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1 Matroid Matching

The Matroid matching Problem: Given a matroid M = (S, I), let E be a set of pairs of
elements of S. The matroid matching problem is to find a maximum set of djsoint pairs F ⊆ E,
such that

⋃

F ∈ I. The cardinality of this maximum matching F is denoted by ν(M).
The following are a few illustrations of the matroid matching problem.

Examples (Matroid matching):

1. Let M be the trivial matroid on a set S, i.e., M = (S, 2S). Let E be a collection of pairs on S
which define a graph G = (S, E). Then the matroid matching problem is equivalent to finding
a maximum size matching in G = (S, E).

2. Let M1 = (S, I1) and M2 = (S, I2) be two matroids on the ground set S. Then the matroid
intersection problem can be formulated using the matroid matching problem in the following
manner. Let S′ be an identical copy of S where for every a ∈ S there is a corresponding
a′ ∈ S′. Define M1 on S and M2 on S′, so that I1 is defined on S and I2 is defined on S′.
Define M and E as follows.

M =(S∪S′, {I1∪I2 : I1∈I1, I2∈I2})

E ={(a, a′) : a∈S}

With the above definition, the matroid matching problem for M is equivalent to finding a
maximum independent set in M1 ∩ M2.

3. Consider the graphic matroid M(G) of a graph G = (V, E). Partition the edge set E into
pairs. Then the matroid matching problem is to find the maximum forest containing either
both or neither element from each pair in the partition of E.

4. Finding a maximum forest in a 3-uniform hypergraph. Consider the problem of finding a
maximum forest in a 3-uniform (every hyperedge connects 3 vertices) hypergraph. In other
words, the problem is to find a maximum subgraph without cycles. Recall that a cycle in a
hypergraph is a sequence of distinct hyperedges h1, h2 . . . , hT such that there is a sequence
of vertices s1, s2 . . . , sT for which sisi+1 ∈ hi for i = 1, 2 . . . T (with sT+1 = s1). Given a
3-uniform hypergraph G, define a graph G′ on the same vertex set as G and a set E as follows.
For each hyperedge (a, b, c), include edges (a, b) and (a, c) in G′ (a is chosen arbitrarily) and
include the pair {(a, b), (a, c)} in E. Let M be the graphical matroid for G′. Then a matroid
matching on (M, E) is a forest in G and conversely, since a set of hyperedges {(a, b, c)} contains
a cycle iff the set of edges {(a, b)} ∪ {(b, c)} contains a cycle.

1.1 Is the matroid matching problem solvable in polynomial time?

We will first construct an example to show that the matroid matching problem is not solvable
in polynomial time when the matroid is given as an independence oracle (a black box which can
determine whether a given T ∈ I is independent).
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Let S be a finite set and let E be an arbitrary partition of S into pairs. Let the collection of
independent sets be as follows:

I = {I : I ≤ 2k − 1} ∪ {I : I = 2k, I is not a union of k pairs in E}.

It is easy to check that M = (S, I) is a matroid. Let I1, I2 ∈ I and |I2| < |I1|. If I1 ≤ 2k − 1, then
I2 can be trivially augmented using elements from I1 \ I2. If I1 = 2k, then I1 intersects at least k+1
pairs in E; either I2 already intersects at least k + 1 pairs, in which case we can trivially augment
I2, or I1 intersects a pair which I2 does not, in which case we can augment I2 by an element of this
intersection.

Note that ν(M) = k − 1. Now take any F ⊆ E such that |F | = k. Define MF as

MF = (S, I ∪ {
⋃

F})

which is a matroid for every choice of F by the same reasoning. Clearly, ν(MF ) = k.
For any sequence of independence queries which does not include

⋃

F , the results of those queries
are the same for MF or M . Thus any sequence of queries which does not include the unions of all
(

|E|
k

)

k-element subsets of E cannot distinguish between M and MF for one of the unqueried F . In
particular, no polynomial time algorithm can determine whether ν is k or k − 1.

The following construction shows that the matroid matching need not be polynomial time even
for a matroid with a concise description unless P = NP. Suppose we are given a graph G whose
vertex set is E. Let M = (S, I) be a matroid with I defined as as

I = {I : I≤2k − 1}∪{I : I = 2k, I is not a union of k pairs in E}

∪ {I : I = 2k, I is a union of k pairs in E such that the pairs form a clique in G}.

Now clearly,

ν(M) =

{

k − 1 if there is no clique of size k

k o.w.

Thus, checking whether ν(M) = k is not possible in polynomial time unless P = NP.

1.2 Min-max relation for matroid matching

Lovász derived a min-max relationship for matroid matching for a special class of matroids, which
include all linear matroids. He also gave a polynomial time algorithm for the problem. For example,
the maximum forest problem in a 3-uniform hypergraph can be solved in polynomial time using
Lovász’ algorithm, as a graphic matroid is linear.

We next extend the definition of matroid to allow infinite ground sets. The notion of infinite
matroid is a generalization of linear spaces.

Definition 1 (Infinite matroid) (S, I) is an infinite matroid if the following properties hold:

1. I ∈ I, J ⊆ I ⇒ J ∈ I,

2. If J ∈ I for all finite subsets J of I then I ∈ I,

3. If I, J ∈ I and |I| < |J | < ∞, then ∃j ∈ J \ I such that I + j ∈ I.

�

Before we state the min-max theorem, recall that a flat in a matroid M = (S, I) is an F ⊆ S
such that F = span(F ). For linear matroids, flats are precisely the linear subspaces.
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Theorem 1 (Lovász) Let M = (S, I) be a linear matroid (finite or infinite), let r be the rank
function, and let E be a finite set of pairs in S. Then

ν(M) = min
F

[

r(F ) +

k
∑

i=1

⌊

1

2
(r(Fi) − r(F ))

⌋

]

, (1)

where the minimization is carried over the set

{F : F ⊆ F1 ∩ F2 . . . ∩ Fk; F1, F2, . . . Fkare flats; ∀(e ∈ E)∃(Fi) such that e ∈ Fi}.

