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What do these pictures have in common ?
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Goals of these

lectures
* To introduce the equations representing

Certain fundamental wore phenomena

* To relate terms In The equations to physicalquantities* To give examples ofmathematicaltools used

to study these PDE and their solutions

* To show how tools developed for a certain

problem
become Key for a completely different setting .
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A simple

example
: Soliton

^

yµ( qx ) =O

8¥;
^ µG,x ) t > 0

on¥>×
µCt,x)= - }Cseoh2[ VE Cx - Ct - a ) ]

a ,
C = const 3



A little bit

ofhistory
•

Scott Russell ( 1834 )

Heuas a naval engineer who

first described a solitou
,

the special solution to Kdv

introduced above .

'

Kortueg . de Vries

• Lord Rayleigh ,Boussinesq ( 187'D1µ+1××u - 6u%U=0

• Korteueg R de Vries ( 1895 )
a



Conservation Laws

the solutions to the .kd
✓ equation have Infinity

many conserved integrals ( Conservation Laws ) :

Momentum : fall G. × ) dx = co

Mass : /
,,zluH,

Hltdx = C
,

Energy :L ,
± ( Au )2dx - /

,
,zu3dx = Ca

,
- -

:

,

Kinetic
energy kct ) Potential energy Pct )

1
,
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Remarks

(KdV) but %××U - GUAM = 0

←near part nonlinear poet
* the soli ton is the perfect balance of the Kinetic

( linen ) and the potential ( nonlinear ) energies
* the a

many
conservation laws gives

also a very
rich algebraic structure to the problem that has been

studied "

abstractly
"

very actively .

•



The Initial Value Problem

( kow ) µ
+ Oxxxh - °

M%U
= o × E IR

UH ,
o=

µ of
initial datum or profile

Questions' Given on initial datum Uocx )
,

does the WPHui
que solution ? For how long ? Is it stable

under perturbations of Uocx ) ?

?= Well . Posed mess of the IVP
.

*



the good and the bad

To study well - posed men
the linear port of The equation

9+0+0*0 ( Air , operator)
Is very good since it encodes dispersion .

The nonlinear port 6hAM is bad since

it encodes the interaction of U with In
,

and as a consequence bond to control effects
( resonance ) could happen .
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What is dispersion ?

Dispersion = Broadening of clove packet

y
Moh ) UK

,
× ) c-%aE.eu?E..t#.III's



Remarks

* Wave components at higher fufuenaes move faster .

* Since solutions to the linear Kow quatrain die out

in time
, soli tons must come four nonlinear

Interactions !

* the nonlinear term u9×u
,

on equivalently
the

potential energy Pct ) = - free
3

Ct
,

x ) dx
,

Is what

restores the woe signal .
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A Major Conjecture

Any solution Act
,

× ) of KDV Should be the sum

of soli tons and radiation :

UH ,
× ) = At n

+ ~+ -  - .  - mm

→ uoliotiou
soli tons

this is called : The soli ton resolution conjecture .



The SchrodingerEquation ( video )

This is arguably the most important dispersive PDE .
It

appears for example naturally In the study of the BEC
.

Bose-EinsteinGno6usI£this is the limit state of diluted

gas of Bosons particles as the

temperature approaches the sin . Bose A . Eistein

absolute Zero .

( 1894 - 1974 ) C 187g - 1955 )
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the limit process

"

Combinations
"

of solutions

to the Schrodinger equation

it at see = ± In Ree

can be used to

describe certain

"

giant matter woes
"

.



Conservation laws

Consider the Nonlinear Schrodinger ( MCs ) equation
ihutbu =±iul2u ME Rd

,
Id

u : lR×Md→ ¢

Mass = flu 14 x. t ) dx = Co Potential
-

Md

Energy = fyfzlouictix) otx ± It
,

luctix)l*d×= Cz
-

Kinetic Note : If D= 1 then ore A

Momentum = - - - -
=

C 2

may conservation laces
.
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Well -

Posedneess
Consider the initial value problem C lvp ) :

( Nb ) {
hut au = I inter Mud = mass of no

Ecuol = energy of no
M / +  = o

= Uo Cx )

Assume M ( no )
,

E Cleo ) < A
.

Is the 1 VP Kell - posed ?

a) solution exists and it is unique

the solution is stable under perturbationwell - posed mm (b)
of the initial datum Mom .
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Difficulties

* Given an initial datum uocx ) then is no
"

explicit
"

fowle
for the solution U Ct

,
× ) .

