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Abstract 

The survivable network design problem (SNDP) is to construct a minimum-cost  subgraph 
satisfying certain given edge-connectivity requirements. The first polynomial-t ime approxima- 
tion algorithm was given by Williamson et al. (Combinatorica 15 (1995) 435454) .  This paper 
gives an improved version that is more efficient. Consider a graph of  n vertices and connectivity 
requirements that are at most k. Both algorithms find a solution that is within a factor 2k - 1 
of optimal for k ~> 2 and a factor 2 of  optimal for k 1. Our algorithm improves the time 
from O(k3n 4) to O(k2n2 + kn21~dg log n). Our algorithm shares features with those of  Wil- 
liamson et al. (Combinatorica 15 (1995) 435454)  but also differs from it at a high level, ne- 
cessitating a different analysis of  correctness and accuracy; our analysis is based on a 
combinatorial  characterization of  the " redundant"  edges. Several other ideas are introduced 
to gain efficiency. These include a generalization of  Padberg and Rao 's  characterization of  
minimum odd cuts, use of  a representation of  all minimum (s, t) cuts in a network, and a 
new priority queue system. The latter also improves the efficiency of  the approximation algo- 
rithm of Goemans and Williamson (SIAM Journal  on Computing 24 (1995) 296 317) for con- 
strained forest problems such as minimum-weight matching, generalized Steiner trees and 
others. © 1998 The Mathematical  Programming Society, Inc. Published by Elsevier Science 
B.V. 
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1. Introduction 

In the survivable network design problem (SNDP) we are given an undirected graph 
G = (V, E), a non-negative cost ce for every edge e, and a non-negative connectivity 
requirement rij for every (unordered) pair of vertices i,j. We must find a minimum- 
cost subgraph in which each pair of vertices i ,j  is joined by at least ril edge-disjoint 
paths. SNDP is NP-complete since the Steiner tree problem is a special case. An im- 
portant practical application arises in the design of fiber-optic telecommunication 
networks. In that context the most interesting case is when rij is of the form 
min(ri, rj) for some vector (ri)icv of connectivity types, with each r~ ~ {0, 1,2}. Ver- 
tices with ri = 1 represent customers; vertices with r/ 2 represent switching stations 
that need to be protected from single edge failures, while vertices with r~ 0 are op- 
tional sites. For  a thorough discussion of the problem and a survey of existing re- 
sults, the reader is referred to the survey paper by Gr6tschel et al. [10]. 

A heuristic that gives a solution guaranteed to be within a factor c~ ~> 1 of optimal 
has a performance guarantee of c~. If in addition the heuristic runs in polynomial time 
it is called an (~)-approximation algorithm. The first approximation algorithm for the 
general SNDP was developed by Williamson et al. [20]. Before this no approxima- 
tion algorithm was known even for the case r~/= min(r~, rj), ri C {0, 1,2}. The previ- 
ously known special-case SNDP approximation algorithms are listed in Table 1. 
Throughout  this paper n and m denote the number of vertices and edges of the given 
graph. For  simplicity the time bounds in the table assume dense graphs, m -- ®(n2). 
Agrawal et al. [1] and Goemans and Williamson [8], building on the work of Goe- 
mans and Bertsimas [7], have described an approximation algorithm for a variant 
of SNDP in which an edge can be selected several times. This version of the problem, 
however, appears to be easier to approximate. 

Table 1 
Previous work on special cases of SNDP 

Problem Requirements Performance guarantee Time References 

Steiner tree ri c {0, 1} 2 O(n 2) [151 
1116 O(n 35) [21] 
16/9 0 (n 5 ) [2] 

Generalized Steiner tree r/g E {0, 1} 2 O(n21ogn) [1] 
[8] 

2-edge connected subgraph ri = 2 3 O(n 2) [3] 
k-edge connected subgraph ri - k 2 O(kn 3 logn) [12] 
Generalized Steiner 2-edge- r~j E {0, 2} 3 O(n 2 logn) [13] 

connected subgraph 
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This paper presents an improved version of the approximation algorithm of  [20]. 
Both algorithms apply to a family of integer programs defined by proper functions f .  
A function f :  2 v -+ N is called proper if: 
• [Symmetry] f ( S )  = f ( V  - S) for all S C_ V; and 
• [Maximality] If A and B are disjoint, then f ( A  U B) <~ m a x { f ( A ) , f ( B ) } .  

We will also assume that f((0) = 0 for all proper functionsf.  Given an undirected 
graph G = (V, E), the family of integer programs that can be approximated is formu- 
lated by 

(IP) min ZCeXe 
eGE 

s.t. x(6(S)) >~ f ( S ) ,  S C V, 

x~ C {0, 1}, e C E ,  

where 6(S) denotes the coboundary of S (the set of edges with exactly one endpoint in 
S) and x(F) = ~eEF Xe" SNDP is given by the proper function f ( S )  = max~cs,jcsr~j. 
The algorithms of Williamson et al. [20] and this paper both achieve this result. 

Theorem 1.1. I f  the proper function f takes only l non-zero distinct values 
0 : DO < Pl < P2 < "'" < Pl, then there is an approximation algorithm for (IP) with 
performance guarantee at most 

l 

2 ~ ~ { ~ ( P i -  Pi-1) ,  
i-1 

where ~ is the harmonic function ~ ( k )  = 1 + 1 + ½ + . . .  + ~. i f  pl = 1 and l >~ 2 then 
the performance guarantee improves by one unit. 

In the rest of this paper, fmax denotes the largest requirement, f~ax = maxs f (S ) .  
Thus the performance guarantee of Theorem 1.1 is at most 2f,lax or, more precisely, 
2fmax -- 1 whenever f~ax ~> 2. Furthermore, both algorithms prove that the factor 
2fmax -- 1 (or 2 iffmax = 1) bounds the gap between (IP) and its linear programming 
relaxation. We will assume that we are dealing with Simple graphs so that fmax ~< n, 
although our results can be easily extended to the case of multigraphs. 

The main result of this paper is an algorithm that achieves the accuracy of  The- 
orem 1.1 efficiently: the time bound of Williamson et al. [20] for SNDP, O0Cm~axn3 4), 

2 2 is improved to O(J~axn +f~,xn=x/log log n)). 
To state our specific contributions, we first briefly sketch the approximation algo- 

rithm. It proceeds in fma~ phases. Each phase finds a low-cost augmentation to the 
current solution. Let Fp ~ denote the edges chosen in the first p - 1 phases, and let 
6A(S) denote A N cS(S) for A c_ E. Then in phase p we find a set of  edges 
F c E - F p _ l  such that whenever f ( S )  >~p and ]66 1(S)1 = p -  1, then I(~F(S) I ~ 1. 
We then set Fp = F p _ I U F  so that we maintain the invariant that 
16Fp (S)] ~> min(f(S) ,p)  for all subsets S. Thus the final set Fj;,,~ is a feasible solution 
to the integer program (IP). 
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The augmentation in each phase can be viewed as finding a low-cost solution to 

~ CeXe 
e~Eh 

s.t x(6(S)) >~ h(S), S c V, 

xe C {0, 1}, e C E h ,  

where Eh = E - F p  1 and h(S) = 1 i f f f (S)  ~>p and IC~F; I(S)[ = p -  1, and h(S) = 0 
otherwise. Williamson et al. [20] showed how to find such a solution if the function 
h is uncrossable; i.e., if h(A) = h(B) = 1, then either h(A - B) = h(B - A) = 1, or 
h(A U B) = h(A • B) = 1. They then showed that the function h given above is un- 
crossable. Their algorithms for finding such a solution works in two steps. The first 
step uses a primal dual algorithm which constructs a set of edges F that is a feasible 
solution to (IPh) while simultaneously constructing a feasible solution to the dual of 
the linear programming relaxation of (1Ph). The second step of the algorithm is a 
"clean-up step". It removes certain unnecessary edges from F. 

We introduce an alternate algorithm to find low-cost solutions to (IPh) for uncross- 
able functions. The algorithms of Williamson et al. [20] and this paper use the same 
procedure for the first step to initialize F, but differ in the clean-up step. The clean- 
up step is crucial, as no finite performance guarantee can be achieved without a 
clean-up step. For example, on the shortest s- t  path problem their algorithm emulates 
Dijkstra's algorithm, and the edges of the shortest path tree not on the s- t  path must be 
removed to guarantee low cost. In [20] both steps of the algorithm use the same 
amount of time. The clean-up step is the bottleneck against speeding this up; it checks 
the feasibility of O(n) edge sets. We circumvent this problem by giving a combinatorial 
characterization of a set of edges which may be safely removed. These edges can be 
easily identified by gathering information in the first step of the algorithm. The char- 
acterization leads to a new, more efficient clean-up step and a different proof of the 
performance guarantee of the algorithm. Our clean-up step is no longer the bottleneck 
even in the improved algorithm: it uses O(n) time per phase. 

