Gigliolu Staffilani
MIT

Nonlinear Dispersive Equations and the Beautiful Mathematics that comer with them.

2018 Earle Raymond Hedrick Lecture Series

Whot do thuse picterres have in commoer?

Goals of these lectures

* To introduce the equations representing certain fundamental wore phenome me
* To relate terms in the equations to physical quantities
* To give examples of mathematical tools used to steady these PDE and their solutions
* To show hon tools developed for a certain problem become key for a completely different setting.

A simple exomple: Soliton

$$
\mu(t, x)=-\frac{1}{2} c \operatorname{sech}^{2}\left[\frac{\sqrt{c}}{2} \quad(x-c t-a)\right]
$$

A little bit of history

- Scott Russell (1834)

Hennas a naval engineer who first described a soliton, the special solution to KdV introduced above.

- Lord Raybigh, Boussinesq (1871)

Kortueg-ole Vries $\partial_{t} \mu+\eta_{x \times x} u-6 \mu \eta_{x} u=0$

- Kortelleg e de Vries (1895)

Conservation la us
the solutions to the KolV equation hove infinity many conserved integrals (Conservation Lavs):
Momentum: $\int_{\mathbb{R}} \mu(t, x) d x=C_{0}$

$$
\text { Mass : } \int_{\mathbb{R}}|\mu(t, x)|^{2} d x=C_{1}
$$

Energy: $\underbrace{\int_{\mathbb{R}} \frac{1}{2}\left(\eta_{x} u\right)^{2} d x}-\underbrace{\int_{\mathbb{R}} u^{3} d x=c_{2}}$
Kinetic energy $k(t)$ Potential energy $P(t)$

Remarks
$(K d v) \eta_{t} u+\eta_{x x x} u-6 u \eta_{x} u=0$
linear part noulinuor port

* the soliton is the perfect balance of the Kinetic (limen) and the potential (nonlinear) energies
* the ∞ many conservation lous gives also a very rich oly breic structure to the problem that has been studied "abstractly" very actively.

The Initial Value Problem
$(K d v)\left\{\begin{array}{l}\eta_{t} \mu+D_{x \times x} \mu-6 \mu \eta_{x} \mu=0 \quad x \in \mathbb{R} \\ \mu_{\left.\right|_{t=0}}=\mu_{0} \text { - initial satem or profile }\end{array}\right.$
Questions: Given on initial datum $\mu_{0}(x)$, does the IV P have a unipur solution? For hon long? Is it stable under perteubalions of $\mu_{0}(x)$?
the good and the bad
To study vell-posedmen the liner part of the eperation

$$
D_{t} v+D_{x x x} v \quad \text { (Airy operator) }
$$

is very good since it encodes dispersion.
The nonlineorport $6 \mu D_{\times} \mu$ is bad since it encooles the interaction of μu_{1} th $D_{x} \mu$, and as e consequence hond to control effects (resononca) could happen.

What is olispersion?

Dispersion $=$ Broadning of uave pachet

Remarks

* Wave components at higher fuperencies move faster.
* Since solution s to the lineor Kolv epudien die out in time, solitons must come from noulineor interactions!
* the nonlinear term $u 7_{x} u$, on equivalently the potential energy $P(t)=-\int_{\mathbb{R}^{2}} u^{3}(t, x) d x$, is what restores the ware signal.

A Major Conjecture
Any solution $\mu(t, x)$ of $K d V$ should be the sum of solitons and radiation:

$$
\mu(t, x)=\underbrace{\Omega+\Lambda^{+}}_{\text {solitous }}+\cdots \underbrace{\sim m}_{\text {ruoliction }}
$$

thisis called: The soliton resolution conjecture.

The Schrödinger Equation
This is agquebly the most important dispersive PDE. It appears for example naturally in the steady of the BEC.

Bose - Einstein Condensate this is the limit state of diluted gris of Bosons particles as the temperature approaches the absolute zero.

the limit process

What is Bose-Einstein condensation (BEC)?

"Combinations" of solutions to the Schrodinger equation

$$
i \eta_{t} u+\Delta u= \pm|m|^{2} u
$$

combe used to describe certain
"giant matter moves".

