October 15, 2009

Lecture 9

Scribe: Shashi Mittal*

(*This scribe borrows material from scribe notes by Nicole Immorlica in the previous offering of this course.)

1 Circuits

Definition 1 Let $\mathcal{M} = (S, \mathcal{I})$ be a matroid. Then the circuits of \mathcal{M} , denoted by $C(\mathcal{M})$, is the set of all minimally dependent sets of the matroid.

Examples:

- 1. For a graphic matroid, the circuits are all the simple cycles of the graph.
- 2. Consider a uniform matroid, U_n^k $(k \le n)$, then the circuits are all subsets of S with size exactly k+1.

Proposition 1 The set of circuits $C(\mathcal{M})$ of a matroid $\mathcal{M} = (S, \mathcal{I})$ satisfies the following properties:

1.
$$X, Y \in C(\mathcal{M}), X \subseteq Y \Rightarrow X = Y.$$

2. $X, Y \in C(\mathcal{M}), e \in X \cap Y \text{ and } X \neq Y \Rightarrow \text{ there exists } C \in C(\mathcal{M}) \text{ such that } C \subseteq X \cup Y \setminus \{e\}.$

(Note that for circuits we implicitly assume that $\emptyset \notin C(\mathcal{M})$, just as we assume that for matroids $\emptyset \in \mathcal{I}$.)

Proof: 1. follows from the definition that a circuit is a minimally dependent set, and therefore a circuit cannot contain another circuit.

2. Let $X, Y \in C(\mathcal{M})$ where $X \neq Y$, and $e \in X \cap Y$. From 1, it follows that $X \setminus Y$ is non-empty; let $f \in X \setminus Y$. Assume on the contrary that $(X \cup Y) - e$ is independent. Since X is a circuit, therefore $X - f \in \mathcal{I}$. Extend X - f to a maximal independent set in $X \cup Y$, call it Z. Then $Z \subseteq X \cup Y$, and Z does not contain Y (otherwise Y would be an independent set as well). Therefore $|Z| < |(X \cup Y) - e|$, which is a contradiction to the maximality of Z. \Box

One can give an alternative definition of matroids in terms of circuits as follows; this is given without proof.

Proposition 2 Let $C(\mathcal{M})$ be the set of circuits corresponding to a ground set S. Then the set (S, \mathcal{I}) where $\mathcal{I} = \{I \subseteq S : \forall C \in C(\mathcal{M}) \mid C \subseteq I\}$ is a matroid, and C is the set of circuits of this matroid.

The bases of a matroid satisfy the following property.

Proposition 3 Let B be a basis of a matroid $\mathcal{M} = (S, \mathcal{I})$, and $e \notin B$. Then B + e contains a unique circuit. Moreover, one can remove any element from this circuit to get another basis of \mathcal{M} .

Proof: Suppose B + e contains to distinct circuits, C_1 and C_2 . Clearly, $e \in C_1 \cap C_2$. Therefore by Proposition 1, $(C_1 \cup C_2) - e$ contains a circuit C, and hence B contains a circuit, which contradicts the definition of a basis.

2 Operations on a Matroid

Given a matroid $\mathcal{M} = (S, \mathcal{I})$, we define two operations on a matroid: deletion and contraction.

Definition 2 Let $Z \subseteq S$, then the matroid obtained by deleting Z, denoted by $\mathcal{M} \setminus Z$, is $\mathcal{M}' = (S \setminus Z, \mathcal{I}')$, where

$$\mathcal{I}' = \{ I \subseteq S \setminus Z : I \in \mathcal{I} \}.$$

Definition 3 Let $Z \subseteq S$, then the matroid obtained by contracting Z, denoted by \mathcal{M}/Z , is given by

$$\mathcal{M}/Z = (\mathcal{M}^* \setminus Z)^*,$$

where \mathcal{M}^* , as usual, denotes the dual of the matroid \mathcal{M} .

From the definitions, it is clear that both $\mathcal{M} \setminus Z$ and \mathcal{M}/Z are matroids. To get more intuition about the contraction operation, we compute the rank function for the matroid \mathcal{M}/Z . Recall that for the dual matroid \mathcal{M}^* , the rank function is given by $r_{\mathcal{M}^*}(U) = |U| - r_{\mathcal{M}}(S) + r_{\mathcal{M}}(S \setminus U)$. Using this, we get

$$\begin{aligned} r_{\mathcal{M}/Z}(U) &= |U| - r_{\mathcal{M}^* \setminus Z}(S \setminus Z) + r_{\mathcal{M}^* \setminus Z}((S \setminus Z) \setminus U) \\ &= |U| - r_{\mathcal{M}^*}(S \setminus Z) + r_{\mathcal{M}^*}(S \setminus Z) \\ &= |U| - (|S \setminus Z| - r_{\mathcal{M}}(S) + r_{\mathcal{M}}(Z)) + (|(S \setminus Z) \setminus U| - r_{\mathcal{M}}(S) + r(Z \cup U)) \\ &= r_{\mathcal{M}}(Z \cup U) - r_{\mathcal{M}}(Z). \end{aligned}$$

This gives us the following interpretation for \mathcal{M}/Z . Fix any maximal independent subset B of Z, clearly $|B| = r_{\mathcal{M}}(Z)$. Then $U \in \mathcal{I}(\mathcal{M}/Z)$, if and only if $B \cup U \in \mathcal{I}(\mathcal{M})$.

