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Combining this with the inequality (see Exercise 3.66)
u(5(5)) +u(3(Q)) > u(6(SUQ)) +u(d(SN Q)

we can conclude that

u(3(SNQ)) < u(d(Q))-
i

This allows us to reduce the problem to two problems on smaller graphs. To
see this, let G' be the graph obtained by shrinking 1\ S to a single {ll(.")w‘) node
and let T = T'\ S and u! = u, for all e € E(G"). Similarly,qlet G* bf the
graph obtained by shrinking S to a single (new) node }.\II'I(J let T* =TNS and
u? = u, for all e € E(G?). Then the minimum T—ch in G can be found by
solving the minimum T-cut problem in G and the minimum 7*-cut problem
in G2 o

We solve the two new problems with the same procedure; splitting them
into further subproblems if necessary.

Since we can find S and build G* and G? in polynomial time, it follows
by induction on |7'| that the whole procedure runs in polynomial time. (See
Exercise 6.37.) .

As one would expect, the minimum T-cut algorithm performs poorly in
practice for larger test instances. A more efficient a]ternat.ive {actually, the
algorithm proposed by Padberg and Rao), works by eomputing a Gomory-Hu
cut-tree, as described in Exercise 6.39.

Exercises

6.37. Show that the minimum T-cut algorithm runs in time O(n®). (Hint:
Use induction and the fact that |T| = [T + |T?|.)

6.38. Suppose that we are given a vector & € RY satisfying the initial valid
inequalities (6.23) for the stable set polytope of_G.: (v E) Show how to
reduce the separation problem for the odd circuit inequalities to the prgb-
lem of finding a minimum weight odd circuit in a graph having fhmnegatnve
edge weights. Show that the latter problem can be solved using shortest
path methods. (See Exercise 2.38).

6.39. Let G = (V, E) be a graph, T C V with |[T| even, and u € RF a
nonnegative capacity function. Consider a Gomory-Hu cut-tree H with T
as the set of terminals., Show that there exists an edge e of f such that the
bipartition of V' defined by the two components of H \ e gives a minimum
T-cut.

CHAPTER 7

The Traveling Salesman Problem

7.1 INTRODUCTION

In the general form of the traveling salesman problem, we are given a finite
set of points V" and a cost ¢y, of travel between each pair v,v € V. A tour
is a circuit that passes exactly once through each point in V. The traveling
salesman problem (TSP) is to find a tour of minimal cost.

The TSP can be modeled as a graph problem by considering a complete
graph G = (V. E), and assigning each edge uv € E the cost ¢,.. A tour is then
a circuit in G that meets every node. In this context, tours are sometimes
called Hamiltonian circuits.

The TSP is one of the best known problems of combinatorial optimization.
A nice collection of papers tracing the history and research on the problem
can be found in Lawler, Lenstra, Rinnooy Kan, and Shmoys [1985].

Unlike the cases of matching or network flows, no polynomial-time algo-
rithm is known for solving the TSP in general. Indeed, it belongs to the
class of N"P-hard problems, which we describe in Chapter 9. Consequently,
many people believe that no such efficient solution method exists, for such an
algorithm would imply that we could solve virtually every problem in combi-
natorial optimization in polynomial time.

Nevertheless, TSPs do arise in practice, and relatively large ones can now be
solved efficiently to optimality. In this chapter we discuss how. We will illus-
trate the methods on the 1173-node Euclidean problem depicted in Figure 7.1.
Although this problem is smaller than the largest solved so far (as of August
1994, the record is 7397 nodes (Applegate, Bixby, Chvatal, Cook [1995])), it
is still of a respectable size. The node coordinates for this instance are con-
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Figure 7.1. Sample TSP

tained in the “TSPLIB” library of test problems described in Reinelt [1991].
We encourage readers to try out some of their own methods.

Whereas in prior chapters, we were often able to describe polynomial-time
algorithms that also performed well in practice, in this chapter we discuss
algorithms which do work well empirically, but for which only very weak
guarantees can be provided.

7.2 HEURISTICS FOR THE TSP

Heuristics are methods which cannot be guaranteed to produce optimal solu-
tions, but which, we hope, produce fairly good solutions at least some of the
time. For the TSP, there are two different types of heuristics. The first at-
tempts to construct a “good” tour from scratch. The second tries to improve
an existing tour, by means of “local” improvements. In practice it seems very
difficult to get a really good tour construction method. It is the second type of
method, in particular, an algorithm developed by Lin and Kernighan [1973],
which usually results in the best solutions and forms the basis of the most
effective computer codes.

Nearest Neighbor Algorithm

In Chapter 1 we described the Nearest Neighbor Algorithm for the TSP:
Start at any node; visit the nearest node not yet visited, then return to the
start node when all other nodes are visited. Applying it to our test problem,
we obtain the tour of cost 67,822 that is exhibited in Figure 1.1. Note that
the tour includes some very expensive edges. In practice, this almost always
seems to happen when we use the Nearest Neighbor Algorithm.

b
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Johnson, Bentley, McGeoch, and Rothberg [1997] report that on problems
in TSPLIB, the average costs of the tours found by the Nearest Neighbor
Algorithm are about 1.26 times the costs of the corresponding optimal tours.
Thus, for some applications, Nearest Neighbor may be an effective method: It
is easy to implement, runs quickly, and usually produces tours of reasonable
quality. It should be noted, however, that the “1.26 times optimal” estimate
is an empirical observation, not a performance guarantee. Indeed, it is easy
to construct problems on only four nodes for which the Nearest Neighbor Al-
gorithm can produce a tour of cost arbitrarily many times that of the optimal
tour. (See Exercise 7.2.)

To obtain a guaranteed bound, we need to assume that the edge costs are
nonnegative and satisfy the triangle inequality:

Cup + Cyw = Cuw, for all u,v,w e V.

In this case, Rosenkrantz, Stearns, and Lewis [1977] show that a Nearest
Neighbor tour is never more than %Hog-_-n] + % times the optimum, where n
is the cardinality of V.

This bound may seem very weak (particularly when compared to the 1.26
observed bound on the TSPLIB problems), but Rosenkrantz, Stearns, and
Lewis [1977] proved that we cannot do much better. They showed this by
describing a family of problems with nonnegative costs satisfying the triangle
inequality and with arbitrarily many nodes, such that the Nearest Neighbor
Algorithm can produce a tour of cost 3 [loga(n +1) + §] times the optimum.
This result shows that if we wish to give a worst case bound on the perfor-
mance of this heuristic, the bound we get is so bad that it is not of much
practical interest.

The proofs of the two results are not hard, but they are technical and we
refer the reader to the reference cited above.

Insertion Methods

Insertion methods provide a different set of tour construction heuristics.
They start with a tour joining two of the nodes, then add the remaining
nodes one by one, in such a way that the tour cost is increased by a minimum
amount. There are several variations, depending on which two nodes are
chosen to start, and more importantly, which node is chosen to be inserted at
each stage.

In practice, usually the best insertion method is Farthest Insertion. In this
case, we start with an initial tour passing through two nodes that are the ends
of some high-cost edge. For each uninserted node v, we compute the minimum
cost between v and any node in the tour constructed thus far. Then we choose
as the next node to be inserted the one for which this cost is mazimum.

At first, this may seem counterintuitive. However, in practice, it often
works well. This is probably because a rough shape of the final tour to be
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produced is obtained quite early, and in later stages, only relatively slight
modifications are made.

Nearest Insertion is a heuristic which, at each stage, chooses as the next
node to insert the one for which the cost to any node in the tour is minimum.

Another variant is Cheapest Insertion. In this case, the next node for
insertion is the one that increases the tour cost the least.

