
INTEGRALITY OF POLYHEDRA 

Combining this with the inequality (see Exercise 3.66) 

we can conclude that 
u(a(s n Q)) 5 ~ V ( Q ) L  

I 
This allows us to reduce the problem to two problems on smaller graphs. To 
see this, let G' be thegraph obtained by shrinking V\S toasingle (new) node 
and let T' = T \ S and ui = u, for all e E E ( G ~ ) .  Bmilarly, let Ga be the 
graph obtained by shrinking S to asingle (new) node and let Ta = T n S  and 
u: = u. for all e E E(C2).  Then the minimum T-cut in G can be found by 
solving the minimum T1-cut problem in G1 and the minimumTa-at problem 
In GZ. 

We solve the two new problems with the same procedure, splitting them 
into further subproblems if necessary. 

Slnce we can find S and build G' and Ga in polynomial tme ,  it follows 
by induction on IT[ that the whole procedure mns in polynomial time. (See 
Exercise 6.37.) 

Aa one would expect, the minimum T-cut algorithm performs poorly in 
practice for larger test instances. A mote efficient alternative (actually, the 
algorithm proposed by Padberg and Rao), works by computing a Gomory-Hu 
cut-tree, as described in Exercise 6 39. 

Exercises 

6.37. Show that the minimum T-cut algorithm runs ~n time O(n5). (Hint: 
Use induction and the fact that \TI = ITII + [T21.) 

6.38. Suppose that we are given a vector E E RV satisfying the initial valid 
inequalities (6 23) for the stable set polytope of G = (V, E). Show how to 
reduce the separation problem for the odd circu~t inequalities to the proh- 
lem of finding a mlnlmum weight odd cironlt in a graph having nonnegative 
edge weighbs. Show that the latter problem can be solved miag shortest 
path methods. (See Exercise 2.38). 

6 39. Let G = (I/, E) be a graph, T V with IT1 even, and u E RE a 
nonnegative capacity function. Consider a GomorpHu cut-tree H with T 
as the set of terminah. Show that there exists an edge e of W such that the 
bipartition of V defined by the two component* of H \ e  g~ves a minimum 
T-cut. 

C H A P T E R  7 

The Traveling Salesman Problem 

7.1 INTRODUCTION 

In the general form of the traveling salesman problem, we are given a finite 
set of points V and a cost G, of 'travel between each pair u,u E V. A tour 
is a circuit that passes exactly once through each point in V. The traveling 
nalesman problem (TSP) is to find a tour of minimal cost. 

The TSP can be modeled as a graph problem by considering a complete 
graph G = /V, E) ,  and assigning each edge uu E E the cost o.,. A tour is then 
a circuit in G that meets every node. In this context, tours are sometimes 
called Eamiltonian c~rcuits. 

The TSP is one of the best known problems of combinatorial optimization. 
A nice collection of papers tracing the bistory and research on the problem 
can be found in Lawler, Lmstra, Rinnooy Kan, and Shmoys [198S]. 

Unlike the eases of matching or network flows, no polynomial-time algc- 
15 th  is known for solving the TSP in general. Indeed, it belongs to the 
class of NP-hard problems, which we describe in Chapter 9. Consequently, 
many people believe that no such efficient solution rnethd exists, for such an 
algorithm would imply that we could salve virtually every prohlem in combi- 
natorial optimization in polynomial t i .  

Nevertheless, TSPs doarise in practice, andrelatively large ones can now be 
solved efficiently to optimality. In this chapter we discuss how. We will illns- 
trate the methods on the 1173-node Euclidean problem depicted in Figure 7.1. 
Although this problem ig smaller than the largest solved so far (as of August 
1994, the record is 7397 nodes (Applegate, Bixby, Chvital, Cook [1995])), it 
is still of a respectable size. The node coordinates for this instance are con- 

24' 
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Figure 7.1. Sample TSP 

tained in the 'TSPLIB" library of test problems decribed in Reinelt [1991]. 
We encourage readers to try out some of their own methods. 

Whereas in prior chapters, we were often able to describe polynomial-time 
algorithms that also performed well in practice, in this chapter we diicuss 
algorithms which do work well empirically, but for which only very weak 
guarantees can be provided. 

7.2 HEURISTICS FOR T H E  TSP  

Heuristics are methods which cannot be guaranteed to produce optimal solu- 
tions, but which, we hope, produce fairly good soIutions at least some of the 
time. For the TSP, there are two different types of heuristics. The first at- 
tempts to construct a "good" tour from scratch. The second tries to improve 
an existing tour, by means of "local" improvements. In practice it seems very 
difficult to get a really good tour construction method. It is the secondltype of 
method, in particular, an algorithm developed by Lin and Kernighan [1973], 
which usually results in the best solutions and forms the basis of the most 
effective computer codes. 

Nearest Neighbor Algorithm 

In Chapter 1 we described the Nearest Neighbor Algorithm for the TSP: 
Start at any node; visit the nearest node not yet visited, then return to the 
start node when all other nodes are visited. Applying it to our test problem, 
we obtain the tour of cost 67,822 that is exhibited in Figure 1.1. Note that 
the tour includes some very expensive edges. In practice, this almost always 
seems to happen when we use the Nearest Neighbor Algorithm. 

HEURISTICS FOR THE TSP 

Johnson, Bentley, McCwch, and Rothberg [I9971 report that on problems 
in TSPLIB, the average costs of the tours found by the Nearest Neighbor 
Algorithm are about 1.26 times the costs of the corresponding optimal t o m .  
Thus, for *me applications, Nearest Neighbor may be an effective method: It 
is easy to implement, runs quickly, and usually produces tours of reasonable 
quality. It should be noted, however, that the "1.26 times optimal" estimate 
is an empirical observation, not a performance guarantee. Indeed, it is easy 
to construct problems on only four nodes for which the Nearest Neighbor Al- 
gorithm can produce a tour of cost arbitrarily many times that of the optimal 
tour. (See Exercise 7.2.) 

To obtain a guaranteed bound, we need to assume that the edge costs are 
nonnegative and satisfy the triangle ineqnality: 

c,,. + G, > c,,~, for all u,v,w E V. 

In this case, Rosenkrants, Stearns, and Lewis [I9771 show that a Nearest 
Ne~ghbor tour is never more than f llog~nl + times the optimum, where n 
is the cardinality of V. 

This hound may seem very weak (particularly when compared to the 1.26 
observed bound on the TSPLIB problems), but Rosenkrantz, Stearns, and 
Lewis [I9771 proved that we cannot do much better. They showed this by 
describing a family of problems with nonnegative costs satisfying the triangle 
inequality and with arbitrarily many nodes, such that the Nearest Neighbor 
Algorithm can produce a tour of cost $ [loga(n+ 1) + $1 t i e s  the optimum. 
This result shows that if we wish to give a worst case bound on the perfor- 
mance of this heuridic, the beund we get is so bad that it is not of much 
practical interest. 

The proofs of the two results are not hard, but they are technical and we 
refer the reader to the reference cited above. 

Insertion Methods 

Insertion methods provide a different set of tour construction heuristics. 
They start with a tour joining two of the sodes, then add the remaining 
nodes one by one, in such a way that the tour cost is increased by a minimum 
amount. There are several variations, depending on which two nodes are 
chosen to start, and more importantly, which node is chosen to be inserted at 
each stage. 

In  practice, usually the beat insertion method is Farthest Insertron. In this 
case, we start with an initial tour passing through two nodes that are the ends 
of some high-cost edge. For a c h  uninserted node u, we compute the minimum 
cost between v and any node in the tour constructed thus far. Then we choose 
ad the next node to be inserted the one for which this cost is mmimum. 

At first, this may seem eounterintuitive. However, in practice, it often 
waks well. This is probably because a rough shape of the final tour to be 
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produced is obtained quite early, and in later stages, only relativdy slight 
mod~fications are made. 

Neared Insertaon is a heuristic which, at each stage, chooses as the next 
node to insert the one for which the cost to any node in the tour is minimum. 

Another variant is Cheapest Inserfion. In this case, the next node for 
insertion is the one that increases the tour cost the least. 