The remaining contributions of this paper concern the efficient implementation of 
the first step of a phase. There are several new ideas. To decide which edges to add to 
F requires identifying certain "active sets". The high-level algorithm does not indi- 
cate how to do this in polynomial time. Williamson et al. [20] show how to find 
the active sets by solving O(n 2) network flow problems. We identify active sets more 
efficiently using two ideas from flow theory. First we show the Gomory -Hu  cut tree 
gives a characterization of a feasible solution to (IP). This generalizes Padberg and 
Rao's characterization of a minimum T-cut in terms of the Gomory -Hu  tree [16], 
since T-cuts correspond to a proper function. Next we combine the Gomory -Hu  tree 
with the representation of Picard and Queyranne for all minimum (s, t) cuts of a net- 
work [17]. This allows efficient identification of the active sets. Combining these two 
ideas has been previously suggested by Gusfield and Naor [11]. We gain further 

the integer program 

(IPh) min 
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efficiency by showing that the special structure of SNDP allows faster location of the 
active sets in the representation. 

As the last ingredient in an efficient algorithm, we improve the implementation of 
the rule for selecting the next edge to add to F. This edge-choice rule (also used in 
[20]) is similar to the rule in the algorithm of Goemans and Williamson [8]. Goemans 
and Williamson present approximation algorithms for minimum-weight matching 
(with the triangle inequality), T-joins, Steiner trees and generalized Steiner trees, 
and a number of other problems. All these algorithms have performance guarantee 
2 and run in time O(n 2 log n). Our implementation improves this time bound to 
O(n(n + x/m log log n)). The idea of the implementation is to avoid work on irrel- 
evant edges. Independently, Klein [14] gives an O(nx/N log n) time implementation 
using a new data structure. 

Putting the pieces together gives the following results. For SNDP with require- 
ments rij ~<fmax the performance guarantee is 2Jm~x- 1 for f ~ x  ~> 2 and 2 for 
fm~x = 1. For fmax = O(1) the running time is O(n(n + x/m log log n)); more gener- 
ally the time is O(fm2ax n3 +fmaxnv/m log log n). We also give a time bound for gen- 
eral proper functions f (assuming an oracle for f ) ;  this bound is o(fZax n3 + fnaxnZp) 
where p is the time taken by an oracle that computes the function f .  More precise 
time bounds are given in Section 5. 

The rest of this paper is organized as follows. Section 2 presents the high-level al- 
gorithm. Section 3 proves it finds a feasible solution and Section 4 proves the perfor- 
mance guarantee. Section 5 gives the implementation details, in a number of 
subsections. 

2. The main algorithm 

This section summarizes the overall algorithm, and our new algorithm for finding 
low-cost solutions to (IPh) for uncrossable functions; the algorithms are given in 
Figs. 1 and 2, respectively. We call the algorithm for uncrossable functions Uncross- 
able. To make the algorithm somewhat simpler to understand, a simulated run of 
Uncrossable is represented in Fig. 5 with comments later in the text. 

Input: An undirected gruph G = (V, E), edge costs c. _> O, a proper function f ,  und fm.x = ma~s  f ( S )  
Output: A set of edges Ff~.~ feasible for ( IP)  
I F0 ~-- 0 

2 For p ~-- 1 to .fm.x 

3 Comment: Begin phase p. 

1 iff(S)>pand [6F,_,(S)I=p--I 
4 h~(S) ~-- 0 otherwise 

5 B p * - E - F p _ l  

6 F '  4-- UNOI%OSSABLE(V, Ep, C, hp) 

7 Fp~-Fp-~UF' 

8 Comment:  End phase p. 

9 Output  Fy . . .  

Fig. 1. The main algorithm. 
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Input:  An undirected graph G = (If, Eh),  edge costs e~ ~ O, and an unerossable function h 
Output:  A set of edges F '  feasible for (IPh) 
1 F*- -$  

2 i*- -0  

3 d(,,) ~ 0 for ~ v e V 

4 Comment: Implicitly set Ys ~ 0 for all S C V 

5 C ~-- all active sets C (minimM violated sets). 

6 While ICl > 0 

7 i * - - i + l  

8 Comment: Begin iteration i. 

9 Comment: Edge selection step. 

10 For nil *~ 6 C E C, increase d(v) uniformly by • until some edge el = (u, v) 6 g n  satisfies d ( u ) +  d(v) = e~  
for ei 6 6(G) of some G E C. 

11 Comment: Implicitly set yc +-- Vc + • ]or all G 6 C. 

12 F ~- Y U {e~} 

13 Comment: Edge addition step. 

14 Update C, 

15 Comment: End iteration i. 

lg  Comment: Edge clean-up step. 

17 F '  *-- F 

18 Let all sets that were active during this phase be unmarked. Mark the set V. 

19 For ] +- i downto 1 

20 Comment: O(e), A(e), and special edges are defined in the tart. 

21 If  ej is speciM and G(e j )  is unmarked and 5p,(A(ej))  _D 6F,(G(ej))  then 

22 F' 4- F' - {ej} 

23 Mark C(e j )  

24 Output  F' 

F i g .  2. T h e  u n c r o s s a b l e  a l g o r i t h m .  

Recall the overall structure of the algorithm, as given in Fig. 1: there are 

fmax = maxs f ( S )  phases indexed by p = 1 , . . .  ,fmax. Phase p produces a set Fp such 
that I3Fp(S)I ~> min(f(S),p) .  ~ .... is feasible for (IP). In phase p we call Uncrossable 
with the edge set Eh = E - b), 1 and with the function h(S) = 1 iff 13Fp 1 ( S )  I = P  - -  1 
and f (S)>~p.  Recall that we call a function h uncrossable if whenever 
h(A) = h(B) = l, then either h(A - B) - h ( B -  A) --1, o r h ( A U B ) = h ( A N B ) = - I .  
This function was proven to be uncrossable by Williamson et al. [20]. 

For  the rest of  this paper, we will assume that the uncrossable functions in Un- 
crossable are symmetric: that is, h(S) = h(V - S) for all S C V. Since proper func- 
tions f are symmetric, the uncrossable function used in phase p is always 
symmetric. Details about using Uncrossable with functions that are not symmetric 
can be found in [19]; some proofs and arguments are slightly different. 

As discussed in Section 1, the algorithm Uncrossable has two steps. The first step 
produces a set of  edges F and consists of  a number  of  iterations, each iteration con- 
sisting of an edge selection and edge addition step. The second step is the clean-up 
step. It removes edges from F. We now describe the two steps in detail. The first step 
initializes F to be empty. At any point, a set S is called violated if IC~F(S) I < h(S); that 
is, if h(S) = 1 but 6F(S) = 9. A set S is active if it is a minimal violated set (minimal 
with respect to inclusion). The first step maintains the family of  active sets ~. Note 
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that in terms of our algorithm for proper functions, a set S is violated in the call to 

Uncrossable in phase p i f  I(~Fp_IUF(S)I = p - -  1 and f ( S )  >~ p. 

The violated sets have the following property, which was proven in [20]. 

Lemrna 2,1 (Williamson et al. [20]). I f  A and B are violated sets at any point in 

Uncrossable, then either A N B and A U B are violated or A - B and B - A are violated. 

Proof. Since A and B are violated, we know that h(A) = h(B) = 1. By the properties 
ofuncrossable functions, either h(A U B) = h(A n B) -= 1 or h(A - B) = h(B - A) = 1. 

Suppose the former is true. By the submodulari ty of  6, we know that 

IC~F(A)I Jr 16F(B)I /> [6F(A NB)[ + 16F(A UB)I. Since Ic]y(A)l = IC]F(B)I = 0, it must be 
the case that ](SF(A N B)I = 16F(A U B)I ---- 0, and A N B and A U B are violated. 

I f  the latter case is true, then a similar argument follows since it is also the case 

that b6r(m)k + 16r(B)l >~ 16F(A B)L + q6F(B-  A)I. [] 

An immediate corollary of  this lemma is that all active sets are disjoint. Another  
corollary is the following. We say a set A crosses B irA N B ~ ~, but A ~ B and B ~ A. 

Corollary 2.2. No violated set crosses any active set. 

