
An improved approximation ratio for the minimum
latency problem

Michel Goemans a,1, Jon Kleinberg b,2,*

a Department of Mathematics, MIT, Cambridge, MA 02139, USA
b Laboratory for Computer Science, MIT, Cambridge, MA 02139, USA

Received 18 June 1995; accepted 4 April 1997

Abstract

Given a tour visiting n points in a metric space, the latency of one of these points p is the

distance traveled in the tour before reaching p. The minimum latency problem (MLP) asks for a

tour passing through n given points for which the total latency of the n points is minimum; in

e�ect, we are seeking the tour with minimum average ``arrival time''. This problem has been

studied in the operations research literature, where it has also been termed the ``delivery-man

problem'' and the ``traveling repairman problem''. The approximability of the MLP was ®rst

considered by Sahni and Gonzalez in 1976; however, unlike the classical traveling salesman

problem (TSP), it is not easy to give any constant-factor approximation algorithm for the

MLP. Recently, Blum et al. (A. Blum, P. Chalasani, D. Coppersimith, W. Pulleyblank, P. Ra-

ghavan, M. Sudan, Proceedings of the 26th ACM Symposium on the Theory of Computing,

1994, pp. 163±171) gave the ®rst such algorithm, obtaining an approximation ratio of 144. In

this work, we develop an algorithm which improves this ratio to 21.55; moreover, combining

our algorithm with a recent result of Garg (N. Garg, Proceedings of the 37th IEEE Sympo-

sium on Foundations of Computer Science, 1996, pp. 302±309) provides an approximation ra-

tio of 10.78. The development of our algorithm involves a number of techniques that seem to

be of interest from the perspective of the TSP and its variants more generally. Ó 1998 The

Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

Keywords: Approximation algorithms; Minimum latency problem; Traveling repairman

problem; Traveling salesman problem

* Corresponding author. Present address: Department of Computer Science, Cornell University, Ithaca

NY 14853, USA. E-mail: kleinber@cs.cornell.edu.
1 Supported by NSF contract 9302476-CCR and an NEC research grant.

E-mail: goemans@math.mit.edu.
2 Author supported by an ONR Graduate Fellowship.

0025-5610/98/$19.00 Ó 1998 The Mathematical Programming Society, Inc.

Published by Elsevier Science B.V.

PII S 0 0 2 5 - 5 6 1 0 (9 7) 0 0 0 8 9 - 0

Mathematical Programming 82 (1998) 111±124

1. Introduction

We consider the minimum latency problem (MLP): we are given a metric space M

on n points fv1; . . . ; vng, and we wish to ®nd a tour in M rooted at v1 which minimizes

the sum of the arrival times at the n points. More concretely, if T is a tour rooted at

v1, we say that the latency of vi with respect to T is the distance traveled in T before

reaching vi; and the latency of T is the sum of the latencies of the n points. The goal

then is to ®nd a tour of minimum latency. This problem is NP-complete by a simple

reduction from, for example, the Hamiltonian cycle problem.

Despite the obvious similarities to the classical traveling salesman problem (TSP),

the MLP appears to be much less well behaved from a computational point of view.

As discussed in e.g. [1±3], various local changes in the input points can lead to highly

non-local changes in the optimum solution. For example, even when the input points

lie on a line, the optimum MLP tour may cross itself many times in a back-and-forth

pattern ± a phenomenon not encountered in the TSP. For weighted trees, on which

the TSP is trivial, no polynomial-time algorithm is known for the MLP. Finally,

although the approximability of the MLP was already considered by Sahni and Gon-

zalez in [4], there is no simple heuristic known which gives a constant-factor approx-

imation; the ®rst approximation algorithm for the MLP was only recently given by

Blum et al. [1], who obtained a ratio of 144.

In this work, we present a set of stronger techniques for approximating the MLP,

and develop a 21.55-approximation algorithm. Our algorithm has several compo-

nents; below, we will point out a recent result due to Garg [5] that strengthens

one of these components, and leads directly to a still stronger approximation ratio

of 10.78. We also obtain a 3.5912-approximation for the MLP on weighted trees, im-

proving the bound of 8 from [1].