Usually the solutions produced by Nearest Insertion and Cheapest Insertion 
are inferior to those produced by Farthest Insertion. In Figures 7.2 and 7.3 
we show the results of applying Nearest Insertion and Farthest Insertion to 
our teyt problem. On the TSPLIB problems, Johnson, Bentley, McGeoch, 
and Rotbberg 119971 report that, on average, Farthest Insertion fomd tours 
of length about 1.16 times that of the optimal t om.  

Figure 7.2. Sample TSP and Nearest Insertion solution: 72337 

An extensive worst-case analysis of various insertion heuristics is provided 
in Rosenkrantz, Steams, and Lewis [1977]. They prove that any insertion 
heuristic produces a solution whose value is a t  mmt rlogznl + 1 times the 
optimum, for a problem with n nodes (for which the edge costs are nonneg- 
ative and satisfy the triangle inequality). They show, further, that Cheapest 
Insertion and Nearest Insertion always produce solutions whose costs are at 
most twice the optir~ium. They also give an example which shows that this 
bound is essentially tight. See the above reference for details. 

Interestingly, no examples are known which force any insertion method to 
construct a tour of cost more than four times that of the optimum. Also, in 
spite oEthe fact that Fatthest Insertion usually produces the best solutions of 
any insertion method, no better worst case bound has been established for it 
than for insertion methods in general. 

HEURISTICS FOR THE TSP 

Figure 7.3. Sample TSP and Farthest Insertnm salutxon 65980 

Christoffdes' Heuristic 

We describe one more tour construction method, due to Christofides [1976]. - 
It. has the best worst case bound of any known method: It always produces 
a solution of cost at msst $ t i e s  the optimum (assuming that the graph is 
complete and the costs are nonnegative and satisfy the triangle inequality). 

The algorithm begins by finding a minimum-cost spanning tree, T, of G 
using, for example, Kmskal's Algorithm. The edges in 2' will be used in a - 

i 
search for a good 'tour. 

Let W be the set of nodes which have odd degree in T, and find a perfect .. 
matdting M of G[W], the subgraph of a induced by W ,  which is of minimum 
cost with respect to c. 

Now let J consist of E(T) U M, where, if some edge is in both T and M ,  
we take two cop~es of the edge. Then J is the edge-set of a connected graph 
with node-set V for which each node hrts even degree. If all nodes have degm 
2, then J is the edge-set of a tour and we terminate with it. Ii not, let u 
be any node of degree at least 4 in (V, J). Then there are edges uu and uw 
such that if we delete these edges from J and d d  the edge uw to J ,  then the 
subgraph remains connected. Moreover, the new subgraph has even degree at 
each node. (Thii ib beeawe the subgraph induced by J has an Euler tour; we 
ehoose uu and uw to he consecutive edges of the tour.) Make this "shortcut" 
and repeat this process until all nodes are incident with two edges of J. 

Theorem 7.1 Suppose we have a TSP with nonnegative costs satisfying the 
triungle insgualtty. Then any tour wnstrvcted by Chnatefides' Heuristic has 
cost at most tames the cost of an apkmal tour. 
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ProoE Let H' be an optimal tour. Removing any edge from H' yields a 
spanning tree, so the cost c(T) of a minimum-cost spanning tree T is at most 
c(He). We can define a circuit C on the set W of odd nodes of T by joining 
these nodes in the order they appear in H-. Note that IW1 is even and the 
edge-set of C partitions into two perfect matchings of G[WJ. Since c satisfies 
the triangle inequality, each edge of these matchings has cost no greater than 
the corresponding subpath of H*. Therefore one of these matchings has cost 
at most c(H')/Z. This implies that the cost of the minimum-cost perfect 
matching 113 of G[WI is a t  most c(H')J2. Thus c(J) 5 $ . c(H'). Since 
shortcutting can only improve c(J), the final tour produced &o has cost a t  
most $ - c(H'), as required. 1 

In the Johnson, Bentley, bkGeoch, and Rothberg [I9971 tests on the TSPLIB 
problems, Christofides' Eeuristic produced tours that were about 1.14 times 
the optimum. They also made the interesting discovery that if at each short- 
cut step the best shortcut for the given node is chosen, then the performance 
of the algorithm improves to 1.09 times the optimum. 

Tour  Improvement Methods: 2-opt and %opt 

There are severd standard methods for attempting to improve an existing 
tour T. The simple6t.i~ called &opt. It proceeds by considering each nonad- 
jacent pair of edges of T in turn. If these edges are deleted, then T breaks up 
into two paths TI and Tz. There is a unique way that these two paths can 
be recomb'uled to form a new tour T'. IF c(T1) < c(T), then we replace T 
with T' and repeat. This process is called a &-interchange. See Figure 7.4. 
If c(T') 2 c(T) for every choice of pairs of nonadjacent edges, bhen T is 
Poptimol and we terminate. 

Figure 7.4. ?-interchange 

For a general cost function, in or&? to check whether a tour is 2-optimal 
we check O(/VI2) pairs of edges. For each pair, the work required to see if 
the switch decreases the tour cost can he performed in constant time. Thus 
the amount of time required to check a tour for 2-optimality is O(IVI2). But 
this does not mean that we can transform a tour into a ?-optimal tour in 
polynomial time. Indeed, Papadimitriou and Steiglitz (19771 show that if 
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we make unfortunate choices, we may in some cases perform an exponential 
number of interchanges, before a 2-optimal tour is found. 

The 2-opt algorithm can be generalized naturally to a k-opt algorithm, 
wherein we consider all subsets of the edge-set of a tour of size k, or size a t  
most k, remove each subset in turn, then see if the resulting paths can he 
recombined to form a tour of lesser cost. The problem is that the number of 
subsets grows exponentially with k, and we soon reach a point of diminishing 
return. For this reason, k-opt for k > 3 is seldom used. 

Johnson, Bentley, McGeoch, and Rothberg [I9971 report that on the TSPLIB 
problems, 2-opt produces tours about 1.06 times the optimum and %opt about 
1.01 times the optimum. 

Tour Improvement Methods: Li-Kernighan 

Lin and Kernighan 119731 developed a heuristic which works extremely 
well in practice. I t  is basically a k-opt method with two novel features. First, 
the value of k is allowed to vary. Second, when an improvement is found, 
it is not necessarily used immediately. Rather the search continues in hopes 
of finding an even greater improvement. In order to describe it, we require 
several dehitions. 

A &-path in a graph G on n nodes is a path containing n edges and n + 1 
nodes all of which are distinct except for the last one, which will appear 
somewhere earlier in the path. See Figure 7 5. (The name comes from the 
shape of the path.) 

Figure 7.5. &path 

Note that a tour is a &path for which the last node is the same as the first 
node. If P is a &path which is not a tour, Ehen we can obtain a tour T(P)  
as follows. Let w be the last node of the path (which also appears earlier 
in the path). Let wr be the frrst edge of the subpath of P between the two 
occurrences of w. By removing the edge rcn and adding the edge joining r to 
the first node of the path, we obtain the edge set of a tour. See Figure 7.5. 

Snppose that Pis a &path which ia not a tour. Again, let w he the last node 
and let wr be the first edge of the subpath of P hetween the two occurrences 
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of w. If we remove wr we ohtain the edgeset of a path ending at r. If we theu 
add one more edge ru and node u, we obtain a new 6-path PFY ending at u. 
We call this operation an ru-swttdr. Pu'ote that c(Pfv) = c(P) + G, - c,,. 
Again, see Figure 7.5. 

The Lin-Kernighan heuristic starts with a Cour and then constructs a so- 
quence of non-tour &paths, each obtained from the preceding one by an ru- 
switch. For each &path P so produced, it computes the cost of T(P). If this 
is better than the best tour known, then it is "remembered " When the scat1 
is complete, it replaces the starting tour with the best tour found in the scan. 
A full description of the Gore Lm-Kernighan Hevnstic is given below. 

S t ep  1 [Outer loop: nodeledge pairs]. For each node u of G, for each of the 
-edges uv of T incident with u in turn, perform Steps 2 through 5 m an 

attempt to ohtain an improvement. This process is called an edge scan. 

Step 2 [Initialize edge scan]. Initially, the best tour found is T. Let uo = tb .  