In each iteration, an edge, e E Eh is selected from the coboundary of  some cur- 
rently active set C and e is added to F. The edge e can be in the coboundary of either 
1 or 2 active sets; e is a 1-edge in the first case and a 2-edge in the second case. The 
edge selection step chooses e, based on values of  certain dual variables. The edge ad- 
dition step adds e to F. This necessitates updating the family of active sets cg, since 
the active set(s) having e in their coboundary are no longer violated. Moreover  a new 
active set may be created. Such a new active set must contain both ends of  e. The first 
step terminates when no active sets remain. 

Another consequence of Lemma 2.1 is the following. A laminar family of  sets 5 ° is 
one such that if A, B C 5 ~ and A N B ¢ {3, then either A C_ B or B c A; that is, if A, 
B C J ,  then A and B do not cross. 

Corollary 2.3. Let  Uc~ denote the set o f  all active sets Jormed over all iterations. Then 

UCg is a laminar family.  

The idea behind the edge selection step is to implicitly maintain a feasible solution 
y to the dual of  the linear programming relaxation of (IPh) formed by replacing the 

constraints Xe E {0, 1} with xe ~> 0. This dual is as follows: 

(Dh) max 

s , t .  

ScV 

Z ys~c~ ,  
S: eE6(S) 

ys>~O, S C V .  

e C Eh, 
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Initially y = 0. Each  iteration o f  the algori thm implicitly increases Yc for each active 
set C Ccg by a value e which is as large as possible wi thout  violating the inequality 

ys ~< ce for any edge e E Eh. This makes an inequality tight for some edge e c Eh in 

the coboundary  o f  some active set; this edge e is then chosen to be added to F. This 

feasible dual solution is used to prove the performance guarantee o f  the algorithm. 

Instead of  keeping track of  the dual solution y, our  algori thm only maintains a 

variable d(u) -- ~s:  ,csYs for each u c V. Then increasing yc for each active set 
C C c~ by the largest ~ possible wi thout  violating ~ y s  <~ce for any edge e E Eh 

becomes equivalent to increasing the variables d(u) for u c C E c~ by the largest e 
possible without  violating d(u) + d(v) ~ c,~ for e -- (u, v) C Eh, e in the coboundary  

o f  some active C. Thus if a(u) = 1 if u is in an active set, a(u) = 0 otherwise, then 

e = min c~i - d(i) - d(j) 
a(i) +.(j)  

Before we define the new edge clean-up stage, we define some notat ion and we try 

to provide an intuitive feel for the concepts involved. Suppose for a momen t  that the 

uncrossable function h under  considerat ion is such that  no new active sets are ever 
created: we have some initial collection ~ of  active sets, and in each iteration we se- 

lect some edge in the cobounda ry  o f  at least one, and at most  two, active sets f rom ~. 

Once an edge in the coboundary  o f  an active C is selected, then C is no longer vio- 

lated, and hence no longer active. Thus in this case, there will be at most  Icgl itera- 

tions of  the edge addit ion step. Let F be the set o f  edges added during these 

iterations. 

Still assuming that no new active sets are created, F is a forest in the graph with 

each active set contracted to a single node plus some other  nodes (see Fig. 3). Con-  

sider also how each tree o f  this forest "g rows"  as edges o f F  are added. Each current- 

ly existing tree adds a new node by adding a 1-edge which has one endpoint  in a 

currently active set (the new node) and the other in a set that was active in some 

previous iteration (a node in the growing component) ;  see Fig. 4, in which edge ei 

was added in the ith iteration. Notice that we never add edges whose endpoints 

are both  in previously active sets, and thus we never link two trees. F r o m  this obser- 

vation, it is not  hard  to see that  2-edges must  always start growing a new tree (e.g. el). 
A new tree can also start growing by a 1-edge which has one endpoint  in a currently 

e3 e5 

Fig. 3. A forest on active sets. Each circle represents an active set before any edge was added. 
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© % 
Fig. 4. Growing a tree of the forest. The thin circles represent previously active sets; the thick circle rep- 
resents an active set. 

active set and the other endpoint which is not in any current or previously active set 

(e.g. e3). 
The edges that particularly interest us for the new edge clean-up step are 1-edges e 

such that the edges added after e form a tree spanning precisely the sets active imme- 

diately before the addition of e. We call these edges special edges, and we define them 

more formally below. In Fig. 3, e3 and es are special edges. The other edges are not 

special edges: for example, e4 is not a special edge because es contains an endpoint in 
a set that is not active just before e4 is added. We will show that special edges have a 

nice combinatorial structure such that we can remove some of them and simulta- 

neously ensure a good performance guarantee and maintain feasibility. 

To generalize this concept to the case where new active sets are formed, we partition 

the edges and the active sets. Let U~ be the collection of all active sets formed over all 
iterations of the algorithm, plus the set V. Recall from Corollary 2.3 that UC8 is lam- 

inar. We define a tree 3- based on U(~, with one vertex Vc for each C c UCg. Thus we 

make Vc a parent of vD in the tree ~Y- if C is the smallest set in Ucg that properly contains 

D. Let ~(C)  denote the collection of sets corresponding to the children ofvc in 3-. The 

collection ~(C)  can be thought of as an equivalence class of active sets. For edge e, let 

C(e) denote the smallest set C E UCg that contains both endpoints of e. The set of all 

edges o f F  for which C(e) = C is denoted Fc. The edges in Fc can be thought of as an 

equivalence class of the edges o fF .  The behavior of the edges Fc on the active sets in 

~(C) will now be as in the case above in which no new active sets are formed. 
Let ~4(e) denote the sets in ~(C(e))  that are active just before edge e is selected. 

We make the following observations. 

Observation 2.4. For any vertex Vc in ,Y-, all edges in Fc must be selected before any 
edge in 6(C) is selected. 

Proof. Suppose not, and at some iteration an edge in 6(C) is selected before some 

edge in Fc. Since not all edges in Fc have been selected, some C I c C must be active. 
But since an edge in 6(C) is selected, C will never become an active set, a 
contradiction. [] 

Observation 2.5. For tke first edge e in Fc selected, ~ ( e )  = ~(C(e)) .  
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Proof. I f  some set S E ~ ( C ( e ) )  is no t  active, then some edge e ~ has been selected from 

6(S) prior to edge e. If C(e') ¢ C(e), then it must be the case that e' E 6(C(e)), which 
contradicts the observation above. [] 

We can now formally define the special edges. Say that  an edge set H forms a 

spanning  tree on a family of disjoint vertex sets {Ci}ie_l if each endpoin t  of each edge 

in H lies in one of the C,. and  H forms a spann ing  tree on the graph with each Ci con- 

tracted to a node. Then  e is special if it is a 1-edge, and the edges added to Fc(e) after e 

form a spanning tree on the sets in ~#(e). 

We illustrate the concept in its full generality in Fig. 5. Frames  1 9 correspond to 

the edge addi t ion stage, frames 13 16 to the clean-up step, while the final solut ion is 
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depicted in frame 11. In frames 1 9, the edges correspond to the edges of F while the 
rounded boxes represent the active sets. In the figure, only edges e4 and e8 are 2-edges, 
the others being 1-edges. The special edges in the figure are el, es, e6 and e7. The edge 
e2 is not special because e4 is a 2-edge (and hence forms a new tree on the sets of 
• ~¢(e2)). The edge e3 is not special because e5 has an endpoint not in one of the sets 
of  ~ (e3 ) .  

The edge clean-up step is given in the algorithm in Fig. 2. It scans the edges o f F  in 
the reverse order of their selection in the edge addition stage. Let A (e) denote the un- 
ion of the sets in ~4(e); that is, A(e) = [,-Jce~(el C. The edge clean-up step removes edge 
e from F i f e  is special, no other edge of Fe(i~has already been removed, and all remain- 
ing edges o f F  in 6(C(e)) are also in 6(A (e)). It does not remove e if C(e) = V. To keep 
track of whether an edge of Fc(e) has already been removed, the algorithm marks C(e) 
if edge e is removed. We illustrate the clean-up step in frames 13 16 of Fig. 5. Recall 
that the special edges are el, es, e6 and e7. Frames 13 16 correspond to the situation 
just before the possible removal of edge e7, e6, e5 and el, respectively. In the frame cor- 
responding to ei, the vertices in A (ei) are represented in white. Edge e7 is removed since 
es C c$(A(e7)). Edge e 6 is not removed since es ~ c$(A(e6)). Although e 7 ¢ (~(A(c5)), 
edge e5 is removed since e7 was previously removed. Edge el is not removed since 
e5 c C(el) has already been removed. The resulting forest is represented in frame 11. 

3. Correctness 

This section proves the set F'  returned by Uncrossable is feasible for (IPh). 

Theorem 3.1. The edge set U remaining after the edge clean-up step is a feasible 
solution for (IPh). 