Usually the solutions produced by Nearest Insertion and Cheapest Insertion
are inferior to those produced by Farthest Insertion. In Figures 7.2 and 7.3
we show the results of applying Nearest Insertion and Farthest Insertion to
our test problem. On the TSPLIB problems, Johnson, Bentley, McGeoch,
and Rothberg [1997] report that, on average, Farthest Insertion found tours
of length about 1.16 times that of the optimal tours.
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Figure 7.2. Sample TSP and Nearest Insertion solution: 72337

An extensive worst-case analysis of various insertion heuristics is provided
in Rosenkrantz, Stearns, and Lewis [1977]. They prove that any insertion
heuristic produces a solution whose value is at most [logan] + 1 times the
optimum, for a problem with n nodes (for which the edge costs are nonneg-
ative and satisfy the triangle inequality). They show, further, that Cheapest
Insertion and Nearest Insertion always produce solutions whose costs are at
most twice the optimum. They also give an example which shows that this
bound is essentially tight. See the above reference for details.

Interestingly, no examples are known which force any insertion method to
construct a tour of cost more than four times that of the optimum. Also, in
spite of the fact that Farthest Insertion usually produces the best solutions of
any insertion method, no better worst case bound has been established for it
than for insertion methods in general.
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Figure 7.3. Sample TSP and Farthest Insertion solutiou: 65980
Christofides’ Heuristic

We describe one more tour construction method, due to Christofides [1976].
It- has the best worst case bound of any known method: It always produces
a solution of cost at most 2 times the optimum (assuming that the graph is
complete and the costs are nonnegative and satisfy the triangle inequality).

The algorithm begins by finding a minimum-cost spanning tree, T, of G
using, for example, Kruskal's Algorithm. The edges in T will be used in a
search for a good tour.

Let I be the set of nodes which have odd degree in T, and find a perfect
matching M of G[W], the subgraph of G induced by W, which is of minimum
cost with respect to c.

Now let J consist of E(T) U M, where, if some edge is in both T and M,
we take two copies of the edge. Then J is the edge-set of a connected graph
with node-set V' for which each node has even degree. If all nodes have degree
2, then J is the edge-set of a tour and we terminate with it. If not, let v
be any node of degree at least 4 in (V,.JJ). Then there are edges uv and vw
such that if we delete these edges from J and add the edge uw to J, then the
subgraph remains connected. Moreover, the new subgraph has even degree at
each node. (This is because the subgraph induced by .J has an Euler tour; we
choose uv and vw to be consecutive edges of the tour.) Make this “shortcut”
and repeat this process until all nodes are incident with two edges of J.

Theorem 7.1 Suppose we have a TSP with nonnegative costs satisfying the
triangle inequality. Then any tour constructed by Christofides’ Heuristic has
cost at most % times the cost of an optimal tour.
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Proof: Let H™ be an optimal tour. Removing any edge from H* yields a
spanning tree, so the cost ¢(T) of a minimum-cost spanning tree T is at most
¢(H"). We can define a circuit C' on the set W of odd nodes of T' by joining
these nodes in the order they appear in H*. Note that |[I¥] is even and the
edge-set of C' partitions into two perfect matchings of G[W]. Since e satisfies
the triangle inequality, each edge of these matchings has cost no greater than
the corresponding subpath of H*. Therefore one of these matchings has cost
at most c(H")/2. This implies that the cost of the minimum-cost perfect
matching M of G[IV] is at most ¢(H")/2. Thus ¢(J) < % -e(H*). Since
shorteutting can only improve ¢(J), the final tour produced also has cost at
most :f ~e(H™), as required. |

In the Johnson, Bentley, McGeoch, and Rothberg [1997] tests on the TSPLIB
problems, Christofides’ Heuristic produced tours that were about 1.14 times
the optimum. They also made the interesting discovery that if at each short-
cut step the best shortcut for the given node is chosen, then the performance
of the algorithm improves to 1.09 times the optimum.

Tour Improvement Methods: 2-opt and 3-opt

There are several standard methods for attempting to improve an existing
tour T. The simplest is called 2-opt. It proceeds by considering each nonad-
jacent pair of edges of T' in turn. If these edges are deleted, then T breaks up
into two paths T7 and T». There is a unique way that these two paths can
be recombined to form a new tour T', If ¢(7T") < ¢(T), then we replace T
with T and repeat. This process is called a 2-interchange. See Figure 7.4.
If e(T") > e(T) for every choice of pairs of nonadjacent edges, then T' is
2-optimal and we terminate.

Figure 7.4. 2-interchange

For a general cost function, in order to check whether a tour is 2-optimal
we check O(|V|?) pairs of edges. For each pair, the work required to see if
the switch decreases the tour cost can be performed in constant time. Thus
the amount of time required to check a tour for 2-optimality is O(|V]?). But
this does not mean that we can transform a tour into a 2-optimal tour in
polynomial time. Indeed, Papadimitriou and Steiglitz [1977] show that if
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we make unfortunate choices, we may in some cases perform an exponential
number of interchanges, before a 2-optimal tour is found.

The 2-opt algorithm can be generalized naturally to a k-opt algorithm,
wherein we consider all subsets of the edge-set of a tour of size k, or size at
most k, remove each subset in turn, then see if the resulting paths can be
recombined to form a tour of lesser cost. The problem is that the number of
subsets grows exponentially with k, and we soon reach a point of diminishing
return. For this reason, k-opt for k > 3 is seldom used.

Johnson, Bentley. McGeoch, and Rothberg [1997] report that on the TSPLIB
problems, 2-opt produces tours.about 1.06 times the optimum and 3-opt about
1.04 times the optimum.

Tour Improvement Methods: Lin-Kernighan

Lin and Kernighan [1973] developed a heuristic which works extremely
well in practice. It is basically a k-opt methad with two novel features. First,
the value of & is allowed to vary. Second, when an improvement is found,
it is not necessarily used immediately. Rather the search continues in hopes
of finding an even greater improvement. In order to describe it, we require
several definitions.

A d0-path in a graph G on n nodes is a path containing n edges and n + 1
nodes all of which are distinet except for the last one, which. will appear
somewhere earlier in the path. See Figure 7.5. (The name comes from the
shape of the path.)

7> -
w W
F r
.
P T(P) prv

Figure 7.5. §-path

Note that a tour is a d-path for which the last node is the same as the first
node. If P is a d-path which is not a tour, then we can obtain a tour T(P)
as follows. Let w be the last node of the path (which also appears earlier
in the path). Let wr be the first edge of the subpath of P between the two
occurrences of w. By removing the edge wr and adding the edge joining r to
the first node of the path, we obtain the edge set of a tour. See Figure 7.5.

Suppose that P is a d-path which is not a tour. Again, let w be the last node
and let wr be the first edge of the subpath of P between the two occurrences
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of w. If we remove wr we obtain the edge-set of a path ending at r. If we then
add one more edge rv and node v, we obtain a new d-path P™ ending at v.
We call this operation an rv-switch. Note that ¢(P™) = c(P) + ey — Cur.
Again, see Figure 7.5.

The Lin-Kernighan heuristic starts with a tour and then constructs a se-
quence of non-tour d-paths, each obtained from the preceding one by an ru-
switch. For each 8-path P so produced, it computes the cost of T(P). If this
is better than the best tour known, then it is “remembered.” When the scan
is complete, it replaces the starting tour with the best tour found in the scan.
A full description of the Core Lin-Kernighan Heuristic is given below.

Step 1 [Outer loop: node/edge pairs]. For each node v of G, for each of the
two edges uv of T incident with v in turn, perform Steps 2 through 5 in an
attempt to obtain an improvement. This process is called an edge scan.