R e m o v e  edge uou and add an edge uo~uo, for some wa # v,  provided that 
such a wo can be found for which c-,, < c,,,. If no such wo can be found, 
then this scan is complete and we go on to the next nodeledge pair. 
We now have a &path PO (with last edge u e q )  and c(Po) 5 c(T). Set 
i = 0 and proceed to Stop 3. 

S tep  3 [Test tour]. Construct the tour T(PC). If c(T(P')) is less than the 
cost of the best tour found so far, then store this as the new best tour 
- 

found so far. In e~ther case, proceed to the next step. 

S t ep  4 [Build next 6-patq. Let u ,+~ he the neighbor of w, in P' which 
b e l o n g s  to the subpath joining w, to u,. If the edge w,u,+l was an edge 

added to a 6-path in this iteration, then go to Step 5 and stop this scan. 
Otherwise, try to find a node W,+l such that u,+~w,+I is not in T and 
when we perform the ui+lw,cl-switch, the new &path P'+', with last 
edge u,+lwi+,, we obtain has cosk no greater than that of T. Agmn, if no 
such w , + ~  can he found, we go to Step 5 and stop this scan. But if we are 
successful, then we set a = i + 1 and go back to Step 3. (See Figure 7.6.) 

Step 5 [End of nodeiedge scan]. If we have Found a tour whose cost is less 
than that of T, replace T with the minimum cost such tour f~und .  If there 

remain untested nodeledge combinations, ttmn return to Step 2 and try 
the next. 

Now let us make a few comments. First, note that in the process of a single 
nodeledge scan, for any given edge, we can either add it to a 6-path on remove 
it from a Cpath but not both. Thus it makes sense to speak of added and 
remouerI edges. Each successive &path generated will have cost no greater 
than that of T, the initial tour. This is equivalent to saying that the sum of 
the costs of removed edges minus the sum of the cost of added edges is kept 
nonnegative. This difference is sometimes called the gain sum. 

HEURISTICS POR THE TSP 

Figure 7.8 Coostrvctton of next 6-path 

Notice that when a better tour T(P'3 is found, we do not immediately 
ahandon the process. Rather we continue looking for an even better e o m p l ~  
tian. 

In Steps 2 and 4 we chose a node w,+l, subject to certain conditiow. In 
general there will be many possible ehoices for these nodes. It may be too time 
consuming to try all possibilities at each stage, so Lin and Kernighan suggest 
the following compromise, intended to limit the amount of back-tracking. For 
each candidate w, compute I(w) = k,,,, - c,,,,,, where u,+2 is the node 
which would he selected the next time thmugh this step. Note that u,+s is 
completely determined. When dioosing each of and wl, we consider in 
tum each of the five candidates w for which l(w) is maximum. For all sub- 
sequeut iterations, we consider only the best candidate. Thus in the process 
of scanning associated with a single nodeledge pair, we will in fact consider 
as many as 25 choices for the first two edges to be switched in. For each we 
completely follow its chain of switches. If a better tour is found, then T is 
replaced and we start over. If not, we go on to the next. 

They recommend m e  additional modification to the above core. The first 
time Step 4 is executed, when we choose ul, we consider a second alternative. 
Thjs is the neighbor of wo in the path hack to v. Now removing the edge 
ulwo yields a circuit and a path joining u and v ~ .  By joining u1 to a node 
w, in the circuit, we obtain once again a 6-path startimg from v. (We may 
orient tbe 6-path in either direction around the circuit.) We choose the best 
such wl, according to the above criterion. See Figure 7.71a). Going one step 
further in this situation, they also allow WI to he a node m the path joining 
u and ul (rather than in the circuit). In this ease, we let up he the first node 
on the subpath from wl to ul, ddete the edge wlu2, and form a d-path by 
letting wa he a node in the circuit. See Figure 7.7(h). 

This completes the description of the core algorithm. There is a wide 
range of possible modifications to the core that can be considered. Some 
interesting variants are described in Johnson and McGeoch [199n, Malt and 
Morton [1993], and Reinelt [19Q4]. 

To produce s very good quality tour, we need to embed the core algorithm 
into a Larger search procedure. Lin and Kernighan propose running the core 
repeatedly, starting from many (iifferent touts. They also propose several 
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Figure 7.7. Extra first step 

different methods for reducing the total amount of work required by these 
many runs of the core routine. 

An alternative has been proposed by Martin, Otto, and Felten [1992] which 
seems to work very well in practice. Each time we complete a run of the core 
routine and hence have a Ulocally optimum" tour, T, we apply to i t  a "kick" 
that will perturb the tour so that it is likely to no longer be locally optbal. We 
then rerun the core routine from this new tour. If the core routine produces 
a new tour T' that is cheaper than T, then we replace T by T', and repeat 
the kicking process with this new tour. Otherwise, we go hack and repeat the 
process with our best tour T. 

One kick that they propose is a Pinterchange that the core routine is 
incapable of performing. I t  consists of randomly choosing four nonadjacent 
edges w~va, q v l ,  UZV?, w3u3 of the tour where we assume that the nodes appear 
in the above order on the tour. We remove these edges and add the edges 
110~2,111~3, U I Z V O ~ U S V ~ .  See Figure 7.8. This becomes our new starting tour. 
Its cost will probably be much worse than that of the old local optimum, hut 
it does provide a new starting point to rerun the core ~ u t i n e .  

Figure 7 .8  4-interchange to reatan core 

This procedure is called Chacned Lmn-Kemghan. Martin and OUO [I9961 
describe it in a general context for search procedures for combinatorial opti- 
mization. One point that they make is that it may be helpful to replace T 
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by T' even when T' is slightly more expensive t h w  T. This added fiedbility 
may allow the procedure to break away from a locally optimal tour that does 
not seem to permit good kicks, The rule they suggest is to replace T by T' 
with a certain probabilit). that depends on the difference in the costs of the 
two tours and on the number of iterations of the procedure that have dready 
been carried out. 

Notice that Chained Lin-Kernighan is not a finite algorithm, since we have 
not provided any stopping rules. We would normally let it run until we see a 
long per~od wUh no improvement. Sometimes, however, we have available a 
good lower bound on the optimum solution cost, which will permit us to stop 
sooner. Obtaining such bounds is the subject of the next two sections. 

The result of applying this method to our t a t  problem is shown in Fig- 
ure 7.9. On the TSPLIB problems, Johnson, Bentley, McGwch. and Roth- 

Fig- 7.0. Sample TSP and Chained Lin Kerarghan salution. 56892 

berg [I9971 report that Lin-Kernighan produces t o m  about 1.02 times the 
optimum, and Chained Lm-Kernighan under 1.01 times the optimum. 

Running Times 
The methods described above can all he implemented to run efficiently, 

even for quite large ptahlems. We refer the reader to the extensive treatment 
of this subject by Johnson, Bentley, McGeoch, and Rothberg [1997]. They 
report, for example, that on a randomly generated 10,000-node Euclidean 
problem, running times on a fast workstation (that is, fast in 1994), are 0.3 
seconds for Nearest Neighbor, 7.0 seconds for Ruthest Insertion, 41.9 seconds 
for Christofides' Heuristic, 3.8 seconds for 2-opt, 4.8 seconds for %opt, and 
9.7 seconds for Lin-Kernighan. 
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Exercises 

7.1. Let G = (V, E) be agraph and c E RE. Show that the problem of finding 
a inlnrmum-cost Hamiltonian circuit in G can be formulated as a TSP. 

7.2. Show that it we have a TSP on n nodes for which the triangle inequal- 
ity does not hold, then the ratio of the cost of the solution produced by 
the Nearest Neighbor Algor~thm to the cost of an optimal tour can be 
arbitrarily large. 

7.3. A variant on the TSP permits a node to be vlsited more than once if 
it results in a belter solution. Show that if the cost function satisfies 
the trlangle inequality, then there is always an optlmum solution whch 
visits each node exactly once Show that if the triangle inequality does not 
hold, this problem can he solved by solving a TSP for which the triangle 
inequality does hold. 

7.4. Show that if we have a Euclidean TSP, then a tour is Z-optimal only if it 
never crosses itself. hut the converse is false. 