Proof. The edge addition stage terminates with no active sets, and thus no violated 
sets. So we need only prove that the clean-up step maintains feasibility. Assume it 
does not. Suppose F ~ is feasible for (IPh) but U - e is not, and the clean-up step 
removes e from U.  The situation just before the removal of e is illustrated in Fig. 6. 
Let C = C(e). By the definition of the clean-up step, C ¢ V. Let S be a set violated by 
F'  - e. Let Ie be the iteration in which edge e is added. The set S was violated in 
iteration Ie because of the ordering of the clean-up step. 

Notice that all sets in ~¢(e) must also be violated in iteration Ie, by the definition 
of s~C(e). By Corollary 2.2, S does not cross any set in ~4(e). In fact we can show that 
either A (e) C S or A (e) C~ S = (3: because no edge of  Fc has been removed so far in the 
clean-up process, the edges of Fc added after e form a spanning tree on the family 
d ( e ) .  Thus if S crosses A(e) but not any set in s~C(e), it would intersect an edge of 
Fc added after e, contradicting the fact that S is violated. 

We now assume that A(e) C_ S: if A(e) n S : 0, then by the symmetry of the un- 
crossable function h, V -  S is also violated and we replace S with V -  S. Since 
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C 

Fig. 6. Notation used in the proof of Theorem 3.1. 

C ¢ V, the set C, as well as S, is violated in iteration I~. By Lemma 2.1, either 

C - S and S - C are violated or C n S and C U S are violated in iteration It,. How- 
ever C - S cannot contain an active set, so it is not violated. Thus C U S is violated 
in iteration l~. Since it was not violated before e was removed, F '  contains an edge 

with exactly one endpoint in V - (C U S). The edge ~ is not in the coboundary of 
S since 6F'(S) = {e} and e ¢ ~ (since e has both endpoints in C). Thus the other 
endpoint of  ~ is in C - S. On the one hand this implies g ~ c~(C(e)); on the other 
it implies ~ ~ 6(A(e)). But this contradicts the removal of  e in the clean-up 
step. D. 

4. Proof  of  the performance guarantee 

Williamson et al. [20] show that the proof  of  the performance guarantee (Theorem 

1.1) reduces to the proof  of  a particular inequality. We first explain how the inequal- 
ity implies a performance guarantee (complete details are in [20]), then we show that 

our new clean-up step also implies the same inequality. 
Let F '  denote the edges returned by a call to Uncrossable. The desired inequality 

is that at the start of  any iteration of Uncrossable, for ~ the family of  (currently) ac- 

tive sets, 

~_~ laF,(C)I <~ 2lcgl - 2. (1) 
Cc(¢ 

Williamson et al. prove that the inequality implies that 

ZyslaF,(S)I ~ 2 Z y s  
S S 

by induction over all the iterations of  Uncrossable. They observe that by construc- 

tion of the dual solution, for any e c F ' ,  ce = ~ s :  eta(s) Ys, so that 

eEF' ecF r S: eES(S) S S 
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Consider the dual of  the linear programming relaxation of (IP): 

(D) m a x  Zs/ /y. 

2 5  

SC V ecE 

s.t. ~ yS <~ Ce + Ze, e C E, 
S: eE6(S) 

ys ~ O, S C V, 

z e r O ,  e C E .  

Given the dual variables y constructed by Uncrossable in phase p, define 

ze - ~s: ec~(s)Ys for all e C Fp 1, and ze = 0 otherwise. This gives a feasible solution 
to (D). Notice that by this definition, 

ecE e6Fp i S:eC~(S) S 

Since ys > 0 only when h(S) = 1, and h(S) - 1 iff f (S )  ~>p and 16Fp_~(S)] - - p -  1, 
then 

S e S S S 

where Z{p is the cost of  an optimal solution to (IP). Thus the cost of  the edges in F '  is 

no more than twice Z~p. Over all f~,~ phases, then, the cost of the generated solution 
is no more than 2Jm,×Z~p. The exact bound given in Theorem 1.1 is obtained by a 
slightly more careful analysis. 

We now turn to the proof  of  inequality (1). Our proof  strategy is to show that 
the special edges are exactly those edges whose removal can ensure the inequality. 
Suppose for a moment,  as we did earlier, that no new active sets are created in 
subsequent iterations. Let e be the edge chosen in the current iteration, and suppose 
that e is a special edge. Recall that we informally defined a 1-edge e as special if the 

edges added to F after e form a tree on the sets active just before e is added. I f  e is 
added in the current iteration and is special, then ~cc~I6F(C)i = 21cgl- 1, but 
removing e causes inequality (1) to be satisfied (see Fig. 7). This is the central intu- 
ition of the proof; we employ it recursively in order to handle the more general case. 

Theorem 4.1. Given the set of  edges F' output by Uncrossable, inequality (1) holds at 
the start of  any iteration. 

Proof. Recall the definition of the tree J from Section 2: we create a node of the tree 
for V and for each set active at some point during the algorithm. A node Vc 
corresponding to a set C is a child of  vD if D is the smallest set of  the collection 
properly containing C. The sets corresponding to the children of  vc are denoted 
~(C) .  We now define the subtree ~--~ of the tree J to contain all the nodes 
corresponding to sets that will be active in or after the current iteration. Thus the 
leaves of  the tree correspond exactly to the sets in ~ in the current iteration. Define 
~(C) to be the sets corresponding to the children of  an internal node vc of 3--~; that 
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Fig. 7. A bad case for the performance guarantee. Circles represent sets active just before edge e is added. 
The edge e is special. 

is, ? (C)  contains the sets of  ~ (C)  that are active in or after the current iteration. Let 
Y be the set of  edges selected in or after the current iteration. Let Y' = Y N F' .  

We will prove inequality (1) by showing for each internal node Vc of the tree Y '  

that 

( s ~ c )  ' 6 v ( S ) ' )  - '6Y ' (C) '  <<" 2'°~(C)'  - 2 (2) 

In effect, we prove a version of the inequality for each "equivalence class" C, subtr- 
acting off the contribution to the total degree made by edges with only one endpoint 
in C (see Fig. 8). Given that 16y, (V)] - O, by summing this inequality over all internal 

nodes Vc of the Y ' ,  we will obtain 

16r,(C)l ,< 2F~ I - 2. (3) 

To see this, observe that on the left-hand side, the negative term 16r,(C)l for an in- 
ternal node Vc is cancelled by the positive term in the inequality of  the parent of  Vc, 

leaving only the positive terms corresponding to the leaves. Similarly, on the right- 
hand side, the contribution of - 2  for each internal node Vc is cancelled by a contri- 
bution of 2 by the parent of  Vc, leaving a positive contribution of 2 for each leaf and 

=-(, 

.~c) 

Fig. 8. An illustration of inequality (2). Circles represent sets in C(C). Numbers are the coefficient of the 
edge in the left-hand side of inequality (2). 
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a contribution o f - 2  by the node vv. Inequality (3) implies (1) since @(C)  = 8F,(C) 
for any active set C E ~; that is, no edge o f F '  in the coboundary of  an active C could 
have been added before the current iteration. 

Now we must prove inequality (2) on each internal node Vc of the tree. Let 

k = Io~(c)l. Let I : Fc N Y, let 45 : ~sce(c) 18/(S)l, and let J be the subset of  edges 
in Y' with one endpoint in V - C and one endpoint in C - Use.e(c) S. Then the in- 
equality on the internal node Vc is implied by 

(b - IJI ~< 2k - 2. (4) 

The idea behind proving this inequality is that we will always be able to show that 
~b ~< 2k - 1, and we will be able to show that • ~< 2k - 2 when ! contains a 2-edge 
or has more than one "connected component"  on the sets g(C).  Thus the bad case 
is exactly when there is a special edge e, no other edges in 1 have been removed, and 
J = (3, which is precisely when the clean-up step will remove edge e. 

In any iteration in which an edge of  I is selected, we must make an active set 
S c •(C) inactive. Thus Ill ~< k. Each edge in I contributes at most  2 to ~, so that 
we have ~b ~< 2k. I f  an edge in I is a 2-edge, then it must make two active sets in 
g(C) inactive while contributing at most 2 to ~, proving that qb ~< 2k 2, which implies 
the inequality. Note that if C = V then the final edge in I must be a 2-edge between the 
final two active sets. There must be two final active sets by the symmetry of hp. 

