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Lecture 13
Lecturer: Michel X. Goemans Scribe: Alan Deckelbaum

In today’s lecture, we cover an algorithm for matroid union, discuss some applications, and
analyze Shannon switching games.

1 Matroid Union

For i = 1, . . . , k, let Mi = (Si, Ii) be a matroid. Recall that we define the matriod union to be

M = M1 ∨M2 ∨ · · · ∨Mk = (∪k
i=1Si, I = {∪k

i=1Ii|Ii ∈ I}).

Last class, we showed that M is a matroid, and derived the rank function

rM (U) = min
T⊆U

[
|U \ T |+

k∑
i=1

rMi(T ∩ Si)

]
.

We now discuss the question of given I, how can we efficiently check if I ∈ I.

1.1 Testing for independence

There are two main ways for checking if a given set is independent in the matroid union.

1.1.1 Matroid Intersection

We discuss two ways to determine, given I ⊂ S, whether I ∈ I. The first method is based on
the previous lecture, where we considered the set Ŝ = ∪̇Ŝi, a union of disjoint copies of the Si.
Formally, we write Ŝ = {(e, i) : e ∈ Si}. There is a natural mapping f : Ŝ → ∪Si which maps
(e, i) to e. We can now define a partition matroid Mp over the ground set Ŝ, where I(Mp) ={

I ⊆ Ŝ s.t. ∀e ∈ S : |I ∩ {(e, i) : e ∈ Si}| ≤ 1
}

. (Thus, an independent set I in Mp does not contain
both (e, i) and (e, j) for any e ∈ S, i 6= j.) We can now test for independence in the matroid union
by looking at f−1(U) and using our matroid intersection algorithm with the partition matroid to
look for a maximal such subset of f−1(U). A potential difficulty of this approach is that Ŝ can be
large. (If, for example, all Mi are defined over the same ground set, then Ŝ is k times as large as
this ground set.)

1.1.2 Matroid “Partition”

Because of the above difficulty with the matroid intersection approach, we will frequently use a
different technique for testing whether a set is independent in the matroid union. This approach is
called matroid “partition.” Given some independent set I ∈ I(M1 ∨ M2 ∨ · · · ∨ Mk) and given a
partition of I = I1∪̇I2∪̇ · · · ∪̇Ik with Ii ∈ Ii, and given some s 6∈ I, we wish to determine whether
I +s ∈ I. (Clearly, if we have such an algorithm, then we can test independence of our set by adding
elements one at a time and testing for independence as each element is added.)

For each matroid Mi, we create a bipartite directed graph DMi(Ii). The vertex set of DMi(Ii)
correspond to the elements in S. The left vertices of this graph are the elements of Ii, and the right
vertices are the elements of Si\Ii. We put a directed edge left-to-right from y ∈ Ii to x ∈ Si\Ii if
Ii − y + x ∈ Ii.
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We now combine these graphs DMi into a single graph D = ∪DMi(Ii), which is the superposition
of the edges from all of the graphs. For each i, we set Fi to be the set of vertices in Si\Ii which can
be inserted into Ii such that Ii + x is independent in Mi. Formally, we have

Fi = {x ∈ Si\Ii : Ii + x ∈ Ii} .

We set F = ∪Fi, and note that F is the set of elements in S\I which can be inserted into I (any
such element might already be in I) and have the set remain independent in the union matroid.
Recall that our goal is to determine whether I + s ∈ I, given some set I which is independent in
the union matroid. We now prove the following theorem, which provides a complete answer to this
question.

Theorem 1 For any s ∈ S\I, we have I + s ∈ I ⇔ there exists a directed path from F to s in D.

Proof: I will first show the (⇐) direction. Suppose that there exists a directed path from F to
s, and let P be a shortest such path. Write the vertices of P as {s0, s1, . . . , sp}. We know that
s0 ∈ F , so WLOG we may assume s0 ∈ F1. For each j = 1, . . . , k, we now define the set of vertices
Sj = {si, si+1 : (si, si+1) ∈ DMj (Ij)}. (Thus, Sj contains the endpoints of the edges of P which
belong to DMj (Ij).)

We now set I ′1 = (I14S1)∪{s0}. For each j > 1, we set I ′j = Ij4Sj . It is clear that ∪jI
′
j = I +s.

Thus, to show that I +s is independent in the matroid union, it suffices to show that I ′j ∈ Ij for each
j. Notice that, since we chose P to be a shortest path, for each j > 1 there is a unique matching
in DMj

(Ij) between the elements we removed and the elements we added to construct I ′j = Ij4Sj .
Thus, since this matching is unique, from our earlier analysis with matroid intersection we know that
the resulting set I ′j ∈ Ij . Similarly, since s0 ∈ F1, we see that I ′1 ∈ I1 (see our analysis for matroid
intersection). Therefore we see that I + s is independent in the matroid union. (Note that the total
number of call to an independence oracle in one iteration of this algorithm is

∑
i(|Ii|)(|Si| − |Ii|)

(since we must construct each of the DMi(Ii) graphs) and thus this algorithm runs in polynomial
time.)