7.5. Use the following example to show that the factor 312 in Theorem 7 1 
cannot be decreased. Let V = {v l ,  w,.  . , u.) and define c*,,, to he L(li - 
j1+ 1)/2] for i # j. 

7.6 (Van Leeuweu and Schoone) Let V he any set of n nodes in the Euclidean 
plane and let T be any tour on these points. Suppose we attempt to obtain 
a noncrossing tour by choosing any pair of edges which cross and then 
perforrmng a Zinterchange to uncross them. Show that the total number 
of crossings can be increased by such an operation. Show that after at most 
IVI3 uncrossings, we necessarily obtain a noncrossing tour. ( b t :  For each 
edge, viewed as a line segment, count the number of [infinite] lines that can 
be drawn through twocities so as to intersect that segment. Show th&t the 
removal of a crossing always reduces the total count, for all edges, by at 
least one.) 

7.7. Show that if we consider all choices for w,+l in Step 4 of the Core Lin- 
Iiernighan Heuristic, then the resulting solution will always be 3-cptimal 
but need not be 4optimal. Show that the verslon described here (core 
only) need not be 3-optimal. 

7.3 LOWER BOUNDS 

We have emphasized the use of min-max relations in procedures for computing 
optimal solutions to combinatorial problems. The lower bound provided hy 
the 'max" side of the relation gives a proof of the optlmality of the sokition 
given In the "min" side. Unfortunately. €01 the TSP and many other problems 
known to be just as difficult 35 tthe TSP (see Chapter 91, no such min-max 
relation IS known. Nonetheless it is important in some practical situations to 
give lower bounds as a measure of the quality of a proposed dutlon. 

LOWER BOUNDS 

Held and Karp 

A classic approach to lower bounds for the TSP involves the computation of 
minimum-cost spanning trees. The general technique is standard: To obtain 
a lower bound on a difficult problem we relax its constraints until we arrive 
at a problem that we know how to solve effic~ently. In this case, the idea is 
that if we remove from a given tour the two edges incident with a particular 
node, then we are left with a path running through the remaining nodes. 
Although we do not in general know how to con~pute such a "spmning path" 
of minimum cost (it is just as hard as the TSP), we do know how to compute 
a minimum-cost spanning tree, and this will give us a lower bound on the cost 
of the path. 

More precisely, suppose we have a graph G = ( K E )  with edge costs (c. : 
e E E) and a tour T E E. Let ul E V, let e and f be the two edges in T 
that are incident with ul ,  and let P be the edge-set of the path obtained by 
removing e and f from T. The cost of T can be written as c, +cf + c(P). 
So if we have numbers A and B such that A 5 ce + cf and B c(P), then 
A + B will he a lower bound on the cost of the tour T. Our goal is to d e h e  
A and B so that they are valid for all choices of T. In this way, we will obtain 
a lower bound for all tours. - 

So, what can we say about the edges e and f ?  Since all we know is that . -t 
they both are incident with vt ,  we can do no better than to set A equal to 
the sum of the costs of the two cheapest edges in E incident with that node. 

The interesting part is the bound on c(P). Notice that P is a spanning : 
tree (albeit of a special form) for the graph G \ UI we get by deleting v~ 5.' and the incident edges from G. Thus, if we let B be the minimum cost of a 
spanning tree in G\vl  (which we can compute with the methods described in 

$ 
#,,,J 

Chapter 21, then we know that P must have cost, a t  least B. So we have our 
bound, A + B. This is commonly called the 1-tree boundand a set of edges 
consisting of two edges incident with node v l  plus a spanning tree of G \vl is 
called a 1-tree. The name comes from the usual practice of denoting the node 
that we delete as node vt or node "1." We can summarize this discussion as 
follows. 

1-tree Bound 
Let G = (V,E) with page costs (c, : e f E) and let vr E V. Now 
let A = min{c. + c, : e, f E ~ ( v I ) ,  e # f }  and let B be the cost of a 
minimum spanning tree in G \ v,. Then A+ B is a lower bound for 
the TSP on G. 

A minimum-cost 1-tree For the 1117Snode problem is illustrated in Fig- 
ure 7.10. (The node ul is in the lower right-hand corner of the figure, and is 
drawn larger than the other nodes.) Its value is approximately 90.5% of Che 
cost of the best tout repoited above. Although this is quite respectable, i t  
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leaves a rather large gap between the upper and lower bounds. To improve 

Figure 7.10 Sampk TSP and 1-tree bound: 61488 

this we might try several different nodes a$ 'node ul," but for larger prob- 
lems, like our test problem, this will not result in a significant gain. The key 
to obtaining a real Improvement can be found by examining tbe structure of 
the 1-tree in Figure 7.10. What catchea your eye is that the opt-unal 1-tree 
does not at all resemble a tour: Many nodes do not have degree 2. We can 
use this to our advantage. 

To see dearly what is happening, coasider the small example given in 
Figure 7.11. With UI chosen as indicated, the 1-tree bound is 0. As you can 

Figure 7.11. An optimal I-tree 

see, however, the cheapest tour has cost 10. What went wrong is that the 
spanning tree in G can use all three of the 0 cost edges incident wieh node 
u, whereas a tour can only mske use of two of them. There is a way around 
this problem, although a t  &st it may seem like a sleight of hand. 

LOWER BOUNDS 

What would happen if we added 10 to the cost of each of the edges incident 
with node u? Every tour uses exactly two of these edges, so the cost of every 
tour increases by precisely 20. So, as far as the TSP goes, we have not really 
changed anything: The old tour is still optimal, its cost now being 30. But 
what has happened to the 1-tree bound? A simple computation shows that 
it also has value 30. So we have a simple proof that no tour in the alteed 
graph can bave cost leas than 30. This means that no tour in the original 
graph can have cost less than lo! By this simple transfoxmation we bave 
therefore increased the lower hound from 0 to 10. The point is that although 
the transformation does not alter the TSP, it does fuwdmentaUy alter the 
minimum spanning tree computation. 

In the above example, we say that we "assigned u the node number -10." 
That is, we refer to the profess of subtracting k from the cost of each edge 
incident with a given node v as assigning u the node number k. Notice that 
we could assign several node numbers at once. The change in the cost of 
any tour will just be twice the sum of the assigned numbers. With this fact, 
we can formally state a lower bounding technique, introduced by Held and 
Karp [1970]. 

Held-Karp Bound 
Let G = (V, E )  be a graph with edge costs ice : e E E), let u, f V, 
and for each node v E V  let yv be a real number. Now for each edge 
e = uu E E let ' = E. - y= - yu and let C be the 1-tree hound for G 
with respect to the edge costs (Z : e E E) .  Then 2 C ( y .  : u E V ) f C  
is a lower bound for the TSP on G (with respect to the original edge 
costs (c. : e E E ) ) .  

. . 
With a good set of node numbers, the difference between the Held-Karp 

lower hound and the 1-tree lower bound can be dramatic, its we indicate in 
Figure 7.12 for Our 1173-node test problem. The 56549 bound we obtained in 
thii way implies that the 56892-cost tour nw found in the previous section is 
no more than 1% above the cost of an optimal tour. 

For the important computational issue of how to find a gmd set of numbera, 
Held and Karp [I9711 proposed a simple iterative scheme. The main step is 
the following. Suppose we have computed an optimum 1-tree T with respect 
to the altered edge costs (G, - y, - y, : u E V )  for some set of node numbers 
(y, : u E V ) .  For eacb node u E V, let ~ T ( u )  denote the number of edges of 
T that are incident with v .  Based on our above discussion, if d ~ ( u )  is greater 
than 2 then we should decrease y, and if d ~ ( u )  is equal to 1 (it cannot be less 
than 1) we should increase y,. This is just what Held and Karp tell ns to do: 
For each mde 8 ,  r e p h e  y, by 

ue + t ( 2  - ~ Z ( U ) )  

for some positive real number t (the step awe). 
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Figure 7.12. Sample TSP and Held-Karp bound 56349 

By iterating this step, we obtain a sequence of Held-Karp lower bounds. 
Although it is not true that the bound improves at each iteration, under cer- 
tdtn natural conditions on the choice of the step sizes i t  can be shown that 
the bound will converge to the optimum Held-Karp bound (that is, the max- 
imum Held-Karp bound over aU choices of node numbers). (See Held, Wolfe, 
and Crowder [1974].) Unfortunately, no conditians are known that guaran- 
tee the convergence will occur in polynomial time. But all is not lost. As 
reported in Grotschel and Holland [1988], Holland [1987]. Smith and Thomp 
son [19771. and elsewhere, several ways of selecting the step sizes have shown 
good performance in practice. We describe one such method. 