We are interested in approximation algorithms for this problem for a number of

reasons. First of all, the MLP is a reasonably well-studied problem in the operations

research literature (e.g. [6,7,2±4]), where it is also known as the ``delivery-man pro-

blem'' and the ``traveling repairman problem''. The problem is also of interest from

the point of view of on-line search problems; for example, as noted by Rivest and

Yin (reported in [1]), if one is searching for a goal that is equally likely to be at

one of n places in a metric space M, then the minimum latency tour is the one with

the minimum expected time to ®nd the goal. Indeed, the optimum solutions to the

MLP in a number of special cases have structure similar to the on-line search pat-

terns constructed by Baeza-Yates et al. [8].

Another source of interest in this problem comes from the TSP itself. Despite

the signi®cant di�erences between the TSP and MLP, the constituent parts of

our approximation algorithm involve techniques that we feel may be of interest

in understanding the structure of the TSP and its variants more generally. Our al-

gorithm has the same global structure as that of [1], based on concatenating tours

on larger and larger subsets of the vertices; our improvement on their bound

comes both from the way in which we ®nd these ``partial tours'' and the way

112 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

in which we combine them to produce the ®nal tour. This is discussed more fully

in Section 1.1.

1.1. Overview

The general idea behind obtaining a constant-factor approximation is to visit ver-

tices close to v1 (the root of the tour) as early as possible. First let us consider how

this would work in the case of a weighted tree. Here, one can solve the following k-

TSP problem optimally: ®nd a minimum-length tour, rooted at v1, that visits at least

k points. Thus, if one has an optimum k-TSP tour for each value of k, it would be

natural to look for some concatenation of these as the ®nal tour to output. This was

the approach taken by [1], who showed that there is such a concatenation that gives a

bound of 8.

In fact, we show in Section 2 that with respect to a certain lower bound on the

value of the optimum, one can ®nd the best possible way to concatenate the tours

returned by a k-TSP subroutine. This is done by solving a certain shortest-path pro-

blem on a graph whose vertex set is the set of k-TSP tours for each value of k. We

give (Theorem 3) a tight analysis of the largest possible gap between this shortest-

path formulation and the length of the optimum tour; it increases (as n tends to in-

®nity) to a supremum of 3.5912, which we, therefore, obtain as our approximation

ratio. The value of 3.5912 stands for the unique root of c ln�c� � c� 1.

In a general metric space, however, the k-TSP is NP-complete, and so the above

approach must be modi®ed. In particular, we must identify a di�erent set of tours to

concatenate. In [1], as well as in the conference version of the present paper, no con-

stant-factor approximation was known for the k-TSP, and so [1] introduced the no-

tion of an �a; b�-TSP-approximator, which is de®ned as follows.

De®nition 1. Assume that the maximum number of vertices that can be visited by a

subtour of length at most L starting from a ®xed root vertex is nÿ a�L�. Then an

�a; b�-TSP-approximator is a polynomial-time algorithm that given a bound L ®nds

a subtour of length at most bL visiting at least nÿ aa�L� vertices.

Blum et al. showed how such an approximator can essentially be used as a sub-

routine in place of a constant-factor approximation for the k-TSP; given an �a; b�-
TSP-approximator, they obtain an 8daeb-approximation for the MLP. Using the

techniques of Section 2, we strengthen this general bound to cdaeb, where again

c � 3:5912.

Thus the question is to determine the smallest values of a and b for which one can

obtain an �a; b�-TSP-approximator. Blum et al. show how to obtain a �3; 6�-TSP-ap-

proximator from a 2-approximation algorithm for the ``prize-collecting TSP'' due to

Goemans and Williamson [9]. In Section 3, when we treat the case of a general me-

tric space, we show how a stronger analysis of the prize-collecting TSP algorithm of

[9] allows one to obtain a (2,4)-TSP-approximator. In addition, working more

M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124 113

directly from a linear programming relaxation, we obtain a (2,3)-TSP-approximator.

By the discussion of the previous paragraph, this provides us with a 21.55-approxi-

mation algorithm.

Since the publication of the conference version of this paper, two constant-factor

approximations for the k-TSP have been obtained: one due to Blum et al. [10], and a

second due to Garg [5]. Garg's algorithm provides a 3-approximation to the k-TSP,

and hence constitutes a (1,3)-TSP-approximator. Plugging these values of a and b
into the general bound of this paper gives an approximation ratio of 10.78; this is

currently the best approximation ratio known for the MLP.