* The difficult port to handle is the nonlinearity
In Ree

this is a 3 wore interaction and out of control

" growth
"

may happen .

* Just omuniug enough regularity to make sense of M

and E is often too little
. 16



Finding
Solutions

by
Iterative Process ,

the goal is to define
"

a good
"

sefueua which " limit
"

will

give a solution :

no Cx ) = initial profile y
linen

urcx ) = solution to { it v+do=o

Vlt  = o
= Mo

z , forcing
term

µz ( x ) = solution to
{ if Wtaw = ±lu±tn±'

,
W|t=o=°

:

uncx ) = solution to {
it • + • °=± Ian

. ,

lean
. ,

Otto ' °

an → ?



the power of linear Solutions

From the previous scheme itis clear that we need to

understand the following
Question : If Uocx ) has finite energy and mess

and Tvt
,

× ) is the solution of the lined Schrodinger

WP
,

In which spoa is lvtv ?

Reword : If no Cx ) = sinx or as × then one com

use explicit calculations and derive fouuhee for a. ( × )

lviv . But what do we do in general ? fpve
18 -



The Fourier Transform

The Fourier Transform
is a mathematical

tool that allows as

to write complex signals

Ant fan
Toga

.

sum of sin and

ex
19



Mathematically

Consider a periodic won signed fcx.

) ,
then

1

iinx
fan "=" Cotuafzbnsincnxlttfzdneoncnx

) = { an e

he ;
✓

Fourier Series

an =f^cn=µftcxieihxdx
~ ,

Fourier

Coefficient
20



If f- Cx ) is not periodic ,
then

ftp.fnfexiiixesdx
is the Fourier Transform and

fcxkcfnffqleixsdq
( reconstruction fouwhe )

21



Some well - Known properties

* ddxff ( { ) = i{fT{ ) dzxffcn )= in an

* ( laity'idxt± 't't "iar , ¢,lfutdxF= : "f"eat ,

Ploucherel 11

flaifaiidsjinfnear, #'aikido;;"E
.



Fourier

Transform
in Action

Consider the linear dvp

{
ietotaoo

Y+=o=kC×
) assume for non xek ?

To solve take FT the frequency {

{
in

,Imax- 1912dg ) =O itlqp

Eco ,{ ) = to cq )
THE )=u^o( g) e

23



at ,e)= to (g) eit 's ' '

Note : For longer { Act ,{ ) has a faster velocity tkl
,

hence the
- spiraling. often Uae pocket dispersion .

SHMDH:=vCt,×1=fµµo(g) eiltstt 's '
' ) @
dog

d
-

One also has the formulae ;

°

soihetoryiutegrd
ilx - g/2

SCHUOCH = ÷,dh|
,,

b¥ uocyldy @
oh 's persian ← Zd zc ,



Good use of botkformlee

From fonwbe @ we have

ksatuocxilefqdHan's 'ldy= ¥of
"n"

yard)

dispersive estimate P={ cqlqe )/{ ⇐ 112*3

p
From formed @we bore that

USHuocH=R*uoCx ) R= restriction of
FT on P 9
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the

AiryEquation
Using a similar procedure we con also shoathot

tbesoenkontogha

.tw?eYIo=o/e,
V|t=o=M°

e={ ( s
,

es 3) 1 EEIR }

WHUoCx7÷vCt,x)=/µuo( q ) ei⇐93+×E)dg

= FY no uhe R~= Restriction on cubic
@

. 26



Time for some definitions
Lpga

Assume p > 0
,

then

LPCIRDI = { f : IRI> ¢ / ( fpalfcxilpdx)¥ : llflypca }
Assume KEN

,
then + %b°hu

space

HKUR " ) = { f- :lRd→e/ 1115£11
,

co

fgayn
,

!±Iy
}

HfHµui= §, ,
.HNF "

e
aFew,HKMFHE a HatienkI He

So we can'geniralizethe definition of HHCIR " ) to

HSCIR " ) for any se IR !
a



The power of harmonic analysis

There are several beautiful results in harmonic

analysisdealing
with restrictions of Fourier transforms

on hyper surfaces :

"
Theorem

"

: let 5 be a

"

curved
"

surface in Rd
.

Then the restriction operator Rs is well defined
and

thereore good LP estimates for it
.