Motivated by gwmetrical considerations, at the kth iteration Held and 
Karp [1B71] suggest the step size 

where U is some target value (an upper bound on the cost of a minimu~zl 
tour), H is the current Held-Karp bound, and is a real number satisfying 
0 < a(*) 5 2. Following Held. Wolfe, and Crowder [1974], we staot with 
do) = 2 and decrease a(') by some &xed factor after every block of iterations, 
where the size of a block depends on the number of nodes in the TSP we 
are so1ving and the amount of computation time we are willing to spend on 
obtaining the lower bound. 

The errtire method is summarized in the box below 

LOWER BOUNDS 

Held-Karp Itemtive Method 
Ii%prrt 

Graph: G = (I.; E)  with edge costs (c, : e E E) and vl E V 
Real number: .Li (a target value) 
Positive real number: ITERATIONFACTOR (for 

example, 0.015) 
Positive integer: MrUECEANGES (for example, 100) 

Inibmiizat~on 
y,=OVu€V,H*=-m,TSMAW.=0.001,a=2,p=0.5 
NUbIITERATIONS = ITEFL4TIONFACTOR xlVl 

Algonthrn 
For i = 1 to MAXCHANGES 

For k = 1 to NUMITERATIONS 
Let T be the optimum 1-tree with respect to the 

edge costs (G,, - y, - y, : uu E E) and let H 
be the corresponding Held-Karp bound; 

If H > H', then set H' = H (improvement); 
If T is a tour, then STOP. 

. Let tck) = a(U - H) / C ( ( 2  - d ~ ( v ) ) ~  : u E V ) ;  
I f  t i k )  < TSMALL, then STOP. 
Replace y, by y. + tCk)(2- d ~ [ v ) )  for all u E V; 

Replace a by pa;  

If you carry out experiments with this method, you will notice that the 
bound you obtam for a given graph and edge costs will depend on the choices 
of the input parameters (particularly the target value U). Only experimenting 
with the settings will allow you to optimize the method for a particular class 
of problems. Also, you should keep in mind that many other choica for the 
step sizes are possible, and experiments may suggest an alternative scheme 
that performs better on yous problemg. 

Linear Programming 

Dantzig, hlkerson, and Johnson [I9541 proposed to attack bhe TSP with 
linear-programming methods. The approach they outlined is still the most 
effective method known for computing good lower bounds for the TSP. Their 
work also plays a very important role in the history of combinatorial opti- 
mization since it  was the first time cutting-plane methods were used to solve 
a combinatorial problem. We will discuss their method further in the next 
sect~on, but here we present their linear-programming relaxation to the TSP. 

Let z be the characteristic vector of a tour. Then x satisfies 

x(6(u)3 = 2, for all v E V 
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Box 7.1: Lugrangean Relwahon 
The Held-Karp lower bounding technique is an instance of a general 
integer programming method known as Lapangeon relazat%on (Held 
and Karp [1971]). The method is appropriate for integer programming 
problems max {wTs . 4 1  < b, z iategral } for aihich the constraints 
Ax 5 b can be split into two parts, Alz  < bl and Ass < b2, in such 
a way that "relaxed" problems of the form max {cTx : A11 5 h,z 
integral ) can be mlved efficiently. The method is based on the obser- 
vation that for any vector y 2 0 (where the number of components of 
y matches the nnmber of inequalities in A1a < bl) the value 

L(y) = yTbl + max {(w - yTA1)Tz : A21 5 h , z  integral ) 

is an upper bound on the original integer programming prbblem (since 
yTbl > yTA1~). By assumption, for any given vector y we can eas- 
ily compute L(y), so what we need is a way to find a good y (that 
is, one that gives a strong upper bound L(y)). This can he accom- 
p l i e d  with a general iterative technique called subgradient optimwa- 
tzon (Polyak [1967], Held and Karp [1971], Eeld, Wolfe, and Crow- 
dm [1974]). The kth step of the subgradient method is the following. 
Having the vector y(k), we compute an optimal solution ztk) to the 
problem 

rnax{(w - y(k)*)~Tz : A22 5 h , z  integral 1. 

Now, for a specified step size t"), we let 

y ( k t l l  = y(*) - t(f)(bl - Alz(k)) 

and go on to the (k + 1)st step. Polyak [1967) has shown that if the 
step sizes do) ,  t('), . ..are chosen so that they converge to 0 but not too 
fast (namely limk,, tck) = 0 and G z ,  t(&) = m], then the sequence 
of upper bounds produced by the subgradient method eonverges to 
the optimal L(y) bound. 

LOWER BOUNDS 

It is not true, however, that tours are the only integer solutions to this system, 
since every 2-factor (that is, disjoint union of circuits meeting all of the nodes) 
will appear in the solution set To forbid these non-tours, we can add the 
inequalities 

z[6(S)) 2 2, far all O # s # v 
since m y  tour must both enter and leave such a set S, and thus will contain at  
least two edges from 6(S). These inequalities are b w n  as subtour oonrtmtnts 
since they forbid small circuits (or Usubtours"). 

The Dantzig, Fulkerson, and Johnson relaxation of the TSP is 

Minimize C(c.z, : e E E )  
subject to 

s(6(u)) = 2, for all u E V 
z(B(S)) > 2, for all B # S # V 

O < x , < l ,  f o r a l l eEE .  

Note that any integral solution to (7.1) is a tour, so (7.1) can be used to create 
an integm-linear-programming formulation of the TSP. What is important for 
us, however, is that the opaimal value of (7.1) is a lower bound on the cost of 
any our .  We call this the su6tour bound for the TSP. We show below that 
the subtour bound is equal to the optimal Held-Karp bound! 

To start off, choose some node ul E V and notice that we can restrict the 
set of suhtour constraints to those sets S that do not contain vl, since the 
constraints for S and V \ S are identical. Furthermore, making use of the 
equations 2(6(u)) = 2, we can wnte the subtour constraints in the %iden 
form 

z(?(s)) < Is1 - 1 
(see Exercise 7.11). Also, the equation 

is implied by the equations z(6(u)) = 2, and thus can be added as a redundant 
constraint to (7.1). 

With these modiications, we can write (7.1) as 

Minimize C(c,z, : e E E) 
subject to 

2(6(u)) = 2, for all u E V 

z(r(S)) 5 IS1 - 1, £01 an S G V,  UI # S 
z ( r ( v \  {vI})) = IVI - 2  
0 < z, 5 1, for all e E E. 
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These eonstraiots look simibr to the constraints of a linear-programming 
problem we saw in Chapter 2. Indeed, ifwe remove the equations (7.3) and the 
variable corresponding to the edges in 6(vr), then we are left with the defining 
system for the convex hull of the spanning trees in the graph G[V \ f UI}~. This 
is the connection with the held-Karp bound. More directly, we can conclude 
that the cosa of a minimum I-tree in G is equal to 

min {cTz . x satisfies ( 7 4 ,  (7.5). (7.61, and z(d(~1)) = 21. (7.7) 

To see how the node numbers m e  in, consider the form of the dual hw- 
programming problem of (7.2). We have a duel variable y. for all u E 
V \ fur), together with a dual variable for each constraint in the 1-tree 
formulation (7.7). Now suppose we have an optimal solution to this dual 
linear-programming problem, and Iet (6 : v f V \ {vl)) be the values a£ 
the variablw (y, : u E V \ {a,)). If we Ex these vadables at their values 
y:, then the remaining variables constitute an optimal solution bo the dual 
linear-programming problem of 

Minimiee C((quv - -y: - Y;)x*~ : uu E E) 
subject to 

z satisfies (7.4), (?.!I), (7.6) . 
z[6(v,)) = 2. 