2. The minimum latency problem on trees

Recall that we are given points V � fv1; . . . ; vng � M , and we wish to ®nd a tour

rooted at v1 of minimum total latency. Throughout this section, we assume that M is

the shortest-path metric of a weighted tree. That is, we are given a tree T with posi-

tive weights on its edges, and the distance between any two vertices is the weight of

the path between them. For this problem, the best previously known approximation

ratio was 8 [1].

Our algorithm will make use of solutions to the k-traveling salesman problem (k-

TSP) in which one wants to ®nd the shortest tour, starting and ending at v1, which

meets at least k points of V . For tree metrics Blum et al. show how to solve the k-TSP

exactly in polynomial time [1].

As a ®rst step, our algorithm will solve the k-TSP on V for k � 2; 3; . . . ; n. Denote

the tours obtained by T2; T3; . . . ; Tn, with lengths d26 d36 � � � 6 dn. We skip the value

k � 1 since this corresponds to simply visiting v1 at a cost of 0. Given an increasing

set of indices

1 < j1 < j2 < � � � < jm � n;

we de®ne the concatenated tour T � Tj1
Tj2

. . . Tjm as follows. Starting from v1, we

traverse Tj1
, then Tj2

, and so on up to Tjm , while (i) introducing short-cuts to

eliminate redundant visits to points, and (ii) traversing the subtour Tji in the di-

rection that minimizes the total latency of the previously unvisited points in this

subtour.

Consider the following upper bound on the total latency of the tour

T � Tj1
Tj2

. . . Tjm . Suppose that pi points are ®rst visited in the subtour Tji , and

write

qi �
X
`6 i

p`:

Note that pi6 ji6 qi. We should emphasize that pi is incomparable to ji ÿ jiÿ1 since

the tours Tji are not necessarily nested. However, we have the following fact. (For

notational reasons we write j0 � 0 and q0 � 0.)

114 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

Claim 2.Xm

i�1

pidji 6
Xm

i�1

�ji ÿ jiÿ1�dji :

Proof. Since
Pm

i�1 pi � n �Pm
i�1�ji ÿ jiÿ1�, both sides of the inequality can be

written as a sum of n terms, each of which is one of fdj1
; . . . ; djmg. The `th smallest

term of the left-hand side is equal to dji , where qiÿ1 < `6 qi; the `th smallest term of

the right-hand side is equal to dji0 , where ji0ÿ1 < `6 ji0 . But since ` > qiÿ1 P jiÿ1, we

know i0P i, and hence dji0 P dji , from which the result follows. h

Now, the subtour Tji adds dji to the latency of each of the nÿ qi points remaining

to be visited in later subtours, and adds at most a total of 1
2
pidji to the latencies of

points ®rst visited in Tji (since we traverse Tji in the order minimizing this total).

Thus, the total latency of T is at mostX
i

�nÿ qi�dji �
1

2

X
i

pidji 6
X

i

�nÿ ji�dji �
1

2

X
i

�ji ÿ jiÿ1�dji

�
X

i

nÿ jiÿ1 � ji

2

� �
dji ; �1�

where the inequality follows from Claim 1 and the fact that qi P ji.

There is another very useful way to rewrite the upper boundP
i�nÿ ji�dji � 1

2

P
i�ji ÿ jiÿ1�dji . List the points in the order in which they are ®rst

reached by the tour. Let the ``modi®ed latency'' pk of the kth point be

pk � 1

2
dji �

Xiÿ1

t�1

djt

for jiÿ1 < k6 ji. ThenX
i

�nÿ ji�dji �
1

2

X
i

�ji ÿ jiÿ1�dji �
Xn

k�1

pk:

In e�ect, the worst case for our algorithm occurs when all tours are nested by inclu-

sion and all points are reached halfway through the tour that ®rst visits them ± the

modi®ed latency pk is simply the value of the latency of the kth point in this worst

case.

The bene®t of the right-hand side of inequality (1) is that we now have an upper

bound for the total latency of Tj1
Tj2

. . . Tjm solely in terms of the indices j1; . . . ; jm (and

the di's). Given this, our algorithm to approximate the minimum latency tour for V is

as follows.

(i) For k � 2; 3; . . . ; n, compute Tk, the minimum-length k-TSP tour on V rooted at

v1. Let dk denote the length of Tk.

(ii) Let Gn denote the complete graph on the vertex set f1; 2; . . . ; ng; turn Gn into a

directed graph by orienting the edge �i; j� from min�i; j� to max�i; j�.

