Chapter 1

First Order Equations

1.1 Four Examples: Linear versus Nonlinear

A first order differential equation connects a function $y(t)$ to its derivative $d y / d t$. That rate of change in y is decided by y itself (and possibly also by the time t).

Here are four examples. Example $\mathbf{1}$ is the most important differential equation of all.

1) $\frac{d y}{d t}=y$
2) $\frac{d y}{d t}=-y$
3) $\frac{d y}{d t}=2 t y$
4) $\frac{d y}{d t}=y^{2}$

Those examples illustrate three linear differential equations (1, 2, and 3) and a nonlinear differential equation. The unknown function $y(t)$ is squared in Example 4. The derivative y or $-y$ or $2 t y$ is proportional to the function y in Examples 1, $2,3$. The graph of $d y / d t$ versus y becomes a parabola in Example 4, because of y^{2}.

It is true that t multiplies y in Example 3. That equation is still linear in y and $d y / d t$. It has a variable coefficient $2 t$, changing with time. Examples $\mathbf{1}$ and $\mathbf{2}$ have constant coefficient (the coefficients of y are 1 and -1).

Solutions to the Four Examples

We can write down a solution to each example. This will be one solution but it is not the complete solution, because each equation has a family of solutions. Eventually there will be a constant C in the complete solution. This number C is decided by the starting value of y at $t=0$, exactly as in ordinary integration. The integral of $f(t)$ solves the simplest differential equation of all, with $y(0)=C$:

$$
\text { 5) } \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{t}}=\boldsymbol{f}(\boldsymbol{t}) \quad \text { The complete solution is } \quad y(t)=\int_{0}^{t} f(s) d s+C
$$

For now we just write one solution to Examples $1 \mathbf{- 4}$. They all start at $y(0)=1$.
$1 \frac{d y}{d t}=y \quad$ is solved by $\quad y(t)=\boldsymbol{e}^{\boldsymbol{t}}$
$2 \quad \frac{d y}{d t}=-y \quad$ is solved by $\quad y(t)=\boldsymbol{e}^{-\boldsymbol{t}}$
$3 \quad \frac{d y}{d t}=2 t y \quad$ is solved by $\quad y(t)=\boldsymbol{e}^{\boldsymbol{t}^{\mathbf{2}}}$
$4 \quad \frac{d y}{d t}=y^{2} \quad$ is solved by $\quad y(t)=\frac{\mathbf{1}}{\mathbf{1}-\boldsymbol{t}}$.
Notice: The three linear equations are solved by exponential functions (powers of e). The nonlinear equation 4 is solved by a different type of function; here it is $1 /(1-t)$. Its derivative is $d y / d t=1 /(1-t)^{2}$, which agrees with y^{2}.

Our special interest now is in linear equations with constant coefficients, like $\mathbf{1}$ and $\mathbf{2}$. In fact $d y / d t=y$ is the most important property of the great function $y=e^{t}$. Calculus had to create e^{t}, because a function from algebra (like $y=t^{n}$) cannot equal its derivative (the derivative of t^{n} is $n t^{n-1}$). But a combination of all the powers t^{n} can do it. That good combination is e^{t} in Section 1.3.

The final example extends $\mathbf{1}$ and $\mathbf{2}$, to allow any constant coefficient \boldsymbol{a} :
6)

$$
\left.\frac{d y}{d t}=a y \quad \text { is solved by } \quad y=e^{a t} \quad \text { (and also } \quad y=C e^{a t}\right)
$$

If the constant growth rate a is positive, the solution increases. If a is negative, as in $d y / d t=-y$ with $a=-1$, the slope is negative and the solution e^{-t} decays toward zero. Figure 1.1 shows three exponentials, with $d y / d t$ equal to y and $2 y$ and $-y$.

Figure 1.1: Growth, faster growth, and decay. The solutions are e^{t} and $e^{2 t}$ and e^{-t}.

When a is larger than 1 , the solution grows faster than e^{t}. That is natural. The neat thing is that we still follow the exponential curve-but $e^{a t}$ climbs that curve faster. You could see the same result by rescaling the time axis. In Figure 1.1, the steepest curve (for $a=2$) is the same as the first curve-but the time axis is compressed by 2 .

Calculus sees this factor of 2 from the chain rule for $e^{2 t}$. It sees the factor $2 t$ from the chain rule for $e^{t^{2}}$. This exponent is t^{2}, the factor $2 t$ is its derivative :

$$
\frac{d}{d t}\left(e^{u}\right)=e^{u} \frac{d u}{d t} \quad \frac{d}{d t}\left(e^{2 t}\right)=\left(e^{2 t}\right) \text { times } 2 \quad \frac{d}{d t}\left(e^{t^{2}}\right)=\left(e^{t^{2}}\right) \text { times } 2 t
$$

Problem Set 1.1

1 Draw the graph of $y=e^{t}$ by hand, for $-1 \leq t \leq 1$. What is its slope $d y / d t$ at $t=0$? Add the straight line graph of $y=e t$. Where do those two graphs cross ?

2 Draw the graph of $y_{1}=e^{2 t}$ on top of $y_{2}=2 e^{t}$. Which function is larger at $t=0$? Which function is larger at $t=1$?

3 What is the slope of $y=e^{-t}$ at $t=0$? Find the slope $d y / d t$ at $t=1$.
4 What "logarithm" do we use for the number t (the exponent) when $e^{t}=4$?
$5 \quad$ State the chain rule for the derivative $d y / d t$ if $y(t)=f(u(t))$ (chain of f and u).
$6 \quad$ The second derivative of e^{t} is again e^{t}. So $y=e^{t}$ solves $d^{2} y / d t^{2}=y$. A second order differential equation should have another solution, different from $y=C e^{t}$. What is that second solution?

7 Show that the nonlinear example $d y / d t=y^{2}$ is solved by $y=C /(1-C t)$ for every constant C. The choice $C=1$ gave $y=1 /(1-t)$, starting from $y(0)=1$.
8 Why will the solution to $d y / d t=y^{2}$ grow faster than the solution to $d y / d t=y$ (if we start them both from $y=1$ at $t=0$)? The first solution blows up at $t=1$. The second solution e^{t} grows exponentially fast but it never blows up.

9 Find a solution to $d y / d t=-y^{2}$ starting from $y(0)=1$. Integrate $d y / y^{2}$ and $-d t$. (Or work with $z=1 / y$. Then $\boldsymbol{d z} / \boldsymbol{d t}=(d z / d y)(d y / d t)=\left(-1 / y^{2}\right)\left(-y^{2}\right)=\mathbf{1}$. From $d z / d t=1$ you will know $z(t)$ and $y=1 / z$.)

10 Which of these differential equations are linear (in y)?
(a) $y^{\prime}+\sin y=t$
(b) $y^{\prime}=t^{2}(y-t)$
(c) $y^{\prime}+e^{t} y=t^{10}$.

11 The product rule gives what derivative for $e^{t} e^{-t}$? This function is constant. At $t=0$ this constant is 1 . Then $e^{t} e^{-t}=1$ for all t.
$12 d y / d t=y+1$ is not solved by $y=e^{t}+t$. Substitute that y to show it fails. We can't just add the solutions to $y^{\prime}=y$ and $y^{\prime}=1$. What number c makes $y=e^{t}+c$ into a correct solution?