But thisis a I-tree p~oblem. So the optimal value of (7.2) is equal to the Reld- 
#asp bound obtained using the node numbers (y: : v E V\ {y)) (settieg she 
node number on vt to 0). 

Convexsely, the arguments show that for any set of node numbers we can 
construct a Emible solution to the dud of (7.2) with objective value equal 
to the corresponding Held-Kaq bound. Thus, we have shown the following 
result. 

Theorem 7.Z The suittour Bound b equd to the optimal Eleld-Rarp bun&. 
I 

The Held and Karp procedure can therefore be viewed as a heuristic for ap 
proximatiag the sobbou~ bound. Dnect methub for computing this bound 
will be discussed in the next section. 

7.8. Modify the edge costs in the graph given in Figure 7.11 so that t h y  
satisfy the triangle inequaiity, keeping the Fact that the 1-tree boundis not 
equal to the optimal due  of the TSP, hut the best Reld-Kgsp bound is 
wual to the optimnm TSl' value. 

GUTTING PLANES 

7.9. Give a graph and edge costs such that the best Held-Karp bound is not 
equal to the optimum value of the TSP. 

7.10. Let G = (V, IT) be a graph with edge cotrta (c, : e E E), and let T be a 
mhtimum spanning tree of G. Show that if v is a leaf of T, then an optimum 
14153 with v as nade v~ can be obtained be adding to the edgeset of T khe 
edge joining v to its second nearest neighbor. Give an example of G, c, and 
T, where the best choice of VI (that is, the one giving the greatest 1-tree 
bound) is nor a leaf of T. 

7.11. Let G = (V,E) be a graph with edge costs c f RE. Show that the 
linear-programming prohlem (7.1) is equivalent to the linear-pmgrammiqg 
problem (7.2). 

T.4 CUTTVG PLANES 

In the last seetion, we described an intuitively mothated pmcedure for eon- 
struetiog what is usually a good lowerbound on the &t of an optimalsolution 
to a, TSP. We showed that this procedure was in fact a heuriszk lor obtaining 
a good feasible salution to the '"subtour* liness.progtammhg problem (7.1), 
which we restate here: 

Minimize C(cexs : e E E)  f7.8) 
subject to 

x(S(u)) = 2, for all v E V (7.9) 
z(6(fl) 2 2, for all S G V, 8 # V,S f O (7.10) 

0 2 z, _< 1, fa all e E E. (7.11) 

Suppose we tried ta solve this linear-programming problem directly, What 
problems would we encounter? One bii obstacle is thae the nnmber of in- 
~ual i t ies  7 10) LS about the same as the number of distinct subsets of cities, I .  ' or about 2 '1. Even if we notice that we do not need inequalities for both S 
and V \ S, and hence can b i t  onrselves to sets .S sati&ig IS1 < IVlj2, we 
still need about 21'1-' of these inequalities. 

Dantfig, Flrlkerson, hnd Johnson avercame thb obstacle by 801ving the 
linear-programming problem using, the cutting-plane approach described in 
Section 6.7. We describe their approach in this seetion. 

We begin by solving the linear-programming problem (7.8), (7.9), and 
(7.11). If the opaimal solution happens to be che dwacteristic vestor of 
a tour, then we can stop since this m d  he the solution to the TSP. If not, 
we will try to find some subtour constraints (7.10) violated by the optimal 
solution. We add these inequalities to aur swting set and solve the resulting 
linear prwam. 

We perform this pnxess over and over. If we ever obtain a solution whieh 
does nat violate any subtour constraints, then we haw 8atved the @rigid 
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linear-programming problem. If not, we add some violatedsubtour constraints 
to obtain the next problem. 

If this iter4tive process is to work, there are two problems ta solve. First, 
we must have an efficient method of checking an optimum solution to a r e  
laxed problem to see whether io violates any subtour constraints from (7.10). 
Second, we must have an efficient wa~t of solving the lineat-pmgramming prob- 
lems that arise. 

The first problem can be solved using results from Chapter 3, as we describe 
below. 

For small TSPs the second problem is easily handled by any commercial- 
quality simplex-based linear-programming code. For larger TSPs, howwer, we 
will run into the difficulty of having to deal with beatprogramming problems 
with a large number of variables. For example, the problems i~tor our 1173- 
node sample TSP will have 6873Wvatiables. In such a case, it is probably not 
a good idea to solve the problem d ' i t l y .  Instead. we handle the variables 
in a manner similar to the way we handle cutting planes: Start out with a 
linear-programming problem that contains only a subset of the variables and 
add i s  the remaining ones as they are needed. We need to explain what we 
mean by "as they are needed!' 

Suppose we select a set E' C_ E, such that the linear-progfamdngproblem 

Minimize C(c+z. : e E E*) 
subject to 

z(6(v)) = 2, for all 11 E V 
z(6(s)) 2 2, for all 0 $ S # V 

0 5 r. < 1, for all e E E'. 

has a feasible solution. (A common choice is to take the union of a small 
number [my 101 of tours produced by the Core Lin-Kernighan Heuristic.) An 
optimal solution, z', to (7.12) ean be extended to a feasible sdution, z*, to 
17.8) by setting z; = 0 for all e E E \ E'. The trouble is that z' may not be 
an optimal solution to (7.8). 

To check optimality, let yi,Y' be an optimal soiution to the dud linear- 
programming problem of (7.12): 

Maximize E(Zy, : v E V )  + Z{2Ys : S V,S # V, S # 0) (7.13) 
subjeet to 

y ~ + y ~ + C ( Y s : u a , € d / S ) , S c V , S # ~ S f  @ ) < & V ,  (7.14) 
f 0 r d U v ~ F  

Y s > O , f o r a U S ~ ~ S + V , S # 8 .  (7.15) 

If y', Y' is also feasible for the dual linear-programming problem of (7.8) [that 
is, the problem we obtain by replacing E' by E in (7.14)) then we know by 

CUTTIfiC PLANES 

linear-programming duality that I" is indeed optimal for the original linear- 
programming problem (7.8). Otheraiise, we can add those edges e E E \ E' 
for which the corresponding constraint (7.14) is violated to our set F, resolve 
the linear-pmgramrmng probiw (7.12), and repeat the process. 

This is another example of column generation. It is similar to the methods 
we described jn Chapter 3 for multicommodity flows and in Chapter 5 for 
solving minimum-weight perfect matching problems on dense graphs. Gom- 
bining column generadon with the cutting-plane approach aUows us to solve 
linear-proqamming problems that are both ''long' and "wide." 

Using this combined method, suppose that we eventually solve the linear- 
programming problem (7.8). Generally this solution will not be tbe charac'ter- 
istic vector of a taw. What then? We could stop with a lower bound wbich 
is wuatly pretty good. We could go on to branch-and-bound, as discwed in 
the next section. Or we could try to find some other class of cutting plan- 
to add which would permit this process to continue. 

We now diacusa the cutting-plane generation in some detail. 

Handling Subtour Constraints 

Suppose I* is a feasible solution to the (initial) linear-programming prob- 
lem 

i v r m b e  E(&z. : e 6 E) (7.16) 
subjech to 

r(6tu)) = 2, for all v 6 V (7.17) 
0 5 z, < 1, for all e E E. (7.18) 

We wish to determine whether allsubtour constraints (7.10) are satisfied, and 
if not, fmd one or mare that are violated. 

If the eolution falls apart into sweral components (that is, the graph with 
node-set V and edge-set {e 6 E : z; e; 00) is disconnseted), then the node-set 
S of eaeb component violates (7.16). This situation is w v  to detect. . . 

After several wavm of cutting-plane addition, we will id general not have a 
&scpnn&ed solution. In this case, we need a more sophisticated separation 
algorithm. 

For each edge e 06 G, defme its copaorly u, to be x:. Then the value 
z'(6(S)) for any set S of nodes is precisely the same as the capacity of the 
cut in 6(S) in G. So we can apply the minimtun cut methods we d i s d  in 
Section 3.5: There exists s set S of rides tha$ violates (7.10) if and only if 
some cut in G has capacity less than two. 

Now we are in a good position. We solve the initial linear-progrmmhg 
rehat i in .  Then we can add violated subtour constraints as tong as the solu- 
tion is not suffidently connected. Then we can use aminimum-cut algorithm 
to ensure that there are no violated subtour constraints at all. Each time we 
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add more subtour constraints, we can use the simplex algorithm to obtain a 
new optimal solution. 