Conservation la us
Consider the Nonlinear Schrodinger (NLS) equation

$$
\begin{gathered}
\operatorname{lD}_{t} \mu+\Delta \mu= \pm|\mu|^{2} \mu \quad M^{d}=\mathbb{R}^{d}, \pi^{d} \\
\mu: \mid \mathbb{R} \times M^{d} \longrightarrow \mathbb{C} \\
\text { Mass }=\int_{M^{d}}|\mu|^{2}(x, t) d x=C_{0} \\
\text { Energy }=\int_{M^{d}} \underbrace{}_{\text {Kinetic }} \frac{\left.1 D\right|^{2}(t, x) d x}{} \underbrace{1}_{\int_{0}}|\mu(t, x)|^{4} d x=C_{1} \\
\text { Note: If } d=1 \text { then ore } 0
\end{gathered}
$$

Momentum =

Note: If $d=1$ then ore 0 may conservation lavs.

Well-Posedness
Consider the initial value problem (I VP):

$$
\left(N (s) \left\{\begin{array}{l}
2_{t} u+\Delta u= \pm|u|^{2} u \\
\left.u\right|_{t=0}=u_{0}(x)
\end{array}\right.\right.
$$

$M\left(u_{0}\right)=$ mess of μ_{0} $E\left(u_{0}\right)=$ energy of μ_{0}

Assume $M\left(\mu_{0}\right), E\left(\mu_{0}\right)<O_{0}$. Is the IVP kell-posed? Well-posednen $=\left\{\begin{array}{l}\text { a) Solution exists oud it is en } \\ \text { the solution is stable under } \\ \text { b) of the initial datum } \mu_{0}(x) \text {. }\end{array}\right.$

Difficulties

* Linen an initio datum $\mu_{0}(x)$ then is no "explicit "formula for the solution $\mu(t, x)$.
* The difficult part to bindle is the nonlinearity
$|u|^{2} u$
this is a 3 vire interaction and out of control "growth" may logpen.
* Just mining enough regularity to make sense of M and E is often too little.

Finding Solutions by Iterative Process
the goal is to define "a good" sequence uluch "limit "will give a solution:

$$
\begin{aligned}
& \mu_{0}(x)=\text { initial profile } \\
& \mu_{1}(x)=\text { solution to } \quad\left\{\begin{array}{l}
i \nu_{t} v+\Delta v=0 \\
v / t=0=\mu_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
i \eta_{t} v+\Delta v=0 \\
v / t=0=\mu_{0}
\end{array}\right. \text { flimea } \\
& \mu_{2}(x)=\text { solution to }\left\{\begin{array}{l}
i \eta_{t} w+\Delta w= \pm\left|\mu_{1}\right|^{2} \mu_{1}^{?} \text { term } \\
\left.w\right|_{t=0}=0
\end{array}\right. \\
& u_{n}(x)^{\prime}=\text { solution to }\left\{\begin{array}{l}
i \eta_{t} \theta+\Delta \theta= \pm\left|u_{n-1}\right|^{e} u_{n-1} \\
\left.\theta\right|_{t=0}=0
\end{array}\right.
\end{aligned}
$$

the poner of limeor solutions
From the prerians scheme it is clar thot ne need to understond ther folloming
Question: If $\mu_{0}(x)$ has finite enengy ond mass and $v(t, x)$ is the solution of the limeo Schrödingen IVP, in uhich spoce is $|v|^{2} v$?
Remork: If $\mu_{0}(x)=\sin x$ or $\cos x$ then oue con ux explicit colculations and derive formber for uo (x) $|v|^{2} v$. But uhat do ve do in genuol? 18

The Fourier Transform

The Fourier Trausfoun is a mathematical tool that allows us tourite complex signors as a sem of sin and cos.

Mathematically
Consider a periodicuone signal $f(x)$, then

$$
f(x)^{\prime \prime}=\prime C_{0}+\sum_{n \in \mathbb{Z}} b_{n} \sin (n x)+\sum_{n \in \mathbb{Z}} d_{n} \cos (n x)=\sum_{n \in \mathbb{Z}} a_{n} e^{i n x}
$$

$$
a_{n}=\hat{f}(n)=\int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

Fourier Series
\longrightarrow Fourier Coefficient

If $f(x)$ is not periodic, then

$$
\hat{f}(\xi):=\int_{\mathbb{R}} f(x) e^{-i x \xi} d x
$$

is the Fourier Tronsform and

$$
f(x)=c \int_{\mathbb{R}} \hat{f}(\xi) e^{i x \xi} d \xi
$$

(reconstruction formula)