The Tutte-Berge formula is the special case of this result when the matroid is trivial.
Tutte-Berge formula: Let M = (S, 2S) be the trivial matroid (in which all sets are indepen-

dent) and let the edges in the graph G = (S, E) define the set of pairs E in S. Clearly,

ν(M) = maximum size matching in G.

Now we proceed to compute the RHS of (1). In this case

RHS of (1) = min
F

[

|F | +
k
∑

i=1

⌊
1

2
(|Fi| − |F |)⌋

]

. (2)

(For the trivial matroid, all sets are flats.) First, note that the minimization can be restricted to
the all flats Fi’s such that the sets Fi \F are disjoint. To see this, observe that, if for some i and j,
(Fi ∩ Fj) \ F 6= ∅, then, we can replace Fi and Fj by a single flat Fi ∪ Fj and that will not increase
the sum in (2). Thus, we assume the minimization in (2) is carried over flats such that Fi \ F are
disjoint. Thus it means that F, F1 \ F, F2 \ F . . . Fk \ F is a partition of S. Moreover, all edges of
G must belong to E(Fi) for some i. If all the quantities |Fi − F | were even, then (2) boils down to
minimization over (1/2)(|F | + |S|). Taking into account the fact that some of the |Fi \ F | can be
odd, we can write (2) as

1

2
min

F
[|F | + |S| − #{i : |Fi \ F | odd}] ,

which is precisely the Berge-Tutte formula since (Fi \ F ) can be seen to be a connected component
of G \ F .

Comments of the linearity condition in Theorem 1:

The min-max relationship given by (1) in Theorem 1 holds under a more general condition. Let
M = (S, I) be a matroid and let C be the set of all the circuits. Then Theorem 1 holds if M and all
its contractions satisfy the relationship that

r

(

⋂

C∈C′

span(C)

)

> 0, (3)

where
C′ = {circuit C : C ⊆ C1 ∪ C2, r(C) = |C1 ∪ C2| − 2},

for any two circuits C1, C2 with C1 ∩ C2 6= ∅.
We next show that linear matroids satisfy the condition given by (3).

Proposition 2 If M = (S, I) is a linear matroid, then it satisfies the condition given by (3).
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Proof: Let C1, C2 be as in the hypotheses of the condition. Then C1 \ C2 ∈ I and C1 ∩ C2 ∈ I,
since C1 was a minimal dependent set. Since span(C1 \C2), span(C1∩C2), and span(C1)) are linear
subspaces, and further since,

r(C1 \ C2) + r(C1 ∩ C2) = C1 \ C2 + C1 ∩ C2 = C1 > r(C1)

it follows that
P = span(C1 \ C2) ∩ span(C1 ∩ C2) 6= ∅.

Thus, ∃p 6= 0 ∈ P . We next argue that p ∈ span(C) for every C ⊆ C1∪C2 with r(C) = |C1∪C2|−2.
Suppose not, i.e., p /∈ span(C). Now,

p ∈ span(C1 \ C2) ⇒ C1 \ C2 * C ⇒ ∃s ∈ C1 \ C2, s /∈ C.

and similarly
p ∈ span(C1 ∩ C2) ⇒ ∃t ∈ C1 ∩ C2, t /∈ C.

Now, span(C2) = span(C2 − t) (this is always true for an element of a circuit) implies

t ∈ span(C2 − t) ⊆ span(C1 ∪ C2 \ {s, t}),

as C2 \ {t} ⊆ (C1 ∪ C2) \ {s, t}. Therefore

s ∈ span(C1 − s) ⊆ span((C1 ∪ C2) \ {s}) = span((C1 ∪ C2) \ {s, t}),

as t ∈ span((C1 ∪ C2) \ {s, t}). Thus

{s, t} ⊆ span(C1 ∪ C2 \ {s, t}).

Since |C| > r(C) (as C is a circuit), r(C) = |C1∪C2|−2 (by assumption) and C ⊆ (C1∪C2)\{s, t},
we obtain

|C| > r(C) = |C1 ∪ C2| − 2 = |(C1 ∪ C2) \ {s, t}| ≥ |C|,

and we have reached a contradiction. �

Although condition (3) is satisfied by matroids coming from linear spaces, it is not necessarily
satisfied by all representable matroids. For example, let M be the graphic matroid associated to
graph G in Figure 1. We know that M is representable, so it is a restriction of a matroid coming

a

b

c

d

e

Figure 1: A graph G.

from a linear space. The only circuits of M are C1 = {ab, bc, ce, ea}, C2 = {ae, ec, cd, da} and
C3 = {ab, bc, cd, da}. But note that r(C1 ∪ C2) = r(E) = 4 = |C1 ∪ C2| − 2, but no edge is in the
span of all three circuits. Note that if edge ac were present, this would not happen.
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Lovász also gave a polynomial time algorithm to find a maximum cardinality matroid matching
for every matroid satisfying the min-max relation (3). We can also use this algorithm to solve
the matroid matching problem on restrictions of those matroids. Indeed, if E is a set of pairs of
elements of the smaller matroid then any maximum matching of the bigger matroid over this set of
pairs will also be a maximum matching of the smaller one. In particular, we can efficiently solve the
problem for any linear matroid. Observe that, in order to get this result for finite matroids that are
representable over infinite fields, the proof required the introduction of an infinite matroid.
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