For our 1173-nde sample TSP, the optimal value of (7.8) is 56381. As 
we would expect, this is slightly better than the hound we found using the 
Held-Karp method. 

Suppose we terminate with a solution such as in Figure 7.13. It is an 
mtimal solution to the linear-oro~tramminn woblem (7.8) if all costs are Eu- . - - - 
clidean, but it is not a tour. Below, we describe a class of cutting planes that 
is very useful in improving the lower bound in situations like this. 

Figure 7.13. A fractional salution and violated eomb 

Comb Inequalities 

A comb is defined by giving several subsets of nodes of the graph: We need 
one nonempty handle H C_ V, H f V and 2k + 1 pairwise disjoint, nonempty 
teeth T1,T2,....T2~+1 C V. for k at least 1. (So the number of teeth is odd 
and at least 3.) We also require each tooth to have at least one node in 
common with the handle and at least one node that is not in the handle. See 
Figure 7.13. 

Chvatal [1973a] and Grotschel and Padberg [I9791 proved the following 
result. 

Theorem 7.3 Let C be a wmb w ~ t h  handle H and teeth T,,T2, .... TZX+I for 
k > 1. Then the chamcteristtc vector x of any tour satisfies 

Proof: Let z be a tour. Then x satislies all the constraints (7.9)-(7.11). 
Add up the following constraints. 

CUTTING PLANES 

Equations (7.9) for the nodes in H 

Constraints (7.10) lor the teeth T, in the "inside form" z(y(T,)) < IT,[ - 1, 
(See Exercise 7.11). 

Constraints z, 2 0 for the edges in 6(H) but not belonging to any tooth, 
but in the form -2, < 0. 

Constraints (7 10) for the sets T, \ H in the "inside fom" z(y(T, \ H)) 5 
IT, \ HI - 1. 

Constraints (7.10) for the sets T,nH (for those i such that T, intersects H in 
more than one node) again in the "inside form" z(.y(T,nU)) _< IT,n HI - 1. 

Now, dividing through by 2, we obtain 

Since the left-band side is integer-valued, we can round down the right-hand 
side, and get the desired result. 1 

Another way of stating $hi theorem is that 

is a d i d  cutting plane. These are called comb inequalrhea. 
Often when we see a fractional solution z in which there exists an odd 

circuit all of whose edges have the value 112, the node-set of the circuit forms 
the handle of a eomb giving rise to a cutting plane that is violated by x. Again, 
see Figure 7.13. At the current time, there is no polynomial-time algorithm 
known for deciding in general whether a given (nonnegative) vector z violates 
some comb inequality. 

When each tooth of a comb has exactly twonodes, we call the corresponding 
inequality a blossom mequnlrty. This name comes from a comection to the 2- 
factor problem. (See Exercise 7.15.) For this special elass of comb inequalities, 
Padberg and Rao [I9821 showed that there is a polynomial-time separation 
routine. We describe their method below. 

Let G = (V,E) be a graph. A blossom inequality can he spwified by a 
handle H C V and a set of edges A C 6(H),  with 14 odd and at least 3. So 
the ends of the edges in A are the teeth of the corresponding comb. 
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When we are solving a TSP, we mume that the nonnegative vector z 
satisfies the equations (7.9). So we may write the blossom inequality 

in the form 

(See Exercise 7.16.) If we rewrite this ineqnality as 

then the left-hand side looks similar to the capacity of the cut 6(H), except 
that the edges in e E A contribute 1-2, instead of the usual z,. It is perhaps 
not surprising that om separation routine will make use of the minimum T-cut 
algorithm (see Section 6.8), as we now describe. 

To speed up our computations, we begin by deleting from E all those edges 
e such that ze = 0. 

Now define a new graph G' by subdividing each edge e E E with two new 
nodes v: and v:(, that is, if e has ends v and w then we replace e by the three 
edges vu:, v:v:, and w:(w. Let T by the set of all new nodes pr:, v:l for all e e E,  
and define edge weights u E ) by setting u,,~ = z,, u,:,: = 1-2,. and 
u,;, = ze for all edges e = vw E E. See Figure 7.16 

Figure 7.14 Subdivided edge 

Suppose that the blossominequality corresponding to H 2 V and A 6(A) 
is violated by z. Let S C V(G1) consist of H, together with the two new nodes 
v:, u:( tor all edges e E yo(H), and for each edge e E A the new node v: or 
v:( that is joined by an edge in G' to a node in H. Then S n T  is odd and the 
capacity of b ( S )  is precisely 

So 60,(S) is a T-cut in G' with capacity less than 1. 
Conversely, let 6cr(S) be a minimum T-cut in G' and suppose that its 

capacity is less than 1. Let H = S n V, and let A consist of those edges 
e E &(H) such that exactly one of the two new nodes v: or v:l is in S and 
that node is adjaxent to a node in H. 

Using thefact that for any new node t E V(G1)\V, thesum of the capacities 
of the two edges in E(G1) that are incident with t is exactly 1, it is easy to 

CUTTING PLANES 

check that (A1 is odd and that the capacity of 60s (S) is at least (7.22). So the 
blossom inequality corresponding to H and A is violated by z. 

The blossom separation problem can thus be solved by finding a minimum 
T-cut in G' using the algorithm described in Section 6.8. If the T a t  has 
capacity less than 1 then we can extract a violated blossom inequality. Oth- 
erwise, we conclude that no such inequality exists. 

Using this method to optimize over the linear-programming problem we 
obtain by adding all blossom inequalities to (7.8). we obtain a lower bound of 
56785 for our 117.3-node sample TSP. This is a very good bound. It implies 
that the tour we f w d  with Chained Lin-Kernighan in Section 7.3 has cost 
no more thm 0.2% above that of an optimal tour. 

A number of heuristics have been proposed for finding violated comb in- 
equalities. One of the common ideas is to shrink certain subsets of nodes and 
look for a violated blossom inequality in the shrunk graph that correspond8 
to a violated comb in the original graph. (See Exercise 7.19.) 

There are many more classes of valid cutting planes known for the TSP. 
We refer the reader to Qrotschel and Padberg [1985], Jiinger, Reinelt, and 
Rinaldi [1905], and Naddef [I9901 for further discussions. 

Exercises 

7.12. Show how to solve linear program (1.16)-(7.18) as a minimum-cost flow 
problem. Use your construetion to prove that there exists an optimal so- 
lution to (7.16)-(7.18) for which all variable have d u e  0,112, or l. 

7.13. LeC z be a feasibIe solution to the linear program (7.16)-(7.18). Let F 
be the set of all e E E for wbich z, j& 0 or 1. 
(a) Show that if F contains the edge-set af an even circuit then z can be 
expressed as a convex combination of two other fwible solutions, and so 
is not a vertex of the polyhedron defined by (7.17),(7.18). 
(b) Show that if any connected component of F contains two or more odd 
circuits, then z is not a vertex of (7.17),(7.18). 
(c) Show that if every component of F consists of a single odd circuit, then 
there exists a set of inequalities (7.18) that can be set to equations such 
that z is the unique vector satisfying these equations plus (7.17). 
/d) State a necessary and sufficient condition, based on (a)-(c), for a vector 
z to be a vertex of (7.17),(7.18). 

7.14. Prove that i f z  is a vertex of (7.17),(7.18), then at most IVI components 
of z can have nonintegral values. Construct an example that shows that 
this hound can be attained. 

7.15. Show that the blossom inequalit~es are satisfied by the characteristic 
vectms of the 2-factors of a graph G. 
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7.16. Show that in the presence of the equations ( 7 4 ,  the blossom inequality 
(7.20) can be written as (7.21). What is the connection with the system 
(5.40)? 

7.17. Show that in the presence of the equations (7.91, the comb inequality 
(7.19) can be written as 

7.18. (Karger) Let k be a fixed positive integer and let x be a vector that 
satisfies (7.9), (7.10), and (7.11). Use Exercise 7.17 and the result of Ex- 
ercise 3.65 (on page 85) to give a polynomial-time algorithm that with 
probability a t  least 1 - $ will find some violated comb inequality having 
at  most 2k + 1 teeth if such an inequality exists. 