Step 2 [Initialize edge scan]. Initially, the best tour found is T'. Let wg = .
Remove edge ugv and add an edge ugwy, for some wy # v, provided that
stich a wo can be found for which cyuy < €uge- If no such wy can be found,

then this scan is complete and we go on to the next node/edge pair.
We now have a d-path P® (with last edge ugwg) and ¢(P°) < ¢(T). Set
i = 0 and proceed to Step 3.

Step 3 [Test tour]. Construct the tour T(P*). If ¢(T(P")) is less than the
cost of the best tour found so far, then store this as the new best tour
found so far. In either case, proceed to the next step.

Step 4 [Build next §-path]. Let u;y; be the neighbor of w; in P? which
belongs to the subpath joining w; to u;. If the edge wju,+y was an edge
added to a é-path in this iteration, then go to Step 5 and stop this scan.
Otherwise, try to find a node wiy, such that w..ywig s not in T and
when we perform the wu; w4 -switch, the new d-path P with last
edge 1,41 wiry, we obtain has cost no greater than that of T. Again, if no
such w;+; can be found, we go to Step 5 and stop this scan. But if we are
successful, then we set i = i + 1 and go back to Step 3. (See Figure 7.6.)

Step 5 [End of node/edge scan]. If we have found a tour whose cost is less
than that of T, replace T' with the minimum cost such tour found. If there
remain untested node/edge combinations, then return to Step 2 and try

the next.

Now let us make a few comments. First, note that in the process of a single
node/edge scan, for any given edge. we can either add it to a é-path or remove
it from a &-path but not both. Thus it makes sense to speak of added and
removed edges. Each successive d-path generated will have cost no greater
than that of T, the initial tour. This is equivalent to saying that the sum of
the costs of removed edges minus the sum of the cost of added edges is kept
nonnegative, This difference is sometimes called the gain sum.

T

HEURISTICS FOR THE TSP 249

W
i+l

Figure 7.6, Construction of next d-path

Notice that when a better tour T'(P') is found, we do not immediately
abandon the process. Rather we continue looking for an even better comple-
tion.

In Steps 2 and 4 we chose a node w;y,, subject to certain conditions. In
general there will be many possible choices for these nodes. It may be too time
consuming to try all possibilities at each stage, so Lin and Kerniéhan suggest
the following compromise, intended to limit the amount of back-tracking. For
each candidate w, compute [(w) = Cuwuipy — Cujpyws Where ;o is the node
which would be selected the next time through this step. Note that Ujpo 1S
completely determined. When choosing each of wy and w;, we consider in
turn each of the five candidates w for which [(w) is maximum. For all sub-
sequent iterations, we consider only the best candidate. Thus in the process
of scanning associated with a single node/edge pair, we will in fact consider
as many as 25 choices for the first two edges to be switched in. For each we
completely follow its chain of switches. If a better tour is found, then T is
replaced and we start over. If not, we go on to the next.

They recommend one additional modification to the above core. The first
time Step 4 is executed, when we choose u,, we consider a second alternative.
This is the neighbor of wy in the path back to v. Now removing the edge
uwo yields a circuit and a path joining v and u;. By joining u, to a node
wy in the circuit, we obtain once again a d-path starting from v. (We may
orient the J-path in either direction around the circnit.) We choose the best
such wy, according to the above criterion. See Figure 7.7(a). Going one step
further in this situation, they also allow w, to be a node in the path joining
v and u; (rather than in the circuit). In this case, we let us be the first node
on the subpath from w; to uy, delete the edge wyus, and form a d-path by
letting wy be a node in the circuit. See Figure 7.7(b).

This completes the description of the core algorithm. There is a wide
range of possible modifications to the core that can be considered. Some
interesting variants are described in Johnson and McGeoch [1997], Mak and
Morton [1993], and Reinelt [1994].

. To produce a very good quality tour, we need to embed the core algorithm
into a larger search procedure. Lin and Kernighan propose running the core
repeatedly, starting from many different tours. They also propose several
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(a) (b)

Figure 7.7. Extra first step

different methods for reducing the total amount of work required by these
many runs of the core routine. _

An alternative has been proposed by Martin, Otto, and Felten [1992] which
seems to work very well in practice. Each time we complete a run of the core
routine and hence have a “locally optimum” tour, T, we apply to it a “kick”
that will perturb the tour so that it is likely to no longer be locally optimal. We
then rerun the core routine from this new tour. If the core routine produces
a new tour T" that is cheaper than T, then we replace T by T', and repeat
the kicking process with this new tour. Otherwise, we go back and repeat the
process with our best tour T o

One kick that they propose is a 4-interchange that the core routine is
incapable of performing. It consists of randomly choosing four nonadjacent
edges ugty, Uy vy, Uata, uzvy of the tour where we assume that the nodes appear
in the above order on the tour. We remove these edges and add the edges
woUa, Uy U3, Uatp. uzvy. See Figure 7.8. This becomes our new starting tour.
Its cost will probably be much worse than that of the old local optimum, but
it does provide a new starting point to rerun the core routine.

Figure 7.8. 4-interchange to restart core

This procedure is called Chained Lin-Kernighan. Martin and Otto [1996)
describe it in a general context for search procedures for combinatorial opti-
mization. One point that they make is that it may be helpful to replace T'
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by T" even when T" is slightly more expensive than 7. This added flexibility
may allow the procedure to break away from a locally optimal tour that does
not seem to permit good kicks. The rule they suggest is to replace T by T”
with a certain probability that depends on the difference in the costs of the
two tours and on the number of iterations of the procedure that have already
been carried out.

Natice that Chained Lin-Kernighan is not a finite algorithm, since we have
not provided any stopping rules. We would normally let it run until we see a
long period with no improvement. Sometimes, however, we have available a
good lower bound on the optimum solution cost, which will permit us to stop
sooner. Obtaining such bounds is the subject of the next two sections.

The result of applying this method to our test problem is shown in Fig-
ure 7.9. On the TSPLIB problems, Johnson, Bentley, McGeoch, and Roth-
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Figure 7.9. Sample TSP and Chaitied Lin Kernighan solution: 56892

berg [1997] report that Lin-Kernighan produces tours about 1.02 times the
optimum, and Chained Lin-Kernighan under 1.01 times the optimum.

Running Times

The methods described above can all be implemented to run efficiently,
even for quite large problems. We refer the reader to the extensive treatment
of this subject by Johnson, Bentley, McGeoch, and Rothberg [1997]. They
report, for example, that on a randomly generated 10,000-node Euclidean
problem, running times on a fast workstation (that is, fast in 1994), are 0.3
seconds for Nearest Neighbor, 7.0 seconds for Farthest Insertion, 41.9 seconds
for Christofides’ Heuristic, 3.8 seconds for 2-opt, 4.8 seconds for 3-opt, and
9.7 seconds for Lin-Kernighan.
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Exercises

7.1. Let G = (V, E) be a graph and ¢ € RE. Show that the problem of finding
a minimum-cost Hamiltonian circuit in ¢ can be formulated as a TSP,

2. Show that if we have a TSP on n nodes for which the triangle inequal-
ity does not hold, then the ratio of the cost of the solution produced by
the Nearest Neighbor Algorithm to the cost of an optimal tour can be
arbitrarily large.

-3

7.3. A variant on the TSP permits a node to be visited more than once if
it results in a better solution. Show that if the cost function satisfies
the triangle inequality, then there is always an optimum solution which
visits each node exactly once. Show that if the triangle inequality does not
hold, this problem can be solved by solving a TSP for which the triangle
inequality does hold.

4. Show that if we have a Euclidean TSP, then a tour is 2-optimal only if it
never crosses itself. but the converse is false.

=]

7.5. Use the following example to show that the factor 3/2 in Theorem 7.1
cannot be decreased. Let V' = {vy, va,... vy} and define ¢,,,, to be [(|i -
Jl+1)/2] for i # j.