I will now show the (⇒) direction of the proof. Suppose that there is no directed path from
F to s in D. We now set T to be the set of vertices of D from which we can reach s. That is,
T = {x|∃ a directed path from x to s}. By assumption, we have F ∩ T = ∅.

I claim now that for all i, we have |Ii ∩ T | = ri(T ∩ Si). (This statement implies that Ii ∩ T is
a maximal subset of T which is independent in Mi.) Suppose for the sake of contradiction that this
were not the case. Since |Ii ∩ T | = ri(Ii ∩ T ) ≤ ri(T ∩ Si) is clear, the only remaining possibility is
that |Ii∩T | < ri(T ∩Si). This means that there exists an x ∈ T ∩(Si \Ii) such that (Ii∩T )+x ∈ Ii.
But x 6∈ F (since x ∈ T and T ∩ F = ∅) and thus Ii + x 6∈ Ii. Thus (since Ii + x contains a unique
circuit), it must be the case that there exists a y ∈ Ii − T such that Ii + x − y ∈ Ii. However,
this means that (y, x) is an edge in DMi(Ii), which implies that y ∈ T , contradicting the choice of
y ∈ Ii − T . Therefore, we know that for all i, we have |Ii ∩ T | = ri(T ∩ Si).

Notice that, since s ∈ T , we have:

(I + s) ∩ T = (∪Ii + s) ∩ T = ∪(Ii ∩ T ) + s.

From the rank function of a matroid union, we know that

rM (I + s) ≤

[
|(I + s) \ T |+

k∑
i=1

ri(T ∩ Si)

]

rM (I + s) ≤ |(I + s) \ T |+
k∑

i=1

|Ii ∩ T | = |I \ T |+
k∑

i=1

|Ii ∩ T | = |I| < |(I + s)|

and thus (I + s) 6∈ I, as desired. This completes the proof.
�
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2 Basis Exchange and Other Applications of Matroid Union

We will now show several applications of matroid union. We begin by looking at a theorem concerning
“basis exchange.”

Theorem 2 Let M = (S, I) be any matroid, and let B be the collection of all bases of M . Let
B1, B2 ∈ B, and let B1 = X1∪̇Y1 be an arbitrary partition of B1 into two disjoint subsets. Then
there is a partition of B2 = X2∪̇Y2 such that X1 ∪ Y2 ∈ B and X2 ∪ Y1 ∈ B.

Proof: The proof follows from matroid union. Let M1 = M/Y1 be M contracted by Y1, and let
M2 = M/X1 be M contracted by X1. Then we observe that X1 ∈ I1 and Y1 ∈ I2. Therefore, we
see that B1 is independent in the matroid union M1∨M2 = (S, I1∨I2). All that remains is to show
that B2 ∈ I1 ∨ I2, since this will provide an appropriate way of partitioning B2.

We now compute

rM1∨M2(B2) = min
U⊆B2

[|B2 \ U |+ rM1(U − Y1) + rM2(U −X1)]

Notice that for any set A ⊆ S − Y1, we have rM1(A) = rM (A ∪ Y1)− rM (Y1). Thus, we compute

rM1∨M2(B2) = min
U⊆B2

[|B2 \ U |+ rM (U ∪ Y1)− rM (Y1) + rM (U ∪X1)− rM (X1)] .

By using submodularity on rM (U ∪ Y1) + rM (U ∪X1), we conclude

rM1∨M2(B2) ≥ min [|B2 \ U |+ rM (U ∪X1 ∪ Y1) + rM (U)− |Y1| − |X1|] .

Since rM (U) = |U | and rM (U ∪X1 ∪ Y1) = |X1|+ |Y1| (as B1 ∈ B), we conclude that

rM1∨M2(B2) ≥ |B2|

and hence rM1∨M2(B2) = |B2|, so B2 ∈ I1 ∨ I2, as desired. Therefore B2 can be partitioned as
described in the statement of the theorem.

�

We now look at the special case of matroid union where we take the union of k copies of the
same matroid: Mk = M ∨M ∨ · · · ∨M . From our standard rank equation for matroid union, we
have

rMk(U) = min
T⊆U

[|U \ T |+ krM (T )] .

Notice that in the above equation, it suffices to minimize only over “flat” sets T ⊆ U , where T is a
“flat” if span(T ) = T . This is because we only make the above quantity smaller if we can increase
|T | without also increasing rM (T ).

Since rMk(U) is simply the maximum size of the union of subsets U1, U2, . . . Uk ⊆ U with each
Ui ∈ I, we can obtain several immediate results by using the above formula.

Theorem 3 (Matroid base covering) A matroid M can be covered by k bases if and only if
∀T ⊆ S : |T | ≤ krM (T ).

The above theorem is obtained by noting that M can be covered by k bases if and only if
rMk(S) = |S|.

