(*This scribe borrows material from scribe notes by Nicole Immorlica in the previous offering of this course.)

1 Circuits

Definition 1 Let $\mathcal{M}=(S, \mathcal{I})$ be a matroid. Then the circuits of \mathcal{M}, denoted by $C(\mathcal{M})$, is the set of all minimally dependent sets of the matroid.

Examples:

1. For a graphic matroid, the circuits are all the simple cycles of the graph.
2. Consider a uniform matroid, $U_{n}^{k}(k \leq n)$, then the circuits are all subsets of S with size exactly $k+1$.

Proposition 1 The set of circuits $C(\mathcal{M})$ of a matroid $\mathcal{M}=(S, \mathcal{I})$ satisfies the following properties:

1. $X, Y \in C(\mathcal{M}), X \subseteq Y \Rightarrow X=Y$.
2. $X, Y \in C(\mathcal{M}), e \in X \cap Y$ and $X \neq Y \Rightarrow$ there exists $C \in C(\mathcal{M})$ such that $C \subseteq X \cup Y \backslash\{e\}$.
(Note that for circuits we implicitly assume that $\emptyset \notin C(\mathcal{M})$, just as we assume that for matroids $\emptyset \in \mathcal{I}$.)
Proof: 1. follows from the definition that a circuit is a minimally dependent set, and therefore a circuit cannot contain another circuit.
3. Let $X, Y \in C(\mathcal{M})$ where $X \neq Y$, and $e \in X \cap Y$. From 1, it follows that $X \backslash Y$ is non-empty; let $f \in X \backslash Y$. Assume on the contrary that $(X \cup Y)-e$ is independent. Since X is a circuit, therefore $X-f \in \mathcal{I}$. Extend $X-f$ to a maximal independent set in $X \cup Y$, call it Z. Then $Z \subseteq X \cup Y$, and Z does not contain Y (otherwise Y would be an independent set as well). Therefore $|Z|<|(X \cup Y)-e|$, which is a contradiction to the maximality of Z.

One can give an alternative definition of matroids in terms of circuits as follows; this is given without proof.

Proposition 2 Let $C(\mathcal{M})$ be the set of circuits corresponding to a ground set S. Then the set (S, \mathcal{I}) where $\mathcal{I}=\{I \subseteq S: \forall C \in C(\mathcal{M}) \quad C \subsetneq I\}$ is a matroid, and C is the set of circuits of this matroid.

The bases of a matroid satisfy the following property.
Proposition 3 Let B be a basis of a matroid $\mathcal{M}=(S, \mathcal{I})$, and $e \notin B$. Then $B+e$ contains a unique circuit. Moreover, one can remove any element from this circuit to get another basis of \mathcal{M}.

Proof: Suppose $B+e$ contains to distinct circuits, C_{1} and C_{2}. Clearly, $e \in C_{1} \cap C_{2}$. Therefore by Proposition 1, ($\left.C_{1} \cup C_{2}\right)-e$ contains a circuit C, and hence B contains a circuit, which contradicts the definition of a basis.

2 Operations on a Matroid

Given a matroid $\mathcal{M}=(S, \mathcal{I})$, we define two operations on a matroid: deletion and contraction.
Definition 2 Let $Z \subseteq S$, then the matroid obtained by deleting Z, denoted by $\mathcal{M} \backslash Z$, is $\mathcal{M}^{\prime}=$ ($S \backslash Z, \mathcal{I}^{\prime}$), where

$$
\mathcal{I}^{\prime}=\{I \subseteq S \backslash Z: I \in \mathcal{I}\} .
$$

Definition 3 Let $Z \subseteq S$, then the matroid obtained by contracting Z, denoted by \mathcal{M} / Z, is given by

$$
\mathcal{M} / Z=\left(\mathcal{M}^{*} \backslash Z\right)^{*}
$$

where \mathcal{M}^{*}, as usual, denotes the dual of the matroid \mathcal{M}.
From the definitions, it is clear that both $\mathcal{M} \backslash Z$ and \mathcal{M} / Z are matroids. To get more intuition about the contraction operation, we compute the rank function for the matroid \mathcal{M} / Z. Recall that for the dual matroid \mathcal{M}^{*}, the rank function is given by $r_{\mathcal{M}^{*}}(U)=|U|-r_{\mathcal{M}}(S)+r_{\mathcal{M}}(S \backslash U)$. Using this, we get

$$
\begin{aligned}
r_{\mathcal{M} / Z}(U) & =|U|-r_{\mathcal{M}^{*} \backslash Z}(S \backslash Z)+r_{\mathcal{M}^{*} \backslash Z}((S \backslash Z) \backslash U) \\
& =|U|-r_{\mathcal{M}^{*}}(S \backslash Z)+r_{\mathcal{M}^{*}}(S \backslash Z) \\
& =|U|-\left(|S \backslash Z|-r_{\mathcal{M}}(S)+r_{\mathcal{M}}(Z)\right)+\left(|(S \backslash Z) \backslash U|-r_{\mathcal{M}}(S)+r(Z \cup U)\right) \\
& =r_{\mathcal{M}}(Z \cup U)-r_{\mathcal{M}}(Z)
\end{aligned}
$$

This gives us the following interpretation for \mathcal{M} / Z. Fix any maximal independent subset B of Z, clearly $|B|=r_{\mathcal{M}}(Z)$. Then $U \in \mathcal{I}(\mathcal{M} / Z)$, if and only if $B \cup U \in \mathcal{I}(\mathcal{M})$.