Some vell-knoun properties

$$
\begin{aligned}
& * \widehat{d} \frac{d}{d x}(\xi)=i \xi \hat{f}(\xi) \\
& \forall\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{\frac{1}{2}}=:\|f\|_{L^{2}}(\mathbb{R}) \\
& \text { Ploucherel II } \\
& c\left(\int_{\mathbb{R}}|\hat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}=:\|\hat{f}\|^{2}(\mathbb{R}) \left\lvert\, c\left(\sum_{n}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}}=\begin{array}{l}
:\left\|a_{n}\right\|_{2} \\
\text { ii } l^{2} \\
\left(\sum_{n}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} 22
\end{array}\right.
\end{aligned}
$$

Fourier Transform in Action
Consider the linear IV P

$$
\left\{\begin{array}{l}
i 2_{t} v+\Delta v=0 \\
\left.v\right|_{t=0}=\mu_{0}(x) \text { consume for now } x \in \mathbb{R}^{d} .
\end{array}\right.
$$

To solve take FT $\|_{\|}$and fix the frequency ξ

$$
\left\{\begin{array}{l}
i \dot{v}(\xi)-|\xi|^{2} \hat{v}(\xi)=0 \\
\hat{v}(0, \xi)=\hat{u}_{0}(\xi)
\end{array} \Longleftrightarrow \hat{v}(t, \xi)=\hat{\mu}_{0}(\xi) e^{i t\left(\left.\xi\right|^{2}\right.}\right.
$$

$$
\hat{v}(t, \xi)=\hat{\mu}_{0}(\xi) e^{i t|\xi|^{2}}
$$

Note: For longer $\xi \hat{v}(t, \xi)$ has a faster velocity $t(\xi)$, hence the spreading of the hove pocket = dispersion.

$$
\begin{align*}
& S(t) \mu_{0}(x):=v(t, x)=\int_{\mathbb{R}^{d}} \mu_{0} \underbrace{(\xi) e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} d \xi}_{\text {oscillatory int goal }} \tag{1}\\
& \text { One alow has thu formula : }
\end{align*}
$$

One alow has the formula:

$$
S(t) \mu_{0}(x)=\frac{c}{|t|^{d / 2}} \int_{\mathbb{R}^{d}} e^{\frac{i|x-y|^{2}}{2 t}} \mu_{0}(y) d y
$$

Good use of both for muse
From formula (2) we have

$$
\left|S(t) \mu_{0}(x)\right| \leq \frac{c}{|t|} \frac{d}{2} \int_{\mathbb{R}^{d}}|\mu(y)| d y=\frac{c}{|t|^{\frac{d}{2}}}\|\mu\|_{L^{\prime}\left(\mathbb{R}^{d}\right)}
$$

dispersive estimate
$B=\left\{(\rho,|\xi| c) / \xi \in \mathbb{R}^{d}\right\}$
From formula (1) We hove that

$$
\begin{aligned}
S(t) \mu_{0}(x)=R^{*} \mu_{0}(x) \quad & R=\begin{array}{r}
\text { restriction of } \\
\end{array} \quad F T \text { on } \theta
\end{aligned}
$$

the Airy Equation
Using a similar procedure we can also shove that the solution to the Airy IVP

$$
\left\{\begin{array}{l}
i I_{t} v+O_{x x x} v=0 \\
\left.v\right|_{t=0}=u_{0}
\end{array}\right.
$$

$$
W(t) \mu_{0}(x):=v(t, x)=\int_{\mathbb{R}} \hat{u}_{0}(\xi) e^{i\left(t \xi^{3}+x \xi\right)} d \xi
$$

$$
=\widetilde{R^{*}} \mu_{0} \text { whee } \widetilde{R}=\text { Restriction an cubic }
$$

$$
\begin{aligned}
& \text { Assume pro, then } \\
& L^{p}\left(\mathbb{R}^{d}\right)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C} /\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} d x\right)^{\frac{1}{p}}=:\|f\|_{l^{p}}<\infty\right\}
\end{aligned}
$$

Assume $k \in \mathbb{N}$, then

$$
\left.\begin{array}{l}
\text { Assume } k \in \mathbb{N} \text {, then } \\
H^{k}\left(\mathbb{R}^{1}\right)=\left\{f^{\prime}: \mathbb{R}^{d} \rightarrow \mathbb{C} /\left\|D^{\alpha} f\right\|_{L^{2}}<\infty \quad \text { for }|\alpha| \leq k\right. \\
\| f=\left(\alpha_{1}, \ldots, \alpha_{d}\right)
\end{array}\right\}
$$

So we can-generalize the olefinition of $H^{k}\left(\mathbb{R}^{d}\right)$ to $H^{S}\left(\mathbb{R}^{d}\right)$ for any $S \in \mathbb{R}$!