M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124 115

(iii) Assign a length function to each directed arc of Gn; the length of arc �i; j� will be

nÿ �i� j�=2� �dj:

(iv) Compute the shortest 1-n path in Gn; suppose that it goes through vertices

1 � j0 < j1 < � � � < jm � n:

(v) Output the concatenated tour

T � Tj1
; Tj2

; . . . ; Tjm :

By the discussion leading up to inequality (1), we have the following lemma.

Lemma 3. The total latency of the concatenated tour Tj1
Tj2

. . . Tjm is at most the length

of the path j0; j1; j2; . . . ; jm in the graph Gn:

We can also give a lower bound on the total latency of the optimum tour in terms

of the di's.

Lemma 4. Let l�k denote the latency of the kth vertex of the optimum tour. Then

l�k P 1
2

dk, and the optimum total latency is lower bounded by 1
2

Pn
k�2 dk:

Proof. By doubling the path from the root to the kth vertex of the optimum tour, we

obtain a tour of length at most 2l�k visiting at least k vertices. This implies that

dk 6 2l�k and the bound on the total latency follows. (

Lemmas 1 and 2 together imply that our algorithm is a q-approximation algo-

rithm if we can prove that, for any n and any non-decreasing sequence of di's, the

ratio of the length of the shortest path in Gn to 1
2

Pn
k�2 dk is at most q.

It turns out that we can precisely determine the worst-case value of this ratio q;

the bound for the algorithm then follows as a corollary. For a given edge-weighted

graph Gn, let r�Gn� denote the length of the shortest 1)n path in Gn; and let sn denote

the worst-case ratio of r�Gn� to 1
2

Pn
k�2 dk over all non-decreasing sequences of di. The

following theorem gives an upper bound on sn that holds for all n, and additionally

shows that this is the tightest such bound possible. This latter argument is not neces-

sary for the analysis of the algorithm, only to show that our bound for sn is tight.

Theorem 5. For all n,

sn � sup
d2 6 ���6 dn

2r�Gn�Pn
k�2 dk

6 c < 3:5912;

where c is the unique root of c ln�c� � c� 1. Moreover, supnsn � c.

Corollary 6. The above algorithm is a c-approximation algorithm for the MLP on

trees, where c < 3:5912 is the unique root of c ln�c� � c� 1.

116 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

Proof of Theorem 5. Consider any non-decreasing sequence of di's. Assume that

d2 � 1. We shall construct a path in Gn and compare its length to 1
2

Pn
k�2 dk.

Fix c > 1 and 16 L0 < c; both c and L0 will be determined later. For i � 1; . . . ; let

ji denote the maximum element of fk: dk 6 L0ciÿ1g. For some large enough value of

m; jm � n. Consider the path j0; j1; . . . ; jm in Gn. Its length is equal toXm

i�1

nÿ jiÿ1 � ji

2

� �
dji :

This can also be expressed as
Pn

k�1 pk; where the ``modi®ed latency'' pk of the kth

point for jiÿ1 < k6 ji was de®ned as

pk � 1

2
dji �

Xiÿ1

t�1

djt :

By de®nition, dji 6 L � L0cs for s � d logc�dk=L0�e. Observe that s P 0 since dk P 1

and L0 < c. We can upper bound the modi®ed latency pk by

pk 6
1

2
L� L

c
� L

c2
� � � � � c

cÿ 1
ÿ 1

2

� �
L � c� 1

2�cÿ 1�
� �

L:

We could already relate pk to dk by observing that L6 cdk by de®nition. This

shows that pk 6 1
2
�c�c� 1�dk=�cÿ 1��, which implies that the length of the path we

have constructed is at most c�c� 1�=�cÿ 1� times the value
P

k dk=2.

However, we can obtain a better bound by carefully selecting L0. We use a prob-

abilistic argument. Let L0 � cU , where U is a random variable uniformly distributed

between 0 and 1. This therefore de®nes a random path in Gn, and its expected length

is equal to
Pn

k�1 E�pk�. The expected value of pk is at most

c� 1

2�cÿ 1�E�L�:

We now compute E�L�. Observe that L=dk is a random variable of the form cY where

Y is uniform between 0 and 1. Hence,

E�L� � dkE�cY � � dk

Z1
0

cxdx � dk
cÿ 1

ln c
:

Thus

E�pk�6 c� 1

2 ln c
dk

and the expected length of our random path is at most �c� 1�= ln c times
P

k dk=2.