3 Some Results on Representation of a Matroid

We first give the definition of a minor of matroid.
Definition 4 Given a matroid $\mathcal{M}=(S, \mathcal{I})$, the matroid given by $(\mathcal{M} \backslash Z) / Y$, for some $Z \subseteq S$ and $Y \subseteq S \backslash Z$, is called a minor of the matroid \mathcal{M}.

Recall that in the previous lecture, we had shown that if \mathcal{M} is representable over a field F, then its dual is also representable over the same field F. This implies that any minor of \mathcal{M} is also representable over the field F.

The question we pose is: What are the conditions we need on a matroid \mathcal{M}, so that it is representable over a finite field F ? We present some results here which give characterization of matroids representable over finite fields in terms of the minors of the matroids.

The following is a well known result due to Tutte, on the representability of a matroid over $G F(2)$.

Theorem 4 (Tutte(1958) [6]) \mathcal{M} is a binary matroid iff \mathcal{M} has no U_{4}^{2} minor.
One direction is clear; a binary matroid cannot contain U_{4}^{2} as a minor since we argued last time that U_{4}^{2} is not binary. The proof of the converse given here is based on the proof in Schrijver's book [4]. We first prove a lemma in the preparation of the proof of Tutte's theorem.

Lemma 5 Let \mathcal{M} and \mathcal{N} be distinct matroids defined on the same ground set S. Let B be a common basis of \mathcal{M} and \mathcal{N}, such that there is there is no set X with the following two properties:

P1. X is a basis of exactly one of \mathcal{M} and \mathcal{N}.

P2. $|B \Delta X|=2$.
Then \mathcal{M} or \mathcal{N} has a U_{4}^{2} minor.
Proof: Suppose \mathcal{M}, \mathcal{N} are counterexamples to the above statement. Let B be a common basis of \mathcal{M} and \mathcal{N}, and let X be a set satisfying property P 1 only. Without loss of generality, we assume:
A1. $|B \Delta X|$ is minimum, and
A2. X is a base of \mathcal{M} but not of \mathcal{N}.
Further, we have $|B \Delta X|>2$ (so in fact $|B \Delta X| \geq 4$). If we take a smallest (in terms of the size of the common ground set), the above assumptions imply that

B1. $B \cup X=S$ (otherwise delete $S \backslash(B \cup X)$ from S.)
B2. $B \cap X=\emptyset$ (otherwise contract $B \cap X$ in S.)
B3. X is the only subset of S satisfying property $P 1$. (This is implied by B1 and B2.)
Further, \mathcal{M} has a base B^{\prime} with $\left|B \Delta B^{\prime}\right|=2 . B^{\prime}$ can be obtained from B as follows: Let $x \in X$, then $B+x$ has a unique circuit (Proposition 3), and $B+x-e$ is a basis for some $e \in B$. By uniqueness of X (from B3), B^{\prime} must be a basis of \mathcal{N} as well. Since we are assuming that $|B \Delta X|$ is minimum, therefore B^{\prime} does not have the property that there is no set X^{\prime} satisfying both the properties $P 1$ and $P 2$. By uniqueness of X (from B3), therefore, $\left|B^{\prime} \Delta X\right|=2$. Hence we have $|S|=4$, with $|B|=|X|=2$ and B, X disjoint.

Let $S=\{a, b, c, d\}$, with $B=\{a, b\}$ and $X=\{c, d\}$. Since we are assuming \mathcal{M} is not U_{4}^{2}, it implies that there is subset of size 2 , say $\{a, c\}$ that is not a basis of \mathcal{M}. We have:

- $\{a\},\{c, d\}$ independent in $\mathcal{M} \Rightarrow\{a, d\}$ is a basis of \mathcal{M}.
- $\{c\},\{a, b\}$ independent in $\mathcal{M} \Rightarrow\{b, c\}$ is a basis of \mathcal{M}.

Both of these follow from the exchange property of the matroids. By assumption on $B,\{a, d\}$ and $\{b, c\}$ must also be basis of of \mathcal{N} (otherwise, with X^{\prime} equal to, say, $\{a, d\}$, we will be able to satisfy both P1 and P2 in the statement of the Lemma). Hence $\{c\}$ is independent in \mathcal{N}. Therefore $\{c\}$ independent in $\mathcal{N},\{a, d\}$ independent in \mathcal{N} implies that either $\{c, a\}$ is independent in \mathcal{N} (otherwise $\{c, a\}$ would satisfy property P 2 , contradicting B 3) or $\{c, d\}(=X)$ is independent in \mathcal{N} (contradicting A2).