7.6. (Van Leeuwen and Schoone) Let V' be any set of n nodes in the Euclidean
plane and let T be any tour on these points. Suppose we attempt to obtain
a noncrossing tour by choosing any pair of edges which cross and then
performing a 2-interchange to uncross them. Show that the total number
of crossings can be increased by such an operation. Show that after at most
[V|? uncrossings, we necessarily obtain a noncrossing tour. (Hint: For each
edge, viewed as a line segment, count the number of [infinite] lines that can
be drawn through two cities so as to intersect that segment. Show that the
removal of a crossing always reduces the total count, for all edges, by at
least one.)

7.7. Show that if we consider all choices for w;4; in Step 4 of the Core Lin-
Kernighan Heuristic, then the resulting solution will always be 3-optimal
but need not be 4-optimal. Show that the version described here (core
only) need not be 3-optimal.

7.3 LOWER BOUNDS

We have emphasized the use of min-max relations in procedures for computing
optimal solutions to combinatorial problems. The lower bound provided by
the “max” side of the relation gives a proof of the optimality of the solution
given in the “min” side. Unfortunately, for the TSP and many other problems
known to be just as difficult as the TSP (see Chapter 9), no such min-max
relation is known. Nonetheless it is important in some practical situations to
give lower bounds as a measure of the quality of a proposed solution.
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Held and Karp

A classic approach to lower bounds for the TSP involves the computation of
minimum-cost spanning trees. The general technique is standard: To obtain
a lower bound on a difficult problem we relax its constraints until we arrive
at a problem that we know how to solve efficiently. In this case, the idea is
that if we remove from a given tour the two edges incident with a particular
node, then we are left with a path running through the remaining nodes.
Although we do not in general know how to compute such a “spanning path”
of minimum cost (it is just as hard as the TSP), we do know how to compute
a minimum-cost spanning tree, and this will give us a lower bound on the cost
of the path.

More precisely, suppose we have a graph G = (V, E) with edge costs (c, :
e€ E)and atour T C E. Let vy € V, let e and f be the two edges in T
that are incident with vy, and let P be the edge-set of the path obtained by
removing e and f from T'. The cost of T can be written as ¢, + ¢y + ¢(P).
So if we have numbers A and B such that 4 < e. + ¢; and B < ¢(P), then
A+ B will be a lower bound on the cost of the tour T. Qur goal is to define
A and B so that they are valid for all choices of T. In this way, we will obtain
a lower bound for all tours.

So, what can we say about the edges e and f7 Since all we know is that
they both are incident with v;, we can do no better than to set A equal to
the sum of the costs of the two cheapest edges in E incident with that node.

The interesting part is the bound on ¢(P). Notice that P is a spanning
tree (albeit of a special form) for the graph G \ v; we get by deleting v,
and the incident edges from G. Thus, if we let B be the minimum cost of a
spanning tree in G\ v; (which we can compute with the methods described in
Chapter 2), then we know that P must have cost at least B. So we have our
bound, A + B. This is commonly called the I-tree bound and a set of edges
consisting of two edges incident with node v; plus a spanning tree of G\ v; is
called a I-tree. The name comes from the usual practice of denoting the node
that we delete as node vy or node “1.” We can summarize this discussion as
follows.

I-tree Bound
Let G = (V, E) with cige costs (c. : e € E) and let v, € V. Now
let 4 =min{e, +c¢s:e, f € d(vy),e# f} and let B be the cost of a
minimum spanning tree in G\ v;. Then A + B is a lower bound for
the TSP on G.

A minimum-cost 1-tree for the 1173-node problem is illustrated in Fig-
ure 7.10. (The node v; is in the lower right-hand corner of the figure, and is
drawn larger than the other nodes.) Its value is approximately 90.5% of the
cost of the best tour reported above. Although this is quite respectable, it
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leaves a rather large gap between the upper and lower bounds. To improve
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Figure 7.10. Sample TSP and I-tree bound: 51488

this we might try several different nodes as “node v,,” but for larger prob-
lems, like our test problem, this will not result in a significant gain. The key
to obtaining a real improvement can be found by examining the structure of
the 1-tree in Figure 7.10. What catches your eye is that the optimal 1-tree
does not at all resemble a tour: Many nodes do not have degree 2. We can
use this to our advantage.

To see clearly what is happening, consider the small example given in
Figure 7.11. With »; chosen as indicated, the 1-tree bound is 0. As you can

Figure 7.11. An optimal l-tree

see, however, the cheapest tour has cost 10. What went wrong is that the
spanning tree in G’ can use all three of the 0 cost edges incident with node
u, whereas a tour can only make use of two of them. There is a way around
this problem, although at first it may seem like a sleight of hand.
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What would happen if we added 10 to the cost of each of the edges incident
with node u? Every tour uses exactly two of these edges, so the cost of every
tour increases by precisely 20. So, as far as the TSP goes, we have not really
changed anything: The old tour is still optimal, its cost now being 30. But
what has happened to the 1-tree bound? A simple computation shows that
it also has value 30. So we have a simple proof that no tour in the altered
graph can have cost less than 30. This means that no tour in the original
graph can have cost less than 10! By this simple transformation we have
therefore increased the lower bound from 0 to 10. The point is that although
the transformation does not alter the TSP, it does fundamentally alter the
minimum spanning tree computation.

In the above example, we say that we “assigned u the node number —10.”
That is, we refer to the process of subtracting k from the cost of each edge
incident with a given node v as assigning v the node number k. Notice that
we could assign several node numbers at once. The change in the cost of
any tour will just be twice the sum of the assigned numbers. With this fact,
we can formally state a lower bounding technique, introduced by Held and
Karp [1970].

Held-Karp Bound
Let G = (V, E) be a graph with edge costs (e, : e € E), let v, € V,
and for each node v € V' let y, be a real number. Now for each edge
e=uv € E let ¢, = ¢, —y, —y, and let C be the 1-tree bound for G
with respect to the edge costs (¢, : e € E). Then 23 (y, :v € V)+C
is a lower bound for the TSP on G (with respect to the original edge
costs (e, : e € E)).

With a good set of node numbers, the difference between the Held-Karp
lower bound and the 1-tree lower bound can be dramatic, as we indicate in
Figure 7.12 for our 1173-node test problem. The 56349 bound we obtained in
this way implies that the 56892-cost tour we found in the previous section is
no more than 1% above the cost of an optimal tour.

For the important computational issue of how to find a good set of numbers,
Held and Karp [1971] proposed a simple iterative scheme. The main step is
the following. Suppose we have computed an optimum 1-tree T with respect
to the altered edge costs (cuy — ¥u — Yo : v € V') for some set of node numbers
(yv : v € V). For each node v € V, let dr(v) denote the number of edges of
T that are incident with v. Based on our above discussion, if dr(v) is greater
than 2 then we should decrease y, and if dr(v) is equal to 1 (it cannot be less
than 1) we should increase y,. This is just what Held and Karp tell us to do:
For each node v, replace y, by

Yo + t(? - dT(vJ)

for some positive real number t (the step size).
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Figure 7.12. Sample TSP and Held-Karp bound: 56349

By iterating this step, we obtain a sequence of Held-Karp lower bounds.
Although it is not true that the bound improves at each iteration, under cer-
tain natural conditions on the choice of the step sizes it can be shown that
the bound will converge to the optimum Held-Karp bound (that is, the max-
imum Held-Karp bound over all choices of node numbers). (See Held, Wolfe,
and Crowder [1974].) Unfortunately, no conditions are known that guaran-
tee the convergence will occur in polynomial time. But all is not lost. As
reported in Grotschel and Holland [1988], Holland [1987], Smith and Thomp-
son [1977], and elsewhere, several ways of selecting the step sizes have shown
good performance in practice. We describe one such method.