This value is optimized by setting c to be equal to the root of c ln�c� ÿ cÿ 1 � 0,

which turns out to be c � 3:59112142 . . . This proves the upper bound.

We prove the second claim of the theorem as follows. First, it is not di�cult to

show that c has the property that for all x > 0,

c ln x6 1� x: �2�

M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124 117

Now ®x n P 1, and de®ne d2; . . . ; dn by setting dn � 1 and di � 1=�nÿ i� for

26 i6 nÿ 1. This gives us a weighted graph Gn.

We claim that r�Gn�P 1
2
�c ln�nÿ 1� ÿ 1�. To prove this, it is su�cient to de®ne a

number wi for each i � 1; . . . ; n such that wn � 0, w1 � 1
2
�c ln�nÿ 1� ÿ 1�, and for

i < j, we have

wi ÿ wj6 length of arc �i; j� � nÿ i� j
2

� �
dj: �3�

These conditions indeed imply that wi is a lower bound on the length of the shortest

path from i to n. We de®ne wn � 0 and wi � 1
2
�c ln�nÿ i� ÿ 1� for i � 1; . . . ; nÿ 1.

We now verify Eq. (4) in the following two cases.

(i) For j � n, we have

wi ÿ wn � 1
2
�c ln�nÿ i� ÿ 1�6 1

2
�nÿ i� � length of arc �i; n�

with the inequality following from Eq. (2).

(ii) For j < n, we have

wi ÿ wj �
1

2
c ln

nÿ i
nÿ j

� �� �
6 1

2
1� nÿ i

nÿ j

� �
� nÿ i� j

2

� �
1

nÿ j

� length of arc �i; j�
with the inequality again following from Eq. (2).

Now we have

sup
n

sn P sup
n

2r�Gn�Pn
i�2 di

P sup
n

c ln�nÿ 1� ÿ 1

1� H�nÿ 2� P c;

where H��� denotes the harmonic function. (

Observe that we do not really need to compute the shortest path in Gn in order to

obtain a 3.5912-approximation algorithm; the (random) path constructed in the

proof of the theorem is su�cient. This leads to a simple randomized 3.5912-approx-

imation algorithm for the MLP on trees. Furthermore, this algorithm can be deran-

domized by discretizing the probability distribution. More precisely, by choosing the

best path among p paths corresponding to L0 � ck=p for k � 0; . . . ; p ÿ 1, the result-

ing bound can be seen to be equal to

�c� 1�c1=p

p�c1=p ÿ 1� ;

which can be made arbitrarily close to c � �c� 1�= ln�c� for p arbitrarily large and c
arbitrarily close to c.

A ®nal observation is as follows. One can show that for each n, the computation

of sn can be formulated as a linear program with O�n� variables and O�n2� con-

straints. We have computed a few values of sn and found that it converges to c
relatively slowly; for example, s20 � 2:63362 . . . ; s160 � 3:07745 . . . and

s300 � 3:15522 . . . Of course, this means that for small trees, our approximation algo-

rithm is provably achieving a performance ratio noticeably better than c.

118 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

3. General metric spaces

Now we consider the case in which the set V of n points is a subset of an arbitrary

metric space M. The approach of Section 2 must be modi®ed, since the k-TSP pro-

blem is NP-complete in general metric spaces. However, the techniques we have de-

veloped provide much of what we need. Blum et al. observed that it is enough to

simply bound the latencies of the ®nal 1=a fraction of the points, for some constant

a, in order to obtain an approximation algorithm to the MLP [1]. This motivated

their de®nition of an �a; b�-TSP-approximator given in the introduction. They

showed that any �a; b�-TSP-approximator gives an 8daeb-approximation algorithm

for the MLP in general metric spaces. (In [1], a method was also claimed to obtain

a 4daeb approximation, but this proved to be incorrect.)

In [1] it was shown that there exists a (3,6)-TSP-approximator, leading to a 144-

approximation algorithm for the MLP; the authors of [1] have subsequently ob-

served that their technique also provides a (4,4)-TSP-approximator, which lowers

this bound to 128. In what follows, we provide improved (a;b)-TSP-approximators.

This by itself improves on the ratio of [1], and combined with the techniques of the

previous section brings the ratio down to 21:55.