( Stein
,

Tomas
, Wolff , Bourgoin ,

Strick art Z
, Keuig -

. . . ) 28



Strichartt Estimates

For simplicity
here Iuill state only

those in 1122 :

theorem: Assume no E L?C 1122)
. Assume that ( p , q )

on st
.  q2= 2 ( tzgt) . then

HSHM .
"

e. ↳
Ec " no "e

Remark . If 1 p , 91 = ( 4,4 ) we are looking at ISCH no 1

"

- .4 waves intention

( p
./ lsatee

.
C × ) 14 oltolx E C know = C Mass

112×1122 29



Rescaling
The WP

{
iota + see =±luiu can be " rescaled

"

.
an foot

nk=o= no
if ue define

uxct ,H= Kulas, ,y) @→a)
then Un solves the IVP with datum Max = Kuo (¥ )

if 5=0

Hmo,xHµs a d
's

"M° Hits ⇒ HUOHH
,

I Hlloll
,

⇒ For this problem the "

mass
"

is scalar invariant
.

( 5=0 critical exponent ) 30



A well - posed mess Theorem i9u+su=±iuRu

theorem [ local well . posed men ]
* { nIt=o=Uo

Assume s > 0 .
Then t no EHSCIRH )

F 8=0111 mollies ) and 7 ! solution uto@3s.t .

A E C ( ego ]
,

Hsurol ) ) nxs and it is
" stable "

.

t ^

•
5

µ(+,× ,
What happens- after timed ?¥!¥if°d×d'

- itdepeudsobo
If 5=0 Same conclusion but J= { ( µ . ) .

on the
profiles

,



From local to global

The question of longtime behaviour of solutions is a

difficult one .
One very useful ingredient is : conservation

laws
.

M = Mass = {fulla.x) olx =Units 11,2 = G

E = Energy =

"

E)
p

.
1 On Ct

,
× ) I 'd × ± at /

,,zz
In Ctixdl

"

dx

# - = focusing+  = defocusing are

case
.

32



Defocusing Case Assume Mao ) + Ecuol < a .

Then if uctix ) is solution To the defocusing NLS with

datum
Mo

,
we have i. M ( Uct ) ) + ECU C t , ) = Mcuo ) + Echo ) C 6

,

and so HMCH ltµ,

up . ,
E M + E

. ( * * )

Recall fan local well - posed men

Y of? air

for s=s

tOEHmo Hit
,

so the ennewy
to move to 25 would be

the growth of HU

(8)
hw which by @ * ) is prevented!

, ,



Hence by iteration we can extend the local cell - posed men

to a global one .
Fn fact this can be alone for ole s } s

.

theorem [ global well - posed men ]
Fix Str and assume That NLS is defocusing .

then

G no E HSCIR ' ) F ! Solution U E C CIR
,

Hs ) n XS that is

"

stable.
more oven if s > 1

HUH ) 11µs
( a ,

E C
, exp ( ski ) Ate R

34



Suntory :

¥#.¥§
e. a. p .

O .  -

g. a
p .

Question: We leave a conservation lou ( mess ) for
s=o , why do not iterate with that ?

tnsuer : Because when s=o we have 5=8 ( Mo ) ,
it

depends on the profile of no
,

not only its mess !

Global well - posed mess with only finite mass is

much howler ! ! 35



A beautiful theorem

theorem ( Dodson "

it
Consider the defocusing cubic NLS

in 1122
.

Then 0 Uo with MCUOK co
,

7 ! Solution Act
,

x )

in CCIR ,
44122 )

)nX°
that

is
" stable

"

.

Moreover F let
,

u
- ELZ

such that

yµµ - set )u±llet→→±8 •

this last property is called Scattering .

(See work of Killip - Tao - Vis an . Zhang ) .

36



The focusing case

In this case
the situation is much more complex . An

important role is played by the ground state Q as
.

this

is the unique positive solution of
DQ t

Q3
= Q

theorem ( Dodson ' 14) Assume that M ( no ) < M ( Q ) .
then

F ! solution UH ,
x ) to the focusing cubic NLS in 1122

" "

s . t.aeCCIR
,
E) n ×

•

,
it is stable and salters

.

( see also Killip - Vis on - Zhong for radio con )
37



The periodic case

{
ifutau =± iuiu

-

M It  =o= No × EIZ
% €

w
,

c-

Fact : This problem is much more complicated then

the on in 1122 !

Intact the presence of the boundary increases
nonlinear effects .