Motivated by geometrical considerations, at the kth iteration Held and
Karp [1971] suggest the step size

) = oW (U - H)/ S (2 - dr(v))* :ve V)

where U is some target value (an upper bound on the cost of a minimum
tour), H is the current Held-Karp bound, and a'*) is a real number satisfying
0 < o'®) < 2. Following Held, Wolfe, and Crowder [1974], we start with
a'® = 2 and decrease a'®) by some fixed factor after every block of iterations,
where the size of a block depends on the number of nodes in the TSP we
are solving and the amount of computation time we are willing to spend on
obtaining the lower bound.

The entire method is summarized in the box below.

¥
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Held-Karp Tterative Method
Input
Graph: G = (1, E) with edge costs (
Real number: [/ (a target value)
Positive real number: ITERATIONFACTOR (for
example, 0.015)
Positive integer: MAXCHANGES (for example, 100)
Initialization
Yo =0VYv eV, H* = —co, TSMALL = 0.001, «a =2, 8=0.5
NUMITERATIONS = ITERATIONFACTOR x|V
Algorithm
For i =1 to MAXCHANGES
For k = 1 to NUMITERATIONS
Let T be the optimum 1-tree with respect to the
edge costs (cyy — Yu — Yy : uv € E) and let H
be the corresponding Held-Karp bound;
If H > H*, then set H* = H (improvement);
If T is a tour, thon STOP.
Let f‘“*aU H)/3((2 — dr(v))?
If t'*) < TSM ALL, then STOP.
Replace y, by y, + t"¥(2— dr(v)) for all v € V;
Replace a by fa;

ce:e€Elandu, eV

v EV);

If you carry out experiments with this method, you will notice that the
bound you obtain for a given graph and edge costs will depend on the choices
of the input parameters (particularly the target value U'). Only experimenting
with the settings will allow you to optimize the method for a particular class
of problems. Also, you should keep in mind that many other choices for the
step sizes are possible, and experiments may suggest an alternative scheme
that performs better on your problems.

Linear Programming

Dantzig, Fulkerson, and Johnson [1954] proposed to attack the TSP with
linear-programming methods. The approach they outlined is still the most
effective method known for computing good lower bounds for the TSP. Their
work also plays a very important role in the history of combinatorial opti-
mization since it was the first time cutting-plane methods were used to solve
a combinatorial problem. We will discuss their method further in the next
section, but here we present their linear-programming relaxation to the TSP.

Let x be the characteristic vector of a tour. Then r satisfies

o(d(v)) =2, forallveV
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Box 7.1: Lagrangean Reluration

The Held-Karp lower bounding technique is an instance of a general
integer programming method known as Lagrangean relazation (Held
and Karp [1971]). The method is appropriate for integer programming
problems max {w?z : Ar < b,r integral } for which the constraints
Ar < b can be split into two parts, 41z < by and Asx < bo, in such
a way that “relaxed” problems of the form max {cTz : Ayz < ba,x
integral } can be solved efficiently. The method is based on the obser-
vation that for any vector y > 0 (where the number of components of
y matches the number of inequalities in 4z < by) the value

L(y) = yTby + max {(w —yT A1) Tz : Ayxr < by, z integral }

is an upper bound on the original integer programming problem (since
yThy > yT A z). By assumption, for any given vector y we can eas-
ily compute L(y), so what we need is a way to find a good y (that
is, one that gives a strong upper bound L(y)). This can be accom-
plished with a general iterative technique called subgradient optimiza-
tion (Polyak [1967], Held and Karp [1971], Held, Wolfe, and Crow-
der [1974]). The kth step of the subgradient method is the following.
Having the vector y'®), we compute an optimal solution %) to the
problem

max{(w — y(")r}.-lfz : Aoz < by, x integral }.
Now, for a specified step size t'¥) we let
y(k+1) — y(k) _ t(k)(bl _ __hz(k))

and go on to the (k + 1)st step. Polyak [1967] has shown that if the
step sizes t(® (1) .. are chosen so that they converge to 0 but not too
fast (namely limg o0 t'¥) = 0 and 37, /%) = o), then the sequence
of upper bounds produced by the subgradient method converges to
the optimal L(y) bound.
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0< 3, £1, forall ee E.

It is not true, however, that tours are the only integer solutions to this system,
since every 2-factor (that is, disjoint union of circuits meeting all of the nodes)
will appear in the solution set. To forbid these non-tours, we can add the
inequalities

2(5(8)) > 2, forall 0 £ S #V

since any tour must both enter and leave such a set S, and thus will contain at
least two edges from 4(S). These inequalities are known as subtour constraints
since they forbid small circuits (or “subtours™).

The Dantzig, Fulkerson, and Johnson relaxation of the TSP is

Minimize % (c.z. :e € E) (7.1)
subject to
z(6(v)) =2, forallve V
z(6(S) =2, forall 0 #S #V
0<z. <1, forallee E.

Note that any integral solution to (7.1) is a tour, so (7.1) can be used to create
an integer-linear-programming formulation of the TSP. What is important for
us, however, is that the optimal value of (7.1) is a lower bound on the cost of
any tour. We call this the subtour bound for the TSP. We show below that
the subtour bound is equal to the optimal Held-Karp bound!

To start off, choose some node v; € V' and notice that we can restrict the
set of subtour constraints to those sets S that do not contain v, since the
constraints for S and V' \ S are identical. Furthermore, making use of the
equations r(d(v)) = 2, we can write the subtour constraints in the “inside”
form

z(y(S5)) <[5 -1
(see Exercise 7.11). Also, the equation

2(y(V\{m}) = V]| -2

is implied by the equations z(d(v)) = 2, and thus can be added as a redundant
constraint to (7.1).
With these modifications, we can write (7.1) as

Minimize % (c.z. :e € E) (7.2)
subject to

z(6(v)) =2, forallve V (7.3)

z(y(8) LS| -1, foral SCV, v, €8 (7.4)

2V \ {}) = [V] - 2 (7.5)

0<z,<1, forallee E. (7.6)
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These constraints look similar to the constraints of a linear-programming
problem we saw in Chapter 2. Indeed, if we remove the equations (7.3) and the
variables corresponding to the edges in d(v; ), then we are left with the defining
system for the convex hull of the spanning trees in the graph G[V'\ {v, }. This
is the connection with the Held-Karp bound. More directly, we can conclude
that the cost of a minimum 1-tree in G is equal to

min {c¢Tr: x satisfies (7.4), (7.5), (7.6), and z(d(v1)) = 2}. (7.7)

To see how the node numbers come in, consider the form of the dual linear-
programming problem of (7.2). We have a dual variable y, for all v €
V'\ {v1}. together with a dual variable for each constraint in the 1-tree
formulation (7.7). Now suppose we have an optimal solution to this dual
linear-programming problem, and let (y; : v € V' \ {v1}) be the values of
the variables (y, : v € V' \ {vy}). If we fix these variables at their values
5, then the remaining variables constitute an optimal solution to the dual
linear-programming problem of

Minimize Y ((¢uy —¥h — ¥s)Tuw : WO € E)
subject to
x satisfies (7.4), (7.5),(7.6)
z(b6{y)) = 2.

But this is a 1-tree problem. So the optimal value of (7.2) is equal to the Held-
Karp bound obtained using the node numbers (y; : v € V'\ {v1}) (setting the

node number on vy to 0).

Conversely, the arguments show that for any set of node numbers we can
construct a feasible solution to the dual of (7.2) with objective value equal
to the corresponding Held-Karp bound. Thus, we have shown the following
result.

