| 18.438 Advanced Combinatorial Optimization | September 15, 2009 |
| :--- | :---: | :---: |
| Lecture 2 | |
| Lecturer: Michel X. Goemans | Scribes: Robert Kleinberg (2004), Alex Levin (2009) |

In this lecture, we will present Edmonds's algorithm for computing a maximum matching in a (not necessarily bipartite) graph G. We will later use the analysis of the algorithm to derive the Edmonds-Gallai Decomposition Theorem stated in the last lecture.

1 Recapitulation

Recall the following essential definitions and facts from the last lecture. A matching in an undirected graph G is a set of edges, no two of which share a common endpoint. Given a graph G and a matching M, a vertex is matched if it is the endpoint of an edge in M, unmatched otherwise; we will often designate the set of unmatched vertices by X. Given a graph G with matching M, an M-alternating path is a path whose edges are alternately in M and not in M. (Here we use path to mean a simple path, i.e. one with no repeated vertices. We'll refer to a non-simple path as a walk.) If both endpoints of an M-alternating path belong to the set X of unmatched vertices, it is called an M-augmenting path. Recall the following theorem from last time.

Theorem 1 A matching M is of maximum size if and only if G contains no M-augmenting path.

Figure 1: An M-augmenting path

2 Flowers, Stems, and Blossoms

The following construction is useful for finding M-augmenting paths. Given a graph $G=(V, E)$ with matching M; construct a directed graph $\hat{G}=(V, A)$ with the same vertex set as G, and with edge set determined by the rule that $(u, w) \in A$ if and only if there exists v with $(u, v) \in E \backslash M$ and $(v, w) \in M$. Observe that every M-augmenting path in G corresponds to a path in \hat{G} that begins at a vertex in X and ends at a neighbor of X. However, the converse is not true, because an M-alternating walk may begin at a vertex in X and end at a neighbor of X, without being an M-augmenting path, if it contains an odd cycle. Figure 2 illustrates an example of such a walk. This motivates the following definition.

Definition 1 An M-flower is an M-alternating walk $v_{0}, v_{1}, v_{2}, \ldots, v_{t}$ (numbered so that we have $\left.\left(v_{2 k-1}, v_{2 k}\right) \in M,\left(v_{2 k}, v_{2 k+1}\right) \notin M\right)$ satisfying:

1. $v_{0} \in X$.
2. $v_{0}, v_{1}, v_{2}, \ldots, v_{t-1}$ are distinct.
3. t is odd.

Figure 2: An M-flower. Note that the dashed edges represent edges of \hat{G}.
4. $v_{t}=v_{i}$, for an even i.

The portion of the flower from v_{0} to v_{i} is called the stem, while the portion from v_{i} to v_{t} is called the blossom.

Lemma 2 Let M be a matching in G, and let $P=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ be a shortest alternating walk from X to X. Then either P is an M-augmenting path, or $v_{0}, v_{1}, \ldots, v_{j}$ is an M-flower for some $j<t$.

Proof: If $v_{0}, v_{1}, \ldots, v_{t}$ are all distinct, P is an M-augmenting path. Otherwise, assume $v_{i}=$ $v_{j}, i<j$, and let j be as small as possible, so that $v_{0}, v_{1}, \ldots, v_{j-1}$ are all distinct. We shall prove that $v_{0}, v_{1}, \ldots, v_{j}$ is an M-flower. Properties 1 and 2 of a flower are automatic, by construction. It cannot be the case that j is even, since then $\left(v_{j-1}, v_{j}\right) \in M$, which gives a contradiction in both of the following cases:

- $i=0:\left(v_{j-1}, v_{j}\right) \in M$ contradicts $v_{0} \in X$.
- $0<i<j-1:\left(v_{j-1}, v_{j}\right) \in M$ contradicts the fact that M is a matching, since v_{i} is already matched to a vertex other than v_{j-1}.

This proves that j is odd. It remains to show that i is even. Assume, by contradiction, that i is odd. This means that $\left(v_{i}, v_{i+1}\right)$ and $\left(v_{j}, v_{j+1}\right)$ are both edges in M. Then $v_{j+1}=v_{i+1}$ (since both are equal to the other endpoint of the unique matching edge containing $v_{j}=v_{i}$), and we may delete the cycle from P to obtain a shorter alternating walk from X to X. (See Figure 3.)

Figure 3: An alternating walk from X to X which can be shortened.

Given a flower $F=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ with blossom B, observe that for any vertex $v_{j} \in B$ it is possible to modify M to a matching M^{\prime} satisfying:

1. Every vertex of F belongs to an edge of M^{\prime} except v_{j}.
2. M^{\prime} agrees with M outside of F, i.e. $M \triangle M^{\prime} \subseteq F$.
3. $\left|M^{\prime}\right|=|M|$.

To do so, we take M^{\prime} to consist of all the edges of the stem which do not belong to M, together with a matching in the blossom which covers every vertex except v_{j}, as well as all the edges in M outside of F.