The polver of harmomic onslysis
There are several bealiful reselts in hamonic ondysis deding vatt restrictions of Fourier trouforms on hypersurfas:
"Theorem": let S be a "curved" surface in \mathbb{R}^{d}. then the restriction operator R_{s} is well defineal ond there ore good L estimotes for it.
(Stein, Tomas, Moeff, Bourgein, Strichartz, Kenig -...) 28

Strichartz Estimates
For simplicity here I will state only those in \mathbb{R}^{2} :
Theorem: Assume $\mu_{0} \in L^{2}\left(\mathbb{R}^{2}\right)$. Assume that (p, q) ore st. $\frac{2}{p}=2\left(\frac{1}{2}-\frac{1}{q}\right)$. Then

$$
\left\|S(t) \mu_{0}\right\|_{L_{t}^{p} L_{x}^{q}} \leq c\left\|\mu_{0}\right\|_{L^{2}}
$$

Remork: If $(p, q)=(4,4)$ we are looking at $\left|S(t) \mu_{0}\right|^{4}$
4 waves interaction

$$
\begin{equation*}
\int_{\mathbb{R} \times \mathbb{R}^{2}}\left|S(t) \mu_{0}(x)\right|^{4} d t d x \leq c\left\|\mu_{0}\right\|_{L^{2}}^{4}=c(\text { Mass })^{2} \tag{29}
\end{equation*}
$$

Rescoling
The Iup

$$
\left.\left\{\begin{array}{ll}
i D_{+} u+\Delta u= \pm|u|^{2} u & \text { cou be "rescoled". In foct } \\
\text { if ue dufine }
\end{array}\right]\right|_{t=0}=\mu_{0} \quad \begin{array}{ll}
\mu_{\lambda}(t, x)=\frac{1}{\lambda} \mu\left(\frac{t}{\lambda^{2}}, \frac{x}{\lambda}\right) \quad(\lambda \rightarrow \infty)
\end{array}
$$

then u_{λ} solves the IVP u_{1} th dotem $u_{0, \lambda}=\frac{1}{\lambda} \mu_{0}\left(\frac{x}{\lambda}\right)$

$$
\left\|\mu_{0, \lambda}\right\|_{\dot{H}^{s}} \approx \lambda^{-s}\left\|\mu_{0}\right\|_{\dot{H}^{s}} \stackrel{i f s=0}{\Rightarrow}\left\|\mu_{0, \lambda}\right\|_{L^{2}} \approx\left\|\mu_{0}\right\|_{L^{2}}
$$

\Rightarrow For this problem the "mass" is scolon in variont. ($s=0$ criticol exponent)

A vell-posedmss theorem
$\int i^{2}+u+\Delta u= \pm|u|^{2} u$
Theorem [local vell-posedwen]
(*) $\left.\mu\right|_{t=0}=\mu_{0}$ Assume $s>0$. Then $\forall \mu_{0} \in H^{s}\left(\mathbb{R}^{d}\right)$ $\exists \delta=\delta\left(\left\|\mu_{0}\right\|_{H^{s}}^{-1}\right)$ and \exists ! Solution u to (x) st. $u \in e\left([0, \delta], H^{s}\left(\mathbb{R}^{d}\right)\right) \cap X^{s}$ and it is "stable".

What happens after time δ ?

If $s=0$ same conclusion but $\delta=\delta\left(\mu_{0}\right)$. \mathbb{R}^{σ} it del pends oh the profile 31

From local to global
The question of long time behaviour of solutions is a difficult one. One very useful ingredient is: conservation laws.

$$
\begin{aligned}
M & =\text { Mass }
\end{aligned}=\int_{\mathbb{R}^{2}}|\mu|^{2}(t, x) d x=\|\mu(t)\|_{L^{2}}^{2}=c_{0} .
$$

Defocusing Cose Assume $M\left(u_{0}\right)+E\left(\mu_{0}\right)<0$.
Then if $\mu(t, x)$ is solection to the defoassing NLS with olatem U0, 以e hove: $\left.M(\mu(t))+E(\mu(t))=M\left(\mu_{0}\right)+E\left(\mu_{0}\right)<c\right)$, and so

$$
\|u(t)\|_{H^{\prime}\left(\mathbb{R}^{2}\right)}^{2} \leq M+E . \quad(+x)
$$

Recall fron local vell-posedren for $s=1$

$\delta \cong\left\|\mu_{0}\right\|_{H^{\prime}, \text { so the ennenery to move to } 2 \delta \text { uould be }}$ the groueth of $\|\mu(\delta)\|_{H^{\prime}}$ which by $(x+\infty)$ is proventeol!