Theorem 7.2 The subtour bound is equal to the optimal Held-Karp bound.

The Held and Karp procedure can therefore be viewed as a heuristic for ap-
proximating the subtour bound. Direct methods for computing this bound
will be discussed in the next section.

Exercises

7.8. Modify the edge costs in the graph given in Figure 7.11 so that they
satisfy the triangle inequality, keeping the fact that the I-tree bound is not
equal to the optimal value of the TSP, but the best Held-Karp bound is
equal to the optimum TSP value.
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7.9. Give a graph and edge costs such that the best Held-Karp bound is not
equal to the optimum value of the TSP.

7.10. Let G = (V. E) be a graph with edge costs (¢, : e € E), and let T be a
minimum spanning tree of G. Show that if v is a leaf of T', then an optimum
1-tree with v as node v; can be obtained be adding to the edge-set of T' the
edge joining v to its second nearest neighbor. Give an example of G, ¢, and
T, where the best choice of vy (that is, the one giving the greatest 1-tree
bound) is not a leaf of T.

7.11.. Let G = (V,E) be a graph with edge costs ¢ € RE. Show that the
linear-programming problem (7.1) is equivalent to the linear-programming
problem (7.2).

7.4 CUTTING PLANES

In the last section, we described an intuitively motivated procedure for con-
structing what is usually a good lower bound on the cost of an optimal solution
to a TSP. We showed that this procedure was in fact a heuristic for obtaining
a good feasible solution to the “subtour” linear-programming problem (7.1),
which we restate here: '

Minimize 3 (c.r, :e € E) (7.8)
subject to

z(0(v)) =2, forallveV (7.9)

z(8(5)) =2, foral SCV, SV, S £0 (7.10)

0<z, <1, foralle e E. (721}

Suppose we tried to solve this linear-programming problem directly. What
problems would we encounter? One big obstacle is that the number of in-
equalities (7.10) is about the same as the number of distinct subsets of cities,
or about 2/¥!. Even if we notice that we do not need inequalities for both S
and V'\ S, and hence can limit ourselves to sets S satisfying |S| < |V]/2, we
still need about 2/VI=! of these inequalities. B

Dantzig, Fulkerson, and Johnson overcame this obstacle by solving the
linear-programming problem using the cutting-plane approach described in
Section 6.7. We describe their approach in this section.

We begin by solving the linear-programming problem (7.8), (7.9), and
(7.11). If the optimal solution happens to be the characteristic vector of
a tour, then we can stop since this must be the solution to the TSP. If not,
we will try to find some subtour constraints (7.10) violated by the optimal
solution. We add these inequalities to our starting set and solve the resulting
linear program.

We perform this process over and over. If we ever obtain a solution which
does not violate any subtour constraints, then we have solved the original
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linear-programming problem. If not, we add some violated subtour constraints
to obtain the next problem.

If this iterative process is to work, there are two problems to solve. First,
we must have an efficient method of checking an optimum solution to a re-
laxed problem to see whether it violates any subtour constraints from (7.10).
Second, we must have an efficient way of solving the linear-programming prob-
lems that arise.

The first problem can be solved using results from Chapter 3, as we describe
below.

For small TSPs the second problem is easily handled by any commercial-
quality simplex-based linear-programming code. For larger TSPs, however, we
will run into the difficulty of having to deal with linear-programming problems
with a large number of variables. For example, the problems for our 1173-
node sarnple TSP will have 687368 variables. In such a case, it is probably not
a good idea to solve the problem directly. Instead, we handle the variables
in a manner similar to the way we handle cutting planes: Start out with a
linear-programming problem that contains only a subset of the variables and
add in the remaining ones as they are needed. We need to explain what we
mean by “as they are needed.”

Suppose we select a set E' C I, such that the linear-programming problem

Minimize Y (c.z, :e € E') (7.12)
subject to
z(d(v)) =2, forallveV
z(8(S)) > 2, forall@ £S5 #V
0<z. <1, forallee E'.

has a feasible solution. (A common choice is to take the union of a small
number [say 10] of tours produced by the Core Lin-Kernighan Heuristic.) An
optimal solution, z‘, to (7.12) can be extended to a feasible solution, z*, to
(7.8) by setting =7 = 0 for all e € E'\ E'. The trouble is that * may not be
an optimal solution to (7.8).

To check optimality, let 3, Y’ be an optimal solution to the dual linear-
programming problem of (7.12):

Maximize 3 (2y, :v € V) + 3 (2Y5:SC V. SAV,S#0) (7.13)
subject to
o+ 0 + Vs cww € 8(5),SCV,S £V, S # B) < Cuyy  (7.14)
for all uv € E'
Ys >0, foral SCV,S#V,S#0. (7.15)

If ', Y is also feasible for the dual linear-programming problem of (7.8) (that
is, the problem we obtain by replacing E' by E in (7.14)) then we know by
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linear-programming duality that z* is indeed optimal for the original linear-
programming problem (7.8). Otherwise, we can add those edges e € E'\ E'
for which the corresponding constraint (7.14) is violated to our set E', resolve
the linear-programming problem (7.12), and repeat the process.

This is another example of column generation. It is similar to the methods
we described in Chapter 3 for multicommodity flows and in Chapter 5 for
solving minimum-weight perfect matching problems on dense graphs. Com-
bining column generation with the cutting-plane approach allows us to solve
linear-programming problems that are both “long” and “wide.”

Using this combined method, suppose that we eventually solve the linear-
programming problem (7.8). Generally this solution will not be the character-
istic vector of a tour. What then? We could stop with a lower bound which
is usually pretty good. We could go on to branch-and-bound, as discussed in
the next section. Or we could try to find some other class of cutting planes
to add which would permit this process to continue.

We now discuss the cutting-plane generation in some detail.

Handling Subtour Constraints

Suppose z* is a feasible solution to the (initial) linear-programming prob-

lem
Minimize 3 (c.z. :¢ € E) (7.16)
subject to
z(6(v)) =2, forallve V (7.17)
0<z. <1, forallec E. (7.18)

We wish to determine whether all subtour constraints (7.10) are satisfied, and
if not. find one or more that are violated.

If the solution falls apart into several components (that is, the graph with
node-set V" and edge-set {¢ € E : 27 > 0} is disconnected), then the node-set
S of each component violates (7.10). This situation is easy to detect.

After several waves of cutting-plane addition, we will in general not have a
disconnected solution. In this case, we need a more sophisticated separation
algorithm.

For each edge e of G, define its capacity u. to be z;. Then the value
z=(8(S)) for any set S of nodes is precisely the same as the capacity of the
cut in §(S) in G. So we can apply the minimum cut methods we discussed in
Section 3.5: There exists a set S of nodes that violates (7.10) if and only if
some cut in G has capacity less than two.

Now we are in a good position. We solve the initial linear-programming
relaxation. Then we can add violated subtour constraints as long as the solu-
tion is not sufficiently connected. Then we can use a minimum-cut algorithm
to ensure that there are no violated subtour constraints at all. Each time we
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add more subtour constraints, we can use the simplex algorithm to obtain a
new optimal solution.

For onr 1173-node sample TSP, the optimal value of (7.8) is 56361. As
we would expect, this is slightly better than the bound we found using the
Held-Karp method.

Suppose we terminate with a solution such as in Figure 7.13. It is an
optimal solution to the linear-programming problem (7.8) if all costs are Eu-
clidean, but it is not a tour. Below, we describe a class of cutting planes that
is very useful in improving the lower bound in situations like this.

e T T Lt T

Figure 7.13. A fractional solution and violated comb

Comb Inequalities

A comb is defined by giving several subsets of nodes of the graph: We need
one nonempty handle H C V, H # V and 2k + 1 pairwise disjoint, nonempty
teeth Ty, Ty, ..., Togry C© V, for k at least 1. (So the number of teeth is odd
and at least 3.) We also require each tooth to have at least one node in
common with the handle and at least one node that is not in the handle. See
Figure 7.13.