38



the linear solution

EiI::÷¥⇒EiIK±Ia:
I K 1

*
= W

,
K ? wz Kf

i Ctlklxitx . k )

Itt ,
k ) = riocu ) eit 1k¥

⇒ vct ,
× ) = { do (a) l

KEZZ
this is on oscillatory
series

.
These objects

/
are studied in analytic number they

39



The 1122am Comparison The 42 case

Sctluo

:=
# g) eiltksttts ' Sa

)µo÷[
unoayeiklk # " ' 4

dog KE

:u 8
: :

°

a

°

•

°

{ he

Strichertz Estimates Do Strichartz Estimates

Via Fourier Restriction follow four ouolytic
theorems

.

number theory ?



Rational and irrational tori

Definition : A torus TZ of periods C w .
,

wz ) is called

rational c⇒ wyw ,
EQ

irrational c⇒ w ,/w .
E IR ' 0h

Remade : If IT is rational then Sctluo is also periodic
In time .

theorem( Bourgoin
' 95 ) Assume I

'
is a rational torus

then E C Hllo 11

as > o HSGIUOHLG ( it × it
a ) { Hs

A mass is not enough !



"

Proof
"

Steps : H SCH Molly,
=

HsCttuosCtlll0lleutxyzjIHSCtTuoTHMolle2czxz4Step2iwrite@ctTu.sCtiudcc.k
) explicitly ] . Bourgoin

{tep3 : For simplicity assume ( wr
,

we ) E Mx IN
,

one

has to estimate IEI where

{ ( x. g)

EZYW
,

x 't way 2=122} = : E
42



E={ Cx ,y)EZ2/w,x2+wcyER9

Wire IN i. 1,2

Suppose wi=s ,
i. 1,2 ,

then we count lattice

points on

circles
,

qusimgalemmebyceuss
• S

. • 1E|eexp( 69 R)<<Ri• •

ago gr
• •

for any
s > 0 . f

• • thisisukere
•

•

• the loss of derivative
comes from '

43



Some

Remarks
* If IT

2
is irrational :

• SGIUO is no longer periodic in time

• There are no good
estimates of how

many lattice points are on ellipses .

* In Bourgoin 's proof

Analytic Number Theory ⇒ Harmonic Analysis
44



The irrational Cose

Strichartz estimates for general tori were proved by

Bourgoin -
Demeter in 2014 !

Surprisingly AMT was not part
of the proof .

the Strichartz estimates

were proved as a corollary of The

J . Bourgoin
l

?
- decoupling theorem C . Demeter

this theorem had been a major open conjecture in

HA for decades
.

this theorem is also related to The

Fourier Restriction Theorem mentioned above
.

45



Following Bourgoin - Demeter work
, improved Strichortt

estimates were proved by myself with :

Cheng ie Fan
Hong Wang Bobby Wilson

Finally we can state : µ any torus !

Theorems Assume µ . E HSCT 2)
,

s > 0 .
Then the

cubic NLS initial value problem is well posed in [0/8]
8=8 ( Ullo HI's ) .

46



The l
?

decoupling theorem

The main goal is to " reconstruct
" In the right spaces of

functions the size of a signal fan the

sizes
of its parts.

*iII#¥!egIita; Eitan
.ee?hee:E&IrEYue9aiaitot• Classical harmonic analysis

• Comb inetorics

• Incidence geometry
• Polynomial method } Cary

Guth

47
L

, Guth



The Kake
ye problem inspires

The work of Bourgoin - Demeter is strictly connected to

work of Bourgoin - Gutu on the Kakeya problem .

Definition : A kakeya needle set is a set in the plane such

that a unit line segment Can be rotated continuously
through 180 within it returning to its original position
but with reversed direction

.

n
1 .

1 - - .
. .  .

Area . Ma tree = tg

"¥÷¥=±
Area → o

8 48



Besicovitoh
128 demonstrated that on the plane there

exist
. Kukeye sets of orbit rarely small area :

By subdividing The triangle by 2
"

parts as above
,

and

letting n → a
,

one obtains a tree of orbit rarely small

area .
This is the Perron Tree

. c. g



Besicovitch actually proved even more : there are

Kakeya sets of measure Zero .

K±eeya_6ujeAure_ : Every Kakeya set in lRd has

Minkouski dimension ol
.

* If D= 2 the conjecture is proved ( Davis '

71 ) '

* If ol 23 The conjecture is really bond !

