Second Differences by a Second Route

The point of Problem 8 (Section 1.2) is that we do not want to "square" the centered first difference, because the result stretches from $x-2 \Delta x$ to $x+2 \Delta x$. The first difference is $\left(u_{j+1}-u_{j-1}\right) / 2 h$, and once more produces $\left(u_{j+2}-2 u_{j}+u_{j-2}\right) /(2 h)^{2}$. Involving u_{j-2} and u_{j+2} is not necessary and not convenient, when second order accuracy is our goal.

New point This squaring will succeed when we start with $\Delta u_{j}=\left(u_{j+\frac{1}{2}}-u_{j-\frac{1}{2}}\right) / h$. Repeating that centered first difference gives the second difference we want, and the half steps disappear. Now $\Delta^{2} u_{j}$ reaches only to u_{j+1} and u_{j-1} :

$$
\Delta\left(\Delta u_{j}\right)=\frac{1}{h}\left[\left(u_{j+1}-u_{j}\right) / h-\left(u_{j}-u_{j-1}\right) / h\right]=\left(u_{j+1}-2 u_{j}+u_{j-1}\right) / h^{2}
$$

Second point A good way to see the algebra is to apply these differences to exponential functions $e^{i k x}$. Then $u_{j}=e^{i k j h}$. The first difference is:

$$
\frac{1}{h}\left[e^{i k\left(j+\frac{1}{2}\right) h}-e^{i k\left(j-\frac{1}{2}\right) h}\right]=\frac{e^{i k h / 2}-e^{-i k h / 2}}{h} e^{i k j h}=\lambda e^{i k j h} .
$$

So the exponentials $e^{i k x}$ are eigenfunctions of the first difference Δ, and of the first derivative. The eigenvalues are different! The derivative gives $i k e^{i k x}$ with eigenvalue $i k$. The difference has λ close to $i k$ when k is small:

$$
\begin{equation*}
\lambda=\frac{e^{i k h / 2}-e^{i k h / 2}}{h}=i k\left(\frac{\sin k h / 2}{k h / 2}\right) \approx i k . \tag{1}
\end{equation*}
$$

Squaring $d / d x$ will give the eigenvalue $(i k)^{2}=-k^{2}$. The eigenfunction is still $e^{i k x}$. Squaring Δ will give the combination $2-2 \cos k h$ that we see over and over in the book:

$$
\begin{equation*}
\lambda^{2}=\left(\frac{e^{i k h / 2}-e^{-i k h / 2}}{h}\right)^{2}=\frac{e^{i k h}-2+e^{-i k h}}{h^{2}}=-\frac{2-2 \cos k h}{h^{2}} . \tag{2}
\end{equation*}
$$

The middle expression shows the $1,-2,1$ coefficients that come from a second difference.

Final step Compare these eigenvalues with the exact $i k$ and $(i k)^{2}$. One way is to look at the differences $\lambda-i k$ and $\lambda^{2}-(i k)^{2}$. This will show the second order accuracy of Δ and Δ^{2} :

$$
\begin{equation*}
i k-i k\left(\frac{\sin k h / 2}{k h / 2}\right) \approx \frac{i k}{6}(k h / 2)^{2} \tag{3}
\end{equation*}
$$

In that step, $\sin \theta=\theta-\theta^{3} / 6+\cdots$ gives $(\sin \theta) / \theta=\operatorname{sinc} \theta \approx 1-\theta^{2} / 6$.
Squaring (for the second difference) gives $\operatorname{sinc}^{2} \theta \approx 1-\theta^{2} / 3$. Then the error term for second differences is $(i k)^{2}$ times $(k h / 2)^{2} / 3$.

A better comparison is to divide instead of subtract. The ratio $\lambda / i k$ is approximate/exact:

$$
\begin{equation*}
\frac{\lambda}{i k}=\frac{\sin k h / 2}{k h / 2}=\operatorname{sinc}\left(\frac{k h}{2}\right) . \tag{4}
\end{equation*}
$$

For small k this ratio is near 1 . Notice that the sinc function is normalized in signal processing (not here!) to be defined as $\sin (\pi x) / \pi x$. The crucial dimensionless quantity is clearly seen to be $k h$.

To double the range of frequency resolution, h must be cut in half. In other words we need a fixed number of meshpoints per wavelength, to maintain a specified accuracy. In practical wave problems, that fixed number of meshpoints in the shortest wavelength is about 10 .