Chvital [1973a] and Gritschel and Padberg [1979] proved the following
result.

Theorem 7.3 Let C be a comb with handle H and teeth T\, T, ..., Togyy for
k > 1. Then the characteristic vector = of any tour satisfies

k41 2k+1
c(y(H) + Y a(v(T) < [H|+ Y (T = 1) = (k+1).
=1 =1

Proof: Let z be a tour. Then z satisfies all the constraints (7.9)—(7.11).
Add up the following constraints.

?
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Equations (7.9) for the nodes in H.

Constraints (7.10) for the teeth T; in the “inside form” z(+(T))) < |Ty| — 1,
(See Exercise 7.11).

Constraints z; > 0 for the edges in 6(H) but not belonging to any tooth,
but in the form —r; < 0.

Constraints (7.10) for the sets T; \ H in the “inside form” z(v(T; \ H)) <
|7\ H| - L

Constraints (7.10) for the sets T; M H (for those i such that T; intersects H in
more than one node) again in the “inside form” z(v(T,NH)) < |T;NH|-1.

We obtain

2k+1 2k+1
2o(y(H))+2 Y =(x(T})) <2H|+2 Y (T = 1) - (2k +1).
1=1 =]

Now, dividing through by 2, we obtain

2k+1 2k+1

o(y(H) + 3 2(y(T) < |H|+ Y (T8 - 1) -

i=1 =1

2k+1
7

Since the left-hand side is integer-valued, we can round down the right-hand
side, and get the desired result. |

Another way of stating this theorem is that

2k+41 2k+1
T(y(H)) + Y =(y(T) < [H|+ Y (T - 1) = (k+1) (7.19)
i=1 i=1

is a valid cutting plane. These are called comb inequalities.

Often when we see a fractional solution z in which there exists an odd
circuit all of whose edges have the value 1/2, the node-set of the circuit forms
the handle of a comb giving rise to a cutting plane that is violated by z. Again,
see Figure 7.13. At the current time, there is no polynomial-time algorithm
known for deciding in general whether a given (nonnegative) vector r violates
some comb inequality.

When each tooth of a comb has exactly two nodes, we call the corresponding
inequality a blossom inequality. This name comes from a connection to the 2-
factor problem. (See Exercise 7.15.) For this special class of comb inequalities,
Padberg and Rao [1982] showed that there is a polynomial-time separation
routine. We describe their method below.

Let G = (V,E) be a graph. A blossom inequality can be specified by a
handle H C V" and a set of edges A C 6(H), with |A| odd and at least 3. So
the ends of the edges in A are the teeth of the corresponding comb.
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When we are solving a TSP, we assume that the nonnegative vector r
satisfies the equations (7.9). So we may write the blossom inequality

|4} =1
2

x(y(H)) + =(4) < [H| +

in the form

2(S(H)\ A) —2(4) 2 1 - |4]. (7.21)

(See Exercise 7.16.) If we rewrite this inequality as
2(6(H)\ A) + (|4 —z(4)) > 1,

then the left-hand side looks similar to the capacity of the cut §(H), except
that the edges in e € A contribute 1 — r, instead of the usual x.. It is perhaps
not surprising that our separation routine will make use of the minimum T-cut
algorithm (see Section 6.8), as we now describe.

To speed up our computations, we begin by deleting from E all those edges
e such that =z, = 0.

Now define a new graph G’ by subdividing each edge e € E with two new
nodes v/, and v”, that is, if e has ends v and w then we replace e by the three
edges vv!, viv!, and v/w. Let T be the set of all new nodes v}, vy for alle € E,
and define edge weights u € REE) by setting Uyyy = Tes Uypen = 1 =T, and
Uy = T, for all edges e = vw € E. See Figure 7.14.

X l-x¢e X

1] [

Figure 7.14. Subdivided edge

Suppose that the blossom inequality corresponding to H C V and 4 C 4(4)
is violated by . Let § € V(G') consist of H, together with the two new nodes
vl, v for all edges e € yo(H), and for each edge e € A the new node v or
v! that is joined by an edge in G' to a node in H. Then SNT is odd and the
capacity of dg(S) is precisely

e(6(H)\ A) + (|4] — z(4)). (7.22)
So 8¢ (S) is a T-cut in G' with capacity less than 1.

Conversely, let §g(5) be a minimum T-cut in G’ and suppose that its
capacity is less than 1. Let H = SNV, and let A consist of those edges
e € dg(H) such that exactly one of the two new nodes v, or vy is in § and
that node is adjacent to a node in H.

Using the fact that for any new node t € V(G')\V', the sum of the capacities
of the two edges in E(G') that are incident with ¢ is exactly 1, it is easy to
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check that 4| is odd and that the capacity of dg/(S) is at least (7.22). So the
blossom inequality corresponding to H and A is violated by z.

The blossom separation problem can thus be solved by finding a minimum
T-cut in G using the algorithm described in Section 6.8. If the T-cut has
capacity less than 1 then we can extract a violated blossom inequality. Oth-
erwise, we conclude that no such inequality exists.

Using this method to optimize over the linear-programming problem we
obtain by adding all blossom inequalities to (7.8), we obtain a lower bound of
56785 for our 1173-node sample TSP. This is a very good bound. It implies
that the tour we found with Chained Lin-Kernighan in Section 7.3 has cost
no more than 0.2% above that of an optimal tour.

A number of heuristics have been proposed for finding violated comb in-
equalities. One of the common ideas is to shrink certain subsets of nodes and
look for a violated blossom inequality in the shrunk graph that corresponds
to a violated comb in the original graph. (See Exercise 7.19.)

There are many more classes of valid cutting planes known for the TSP.
We refer the reader to Grétschel and Padberg [1985], Jiinger, Reinelt, and
Rinaldi [1995], and Naddef [1990] for further discussions.

Exercises

7.12. Show how to solve linear program (7.16)-(7.18) as a minimum-cost flow
problem. Use your construction to prove that there exists an optimal so-
lution to (7.16)—(7.18) for which all variables have value 0,1/2, or 1.

7.13. Let r be a feasible solution to the linear program (7.16)-(7.18). Let F
be the set of all e € E for which =, # 0 or 1.

(a) Show that if F' contains the edge-set of an even circuit then z can be
expressed as a convex combination of two other feasible solutions, and so
is not a vertex of the polyhedron defined by (7.17),(7.18).

(b) Show that if any connected component of F contains two or more odd
circuits, then x is not a vertex of (7.17),(7.18).

(c) Show that if every component of F' consists of a single odd circuit, then
there exists a set of inequalities (7.18) that can be set to equations such
that x is the unique vector satisfying these equations plus (7.17).

(d) State a necessary and sufficient condition, based on (a)-(c), for a vector
T to be a vertex of (7.17),(7.18).

7.14. Prove that if x is a vertex of (7.17),(7.18), then at most |V| components
of  can have nonintegral values. Construct an example that shows that
this bound can be attained.

7.15. Show that the blossom inequalities are satisfied by the characteristic
vectors of the 2-factors of a graph G.
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7.16. Show that in the presence of the equations (7.9), the blossom inequality
(7.20) can be written as (7.21). What is the connection with the system
(5.40)7

7.17. Show that in the presence of the equations (7.9), the comb inequality
(7.19) can be written as

2k+1
((8(H)) —2)+ Y (x(8(T)) — 2) 2 2. (7.23)
=l

7.18. (Karger) Let k be a fixed positive integer and let r be a vector that
satisfies (7.9), (7.10), and (7.11). Use Exercise 7.17 and the result of Ex-
ercise 3.65 (on page 85) to give a polynomial-time algorithm that with
probability at least 1 — ﬁ will find some violated comb inequality having
at most 2k + 1 teeth if such an inequality exists.