3 Some Results on Representation of a Matroid

We first give the definition of a minor of matroid.

Definition 4 Given a matroid $\mathcal{M} = (S, \mathcal{I})$, the matroid given by $(\mathcal{M} \setminus Z)/Y$, for some $Z \subseteq S$ and $Y \subseteq S \setminus Z$, is called a minor of the matroid \mathcal{M} .

Recall that in the previous lecture, we had shown that if \mathcal{M} is representable over a field F, then its dual is also representable over the same field F. This implies that any minor of \mathcal{M} is also representable over the field F.

The question we pose is: What are the conditions we need on a matroid \mathcal{M} , so that it is representable over a finite field F? We present some results here which give characterization of matroids representable over finite fields in terms of the minors of the matroids.

The following is a well known result due to Tutte, on the representability of a matroid over GF(2).

Theorem 4 (Tutte(1958) [6]) \mathcal{M} is a binary matroid iff \mathcal{M} has no U_4^2 minor.

One direction is clear; a binary matroid cannot contain U_4^2 as a minor since we argued last time that U_4^2 is not binary. The proof of the converse given here is based on the proof in Schrijver's book [4]. We first prove a lemma in the preparation of the proof of Tutte's theorem.

Lemma 5 Let \mathcal{M} and \mathcal{N} be distinct matroids defined on the same ground set S. Let B be a common basis of \mathcal{M} and \mathcal{N} , such that there is there is no set X with the following two properties:

P1. X is a basis of exactly one of \mathcal{M} and \mathcal{N} .

P2. $|B\Delta X| = 2.$

Then \mathcal{M} or \mathcal{N} has a U_4^2 minor.

Proof: Suppose \mathcal{M} , \mathcal{N} are counterexamples to the above statement. Let B be a common basis of \mathcal{M} and \mathcal{N} , and let X be a set satisfying property P1 only. Without loss of generality, we assume:

A1. $|B\Delta X|$ is minimum, and

A2. X is a base of \mathcal{M} but not of \mathcal{N} .

Further, we have $|B\Delta X| > 2$ (so in fact $|B\Delta X| \ge 4$). If we take a smallest (in terms of the size of the common ground set), the above assumptions imply that

B1. $B \cup X = S$ (otherwise delete $S \setminus (B \cup X)$ from S.)

B2. $B \cap X = \emptyset$ (otherwise contract $B \cap X$ in S.)

B3. X is the only subset of S satisfying property P1. (This is implied by B1 and B2.)

Further, \mathcal{M} has a base B' with $|B\Delta B'| = 2$. B' can be obtained from B as follows: Let $x \in X$, then B + x has a unique circuit (Proposition 3), and B + x - e is a basis for some $e \in B$. By uniqueness of X (from B3), B' must be a basis of \mathcal{N} as well. Since we are assuming that $|B\Delta X|$ is minimum, therefore B' does not have the property that there is no set X' satisfying both the properties P1 and P2. By uniqueness of X (from B3), therefore, $|B'\Delta X| = 2$. Hence we have |S| = 4, with |B| = |X| = 2 and B, X disjoint.

Let $S = \{a, b, c, d\}$, with $B = \{a, b\}$ and $X = \{c, d\}$. Since we are assuming \mathcal{M} is not U_4^2 , it implies that there is subset of size 2, say $\{a, c\}$ that is not a basis of \mathcal{M} . We have:

- $\{a\}, \{c, d\}$ independent in $\mathcal{M} \Rightarrow \{a, d\}$ is a basis of \mathcal{M} .
- $\{c\}, \{a, b\}$ independent in $\mathcal{M} \Rightarrow \{b, c\}$ is a basis of \mathcal{M} .

Both of these follow from the exchange property of the matroids. By assumption on B, $\{a, d\}$ and $\{b, c\}$ must also be basis of of \mathcal{N} (otherwise, with X' equal to, say, $\{a, d\}$, we will be able to satisfy both P1 and P2 in the statement of the Lemma). Hence $\{c\}$ is independent in \mathcal{N} . Therefore $\{c\}$ independent in \mathcal{N} , $\{a, d\}$ independent in \mathcal{N} implies that either $\{c, a\}$ is independent in \mathcal{N} (otherwise $\{c, a\}$ would satisfy property P2, contradicting B3) or $\{c, d\}(=X)$ is independent in \mathcal{N} (contradicting A2).