Theorem 7. There exists a (2,4)-TSP-approximator.

Proof. As in [1], we obtain the algorithm from a 2-approximation algorithm to the

prize-collecting TSP due to Goemans and Williamson [9]. In the prize-collecting

TSP, each vertex v has a penalty pv, and the goal is to ®nd a subtour from the root

minimizing the length of the subtour plus the sum of the penalties of the vertices not

visited.

By looking at the proof of Goemans and Williamson, one veri®es that the GW

algorithm produces a subtour such that the length of the subtour plus twice the

sum of the penalties of the vertices not visited is at most twice the cost of the opti-

mum subtour (i.e. length plus penalties of unvisited vertices). We note in passing that

this observation does not improve the performance guarantee for the prize-collecting

TSP.

Recall that a�L� is the minimum number such that there is a tour of length L which

visits nÿ a�L� vertices of V . For i � 1; . . . ; n, call the algorithm of [9] with all penal-

ties set to L=i; let us denote the length of the resulting subtour by D�i� and the num-

ber of unvisited vertices by b�i�. By the observation of the previous paragraph, we

must have

D�i� � 2b�i�L=i6 2�L� a�L�L=i�:
That is,

D�i�
L
� 2

b�i�
i
6 2� 2

a�L�
i
: �4�

M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124 119

Let k be the smallest value of i such that the left-hand side of the above inequality is

at most 4. Since a�L� satis®es this condition (because of the right-hand side of

Eq. (4)), we have that k6 a�L�. Therefore, Eq. (4) implies:

D�k�
L
� 2

b�k�
a�L� 6

D�k�
L
� 2

b�k�
k
6 4: �5�

This means that b�k�6 2a�L� and that D�k�6 4L, showing that the algorithm is a

(2,4)-TSP-approximator. (

We note that this proof (and, in particular, inequality (5)) shows that this algo-

rithm is an �a; b�-TSP-approximator for some unknown values of a and b satisfying

2a� b6 4. However, we do not know how to exploit this fact.

We can give an even better TSP-approximator by using linear programming tech-

niques in the spirit of Bienstock et al. [11] for the prize-collecting TSP.

Theorem 8. There exists a �2; 3�-TSP-approximator.

Proof. We view V as a complete graph on n vertices, with the weight ce of the edge

e � �vi; vj� denoting the distance between vi and vj. We adapt a standard linear

programming relaxation of the TSP to the setting of the k-TSP, and from this derive

a (2,3)-TSP-approximator. For each edge e, we de®ne a variable xe 2 �0; 1�, and for

each vertex vi we de®ne a variable yi 2 �0; 1�. Intuitively, xe � 1 indicates that edge e
will be used by the tour, and yi � 1 indicates that vertex vi will be visited by the tour.

Now, for a set S � V , let d�S� denote the set of edges with exactly one end in S,

and x�d�S�� denote the sum
P

e2d�S� xe. Consider the following family of linear pro-

grams �LPk�, for k � 1; . . . ; n.

�LPk� min
X

e

cexe

s:t: x�d�S��P 2yi �v1 2 S; vi 62 S�;X
i

yi � k;

06 xe6 1;

06 yi6 1;

y1 � 1:

Observe that any k-TSP tour gives a feasible solution to (LPk). Indeed, the ®rst set of

constraints says that if vertex i is visited then there are at least two edges of the tour

in d�S�. The second constraint says that k vertices are visited. Since x and y may take

fractional values, the optimum value of (LPk) has a value zk 6 dk.

We use the optimum solution to (LPk) to produce a tour that passes through at

least m < k vertices, as follows. First, we choose the m vertices whose y-values are

the largest. Let W denote this set of vertices. The mth largest y-value is at least t,

where

120 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

�mÿ 1� � t�nÿ m� 1�P k;

i.e.

t P
1� k ÿ m
1� nÿ m

P
k ÿ m
nÿ m

:

We multiply our solution to (LPk) by 1=t, obtaining x-values which satisfy

x�d�S��P 2 �v1 2 S;W ÿ S 6� ;�:
The value of the objective function is now zk=t. By a result of Goemans and Bertsi-

mas [12] (see also [11]), the value of the objective function is unchanged if we include

the constraints

x�d�fvig�� �
2; vi 2 W ;

0; vi 62 W :