So assume I consists of  1-edges (and thus C ¢ V). Let e be the first edge of I that 
was selected; i.e., other edges in I were selected in iterations after e was selected. 
Notice that e can only contribute 1 to ~, since it is a 1-edge. Thus 4~ ~< 2k - 1. Since 
e is the first edge of /se lec ted ,  it must be the case that o~/(e) : g(C(e)) by a straight- 
forward modification of Observation 2.5. I f e  is not special, then I contains an edge e' 
with an endpoint not in any S c g(C).  The edge e' contributes 1 to q~, giving 
q ~ < 2 k -  2. 

Now suppose e is special. I f  some edge o f / i s  deleted in the final edge set F ' ,  then 
~s~e(~e) 16F,.nr'(S)[ <~2k-2,  since the edge must have contributed at least 1 to 
cb = ~sce(~)16/(s)l; note that this implies the desired inequality (2). The remaining 
possibility is that e is special, was not deleted, and C ¢ V. By the properties of  the 
clean-up step it must be the case that J ¢ (3; hence inequality (4) must hold. [] 

5. Implementation 

In this section, we show how to implement efficiently the various steps of  the main 
algorithm for proper functions. For  a general (IP) corresponding to a proper func- 

tion f ,  we obtain a running time of O(JmaxnZm ' + fmaxn2p), where m' = min(f~axn, m) 
and p is the time taken by an oracle that computes the proper function f .  Usually 
p = O(n) so in practical cases, where f~,x = O(1), the running time is O(n3). For  

SNDP we improve the time to O(fmaxnm'+fnaxnx/mloglogn)=O(fZmax n2 
+fmaxnx/m log log n). 
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Section 5.1 shows how to check if a solution is feasible. The remaining sections 
discuss the problems of implementation: how to initialize and update the active sets 
(edge addition step); how to find the next edge to be dded (edge selection step); and 
how to perform the clean-up step. Notice that in every phase p of  the algorithm, 
Ifl ~< n - 1, whence ]Fpl ~< m'. 

5.1. Feasibility 

In this section, we show how to check whether a set of edges is a feasible solution 
to (IP) for a given proper function f .  The section introduces some ideas which we use 
in the following sections on finding and updating the active sets. 

We begin by considering the separation problem associated with the constraints 
x(3(S)) >>, f (S) ,  where f is proper: given an arbitrary rational vector x, find the most 
violated inequality x(6(S)) >~ f (S )  or decide that no such inequality is violated. We 
show that this problem can be solved using the G o m o r y - H u  cut tree [9]. Given the 

graph G = (V,E) with edge capacities xe, the G o m o r y - H u  procedure returns a tree 
H on the vertices V with values We on its edges such that the value of the minimum 
cut between any two vertices s and t is given by the smallest value w on the unique 
path in H between s and t. Let Se and V S,, be the partition of the vertex set induced 
when e is removed. The tree H also has the property that we = x(6(&,)). 

Given a subset S of  vertices, let 7(S) denote the edges of  H (i.e. of  the cut tree) with 
exactly one endpoint in S (i.e. in the coboundary 6(S)). 

Lemma 5.1. Let S C V. Then 

x(6(S)) >~ maxw,,. 
ec~(s) 

Proof. We show that for any e = (i,j) • 7(S) we have x(6(S)) >~ w~, = Ix(6(&,))[. This 
is immediate since, by definition of the cut tree, Se is a minimum cut (or simply 
mincu t )  separating i and j and therefore has value no greater than the value of any 
other cut separating i and j. But 6(S) is precisely such a cut. []  

Lemma 5.2. Let f be a proper function. Then, for any S c V, we have 

f ( s )  ~< maxf(se) .  
eCy(S) 

Proof. Let ( ~ , . . . ,  Vk) be the vertex sets of  the components of  the cut tree after 
removing the vertices in S. By definition, since V - S - V1 U .-.  U V~, we have 

f (S )  f ( V -  S) <~ max(f (Vl) , f (V2) , . . . , f (Vk)) .  (5) 

Consider any Vi. To simplify notation, assume that S~ is disjoint from V~ for e C 7(Vi) 
(otherwise, replace & by V X,). Notice that 

V - V, = Ue~,,.(~)Se, 
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where the sets appearing in the union are disjoint. Hence, 

f ( V  - Vii) = f(Vi) ~< maxf(Se) .  
eC,.(V,) 

But, by definition of Vi, we must have 7(Vi) _c 7(S). Therefore, 

f(V,) ~< max f(Se). 
eCy(S)" 

Combining (5) and (6), we obtain the desired result. [] 

29 

(6) 

From these two lemmas, we can easily derive the following. 

Theorem 5.3. maxs{f(S) - x(a(S))} maxecH{f(Se) - x(a(Se))}. 

Proof. For  any given set S, Lemmas 5.1 and 5.2 imply that 

f (S)  x(6(S)) <~ maxf(Se)  maxx(a(Se)) ~< max(f(Se) -x(cS(&))), 
eCT(S) eey(S) eC?,(S) 

so that 

max{f(S) - x(a(S))} ~ m a x { f ( < )  - x(a(&))}. 

Obviously the inequality must in fact be an equality. [] 

This theorem allows us to solve the problem of finding a set S such that 
f ( S ) -  x(a(S)) = m a x r { f ( T ) -  x(a(T))} (and hence allows us to solve the separa- 
tion problem) by solving n -  1 maximum flow problems and restricting attention 
to the n - 1 cuts defined by the cut tree. In addition, this theorem generalizes a result 
of Padberg and Rao [16] for T-cuts (cuts S for which IS N T I is odd) or odd cuts (for 
which ISI is odd). Their result states that the minimum T-cut or odd cut is among the 
cuts of the Gomory Hu tree. To derive this result from Theorem 5.3, we set 

M if ISN T[ odd, 

f (S)  = 0 otherwise, 

where M > x(E), and note that f is a proper function (assuming that Irl is even). 
Using similar logic, given a {0, 1} proper function, our theorem shows that the min- 
imum cut over all S such that f (S)  = 1 is among the cuts of the Gomory  Hu tree 
(using the function Mr). Ravi and Klein [18] independently showed that Padberg 
and Rao's result could be generalized to proper functions f with range {0, 1 }. 

We now describe how to check whether a set of edges generated by the main al- 
gorithm is a feasible solution for (IP) with a given proper function. This subroutine 
was needed in the edge clean-up step of the algorithm of Williamson et al. [20]; they 
showed how to implement it using O(n 2) max-flow computations. We show how the 
test can be implemented in O(fm~xnm' + np) time. We do not need this subroutine for 
our version of Uncrossable; however, some of the concepts here will be useful later. 
Notice first that the main algorithm selects at most m' edges. Moreover, in the 
construction of the Gomory -Hu  cut tree, we need not solve the maximum flow 
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problems to optimality. We can stop as soon as the flow has value f ~ x  maxsf(S) ,  
as is justified below. Such a flow can be obtained in O(f~×m')  time by locating up to 
fma~ augmenting paths. For  small values Offmax, we can construct the G o m o r y - H u  
cut tree without using a maximum flow subroutine. For example, the case f~ax = 1 
reduces to finding connected components while the case fmax = 2 reduces to comput- 
ing the 2-edge-connected components of  a graph (which can be done in linear time). 

To avoid computing maximum flows to optimality, we modify the procedure for 
constructing the cut tree, since whenever the maximum flow has value greater or 
equal to fmax we cannot use information from a mincut. First recall the classical pro- 
cedure of  Gomory  and Hu [9]. The procedure starts from one supervertex containing 
all vertices of  the graph. At any stage of the construction, there is a partial tree whose 
(super)vertices form a partition of the vertex set. The procedure selects two vertices u 
and v within a supervertex A, shrinks the vertices in each connected component  re- 
sulting from the removal of  A from the cut tree, and computes the maximum flow 
and minimum cut between u and v in the resulting shrunk graph. The supervertex 
A is split into two supervertices linked by an edge, in such a way that the removal 
of  this edge induces the computed mincut. The new edge of the cut tree gets labeled 
with the value of the maximum flow between u and v. The algorithm terminates when 
each supervertex consists of  a single vertex of the graph, and its output is the tree 
with the labels produced. 

Our modified procedure is similar to the classical procedure, but it also maintains 
a forest for each supervertex of the cut tree. The forest for a supervertex is defined on 
the vertices contained in the supervertex. In the modified procedure, we select two 
vertices, say u and v, of  two different components of a forest of the same supervertex, 
say A. We compute the maximum flow (up to the value fm~x) between u and v in the 
shrunk graph, as in the classical procedure. If  the maximum flow value is at least 
fma~, we add the edge (u, v) to the forest of  the supervertex A and label the edge 
" ~> Jmax". Otherwise, we split A (and its forest) as in the classical algorithm; by sub- 
modulari ty and the definition Offmax, one can easily show that each connected com- 
ponent of  the forest defined on A will end up entirely within one of the two new 
supervertices. The modified algorithm terminates when each supervertex is either a 
single vertex or the forest for the supervertex is a tree on its vertices. We replace ev- 
ery supervertex by its associated tree and output the resulting tree as the modified 
G o m o r y - H u  subtree. 