Theorem 4 (Matroid base packing) A matroid M contains k disjoint bases if and only if ∀T ⊆
S : |S \ T | ≥ k[rM (S)− rM (T )].
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The above theorem is obtained by noting that M contains k disoint bases if and only if rMk(S) =
krM (S).

We can obtain two more results by specializing to the case where M is a graphic matroid. Notice
that a flat in a graphic matroid corresponds to picking some disjoint sets of vertices U1, U2, . . . , Ul

of V (these sets need not partition V ) and then taking all edges which lie entirely within a Ui.

Theorem 5 (Nash-Williams) A graph G can be covered by k spanning trees if and only if

∀U ⊆ V : |E(U)| ≤ k(|U | − 1).

Theorem 6 (Tutte, Nash-Williams) A graph G contains k edge-disjoint spanning trees if and
only if for all partitions (V1, . . . , Vp) of V :

|δ(V1, . . . , Vp)| ≥ k(p− 1),

where δ(V1, . . . , Vp) denotes the edges between different members of the partition.

3 Shannon Switching Game

The Shannon Switching Game is played on a graph G = (V,E) with two identified vertices u, v ∈ V .
There are two players, referred to as “cut” and “join.” Turns in the game alternate between players.
On cut’s turn, cut deletes an edge from G. On join’s turn, join fixes an edge so that it cannot be
deleted. Join wins the game if join can fix edges connecting u to v. (Join may also fix additional
edges.) Cut wins the game if join doesn’t. Notice that in this game, it is never disadvantageous to
move. (Cut can be no worse off if the graph has one fewer edge, and join can be no worse off if an
additional edge is fixed.) Therefore, any game falls into one of three categories:

• Join game: Join wins, even if join plays second.

• Cut game: Cut wins, even if cut plays second.

• Neutral game: Whichever player moves first wins.

Lehman [2] generalized this game to matroids and provided characterizations and winning strate-
gies for all types of games. In the graphical case, he inserts an additional edge e into G which connects
u and v. Neither player is allowed to move on this edge. With this new framework, join wants to
create a circuit containing e in M1, and cut wants to create a circuit in the dual M∗ containing e:

M = (E + e, I),M∗ = (E + e, I∗).

In this more general matroid setting, join wants to pick A ⊆ E such that A + e contains a circuit C
of M with e ∈ C. Cut wants to pick B ⊆ E such that B + e contains a circuit C of M∗ with e ∈ C.
This will be discussed in more details in the next lecture.

Edmonds [1] looked at such games in a more general framework over an arbitrary matroid. In
this setting, we have a matroid M = (N ∪̇K, I), where cut and join play on the set N . (The set
K plays the role of {e} in the above example. Join wins if he can get a set A ⊆ N such that
span(A) ⊇ K. Cut wins if join loses.

A special case of the above game is where K spans the entire ground set. In this case, join wants
to get a basis, while cut wants to prevent join from getting a basis. For example, if our matroid is
the graphic matroid, then join wants to get a spanning tree.

Theorem 7 A matroid M = (S, I) is a join game (for the above game, where join wants to get a
basis) if and only if M contains 2 disjoint bases.
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Proof: We first prove the (⇐) direction. Suppose that M contains 2 disjoint bases. It suffices to
give a winning strategy for join if join plays second. Let B1, B2 be disjoint bases of M . On cut’s
turn, cut deletes an element. If cut deletes an element which is in neither B1 nor B2, then join can
play arbitrarily (or we can simply let cut go again.) Suppose that cut deletes an element x ∈ B1. We
want to fix a y ∈ B2 such that B1−x+ y is a basis. This follows from the basis exchange axiom. In
the next round of the game, join wants to build a basis in the matroid M/y (M with y contracted).
We observe that B1 − x, B2 − y are disjoint bases in M/y, and we’re done by induction.

I now prove the (⇒) direction. Suppose that M doesn’t contain 2 disjoint bases. To show that
this is not a join game, I will show that cut can win if cut goes first. Since M doesn’t contain
2 disjoint bases, from Theorem 4 we conclude that there exists a T ⊆ S such that |S \ T | <
2(rM (S) − rM (T )). On cut’s turn, cut always plays in S \ T . Since cut plays first, we see that
cut will get to delete at least half of S \ T . Therefore join will be able to fix strictly less than
rM (S) − rM (T ) elements of S \ T . Therefore, the rank of all of the elements fixed by join will be
strictly less than rM (T ) + (rM (S)− rM (T )) = rM (S), and thus join will not be able to fix a basis.

�

In our original (G, u, v) game (where we had a graph G and vertices u, v given, and join wants
to fix a path between u and v), a similar result can be obtained. It can be shown that (G, u, v) is
a join game if and only if there exist 2 disjoint cotrees spanning u, v. (This means that there are
two disjoint trees spanning the same set of vertices U , with u, v ∈ U .) It is clear that the existence
of 2 disjoint cotrees implies that join has a winning strategy. The other direction is less obvious to
prove. This will be further discussed in the next lecture.
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