigenvalue equation is�2 CB�CC D 0. Which values ofB and C give
complex eigenvalues? Which values ofB andC give�1 D �2 ?
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12 Find �1 and �2 if B D 8 and C D 7. Which eigenvalue is more important as
t !1? Is this a sink or a saddle?

13 Why do the eigenvalues have�1 C �2 D �B ? Why is�1�2 D C ?

14 Which second order equations did these matrices come from ?

A1 D
�

0 1

1 0

�
(saddle) A2 D

�
0 1

�1 0

�
(center)

15 The equationy 00 D 4y produces a saddle point at.0; 0/. Find s1 > 0 ands2 < 0

in the solutiony D c1es1t C c2es2t . If c1c2 ¤ 0, this solution will be (large) (small)
ast !1 and also ast ! �1.

The only way to go toward the saddle.y; y 0/ D .0; 0/ ast !1 is c1 D 0.

16 If B D 5 andC D 6 the eigenvalues are�1 D 3 and�2 D 2. The vectorsv D .1; 3/

andv D .1; 2/ areeigenvectorsof the matrixA : Multiply Av to get3v and2v.

17 In Problem 16, write the two solutionsy D ve�t to the equationsy 0 D Ay.
Write the complete solution as a combination of those two solutions.

18 The eigenvectors of a companion matrix have the formv D .1; �/. Multiply by
A to show thatAv D �v gives one trivial equation and the characteristic equation
�2 C B�C C D 0.

�
0 1

�C �B

� �
1

�

�
D �

�
1

�

�
is

� D �

�C � B� D �2

Find the eigenvalues and eigenvectors ofA D
�

3 1

1 3

�
.

19 An equation is stable and all its solutionsy D c1es1t C c2es2t go to y.1/ D 0

exactly when

.s1 < 0 or s2 < 0/ .s1 < 0 and s2 < 0/ .Re s1 < 0 and Re s2 < 0/‹

20 If Ay 00 C By 0 C Cy D D is stable, what isy.1/ ?