Whenever a graph G with matching M contains a blossom B, we may simplify the graph by shrinking B, a process which we now define.

Definition 2 (Shrinking a blossom) Given a graph $G=(V, E)$ with a matching M and a blossom B, the shrunk graph G / B with matching M / B is defined as follows:

- $V(G / B)=(V \backslash B) \cup\{b\}$
- $E(G / B)=E \backslash E[B]$
- $M / B=M \backslash E[B]$
where $E[B]$ denotes the set of edges within B, and b is a new vertex disjoint from V.
Observe that M / B is a matching in G, because the definition of a blossom precludes the possibility that M contains more than one edge with one but not both endpoints in B. Observe also that G / B may contain parallel edges between vertices, if G contains a vertex which is joined to B by more than one edge.

The relation between matchings in G and matchings in G / B is summarized by the following theorem.

Theorem 3 Let M be a matching of G, and let B be an M-blossom. Then, M is a maximum-size matching if and only if M / B is a maximum-size matching in G / B.

Proof: (\Longrightarrow) Suppose N is a matching in G / B larger than M / B. Pulling N back to a set of edges in G, it is incident to at most one vertex of B. Expand this to a matching N^{+}in G by adjoining $\frac{1}{2}(|B|-1)$ edges within B to match every other vertex in B. Then we have $\left|N^{+}\right|-|N|=(|B|-1) / 2$, while at the same time $|M|-|M / B|=(|B|-1) / 2$ (the latter follows because B is an M-blossom, so there are $(|B|-1) / 2$ edges of M in B; then M / B contains all the corresponding edges in M except those $(|B|-1) / 2)$. We conclude that $\left|N^{+}\right|$exceeds $|M|$ by the same amount that $|N|$ exceeds $|M / B|$.
(\Longleftarrow) If M is not of maximum size, then change it to another matching M^{\prime}, of equal cardinality, in which B is an entire flower. (If S is the stem of the flower whose blossom is B, then we may take $M^{\prime}=M \triangle S$.) Note that M^{\prime} / B is of the same cardinality as M / B, and b is an unmatched vertex of M^{\prime} / B. Since M^{\prime} is not a maximum-size matching in G, there exists an M^{\prime}-augmenting path P. At least one of the endpoints of P is not in B. So number the vertices of $P u_{0}, u_{1}, \ldots, u_{t}$ with $u_{0} \notin B$, and let u_{i} be the first node on P which is in B. (If there is no such node, then $u_{i}=u_{t}$.) This sub-path $u_{0}, u_{1}, \ldots, u_{i}$ is an $\left(M^{\prime} / B\right)$-augmenting path in G / B.

Note that if M is a matching in G that is not of maximum size, and B is blossom with respect to M, then M / B is not a maximum-size matching in G / B. If we find a maximum-size matching N in G / B, then the proof gives us a way to "unshrink" the blossom B in order to turn N into a matching N^{+}of G of size larger than that of M. However, it is important to note that N^{+}will not, in general, be a maximum-size matching of G, as the example in Figure 4 shows.

Figure 4: A maximum matching in the graph G / B does not necessarily pull back to a maximum matching in G.

3 A polynomial-time maximum matching algorithm

The algorithm for computing a maximum matching is specified in Figure 5.
The correctness of the algorithm is established by Lemma 2 and Theorem 3. The running time may be analyzed as follows. We can compute X and \hat{G} in linear time, and can find \hat{P} in linear time (by breadth-first search). Shrinking a blossom also takes linear time. We can only perform $O(n)$ such shrinkings before terminating or increasing $|M|$. The number of times we increase $|M|$ is $O(n)$. Therefore the algorithm's running time is $O\left(m n^{2}\right)$. With a little more work, this can be improved to $O\left(n^{3}\right)$. (See Schrijver's book.) The fastest known algorithm, due to Micali and Vazirani, runs in time $O(\sqrt{n} m)$.

```
M :=\emptyset
X:= {unmatched vertices} /* Initially all of V. */
Form the directed graph \hat{G}
while }\hat{G}\mathrm{ contains a directed path }\hat{P}\mathrm{ from X to N(X)
    Find such a path }\hat{P}\mathrm{ of minimum length.
    P:= the alternating path in G}\mathrm{ corresponding to }\hat{P
    if P}\mathrm{ is an }M\mathrm{ -augmenting path,
            modify }M\mathrm{ by augmenting along P
            Update X and construct }\hat{G}\mathrm{ .
    else
            P contains a blossom B.
            Recursively find a maximum-size matching }\mp@subsup{M}{}{\prime}\mathrm{ in }G/B\mathrm{ .
            if |M'| = |M/B| /* M is already a max matching. */
                    return M /* Done! */
            else
                            /* M can be enlarged */
                            Unshrink M' as in the proof of Theorem 3,
                            to obtain a matching in G of size > |M|.
                            /* It is not necessarily maximal */
                    Update }M\mathrm{ and }X\mathrm{ and construct the graph }\hat{G}\mathrm{ .
end
```

Figure 5: Algorithm for computing a maximum matching