( see Bourgoin ,
Guth

,
Katz

,
Laba

,
Too

, lloeff - .  - )

so



From harmonic analysis to number theory

Recently Bourgoin .
Demeter - Guth implemented techniques

from the proof of the " l
'

decoupling theorem " to prove

the
"

Vinogrudov Mean Value Theorem
"

:

let s
,

n
,

N E IN
,

szi ,
n

,
N 22 .

let Jan ( M ) be

the number of integral solutions to the system :

xit.  - - +xsi= xsit
,

+ .  . . + xis ieien

and 1 c- xi,
. . .

, Xise M .
Then

Is
, n

CN )
§Ms "

+ N
" - ¥1' '

+ E
y e zo

.

51



Back to NCS

idtutbu
=±luRu Mln ) = fpdul Et ,x)d×

H§u1⇐o=u°
×eT2

Ecu ) = tzfaeouidxtatfuiidx
From The Strichortz estimate

HKH Molly ( co
, ,g×pz ,

E 11 No 11µs and refinements :

Theory : Assumes > 0 .

Then

0lloEHsClT4H.sobetionuCt.xieC@qoT.HsCtTzDnxs.I

table
"

and 8=8 ( Ullo this
'

) . 52



If Hu WP is defocusing He can iterate and prone :

Theory : Assume szs
,

then -0 no E Its CT '
) 7 !

global stable Solution .ua , x ) e @ C R
,

HET 4) nxs
.

Moreover if S ? 1

11 µ Ct ) 11µs
E Co exp ( a Hl ) as It I → a

Questions : Can one prove scattering ?

Scattering is not expected due to effects from the boundary .

So what happens when ltl → a ?
53



Transfer of energy
put ,kn2

to

i*n%f¥.IE;t÷*⇐⇐n¥*n
,

Area Subgreph = §
'

luct

,kil2a
Mlno ) constant !

Questions : Does the support of  tact
, kitmuvestolcigker

frequencies ?

Weak turbulence
, forward Cascade .  .

-54



Even more interesting

If then is a migration
par

to high frequencies is

the process happening
MARANAN hi a incoherent way

Bp or in a coherent Mowen ?

tarmac Ueouveyfou fan under -

standing this for NCS
.

55



Growth of Sobolev nouns

But we can study :

£,
lethal}laity

's
= HUH )

Hhs
as It Ha

,

KEZ

and check what happens when It 1 → a .

Remade From
" iteration

"

of local well - posed mess

we have on exponential C trivial ) bound :

Hu Ct ) 11µs
E C

, exp ( Cz Itt ) as ltl → a

56



Some Facts

Face : Complete integrability may prevent growth of Sobdev

nouns . ( i. e 1 D cubic NLS ) .

Face : Scattering prevents growth of Sobolev nouns

D°dso= : In 1122 F µ± ⇐ Its C 1122 ) s 20 s .t
.

HUH - SCHU
±

11µs
→ °

t  → ± co

Hence

HUCH 11µs E HUCH - SG ) u± 11µs + Hsct )u± Has
E C + 11 U± 11µs 57



Some bounds from above

�1� If uct ,
× ) is solution to the cubic defocusing NLS

in IZ then O s > 1
2 ( s - it + e

HMCH 11µs E C ltl

( Bourgoin , Ehinger)

Remote: the original proof of Bourgoin uos only
for I

'

rational
,

but it is based on Strichoetz

estimates and it can be extended to
ouy

I ?

58



�2� Consider the NLS with nonlinearity lulptu
,

scpcs

in generic
tori I ? Then one has

HUH ' 11µg , 3 ,
E c ( i + it , )s¥to.cn

§ For rational

tori this is
where OCP ) = win ( P - 3

,
5- PY 182 not there

Remarks
( Y. Deng - Germain )

-

:

• In this case
"

generic
"

means that the vector ( w , ,wz
,

ws )

of the periods has a certain Diophantine property .

• neither @ or @ are sharp results
.

sg



Are then solutions lhotgrou ?

�3� Fix s > 0
,

0<541
,

K > > 1. Then forth cubic

defocusing Mls in # rational F initial date Uooud

atime T > > 1st .

/

HµoHµs< 8 and HUCT ) 11µs > K
.

( Glliouobr - keel - S - Takaoke - Too )

2^
t=O kz •

t.tk

�4�
. arbitraiely

* * - - - - .

large mode

- z * ¥ } -2 2 k
' exited

.