We now complete the proof of Tutte's theorem.
Proof of Theorem 4: The necessity of this theorem is easy to see, as every minor of a binary matroid is also binary, and U_{4}^{2} is not a binary matroid, as shown in the previous lecture.

We now prove the sufficiency part. Let \mathcal{M} be a non-binary matroid on a ground set S. Choose a basis B of \mathcal{M}, and let $\left\{x_{b} \mid b \in B\right\}$ be a collection of linearly independent vectors over $G F(2)$. For each $s \in S \backslash B$, let C_{s} be the unique circuit (see Proposition 3) contained in $B+s$. We define x_{s} as

$$
x_{s}=\sum_{b \in C_{s}-s} x_{b}
$$

Now consider the binary matroid \mathcal{N} given by $\left\{x_{s} \mid s \in S\right\}$. Clearly, B is a base of \mathcal{N} as well. We have the following result: for each $b \in B$ and each $s \in S \backslash B, B-b+s$ is a base of \mathcal{M} if and only if it is a base of \mathcal{N}. This is because if $B-b+s$ contains a circuit of \mathcal{M}, then x_{s} must be linearly dependent with the corresponding vectors of $B-b$, and hence $B-b+s$ will be dependent in \mathcal{N} as well. Similarly the other way round.

This implies that there is no set X which is a basis of only one of \mathcal{M} and \mathcal{N}, and for which $|B \Delta X|=2$. Since \mathcal{N} is a binary matroid, so $\mathcal{M} \neq \mathcal{N}$, and \mathcal{N} has no U_{4}^{2} minor. Therefore, from Lemma $5, \mathcal{M}$ must contain a U_{4}^{2} minor.

A few other results related to representation over $G F(3)$ and $G F(4)$ are given below.
Theorem 6 (Reid 1971) \mathcal{M} is ternary (i.e. representable over $G F(3)$) iff \mathcal{M} has no $F_{7}, F_{7}^{*}, U_{5}^{2}$ and U_{5}^{3} minors.

Here, F_{7} is the Fano matroid of rank 3 on a set S of size 7 , with the dependency structure shown in Figure 1. It can be verified that both F_{7}, its dual, U_{5}^{2} and U_{5}^{3} are not ternary matroids. (Since duality preserves representability over a field, any list of excluded minors for non-representability should be closed under duality.)

Figure 1: Fano matroid. The ground set of the matroid is the set of vertices of this diagram. All sets of cardinality 3 are independent, except those corresponding to a line in the diagram.

The diagram for the Fano matroid should be interpreted in the following way. All sets of size three corresponding to lines in the diagram (e.g., $\{A, B, D\},\{D, E, F\}$, etc.) are dependent while every other triplet is an independent set in the matroid. Interestingly, the Fano matroid is representable over $G F(2)$, but not over any other field. Over $G F(2)$, the 7 vectors corersponding to the elements of the matroid are all non-zero binary vectors of dimension 3. The Fano matroid is a special case of matroids arising from projective planes, see for example [3].

A similar result for representability of matroids over $G F(4)$ was obtained by Geelen, Gerards and Kapoor (2000) [2], who proved that there is a finite list (7) of matroids to exclude in the minor of a matroid, so that it is representable over $G F(4)$. In 1971, after characterizations of $G F(2)-$ and $G F(3)$-representable matroids, Gian-Carlo Rota conjectured that the matroids representable over any finite field can be characterized by a finite list of excluded minors. (The corresponding statement for minor-closed properties of graphs (such as say planarity) is the celebrated and deep result of Robertson and Seymour.) The case of matroids is still open.

Finally, an example of a matroid that is not representable over any field, is the non-Pappus matroid with the following dependency structure.

The non-representability of this matroid follows from a theorem due to Pappus for projective planes, which states that the points d, e, f in the above figure are collinear. Hence no matter under which field the matroid is represented, if the above dependency structure exists, then $\{d, e, f\}$ is a dependent set in that representation. See Oxley [3] for details and proofs..

Figure 2: Non-Pappus matroid. All sets of cardinality 3 are independent, except those corresponding to lines in the diagram.

References

[1] R. Bixby. On Reid's characterization of ternary matroids. J. Combin. Theory Ser. B, 26:174-204, 1979.
[2] J. F. Geelen, A. M. H. Gerards, and A. Kapoor. The excluded minors for GF(4)-representable matroids. Journal of Combinatorial Theory Series B, 79, 2000.
[3] J.G. Oxley. Matroid Theory. Oxford University Press, 1992.
[4] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B. Springer, 2003.
[5] P. Seymour. Matroid representation over GF(3). J. Combin. Theory Ser. B, 26:159-173, 1979.
[6] W. T. Tutte. A homotopy theorem for matroids, i, ii. Trans. Amer. Math Soc., 88:144-174, 1958.
[7] H. Whitney. On the abstract properties of linear dependence. Amer. J. Math., 57:509-533, 1935.

