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Lecture 9
Lecturer: Michel X. Goemans Scribe: Shashi Mittal*

(*This scribe borrows material from scribe notes by Nicole Immorlica in the previous offering of
this course.)

1 Circuits

Definition 1 Let M = (S, I) be a matroid. Then the circuits of M, denoted by C(M), is the set
of all minimally dependent sets of the matroid.

Examples:

1. For a graphic matroid, the circuits are all the simple cycles of the graph.

2. Consider a uniform matroid, Uk
n (k ≤ n), then the circuits are all subsets of S with size exactly

k + 1.

Proposition 1 The set of circuits C(M) of a matroidM = (S, I) satisfies the following properties:

1. X,Y ∈ C(M), X ⊆ Y ⇒ X = Y .

2. X,Y ∈ C(M), e ∈ X ∩ Y and X 6= Y ⇒ there exists C ∈ C(M) such that C ⊆ X ∪ Y \ {e}.

(Note that for circuits we implicitly assume that ∅ /∈ C(M), just as we assume that for matroids
∅ ∈ I.)
Proof: 1. follows from the definition that a circuit is a minimally dependent set, and therefore a
circuit cannot contain another circuit.

2. Let X,Y ∈ C(M) where X 6= Y , and e ∈ X ∩ Y . From 1, it follows that X \ Y is non-empty;
let f ∈ X \ Y . Assume on the contrary that (X ∪ Y ) − e is independent. Since X is a circuit,
therefore X − f ∈ I. Extend X − f to a maximal independent set in X ∪ Y , call it Z. Then
Z ⊆ X∪Y , and Z does not contain Y (otherwise Y would be an independent set as well). Therefore
|Z| < |(X ∪ Y )− e|, which is a contradiction to the maximality of Z. �

One can give an alternative definition of matroids in terms of circuits as follows; this is given
without proof.

Proposition 2 Let C(M) be the set of circuits corresponding to a ground set S. Then the set (S, I)
where I = {I ⊆ S : ∀C ∈ C(M) C ( I} is a matroid, and C is the set of circuits of this matroid.

The bases of a matroid satisfy the following property.

Proposition 3 Let B be a basis of a matroid M = (S, I), and e /∈ B. Then B + e contains a
unique circuit. Moreover, one can remove any element from this circuit to get another basis of M.

Proof: Suppose B + e contains to distinct circuits, C1 and C2. Clearly, e ∈ C1 ∩C2. Therefore by
Proposition 1, (C1 ∪C2)− e contains a circuit C, and hence B contains a circuit, which contradicts
the definition of a basis. �
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2 Operations on a Matroid

Given a matroid M = (S, I), we define two operations on a matroid: deletion and contraction.

Definition 2 Let Z ⊆ S, then the matroid obtained by deleting Z, denoted by M \ Z, is M′ =
(S \ Z, I ′), where

I ′ = {I ⊆ S \ Z : I ∈ I}.

Definition 3 Let Z ⊆ S, then the matroid obtained by contracting Z, denoted by M/Z, is given
by

M/Z = (M∗ \ Z)∗,

where M∗, as usual, denotes the dual of the matroid M.

From the definitions, it is clear that both M\ Z and M/Z are matroids. To get more intuition
about the contraction operation, we compute the rank function for the matroid M/Z. Recall that
for the dual matroidM∗, the rank function is given by rM∗(U) = |U | − rM(S) + rM(S \U). Using
this, we get

rM/Z(U) = |U | − rM∗\Z(S \ Z) + rM∗\Z((S \ Z) \ U)

= |U | − rM∗(S \ Z) + rM∗(S \ Z)

= |U | − (|S \ Z| − rM(S) + rM(Z)) + (|(S \ Z) \ U | − rM(S) + r(Z ∪ U))

= rM(Z ∪ U)− rM(Z).

This gives us the following interpretation for M/Z. Fix any maximal independent subset B of
Z, clearly |B| = rM(Z). Then U ∈ I(M/Z), if and only if B ∪ U ∈ I(M).

3 Some Results on Representation of a Matroid

We first give the definition of a minor of matroid.

Definition 4 Given a matroid M = (S, I), the matroid given by (M\ Z)/Y , for some Z ⊆ S and
Y ⊆ S \ Z, is called a minor of the matroid M.

Recall that in the previous lecture, we had shown that if M is representable over a field F ,
then its dual is also representable over the same field F . This implies that any minor of M is also
representable over the field F .

The question we pose is: What are the conditions we need on a matroid M, so that it is
representable over a finite field F? We present some results here which give characterization of
matroids representable over finite fields in terms of the minors of the matroids.

The following is a well known result due to Tutte, on the representability of a matroid over
GF (2).

Theorem 4 (Tutte(1958) [6]) M is a binary matroid iff M has no U2
4 minor.

One direction is clear; a binary matroid cannot contain U2
4 as a minor since we argued last time

that U2
4 is not binary. The proof of the converse given here is based on the proof in Schrijver’s

book [4]. We first prove a lemma in the preparation of the proof of Tutte’s theorem.

Lemma 5 LetM and N be distinct matroids defined on the same ground set S. Let B be a common
basis of M and N , such that there is there is no set X with the following two properties:

P1. X is a basis of exactly one of M and N .

9-2



P2. |B∆X| = 2.

Then M or N has a U2
4 minor.

Proof: SupposeM, N are counterexamples to the above statement. Let B be a common basis of
M and N , and let X be a set satisfying property P1 only. Without loss of generality, we assume:

A1. |B∆X| is minimum, and

A2. X is a base of M but not of N .