Tiiratiouol
"

- 2 ( Coles - Faou ) 60



Some ideas for the proof

of
�3�

* This is a constructive proof .
look for a

solution
na ,

× )

IE square torus : i Ct 1h12 + x. n )
UH ,

× ) = 2 an Ct ) e

n Ez 2

C ⇒ - e %an = - Ianleant§,n. ,
n

,
⇐pcnaytan.

an
,# % +nee '

when
we

,
= In ,

It 1h21 't In 312.
1h12

% this is a

HUGE

t.cn ) = { ( hi ,nz,
n } ) / h

,
. nztn ,

= n } system !

61



He make several reductions :

R 1) Assume that ( n
,

ns
,

he
, hz ) are in resonance :

We
,

= In
,
I 2- In 212T 1h31 2- 1h41 2=0

Fact : ( n
,

n , , na
,

n
, ) are in resonance if and only if they

are venteces of rectangles In E?
special

r
R 2) Among all these rectangles we pick a set of fupeuncies

A- = A
,

U A-
z

U - - . A-
n ,

N > 21wherethe dynamics will take place .

62



A cartoon of A

A
,

A-
a

A-
a

. .  - -

As

63



Toy Model

•

g-
ibj  

= - lbjtbj + 25. ,
Tsj + 2 bj+, Jj su ,

-

,
m

b
,

HI = bµH) = 0 ~ > boundary date

bj ( o ) = To
, -7 initial date

Remote : Although this is not the original system,

one can prove that its solutions approximate
well those of the original Mls

.

64



this Toy
Model conserves mess

,
momentum and energy .

Its dynamics take place on

&= { × EE
"

/ 1×12=1} - , fromconservationof mess .

a

- - . - .

⇐s
z Z

, Zz E
3 ZMa

}
.  .

-
-

and on £ then on Zj , 5- i. . .

,
M great circles That

are invariant ,

i

65



the heatofthemdter
Theorem .

÷
'

;
- -

.

+
,

.

'

'
'

•
'

3

•i
"

it=Tto :
,

. .

,
• 't- - - - .

,

,•
z

,

.

Z
,

Zz =3 Em

J=M

,loufuyuny )
( highfupuny )

( see also Guardia - Keloshin ,
Hons - Proasi ) .
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Remarks

* He do not Khou what happens after time T
.

* In the work of Carles -
Faou the procedure is different

but the same set A of frequencies is used

Questions.

What happens when IT
2

is not rational ?

Owsley : In collaboration with B ,
Wilson we recently proved

that indeed the dynamics In C- K - s - T . T and C - F cannot
happen ! 67



If # is irrational
.

: why ?

-
these

Configurations
cannot happen !

As Az If IM is

irrational only
rectangles 11

taxis are

allowed
,

or

A Ag degenerate
-

-

z

rectangles !
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( k
' ,K2 )

More on resonant set

" 2

G KE 22 define lKl* : =

w.lk
't +

walk
't for ( w , ,wa ) EIRI

I
'

rational ⇒ wywz E Q

IT
? irrational ⇒ wywz E IR ' 0h

For simplicity assume

I
? rational ⇒ CW ,

,
we )= C 1,1 ) 1kt!=Ck ' I 't CKY

?

IT
'

irrational ⇒ ( w
, ,wd= ( lira ) lKl*?= C k

'l2+VzCK2:



k
,

- kct he
}

- Ka = 0the resonant set is R={ cknkziknknhu
, 1*4 knit in . hi - IKII of

Rendle : When the torus IT
2

is

rational
,

That is in our

Case IKI *

2
= ( k ' )

'
+ ( k 42

, first and second components

get mixed up .

when the torus # is irrational
,

That is in our case

lk 1*2 = ( k
' l 't R C k 42 ⇒ R = R

,
A Rz

Ri := { ( ni
,

n
.

,
n

,
n

. , / Ki - Kai + Ki
'

- Kai :O

aeii . ckiitckikcksio }
Complete decoupling

by
coordinates ! 70



Conclusions

* In the irrational case The resonant set decouples

into two ID resonant sets .

( Recall that the ID cubic NCS is integrate ⇒ no

energy transfer ! )
* He are not claiming that on irrational tori then is

no energy transfer ,
but the mechanism for growth

of Soboba nouns cannot be the one In C- K - st . T

or C- F
.

71



Research directions

1) The periodic focusing Mls

2) A direct proof of strident estimates in Id

3) Energytransfer : polynomial bounds for Soboler norms

4) Energy transfer : construction of solutions with growing
Sobdev hours

.

5) Understanding better the rational and irrational cases .

6) More numerical examples .

7) Prove more results In A NT via theorems In H A
.
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Thank you !

z