8><>:
We now have a standard linear programming relaxation of the TSP, written for the k

vertices in W. Results of Wolsey [13] and Shmoys and Williamson [14] show that if

we apply Christo®des's heuristic to produce a tour on the vertices in W, the length of

this tour will be at most 3
2

times the optimum value zk=t of this linear program. Thus,

we obtain a tour on the vertices in W of length at most

3

2

zk

t
6 3�nÿ m�

2�k ÿ m� dk: �6�

Using the technique above, we now obtain an �a; 3a=�2aÿ 2��-TSP-approxima-

tor, for each a > 1. We are given a bound L, and suppose that the greatest number

of points that can be reached by a tour of length L is �1ÿ e�n. Thus when

k � �1ÿ e�n, dk 6 L < dk�1: We set m � �1ÿ ae�n and run the above algorithm. By

Eq. (6), we obtain a tour of length at most

3n�1ÿ �1ÿ ae��
2n��1ÿ e� ÿ �1ÿ ae�� dk 6

3a
2aÿ 2

L:

Of course we do not know that value of e, but we can try each possible value of k and

take the tour of length at most 3aL=�2aÿ 2� that reaches the greatest number of ver-

tices.

Setting a � 2 gives us a (2,3)-TSP-approximator, and this choice of a minimizes

the product ab � 3a2=�2aÿ 2�: (

We can now obtain an daebc-approximation algorithm for the MLP, where

c < 3:5912 was de®ned in the previous section. In fact, there are two ways to do this

± one can give a direct randomized construction of such an approximately optimal

tour, along the lines of the proof of Theorem 3; or one can exploit the way in which

our (2,3)-TSP-approximator works to set up a shortest-path problem as was done in

the previous section. For the sake of brevity, we choose the former; however, we

brie¯y discuss the latter approach below.

M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124 121

The randomized algorithm is as follows. Let L0 � cU , where U is uniformly dis-

tributed between 0 and 1. Let Ti denote the tour obtained by calling the (2,3)-

TSP-approximator with input L0ciÿ1; suppose that Tm is a tour spanning V. Our al-

gorithm returns the concatenated tour T � T1 . . . Tm.

Theorem 9. For any �a; b�-TSP-approximator, the above algorithm achieves an

(expected) approximation ratio of at most daeb�c� 1�= ln c. For �a; b� � �2; 3� and

c � 3:5912, the resulting bound is less than 21.55.

Proof. The argument is essentially the same as that used in the proof of Theorem

3, except that we are now using a TSP-approximator instead of solving the k-TSP

exactly. Let l�nÿi denote the latency of the �nÿ i�th vertex of the optimum tour.

For s � d logc�2l�nÿi=L0�e, we know the existence of a tour visiting nÿ i vertices

and of length at most 2l�nÿi6 L � L0cs, so the TSP-approximator with input L

returns a subtour of length at most bL which visits at least nÿ ai vertices. The

notion of ``modi®ed latency'' can still be used in this setting; as in Theorem 3, the

modi®ed latency pnÿi is at most �c� 1�=�2�cÿ 1��L, and its expected value is at

most

b
c� 1

lnc
l�nÿi:

If the approximator was guaranteed to return a tour on at least nÿ i vertices, the

performance guarantee would be b�c� 1�= ln c. However, we only know that the

subtour visits at least nÿ ai vertices. We can thus charge the latency in our tour

of the vertices indexed nÿ dae�i� 1� � 1; . . . ; nÿ daei to the modi®ed latency pnÿi.

In the process, dae vertices are charged to pnÿi, proving the desired bound. (

Using the remark following the proof of Theorem 3, the algorithm does not need

to be randomized. Again, we could select L0 to be of the form ck=p for

k � 0; . . . ; p ÿ 1, and this leads to a performance guarantee of

daeb �c� 1�c1=p

p�c1=p ÿ 1� :

Also, as mentioned above, our (2,3)-TSP-approximator has a special feature

which allows us to give another deterministic 6c-approximation algorithm, following

more closely our algorithm for the MLP on trees. Instead of being given L, our (2,3)-

TSP-approximator can instead receive a value k > 1
2
n and output a tour on

m � nÿ 2�nÿ k� � 2k ÿ n vertices and of length at most three times that of the op-

timum k-TSP (see inequality (6)). We can compute all these tours and set up a direc-

ted graph Gn with the length of the arc �i; j� being nÿ 1
2
�i� j� times the length of the

tour on j or jÿ 1 vertices output by our algorithm. A shortest path in this graph will

then lead to a tour of total latency at most 6c by arguments similar to those in the

proof of Theorems 3 and 7.

