Problems

November 24th, 2009

This list of exercises will be updated throughout the term. You need to solve a fraction (to be updated, say 50% for now) of them by December 3rd, 2009.

1. (Corrected.) Show that a 2-connected factor-critical graph $G=(V, E)$ admits a proper odd ear decomposition starting from an odd cycle. Deduce from this that any 2 -connected factor critical graph has $|E|$ linearly independent near perfect matchings (i.e. of size $(|V|-1) / 2$). (By linearly independent, it is meant that their characteristic vectors are linearly independent.)
2. (Corrected.) Consider the matching polytope $P(G)$ of a graph $G=(V, E)$. Show that a blossom constraint

$$
\sum_{e \in E(S)} x_{e} \leq \frac{|S|-1}{2}
$$

induces a facet of $P(G)$ different from those induced either by $x_{e} \geq 0$ for some $e \in E$ or by $x(\delta(v)) \leq 1$ for some $v \in V$ if and only if the graph $(S, E(S))$ is 2-connected and factor-critical. (If you are not familiar with polyhedral arguments, ask me.)
3. Show that every (undirected) graph $G=(V, E)$ with a Hamiltonian cycle (a cycle that contains all vertices) has a nowhere zero 4 -flow.
4. Show that a graph $G=(V, E)$ has a nowhere zero k-flow if and only if there exists an orientation $D=(V, A)$ of G such that, for every $S \subset V,\left|\delta^{+}(S)\right| \geq \frac{1}{k}|\delta(S)|$, where $\delta(S)$ denotes the edges of G between S and $V \backslash S$ and $\delta^{+}(S)$ denotes the arcs of D from S to $V \backslash S$.
5. We have seen in lecture that any rational polyhedral cone C has an integral Hilbert basis. Assume that C is also pointed (i.e. there exists a vector $b \in \mathbb{R}^{n}$ such that $b^{T} x>0$ for all $x \in C \backslash\{0\})$. Show then that

$$
H:=\left\{a \in(C \backslash\{0\}) \cap \mathbb{Z}^{n} \mid a \text { is not the sum of two other integral vectors in } C\right\}
$$

is the unique minimal Hilbert basis of C (i.e. it is a Hilbert basis, and every other Hilbert basis contains all vectors in H).
6. Given a graph $G=(V, E)$, let $\mathcal{I}=\{S \subseteq V$: there exists a matching M covering S (and possibly other vertices) $\}$. Show that (V, \mathcal{I}) defines a matroid.
7. Given a graph $G=(V, E)$, let $\mathcal{I}=\{F \subseteq E| | E(S) \cap F|\leq 2| S \mid-3$ for all $S \subseteq V$ with $|S|>1\}$. Show that (E, \mathcal{I}) defines a matroid.
8. Given a full rank matrix $A \in \mathbb{R}^{n \times n}$ (true also for any field F), let R and C denote the indices of the rows and columns of A. Given $I \subset R$, show using matroid intersection that there exists $J \subset C$ with $|I|=|J|$ such that both $A(I, J)$ and $A(R \backslash I, C \backslash J)$ are of full rank.
9. Consider a submodular function $f: 2^{V} \rightarrow \mathbb{R}$. Let $\mathcal{F}=\{S \subseteq V| | S \mid \equiv 1 \quad(\bmod 2)\}$ and assume that $|V|$ is even. Let S^{*} be a minimal set minimizing f over \mathcal{F}. Show that there exist $a, b \in V$ such that S^{*} is the unique minimal set minimizing f over $\mathcal{C}_{a b}=\{S \subset V \mid a \in S, b \notin S\}$. Derive from this an algorithm for finding S^{*} with a polynomial number of oracle calls to f.
10. Can you find an algorithm for minimizing a submodular function over even sets which are non-empty and not the entire set? This is harder than the previous exercise.
11. (corrected on $11 / 30 / 09$) Suppose we are given an undirected graph $G=(V, E)$, and additional vertex $s \notin V$, an integer k, and we would like to add the minimum number of edges between s and vertices of V (multiple edges are allowed) such that the resulting graph H on $V+s$ has k edge-disjoint paths between any two vertices of V (i.e. the only cut that could possibly have fewer than k edges is the cut separating s from V). Argue that this problem is equivalent to finding $x: V \rightarrow \mathbb{Z}_{+}$minimizing $x(V)$ such that $\forall \emptyset \neq S \subset V$:

$$
x(S) \geq k-d_{E}(S)
$$

where $d_{E}(S)=\left|\delta_{E}(S)\right|$. Show that an optimum x can be found in polynomial time (either use a heavy hammer, or do it delicately with one finger...).
(Hint: Think submodularity... One possibility is to introduce k edges between s and every vertex of V, and consider all the possible subsets to delete that would make the graph appropriately edge connected. Any nice structure?)
12. Using the previous problem with $k \geq 2$, derive an efficient algorithm for finding a minimum number of edges to add to $G=(V, E)$ (without adding an additional vertex) so as to make the resulting multigraph k-edge-connected (there are no restrictions on which edges can be added).
(Argue that if $\gamma=\min x(V)$ in the previous problem then the minimum number of edges to add in this problem is precisely $\lceil\gamma / 2\rceil$.)
13. Given a graph $G=(V, E)$, pairs $\left\{s_{1}, t_{1}\right\}$ and $\left\{s_{2}, t_{2}\right\}$ of vertices, and capacities $c: E \rightarrow \mathbb{R}_{+}$. We would like to find d_{1} and d_{2} maximizing $d_{1}+d_{2}$ and such that there is a multiflow of value d_{1} between s_{1} and t_{2} and of value d_{2} between s_{2} and t_{2}. Prove that the max of $d_{1}+d_{2}$ equals the minimum capacity of a cut separating both pairs $\left\{s_{1}, t_{1}\right\}$ and $\left\{s_{2}, t_{2}\right\}$ (thus either s_{1}, s_{2} is on one side (and t_{1}, t_{2} on the other), or s_{1}, t_{2} is one of the side). Furthermore argue that the maximum multiflow can be chosen to be half integral.