7.19. Let G = (V, E) be a graph and £ € R¥ a nonnegative vector. Suppose
that S € V' has the property that z(7(S)) = |S| — 1 and consider the
graph, G, we obtain by shrinking S to a single node, v, and replacing the
parallel edges e, ..., e between v and any other node by a single edge e
having z. = r., + -+ +x,. Show that any violated comb inequality in G’
corresponds to a violated comb inequality in G.

7.5 BRANCH AND BOUND

Cutting-plane methods can provide a very good lower bound on a TSP. Com-
bining this with a tour produced by Chained Lin-Kernighan will typically leave
only a small gap between the cost of the tour and the value of the bound.
But suppose the gap is too large for a given application. How can we pro-
ceed further? The branch and bound method we present below is a common
approach for doing just this. We will describe it in terms of the TSP, but the
same principles apply to virtually any combinatorial optimization problem.
Our description follows the TSP algorithm of Padberg and Rinaldi [1991].

Suppose we have a graph G = (V, E) with edge costs (¢, : € € E) and let
T denote the set of all tours of G. A lower bound on the TSP is a number B
such that ¢(T') > B for all T € T. A lower bounding technique is a method
for producing such a number B. Now suppose we split T into two sets T and
Ti such that To U7y = T. If we can produce numbers By and By such that
¢(T) 2 By for al T € Ty and ¢(T') > B, for all T € Ty, then the minimum
of By and B, is a lower bound on the TSP. The point of splitting 7 is that
the extra structure in Ty and Ty may allow our lower bounding technique to
perform better than it did on the entire set 7. This is the basis of branch and
bound methods: We successively split the solution set and apply our lower
bounding algorithm to each part. To see how this works, we describe how to
use the cutting-plane lower bound in a branch and bound framework.
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In this context, a natural way to partition the set of tours is to select an
edge e and let T be those tours that do not contain e and let. 7; be those that
do contain e. So if we let P denote the original TSP, then we can work with
this partition by considering a new problem P, obtained by setting z, = 0
and a new problem P; obtained by setting z, = 1.

Suppose that we have applied our cutting-plane methods to obtain a linear-
programming relaxation, LP, of the original TSP. Then we can immediately
write linear programs LIy and LP; (corresponding to the new problems) by
adding the equations ., = 0 and z. = 1 to LP. If e is chosen carefully, we
may obtain an immediate improvement in the lower bound by simply solving
LFy and LP;. Moreover, we can apply our cutting-plane generation routines
to strengthen each of these linear programs, obtaining the relaxations LP}
and LP[. Our lower bound will then be the minimum of the optimal values
of LP} and LP].

If we have not already established the optimality of our best tour, we can
repeat the above process by taking one of the problems, say P, and some
edge f, and creating the problems Pjy and Py; by setting ry = 0 and z; = 1.
Again, we can apply the cut generation routines to each of the new problems,
obtaining the linear programs LP{, and LP{,. A bound on our TSP is then
the minimum of the optimal values of LFj, LP{,, and LP{,. And we can go
further, creating two new problems from either By, Pyg., or Py, and so on.

A general stage of the process can be described by a tree, where the nodes
represent problems. (See Figure 7.15.) Each node @ that is not a leaf of the
tree has two children, corresponding to the problems @y and @, we created
from ) . (See Figure 7.15.) At any point, a lower bound for the original

(%)
(B) (7)
&) @ G ®
D

Figure 7.15. A branch and bound tree

TSP can be obtained by taking the minimum of the lower bounds we have
computed for the problems corresponding to the leaves of the tree. We stop
the procedure whenever this bound is greater than or equal to the cost of our
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best tour (in which case we have proven that our tour is optimal) or if we
have established a bound that is strong enough for our given application.

Notice that while working on some problem @, we might well discover a
tour that has cost less than the cost of our current best tour. In such a case,
we should let this new tour be our best tour and continue the process.

The procedure we have described is the branch and bound method. The
“branching” is the process of choosing a problem @ (from the leaves of the
tree) to split into @y and @, and the edge e that determines the split. We
still need to specify how these choices are made.

Since our goal is to improve the lower bound, at any point we could choose
to process a problem @ whose linear-programming value is equal to the min-
imum over all leaves of the branch and bound tree. This will lead to a direct
improvement in the lower bound. Other strategies may be adopted (for ex-
ample, a depth first search of the branch and bound tree, where we always
process one of the most recently ereated problems), but this choice is simple
and has proved to work well in practice.

Box 7.2: Branch and Bound for General Integer Programming

The most successful methods that have been developed for solving gen-
eral integer programming problems max {wzx :.Ar < b, integer } are
based on branch and bound techniques. Branch and bound is a general
scheme that requires two main decisions: how to branch and how to
bound. The standard bounding method for integer programming is to
solve the linear-programming (LP) relaxation of the current subprob-
lem. This is used almost uniformly in commercially available integer
programming codes. In some cases the LP relaxations are strength-
ened by the addition of cutting-planes derived from the structure of
the given matrix 4. On the branching side, many different schemes
have been proposed. A common one is to choose some variable x; that
takes on a fractional value z} in the optimal solution to the current LP
relaxation, and create one new subproblem with the additional con-
straint x; < [z7] and a second new subproblem with the additional
constraint z; > [z;]. The rule for selecting the variable z; often de-
pends on user-specified priorities, the simplest being to choose the first
variable z; that takes on a fractional value. (So the user would input
the problem with the variables in the order of their “importance” to
the model.) For a detailed discussion of general integer programming
methods see Nemhauser and Wolsey [1988].

Once we have selected a problem (), what is a good choice for a “branching
edge” e? If z* is an optimal solution to the linear-programming relaxation for
(), then an obvious choice for e is some edge such that z7 is close to .5, since
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then both . = 0 and . = 1 will hopefully force the linear program to move
far away from the current optimal solution (and cause the optimal value to
increase). Along the same lines, since we want to increase the objective func-
tion, we prefer more expensive edges e over cheaper edges. So, one proposal
for a branching choice is to examine all edges e such that =} is in some fixed
interval surrounding .5, and select that edge having the greatest cost e,.

We now have a rudimentary branch and bound scheme for the TSP. Of
the many enhancements that can be made, we would like to mention one
that seems particularly useful in practice. This enhancement concerns the
generation of cutting-planes. Since we are using the inequalities we described
in Section 4, all of the cuts we find while processing problem @ are actually
valid inequalities for all problems in the branch and bound tree. So we can
save the cuts in a pool, and search the pool for violated inequalities during
any of our cut generation steps. The use of a pool is especially important
when our generation routines are not exact separation methods, but rather
heuristics for finding cuts in a particular class. In this case, the pool not only
speeds up the search, it actually gives us a chance to find cutting planes that
our heuristic would miss.

Using this type of branch and bound scheme, Applegate, Bixby, Chvatal,
and Cook [1995] showed that the tour for the 1173-node problem we reported
in Section 2 is in fact optimal. Their branch and bound tree contained 25
nodes. Moreover, they have solved a 7397-node problem to optimality with
this approach. We have, of course, skimmed over all of the implementation
details, and we refer the reader to the papers of Padberg and Rinaldi [1991]
and Jiinger, Reinelt, and Thienel [1994] for discussions of their realizations of
these techniques.

Exercises

7.20. A collection of TSPs (many coming from industrial applications) can
be found in Reinelt [1991]. Develop a computer implementation of some
of the techniques described in this chapter and apply your code to one of
these “TSPLIB" problems.