7.19. Let G = (V, E) be a graph and s E RE a nonnegative vector. Suppose 
that S c V has the property that z(y(S)) = IS1 - l and consider the 
graph, G', we obtain by shrinking S to a single node, v ,  and replacing the 
parallel edges el,. . . ,eh between v and any other node by a single edge e 
having x, = x., +.-.+I., . Show that any violated comh inequality in G' 
corresponds to a violated comh inequality i G. 

7.5 BRANCH AND BOUND 

Cutting-plane methods can provide a very good lower bound on a TSF. Com- 
bining this with a tour produced by Chained Lin-Kernighan will typic* leave 
only a small gap between the cost of the tour and the value of the bound. 
But suppose the gap is too large for a given application. How can we pro- 
ceed further? The brunch and bound method we present below is a common 
appzoach for doing just this. We will describe it in terms of the TSP, hut the 
same principles apply to virtually any comhiiatorial optimization problem. 
Our description follows the TSP algorithm of Padberg and Rinaldi [1991]. 

Suppose we have a graph G = (V,E) with edge costs (c, : e E E) and let 
7 denote the set of all tours of G. A lower bound on the TSP is a number B 
such that c(T) 2 B for all T E 7. A lower hounding technique is s method 
for producing such a number B. Now suppose we split 7 into two sets 70 and 
7; such that 70 U 7; = 7. If we can produce numbers Bo and B, such that 
c(T) 2 Bo for all T E 70 and c[T) 2 Bt for all T E 7;. then the minimum 
of Bo and BI is a lower bound on the TSP. The point of splitting 7 i s  that 
the extra structure in 70 and 7, may allow our lower bounding technique to 
perform better than it did on the entire set 7. This is the basis of branch and 
bound methods: We succg~8ively split the solution set and apply our lower 
bounding algorithm to each part. To see how this works, we describe how to 
use the cutting-plane lower bound in a branch and h o d  framework. 

BRANCHANDBOUND 

In this context, a natural way to partition the set of tours is to select an 
edge e and let 70 be those tours that do not contain e and let 7; he those that 
do contain e. So if we let P denote the original TSP, 'then we can work with 
this partition by conkidering a new problem PO obtained by setting x, = O 
and a new problem PI obtained by setting x, = 1. 

Suppose that WE have applied our cutting-plane methods to obtain a linear- 
programming relaxation, LP, of the original TSP. Then we can immediately 
write linear programs LPo and LPI (wrresponding to the new problems) by 
adding the equations z, = 0 and z, = 1 to LP. tf e is chosen wefuliy, we 
may obtain an immediate improvement in the lower bound by simply solving 
LPo and LP,. Moreover, we can apply our cutting-plane generation routines 
to strengthen each of these linear programs, obtaining the relaxations LP; 
and LP;. Our lower bound will then be the minimum of the optimal values 
of LP; and LP;. 

if we have not already established the optimality d o u r  best tour, we can 
repeat the above process by takrng one of the problems, say PI, w d  some 
edge f ,  and creating the problems Pto and Pt1 by setting zt = 0 and x, = 1. 
Again, we can apply the cut generation routines to each ohthe new problems, 
obtaining the linear progams LP(, and LP;, . A bound on our TSP is then 
the minimum of the optimal values of LPA, L G ,  and LP{,. And we can go 
further, creating two new problems from either Po, 4 0 ,  or PII, and so on. 

A general stage of the process can be described by a tree, where the nodes 
represent problems. (See Figure 7.15.) Each node Q that is not a leaf of the 
tree has two children, corresponding to the problems QO and Q1 we created 
from Q . (See Figure 7.15.) At any point, a lower hound for the original 1 
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Figure 7.16. A branch and bound tree 

TSP can be obtained by taking the minimum of the lower hounds we have 
computed for the problems corresponding to the leaves of the tree. We stop 
the procedure whenever this bound is greater than or equal to the cost of our 
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best tour (in which case we have proven that our tour is optimal) or if we 
have established a bound that is strong enough for our given application. 

Notice that while working on some problem Q, we might well discover a 
tour that has cost less than the cost of our current best tour. In such a case, 
we should let this new tour be our best tour and wntinue the process. 

The procedure we have described is the branch and bound method. The 
"branetdig" is the process of choosing a problem Q (from the leaves of the 
tree) to split into Qo and Ql, and the edge e that determines the split. We 
still need to speciiy how these choices are made. 

Since our goal is to improve the lower bound, a t  any point we could choose 
to process a problem Q whose linear-programrniug value is equal to the min- 
mum over all leaves of the bsanch and bound tree. Thii will lead to a direct 
improvement in the lower bound. Other strategies may be adopted (for ex- 
ample, a depth first search of the hraueh and boimd tree, where we always 
process one of the most recently created problems), but this choice IS simpie 
and ha4 proved to work well in practice. 

Box 7.2: Bmnch and Bound for General Integer .Pmgramming 
The most successful methods that have been developed for solving gen- 
eral integer programming problems maw {wz :Ax 5 b , z  integer ) are 
based on branch and bound tecbiques. Branch and bound is a general 
scheme that requires two main decisions: how to branch and how to 
bound. The standard hounding method for integer programmingia to 
solve the linear-programming (LP) relaxation of the current suhprob- 
lem. Thii is wed almosa uniformly in commercially available integer 
programming codes. In some cases the LP relaxatious are strength- 
ened & the addition of cutting-planes derived from the structure of 
the given matrix A. On the branchmg side, many different schemes 
have been proposed. A common one is to choose some variable z, that 
takes on a fractional d u e  z: in the optimal solution to the current LP 
relaxation, and create one new subproblem with the additional son- 
straint z, _< jz;J and a second new subproblem with the additional 
constraint z, 2 rz:l. The rule for selecting the variable z, often d e  
pends on user-specified priorities, the simplest being to choose the fit 
variable z, that takes on a fractional d u e .  (So the user would input 
the problem with the variables in the order of their Uimportance" to 
the model.) For a detailed discussion of general integer programming 
methods see Nemhauser and Wolsey [1988]. 

Once we have selected a problem Q, what is a good choice for a "branching 
edgen e? If z' is an optimal solution to the linear-programming relaxation for 
Q, then an obvious choice for e is some edge such that z: is close to .5, since 
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then both z, = 0 and z, = 1 will hopefully force the linear program to move 
far away from the current optimal solution (and cause tbe optimal value to 
increase). Along the same lines, since we want to increase the objective func- 
tion, we prefer more expensive edges e over cheaper edges. So, one proposal 
for a branching choice is to examine all edges e such that z: is in some fixed 
interval surrounding .5, and select that edge having the greatest cost c,. 

We now have a rudimentary branch and hound scheme for the TSP. Of 
the many enhancements that can he made, we would like to mention one 
that seems particularly useful in practice. This enhancement concerns the 
generation of cutting-planes. Since we are using the inequalities we described 
4 Section 4, alI of the cuts we find while processing prohlem Q are actually 
valid inequalities for all problems in the branch and bound tree. So we ean 
save the cuts in a pool, and search the pool for violated inequalities during 
any of our cut generation steps. The use of a pool is especially important 
when our generation routines are not exact separation methods, but rather 
heuristics for finding cuts in a particular class. In this case, the pool not only 
speeds up the search, it actually gives us a chance to find cutting planes that 
our heuristic would miss. 

Using this type of branch and bound scheme, Applegate, Bixby, Chv&td, 
and Cook [I9951 showed that the tour for the 1173-node problem we reported 
in Section 2 is in fact optimal. Their branch and bound tree contained 25 
nodes. Moreover, they have solved a 7397-node problem to optimality with 
this approach. We have, of course, skimmed over all of the implementation 
details, and we refer the reader to the papers of Padberg and Rinaldi [19Sl] 
and Jiinger, Reinelt, and Thienel [I9941 for discussione of their realizations of 
these techniques. 

Exercises 

7.20. A collection of TSPs (many coming from industrial applications) can 
be found in Reinelt [1991]. Develop a computer implementation of mme 
of the techniques described in this chapter and apply your code to one of 
these "TSPLIB" problems. 