Further, we have |B∆X| > 2 (so in fact |B∆X| ≥ 4). If we take a smallest (in terms of the size of
the common ground set), the above assumptions imply that

B1. B ∪X = S (otherwise delete S \ (B ∪X) from S.)

B2. B ∩X = ∅ (otherwise contract B ∩X in S.)

B3. X is the only subset of S satisfying property P1. (This is implied by B1 and B2.)

Further, M has a base B′ with |B∆B′| = 2. B′ can be obtained from B as follows: Let x ∈ X,
then B + x has a unique circuit (Proposition 3), and B + x − e is a basis for some e ∈ B. By
uniqueness of X (from B3), B′ must be a basis of N as well. Since we are assuming that |B∆X|
is minimum, therefore B′ does not have the property that there is no set X ′ satisfying both the
properties P1 and P2. By uniqueness of X (from B3), therefore, |B′∆X| = 2. Hence we have
|S| = 4, with |B| = |X| = 2 and B, X disjoint.

Let S = {a, b, c, d}, with B = {a, b} and X = {c, d}. Since we are assuming M is not U2
4 , it

implies that there is subset of size 2, say {a, c} that is not a basis of M. We have:

• {a}, {c, d} independent in M ⇒ {a, d} is a basis of M.

• {c}, {a, b} independent in M ⇒ {b, c} is a basis of M.

Both of these follow from the exchange property of the matroids. By assumption on B, {a, d} and
{b, c} must also be basis of of N (otherwise, with X ′ equal to, say, {a, d}, we will be able to satisfy
both P1 and P2 in the statement of the Lemma). Hence {c} is independent in N . Therefore {c}
independent in N , {a, d} independent in N implies that either {c, a} is independent in N (otherwise
{c, a} would satisfy property P2, contradicting B3) or {c, d}(= X) is independent inN (contradicting
A2). �

We now complete the proof of Tutte’s theorem.

Proof of Theorem 4: The necessity of this theorem is easy to see, as every minor of a binary
matroid is also binary, and U2

4 is not a binary matroid, as shown in the previous lecture.
We now prove the sufficiency part. Let M be a non-binary matroid on a ground set S. Choose

a basis B of M, and let {xb|b ∈ B} be a collection of linearly independent vectors over GF (2). For
each s ∈ S \B, let Cs be the unique circuit (see Proposition 3) contained in B + s. We define xs as

xs =
∑

b∈Cs−s

xb.

Now consider the binary matroid N given by {xs|s ∈ S}. Clearly, B is a base of N as well. We
have the following result: for each b ∈ B and each s ∈ S \ B, B − b + s is a base of M if and only
if it is a base of N . This is because if B − b + s contains a circuit of M, then xs must be linearly
dependent with the corresponding vectors of B − b, and hence B − b + s will be dependent in N as
well. Similarly the other way round.
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This implies that there is no set X which is a basis of only one of M and N , and for which
|B∆X| = 2. Since N is a binary matroid, so M 6= N , and N has no U2

4 minor. Therefore, from
Lemma 5 , M must contain a U2

4 minor. ut

A few other results related to representation over GF (3) and GF (4) are given below.

Theorem 6 (Reid 1971) M is ternary (i.e. representable over GF (3)) iff M has no F7, F ∗7 , U2
5

and U3
5 minors.

Here, F7 is the Fano matroid of rank 3 on a set S of size 7, with the dependency structure shown
in Figure 1. It can be verified that both F7, its dual, U2

5 and U3
5 are not ternary matroids. (Since

duality preserves representability over a field, any list of excluded minors for non-representability
should be closed under duality.)

A

B
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D E

F

G

Figure 1: Fano matroid. The ground set of the matroid is the set of vertices of this diagram. All
sets of cardinality 3 are independent, except those corresponding to a line in the diagram.

The diagram for the Fano matroid should be interpreted in the following way. All sets of size three
corresponding to lines in the diagram (e.g., {A,B,D}, {D,E, F}, etc.) are dependent while every
other triplet is an independent set in the matroid. Interestingly, the Fano matroid is representable
over GF (2), but not over any other field. Over GF (2), the 7 vectors corersponding to the elements
of the matroid are all non-zero binary vectors of dimension 3. The Fano matroid is a special case of
matroids arising from projective planes, see for example [3].

A similar result for representability of matroids over GF (4) was obtained by Geelen, Gerards
and Kapoor (2000) [2], who proved that there is a finite list (7) of matroids to exclude in the minor
of a matroid, so that it is representable over GF (4). In 1971, after characterizations of GF (2)-
and GF (3)-representable matroids, Gian-Carlo Rota conjectured that the matroids representable
over any finite field can be characterized by a finite list of excluded minors. (The corresponding
statement for minor-closed properties of graphs (such as say planarity) is the celebrated and deep
result of Robertson and Seymour.) The case of matroids is still open.

Finally, an example of a matroid that is not representable over any field, is the non-Pappus
matroid with the following dependency structure.

The non-representability of this matroid follows from a theorem due to Pappus for projective
planes, which states that the points d, e, f in the above figure are collinear. Hence no matter under
which field the matroid is represented, if the above dependency structure exists, then {d, e, f} is a
dependent set in that representation. See Oxley [3] for details and proofs..
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Figure 2: Non-Pappus matroid. All sets of cardinality 3 are independent, except those corresponding
to lines in the diagram.
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