By the same argument as in [9], for any vertices s and t, the value of a maxi- 
mum flow from s to t and a corresponding mincut can be obtained from the mod- 
ified cut tree, provided that this maximum flow value is at most f~ax 1. We 
should also point out that Lemma 5.1 is still valid for this modified cut tree. Thus, 
for the incidence vector of  a graph with at most m' edges, the modified cut tree can 
be constructed in O(fmaxnm') time, since we solve n flow problems by finding up to 
fmax augmenting paths in a graph of m' edges. The separation problem can be 
solved in O(fma~nm' + np) time by constructing the modified cut tree and examining 
each edge. 
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5.2. Active sets 

This section shows how to find and update the active sets for calls to Uncrossable 
generated by our main algorithm. When sets are violated, the G o m o r y - H u  cut tree 
does not immediately give the minimal violated sets. However, we can use the lemma 
below. Let F be the set of edges selected so far by Uncrossable. Let H be the Go- 
m o r ~ H u  cut tree corresponding to the graph with edge set Fp_l. Recall that set S 
is violated in the call to Uncrossable in phase p of the main algorithm if 

136, ~ur(S)] = p - 1 and f ( S )  >~ p. 

Lemma 5.4. Any  violated set at any point in the call to Uncrossable in phase p is an 
(s, t) mincut for  some edge e - (s, t) C H satisfying We = p 1. 

Proof. Let S be any violated set at any point in the call to Uncrossable in phase p; i.e., 

f ( S )  >~p and I6F~_luF(S)I = p - -  1. Since we know 16F,, 1(S)1 ~> min( f (S) ,p  1), it 
must be the case that IC~F,~, (S)l = p -  1. From Lemma 5.2, there must exist an edge 
e = (s, t) in y(S) with f (Se)  >1 p. Since 16Fp_l (Se)l >~ m i n ( f ( S e ) , p -  1), we must have 
that We= 16F~ l(Se)l ~ > P - 1 .  Since 16Fp 1(S)1 = p - l ,  Lemma 5.1 implies that 
We = p -- 1. Hence, S defines a cut of minimum value between s and t. [] 

When we initially call Uncrossable in phase p, we form the G o m o r y - H u  cut tree 
corresponding to the graph with the edge set Fp_l. Because of the lemma above, in 
the call to Uncrossable in phase p we shall keep track of all (s, t) mincuts for each 
edge e = (s, t) c H with We = p -- 1. We use the compact representation of all (s, t) 
mincuts due to Picard and Queyranne [17]. Given a maximum flow from s to t for 
an edge e = (s, t) E H, form a directed acyclic graph G~ from the residual graph of 
the flow by contracting each strongly connected component, as well as the set of  
all vertices reachable from s, and the set of all vertices that can reach t. For  notation- 
al simplicity, let S and T denote the supervertices of Ge containing s and t, respective- 
ly. Picard and Queyranne observe that there is a 1-1 correspondence between the 
(s, t) mincuts and the (T, S) dicuts of Ge, where a (T, S) dicut is a cut with all arcs 
directed from the side of the cut containing T to the side containing S. Given a max- 
imum flow, digraph Ge can be computed in O(m') time since the residual graph con- 
tains O(m') edges. As Uncrossable adds edges to F, we will update the graphs Ge so 
that the (T, S) dicuts reflect the minimum (s, t) cuts of value p - 1 in Fp 1 U F; we will 
explain how to do this later in the section. 

Consider a topological ordering of Ge (i.e., a numbering of  the supervertices so 
that any edge of Ge goes from a lower-numbered supervertex to a higher-numbered 
supervertex). Because we contracted into the supervertex T all vertices in the residual 
graph that can reach t, the first supervertex in the ordering can be assumed to be T. 
Similarly, since all vertices reachable from s have been contracted, we can assume 
that S is the last supervertex in the ordering. By definition, all the supervertices that. 
are predecessors of some supervertex A in the ordering must induce a (T, S) dicut and 
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hence an (s, t) mincut but, clearly, not all (s, t) mincuts arise in this fashion. Never- 
theless, we will show that we can limit our attention to particular (s, t) mincuts aris- 
ing in this way. 

Lemma 5.5. Let  e = (s, t) be an edge in the Gomory Hu tree H such that we -- p - 1. 

A t  any point o f  Uncrossable in phase p, there exists a violated set separating t f rom s i f  

and only i f  there exists a supervertex A o f  Ge with f ( A )  >~ p. 

Proof. Only i f  part. Any violated set S must be the union of  supervertices Ai. By the 
maximality property of  proper functions, at least one of the supervertices must 
satisfy f ( A )  >>, p. 

I f  part. Choose the first supervertex A in the ordering such that f ( A )  >~ p. Consid- 
er the union C of all the predecessors of  A in Ge. This set C induces an (s, t) mincut. 
Moreover, C - A consists of  the union of supervertices A'is with f (A i )  < p, so that by 

maximality, f ( C  - A) < p. By symmetry, f ( V  - A) - f ( A )  >~ p. By maximality, 
f ( V - A ) < ~ m a x ( f ( C  A ) , f ( V - C ) ) ,  which implies that f ( V  C)>~p. Thus 
f ( C )  >>, p; C is a violated set at the beginning of the call to Uncrossable since 
f ( C )  >~p and C is an (s,t) mincut, implying 166, ,uF(C)] = p  -- 1. [] 

Theorem 5.6. Let  e be an edge in the Gornory-Hu tree H such that We = p -- 1. Let A be 

the f irst  vertex in the topological ordering o,1" Ge such that f ( A )  >~ p, and let C be A 
together with its predecessors in Ge. IJ" there exists an active set separating t ji"orn s at 

any point o f  Uncrossable in phase p, it must  be C. 

Proof. Suppose there is an active set C t containing t but not s. By Corollary 2.2, an 
active set cannot cross a violated set and, hence, U c_ C. Since U is a violated set, it 
must be the union of supervertices of  Ge. Moreover, it must contain A since 

f ( U )  >~ p and A is the only supervertex within C which has a value at least p. 
Furthermore,  since C ~ corresponds to an (S,T)-dicut of  Ge, it contains all 
predecessors of A in Ge. Thus C ~ = C. [] 

This lemma motivates the following procedure in order to find a potentially active 
set C containing t but not s. Scan the supervertices A of Ge in the topological order, 
calling the oracle for each supervertex A and stopping as soon as f ( A )  >~ p. Set C to 
be A together with its predecessors in Ge. 

In a similar manner, we can also find a potentially active set containing s but not t. 
These two sets can be constructed in O(m' + np) time per graph Ge. By doing this for 
all edges e E H with We = p -- 1, one thus constructs in O(nm' + n2p) time a family of  
O(n) violated sets guaranteed to contain all active sets; this follows from Lemma 5.4. 
The active sets can be obtained from this family in O(n 2) time by finding the minimal 

sets in this family. This can be done by keeping track, for each vertex, of  the set (if 
unique) of smallest cardinality containing it. 
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In summary, the modified cut tree for Fp_l and the initial active sets of  Uncross- 

able in phase p can be obtained in O(fm~xnm' + n2p) time: O(Jma×nm') time to con- 
struct the modified G o m o r y - H u  tree, O(nm') time to construct all the possible Ge, 
and O(nm' + nZp) to extract the active sets from the Ge. 

When the addition step adds edge e' to F the active sets must be updated. How- 
ever, the sets that are active once e' is added are sets that were violated at the begin- 
ning of a call to Uncrossable in phase p. We can therefore use exactly the same 
procedure as above to recompute the active sets. More precisely, we update the 
O(n) G~ by adding the (bidirected) edge e' to them and recomputing their strongly 
connected components in O(m') time per Ge. Then we create a family of  O(n) poten- 
tially active sets and extract from this family the minimal sets. In this case though, we 
can just make one oracle call (instead of O(n)) per Ge since, by adding an edge to a 
digraph, only one new strongly connected component  can be created. Recomputing 
the active sets for each edge added therefore takes O(nm' + np) time. Using our as- 
sumption that fmax ~< n, the time to find the active sets in all iterations of  a phase is 
thus O(nZm' + nZp) .  Over all phases, this becomes O(JmaxnZml + f~xn2p). 