122 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

4. Conclusion

We have improved the best known approximation ratio for the MLP from 144 to

21.55 in general metric spaces, and from 8 to 3.5912 in weighted trees. For general

metric spaces, as mentioned in the introduction, the 3-approximation for the k-

TSP due to Garg [5] implies a yet better approximation ratio of 3c < 10:78.

A number of further directions for inquiry are raised by the techniques used here.

Directly related to the MLP is the problem of improving on the approximation ratios

of c and 3c for the case of weighted trees and general metric spaces. It is also worth

noting that the MLP is not known to be NP-hard in weighted trees, so it is worth

considering whether it could be solved optimally. Another line of questions is related

to �a; b�-TSP-approximators, which we believe to be of interest in their own right.

What is the range of �a; b� for which a polynomial-time �a; b�-TSP-approximator

exists?

The notion of concatenating tours in lengths that increase geometrically is a meth-

od that is well known in a number of settings ± for example, in the design of on-line

algorithms (see e.g. [8]). It would be interesting to consider other applications of the

idea of choosing a random initial starting point for the geometric sequence.

Finally, there remain a number of natural variants of the TSP for which it is un-

known whether there exists a constant-factor approximation algorithm. It is possible

that some of the techniques developed here could be useful in attacking such pro-

blems.

Acknowledgements

We have bene®ted from several stimulating discussions with Yuval Rabani.

Thanks also to the referees for their comments.

References

[1] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, M. Sudan, The minimum

latency problem, Proceedings of the 26th ACM Symposium on the Theory of Computing, 1994, pp.

163±171.

[2] E. Minieka, The delivery man problem on a tree network, Annals of Operations Research 18 (1989)

261±266.

[3] J. Tsitsiklis, Special cases of the traveling salesman and repairman problems with time windows,

Networks 22 (1992) 263±282.

[4] S. Sahni, T. Gonzalez, P-complete approximation problems, Journal of the ACM 23 (1976) 555±565.

[5] N. Garg, A 3-approximation for the minimum tree spanning k vertices, Proceedings of the 37th IEEE

Symposium on Foundations of Computer Science, 1996, pp. 302±309.

[6] F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, N. Papakostantinou, The complexity

of the traveling repairman problem, Informatique Th�eorique et Applications 20 (1986) 79±87.

[7] M. Fischetti, G. Laporte, S. Martello, The delivery man problem and cumulative matroids,

Operations Research 41 (1993) 1055±1064.

M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124 123

[8] R. Baeza-Yates, J. Culberson, G. Rawlins, Searching in the plane, Information and Computation 106

(1993) 234±252.

[9] M. Goemans, D. Williamson, A general approximation technique for constrained forest problems,

SIAM Journal on Computing 24 (1995) 296±317.

[10] A. Blum, R. Ravi, S. Vempala, A constant-factor approximation for the k-MST problem, Proceedings

of the 28th ACM Symposium on the Theory of Computing, 1996, pp. 442±448.

[11] D. Bienstock, M. Goemans, D. Simchi-Levi, D. Williamson, A note on the prize-collecting traveling

salesman problem, Mathematical Programming 59 (1993) 413±420.

[12] M. Goemans, D. Bertsimas, Survivable networks, linear programming relaxations and the

parsimonious property, Mathematical Programming 60 (1993) 145±166.

[13] L. Wolsey, Heuristic analysis, linear programming, and branch and bound, Mathematical

Programming Study 13 (1980) 121±134.

[14] D. Shmoys, D. Williamson, Analyzing the Held-Karp TSP bound: A monotonicity property with

application, Information Processing Letters 35 (1990) 281±285.

[15] A. Blum, P. Chalasani, S. Vempala, A constant-factor approximation for the k-MST problem in the

plane, Proceedings of the 27th ACM Symposium on the Theory of Computing, 1995, pp. 294±302.

[16] B. Awerbuch, Y. Azar, A. Blum, S. Vempala, Improved approximation guarantees for minimum-

weight k-trees and prize-collecting salesmen, Proceedings of the 27th ACM Symposium on the Theory

of Computing, 1995, pp. 277±283.

124 M. Goemans, J. Kleinberg / Mathematical Programming 82 (1998) 111±124