We now complete the proof of Tutte's theorem.

Proof of Theorem 4: The necessity of this theorem is easy to see, as every minor of a binary matroid is also binary, and U_4^2 is not a binary matroid, as shown in the previous lecture.

We now prove the sufficiency part. Let \mathcal{M} be a non-binary matroid on a ground set S. Choose a basis B of \mathcal{M} , and let $\{x_b | b \in B\}$ be a collection of linearly independent vectors over GF(2). For each $s \in S \setminus B$, let C_s be the unique circuit (see Proposition 3) contained in B + s. We define x_s as

$$x_s = \sum_{b \in C_s - s} x_b.$$

Now consider the binary matroid \mathcal{N} given by $\{x_s | s \in S\}$. Clearly, B is a base of \mathcal{N} as well. We have the following result: for each $b \in B$ and each $s \in S \setminus B$, B - b + s is a base of \mathcal{M} if and only if it is a base of \mathcal{N} . This is because if B - b + s contains a circuit of \mathcal{M} , then x_s must be linearly dependent with the corresponding vectors of B - b, and hence B - b + s will be dependent in \mathcal{N} as well. Similarly the other way round.

This implies that there is no set X which is a basis of only one of \mathcal{M} and \mathcal{N} , and for which $|B\Delta X| = 2$. Since \mathcal{N} is a binary matroid, so $\mathcal{M} \neq \mathcal{N}$, and \mathcal{N} has no U_4^2 minor. Therefore, from Lemma 5, \mathcal{M} must contain a U_4^2 minor.

A few other results related to representation over GF(3) and GF(4) are given below.

Theorem 6 (Reid 1971) \mathcal{M} is ternary (i.e. representable over GF(3)) iff \mathcal{M} has no F_7 , F_7^* , U_5^2 and U_5^3 minors.

Here, F_7 is the Fano matroid of rank 3 on a set S of size 7, with the dependency structure shown in Figure 1. It can be verified that both F_7 , its dual, U_5^2 and U_5^3 are not ternary matroids. (Since duality preserves representability over a field, any list of excluded minors for non-representability should be closed under duality.)

Figure 1: Fano matroid. The ground set of the matroid is the set of vertices of this diagram. All sets of cardinality 3 are independent, except those corresponding to a line in the diagram.

The diagram for the Fano matroid should be interpreted in the following way. All sets of size three corresponding to lines in the diagram (e.g., $\{A, B, D\}$, $\{D, E, F\}$, etc.) are dependent while every other triplet is an independent set in the matroid. Interestingly, the Fano matroid is representable over GF(2), but not over any other field. Over GF(2), the 7 vectors corresponding to the elements of the matroid are all non-zero binary vectors of dimension 3. The Fano matroid is a special case of matroids arising from projective planes, see for example [3].

A similar result for representability of matroids over GF(4) was obtained by Geelen, Gerards and Kapoor (2000) [2], who proved that there is a finite list (7) of matroids to exclude in the minor of a matroid, so that it is representable over GF(4). In 1971, after characterizations of GF(2)and GF(3)-representable matroids, Gian-Carlo Rota conjectured that the matroids representable over any finite field can be characterized by a finite list of excluded minors. (The corresponding statement for minor-closed properties of graphs (such as say planarity) is the celebrated and deep result of Robertson and Seymour.) The case of matroids is still open.

Finally, an example of a matroid that is not representable over any field, is the non-Pappus matroid with the following dependency structure.

The non-representability of this matroid follows from a theorem due to Pappus for projective planes, which states that the points d, e, f in the above figure are collinear. Hence no matter under which field the matroid is represented, if the above dependency structure exists, then $\{d, e, f\}$ is a dependent set in that representation. See Oxley [3] for details and proofs.

Figure 2: Non-Pappus matroid. All sets of cardinality 3 are independent, except those corresponding to lines in the diagram.

References

- R. Bixby. On Reid's characterization of ternary matroids. J. Combin. Theory Ser. B, 26:174–204, 1979.
- [2] J. F. Geelen, A. M. H. Gerards, and A. Kapoor. The excluded minors for GF(4)-representable matroids. *Journal of Combinatorial Theory Series B*, 79, 2000.
- [3] J.G. Oxley. Matroid Theory. Oxford University Press, 1992.
- [4] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B. Springer, 2003.
- [5] P. Seymour. Matroid representation over GF(3). J. Combin. Theory Ser. B, 26:159–173, 1979.
- [6] W. T. Tutte. A homotopy theorem for matroids, i, ii. Trans. Amer. Math Soc., 88:144–174, 1958.
- [7] H. Whitney. On the abstract properties of linear dependence. Amer. J. Math., 57:509–533, 1935.