5.3. Active sets for SNDP 

This section refines the implementation of the edge addition step given in Sec- 
tion 5.2 for SNDP. It achieves total time O(nm') for the addition steps of  one phase, 

and thus O(fm~xnm') over all phases. 
For SNDP, we do not need to construct the G o m o r ~ H u  cut tree to test feasibil- 

ity. We use a maximum spanning tree T of  the graph having cost rij on edge (i,j). 
Any set satisfying the connectivity requirements of  the edges of  T satisfies all given 
requirements rij [9]. It is easy to see that the violated sets of  phase p must correspond 
to mincuts of  value p 1 associated with an edge e = (s,t) of T having 

f(S~) = r~t >~ p. However, in this case, we have a 1-1 mapping: any such mincut must 
correspond to a violated set. As a result, any active set must be a minimal (s, t) min- 
cut or a minimal (t, s) mincut for some (s, t) E T. 

We maintain these minimal mincuts over the entire algorithm. To do this we main- 
tain, for each edge (s, t) in T, an s t flow with value no larger than rst. At the begin- 
ning of phase p, we start from the flows that were computed in phase p - 1 and find 
augmenting paths for each edge e in T up to value p, if possible. Thus in phase p we 
can detect any edge (s, t) of  T for which the cut value is p - 1 while rst ~> p. Over the 
course of  the algorithm we must find at most  fm~x augmenting paths for the flow for 
each edge of T, leading to a total time bound of  O(fm~xm'n) for maintaining these flows. 

Suppose for an edge e - (s, t) in T, the cut value is p - 1 while r~t ~> p. Initially, the 
minimal (s, t) mincut consists of  all vertices reachable from s in the residual graph of 
a maximum flow from s to t. The minimal (t, s) mincut is similar. As before, we can 
extract the active sets from these mincuts in O(n 2) time. Whenever an iteration adds 
an edge e = (u, v) to the edge set F, each minimal mincut is updated. For  example for 
the minimal (s, t) mincut, if u is reachable f rom s then so is v, as is any vertex 
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reachable from v by residual edges. If  t becomes reachable then we disregard edge 
(s, t) in the tree T for the rest of the phase. The total time in phase p to update 
the minimal (s, t) mincut amounts to a search of the residual graph, and thus uses 
time O(m'). Thus the total time in a phase for updating all edges (s, t) of T is 
O(nm'). To find the new active set (if any) resulting from the addition of edge 
(u, v), we search through the O(n) candidate sets for the smallest violated set contain- 
ing u. The smallest such set will be a new active set if it contains no other currently 
active sets. The search for the set takes O(n) time. Therefore, the total time for the 
edge addition step in a phase p is O(nm') for SNDP, leading to a total time bound of 
O(Jmaxnm') over the course of the whole algorithm. 

5.4. Edge selection step 

This section shows how to implement the edge selection step of Uncrossable in 
time O(n(n + ~/m log log n)). It uses a lemma allowing irrelevant edges to be ig- 
nored, plus the data structure idea of packets due to Gabow et al. [4]. 

Say that "t ime" is zero at the beginning of Uncrossable, and time increases by the 
amount c determined in each iteration (see Fig. 2). As in [8] our implementation 
keeps track of the addition time at which an edge would be selected ~'the set of active 
sets cop were not to change. The addition time of an edge (u, v) in the coboundary of b 
active sets at time t is formally defined as t(u, v) t +  [c,~,- d(u) - d ( v ) l / b .  Here 
d(u) and d(v) denote their values at time t, b = 0, 1 or 2; the addition time is oc if 
b = 0. The addition time does not change unless the active set containing u or v chan- 
ges. It is easy to see that at time t the edge selection step adds an edge with the small- 
est addition time (at time t) to F. 

We maintain a partition of V into a-sets. At any time in phase p the a-sets are de- 
fined as follows: Contract each currently active or previously active set to superver- 
tices. We now have as vertices these supervertices plus the vertices which have never 
been in any active set. An a-set corresponds to a tree in the forest induced by edges F 
on these vertices. Note, then, that each vertex which has never been in any active set 
and is not incident to an edge of F is a singleton a-set (it corresponds to an empty 
tree). Note also that at any time any currently active set is an a-set. An a-set that 
is not a singleton or currently active set is a maximal collection of maximal previous- 
ly active sets joined by edges o fF ,  plus possibly a singleton set. We give an example 
of the a-sets from frame 4 of  Fig. 5 in Fig. 9. 

Notice that among edges joining the same two a-sets, we can discard all but the 
one with smallest addition time; the other edges will always have addition time no 
smaller than this smallest edge. Let I C E denote the subgraph of G consisting of 
these edges. Assume that in choosing the next edge to add, the selection step breaks 
ties for smallest addition time according to some fixed numbering of the edges. Thus 
any set of edges is totally ordered by addition time; in particular its kth smallest edge 
is unique. Throughout this section, we compare edges using addition time, not cost, 
e.g., "kth smallest edge" refers to addition time. 
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Fig. 9. Example of a-sets from frame 4 of  Fig. 5 (a-sets are contained in dashed lines; solid lines show pre- 
viously active sets). 

Let A(u) denote the a-set containing ut and let a denote the current number of a- 
sets. Our algorithm is based on the following principle. 

Lemma 5.7. Fix an iteration in the while loop of  Uncrossable. Consider an edge 
(u, v) c 6i(A(u)) that is not among the 2k smallest edges of  6i(A(u)). Then (u, v) is not 
added to F until A (u) has changed or A (v) has changed or a has decreased by k. 

Proof. Suppose (u, v) is added to F in an iteration when neither A(u) nor A(v) has 
changed. Consider an edge (u I, v'), one of the 2k smallest edges of 6](A(u)). When 
(u, v) is added to F, (u', v') has not been added (since A(u) has not changed). Thus the 
addition time of (u', v') has increased, implying that A(v') has changed. Thus the 2k 
distinct sets A(v') have changed. These 2k changes must be the result of merging 
various a-sets which include the 2k sets A(vl). Thus a must have decreased by at least 

k. D. 

The lemma above will allow us to ignore particular sets of edges during some 
portions of the while loop of Uncrossable. In order to take advantage of the lemma, 
we partition the main loop into subphases. Let r be a parameter to be chosen later. 
Each time a has decreased by r or more since the start of the current subphase, a new 
subphase will begin. We will designate certain edges to be awake in such a way that 
Lemma 5.7 will imply that an edge (u, v) that is not awake in this subphase need not 
be considered unless A(u) or A(v) changes. At the beginning of a subphase, we 
choose the 2r smallest edges in the coboundary of every a-set. Any edge chosen by 
the a-sets of both its endpoints will be initially designated an awake edge. 

In order to keep track of the awake edges, we use a number of priority queues. A 
priority queue entry is an edge that is awake and joins two distinct a-sets. Its priority 
is equal to its current addition time. The awake edges incident to each a-set are par- 
titioned into packets of no more than log n edges each. One distinguished packet is 
called the growing packet; the other packets are ordinary packets. Each packet is a 
priority queue. Every awake edge joining two distinct a-sets is in precisely two 
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packets, corresponding to its two ends. In addition to the packets, we also maintain a 
priority queue D. An edge is a double minimum if it is awake and is the minimum of 
both its packets, and these packets are ordinary. The queue D contains all such dou- 
ble minima. Our description implies that the edge with the smallest addition time is 
the minimum edge of D or the minimum edge of a growing packet. 

Given these data structures, the edge addition step will work as follows. To start a 
subphase, each a-set chooses the 2r smallest edges in its coboundary. An edge that is 
chosen by both its ends is awake. The awake edges are organized into packets. Any 
edge that is a double minimum is placed in D. To select the next edge e for F, choose 
the smallest edge among the minima of D and all growing packets. Let A be the new 
a-set created by adding e to F. Delete all edges incident to vertices of A from their 
packets and from D. If this causes a new packet minimum to be a double minimum, 
add it to D. Note that now all packets corresponding to A are empty, so initialize a 
new growing packet. We now need to choose the awake edges incident to A. To do 
this, examine all edges incident to A, awake or not. Discard any parallel edges be- 
tween A and other a-sets, always keeping the smallest. The 2r smallest undiscarded 
edges incident to A will be designated awake edges. Add each such edge (u, v) to 
the two growing packets of A(u) and A(v) (one of these is A). Whenever a growing 
packet gets log n edges, make it an ordinary packet and start a new growing packet; 
also possibly add an entry to D for a new double minimum. The algorithm is correct 
because it maintains the defining properties of  the packets and D. Lemma 5.7 justifies 
ignoring the edges that are not awake. 

Before we estimate the running time, we observe that in any subphase, for any a- 
set A, at most 3r edges of 6(A) become awake. To see this, notice at most 2r such 
edges are awake when any a-set A is initialized. After initialization, each iteration 
can make at most one more edge of 6(A) awake. Thus at most r more edges are made 
awake before the subphase ends. As a result, any a-set A has at most 3r/log n packets 
at any point in a subphase. 

First we bound the time for deletions and insertions from the priority queues. By 
the observation above, an iteration that decreases the number a of a-sets by j deletes 
at most O(jr) edges from packets and at most O(jr/logn) edges from D. Thus all 
addition steps delete a total of O(nr) edges from packets and O(nr/log n) edges from 
D, for a total time of  O(nr log log n + nr) for all deletions (since packets have at most 
log n edges and D has at most n edges). To bound the time on the insertions, note 
that at most O(nr) edges ever enter packets and at most O(nr/log n) edges ever enter 
D. Since these bounds are no larger than the total number of edge deletions, the total 
time for edge insertions must also be O(nrlog log n). 

Putting everything together, note that there are at most n/r subphases. Using lin- 
ear-time selection, we can construct packets and D in O(m) additional time at the start 
of each subphase. We need O(n) amortized time whenever an edge is selected for dis- 
carding parallel edges, examining the edges incident to A, and updating A(u) values. 
Thus the total time is O(n 2 q- nm/r + nr log log n). Choosing r - ~/m/log log n gives 
total time O(n(n + ~/m log log n)) for the edge selection step. 
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5.5. L#war  time clean-up step 

37 

This section shows how to implement the clean-up step in time O(n). The imple- 

mentation is based on a tree ¢- and auxiliary arborescences Zc which we now define. 

The tree Y is a modification of  the tree ~- used to represent the active sets over 
the course of the algorithm, as defined in Section 2. Recall that .Y- is constructed by 

creating a node Vc for each C E U~g, where U~ is the collection of all active sets over 

all iterations, plus the set V. The node VD is a parent o f v c  in oY- i fD is the smallest set 
in UCg that properly contains C. To form Y,  we create one additional child node for 

each internal node Vc of the tree to represent the set of vertices in C that are not in 
the other children of Vc. 

For each node Vc in Y,  we construct an arborescence zc. Recall that a branching 

is a directed forest in which every node has in-degree at most 1, and an arborescence 

is a connected branching. Using the edges of Fc, we form a branching /~c on the 
nodes corresponding to the children of C in J .  An edge (VA, V~) is created for each 

edge e EFc  when edge e is in the coboundary of the sets A and B. Each 2-edge is di- 

rected arbitrarily, while a 1-edge is directed towards the active set that defines it. The 

edges of Fc form a branching since two edges of F cannot be directed towards the 

same active set. It can be converted into an arborescence rc by adding a node con- 

nected to all the roots of the branching. Both the tree Y and the arborescences rc 

can be easily constructed during the edge addition stage of Uncrossable and the run- 

ning time for their constructions can be charged to this stage. In Fig. 10, we give an 
example of ~c for C -- C(el) from Fig. 5. 

Before we explain the clean-up procedure, we make the following observation. 

Observation 5.8. A 1-edge e in Fc (for C = C(e) ) is special i f  and only i f  all the edges o f  

Fc added to Zc after e f o rm  an arborescence with the head o f  e as its root. 

Proof. This follows since a 1-edge e is special if and only if all the edges of Fc added 

after e form a spanning tree on the active sets corresponding to children of Vc. Such a 

[es 
i 

a o  

e 5 

Fig. 10. Example of arborescence ~c for C C(el ) from Fig. 5. The left-hand side shows edges on under- 
lying vertices, while the right-hand side shows the arborescence. 
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spanning tree will necessarily cause rc to be an arborescence directed away from the 
head of e since whenever a 1-edge is directed into a node corresponding to an active 
set, all edges added after it must be directed away from the node. [] 

We find all special edges in O(n) time as follows. We consider each active set 
C E Ucg in turn. Suppose Fc consists of  el, • • •, et, where ei was added before ej for 
i < j. Let li denote the least common ancestor of the heads of  e~, . . . ,  et in ~c. By 
the reasoning above, a 1-edge ei is special if and only if li is the head of edge e~ in 
rc. The li's can be found in linear time by processing the edges in reverse order, 
by marking the nodes along the path to the ancestor and by stopping at the first pre- 
viously marked node. 

We would like to implement the edge clean-up step by performing a top-down 
traversal of J .  Let F" be the set of  edges remaining after a clean-up step that works 
as follows: we perform a top down traversal of  Y-. At each node Vc of ,Y-, we pro- 
cess the edges of Fc in the reverse order in which they appear in F, detecting and pos- 
sibly removing a special edge e of  Fc under the same condition as before (i.e., no 
other edge of Fc has been removed and all remaining edges of  F in (3(C(e)) are also 
in 6(A(e))). We begin by proving the following lemma. 

Lemma 5.9. F" F'. 

Proof. Observe that the removal of  an edge e of  Fc depends only on the edges in Fc 
and 6F(C), and affects only the removal of edges in Fc and in FD, for nodes D with 
e C 6(D). Such a set D must be a descendant of  node vc in the tree J ,  and any node 

VA such that edges of  6F(C) are in FA must be an ancestor of C. By Observation 2.4, 
all edges of Fc occur in F before any edge in ~3(C) and after any edge in Fz), for VD a 
descendant of  vc. Thus the set of  edges F" formed by removing edges in a top down 
traversal of  J will be the same as that in U .  [] 

When visiting a node Vc in ,Y-, we need to decide which special edge of Fc to re- 
move, if any. Call a child vB of Vc hit if there exists an edge already processed but not 
removed that is simultaneously in the coboundaries o r b  and C. We show below that 
we can use information about hit children of vc to determine which special edge of Fc 
to remove, if any. 

M 

Lemma 5.10. A special edge e of Fc is removed in the top down traversal of J if  and 
only i f  it is the deepest special edge e in Tc whose head is an ancestor in rc of  all the hit 
children of vc. 

Proof. Recall that while considering the edges of  Fc in the reverse of the order added, 
we remove special edge e of Fc if and only if no other special edge has been deleted and 
all remaining edges in 6(C) are also in 6(A(e)), where A(e) is the union of sets in ~ ( e ) .  
By the discussion above, for any special edge e in Fc, the sets in sC~(e) correspond 
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exactly to the descendants of the head of edge e in zc.  Thus all remaining edges in 
6(C) are also in 6 (A (e)) for special edge e if and only if the head of  e is an ancestor in 
zc of all the hit children of vc. Finally, by the discussion above, because any edges 
in Fc added after a special edge e must be edges in zc between descendants of the 
head of e, the depth of the special edges in zc is strictly increasing with respect to the 
order in which the special edges were selected. Hence the deepest special edge e in zc  

whose head is an ancestor in Zc of all the hit children of vc (if any such edge exists) is 
exactly the edge which will be removed. [] 

Our procedure will be as follows. For  the moment, we assume that when we visit a 
node Vc, the hit children of vc have been correctly marked. Under this assumption, 
the lemma above tells us that we can detect the appropriate special edge to remove 
while determining the special edges of  Fc. Once we have decided which special edge 
of Fc to remove (if any) and which edges to keep, for each edge e (u, v) E F c  that 
we keep, we mark the nodes of  the paths in ~- from the leaves u and v up to (but 
excluding) their common ancestor Vc as hit nodes. Notice that this may incorrectly 
mark children of vc as hit nodes, but this no longer matters since we have already 
processed the edges of Fc. In order for this marking procedure to run in linear time, 
we stop marking a path before reaching Vc if we encounter an already hit node. The 
validity of this stopping rule follows from the fact that we perform a top down tra- 
versal of 3-, since if node vD on a path to Vc is marked, so are all ancestors of vD up to 
Vc. The top-down traversal also ensures that when we reach a node vD, all of its hit 
children are correctly marked. Therefore, the overall running time of the clean-up 
step is O(n) time. 

6. Concluding remarks 

Since the appearance of a preliminary version of this paper [5], Goemans et al. [6] 
have shown how the performance guarantee of the algorithm can be improved from 

1 Their algorithm uses an algorithm 2Jmax to Z~4~(f~ax), where 24"(k) = 1 + ½ + . . .  + ~. 
for uncrossable functions as a black box, so our version of Uncrossable can still be 
used. Furthermore, they show that their algorithm can be implemented by making 
small modifications to our implementations, yielding a 2~(fmax)-approximation al- 
gorithm with the same running times as our algorithm above. This entire line of re- 
search has been summarized in the thesis of Williamson [19]. 
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