Hence by iteration the con extend the local well-posedmen to a global one. In fact this con be done for del $s \geqslant 1$.
Theorem [global well-posedmen]
Fix $S \geqslant 1$ and ansunce that NLS is defocersing. Then $\Theta \mu_{0} \in H^{s}\left(\mathbb{R}^{2}\right) 子$! Solution $\mu \in P\left(\mathbb{R}, H^{s}\right) \cap X^{s}$ that is "stable". Moroven if $s>1$

$$
\|U(t)\|_{H^{s}\left(\mathbb{R}^{2}\right)} \leq c_{1} \exp \left(C_{2}|t|\right) \quad \theta t \in \mathbb{R}
$$

Summary:

Question: We have a conservation lan (mass) for $s=0$, why do mot iterate with that?
Answer: Because when $s=0$ we love $\delta=\delta\left(\mu_{0}\right)$, it depends on the profile of μ_{0}, not only its mess!
Globed vell-posedness w, th only finite mass is much howler!!

A besertiful theorem
Theorem (Doolson'/厶) Consider the defocenning cubic NCS in \mathbb{R}^{2}. Then $\forall \mu_{0} u_{1}$ th $M\left(\mu_{0}\right)<\infty$, $\ddagger!$ solution $\mu(t, x)$ in $e\left(\mathbb{R}, L^{2}\left(\mathbb{R}^{2}\right)\right) \cap x^{0}$ that is "stable". Moreover $\exists u^{+}, u^{-} \in L^{2}$ such that

$$
\left\|\mu(t)-S(t) \mu^{ \pm}\right\|_{L^{2}} \xrightarrow[t \rightarrow \pm \infty]{ } .
$$

this last property is called scattering.
(See work of Killip-Tao-Visan-zhang).

The focusing case
In this case the situation is much more complex. An important role is played by the ground state $Q(x)$. this is the unique positive solution of

$$
\Delta Q+Q^{3}=Q
$$

Theorem $(D o d s o n ' / 4)$ Assume that $M\left(\mu_{0}\right)<M(Q)$. Then
 sit. $\mu \in C\left(\mathbb{R}, L^{2}\right) \cap x^{0}$, it is "stable" oval scatters.
(See also Killip-Vison-Zhoug for radial cone)

The periodic case

$$
\left\{\begin{array}{l}
i \eta_{t} u+\Delta u= \pm|u|^{2} u \\
\left.\mu\right|_{t=0}=\mu_{0} \quad x \in \pi^{2}
\end{array}\right.
$$

Fact: This problem is much more complicated thin the on in \mathbb{R}^{2} !
In fact the presence of the boundocy increases nonlinear effects.
the linear solution

$$
\begin{aligned}
& \left\{\left.\begin{array}{l}
i 2_{t} v+\Delta v=0 \\
\left.v\right|_{t=0}=v_{0}
\end{array} \stackrel{F T}{F F_{i x} k \in \mathbb{Z}^{2}} \Rightarrow \right\rvert\, \begin{array}{l}
i \dot{v}-|k|_{*}^{2} \hat{v}=0 \\
\left.\hat{v}\right|_{t=0}=\hat{\mu}_{0}(k)
\end{array}\right. \\
& |k|_{*}=\omega_{1} k_{1}^{2}+\omega_{2} k_{2}^{2} \\
& \hat{v}(t, k)=\hat{u}_{0}(k) e^{i t|k|_{x}^{2}} \Rightarrow v(t, x)=\sum_{k \in \mathbb{Z}^{2}} \hat{\mu}_{0}(k) e^{i\left(t|k|_{*}^{2}+x \cdot k\right)}
\end{aligned}
$$

this is an oscillatory
series. These objects
are studied in oudytic number thong

The \mathbb{R}^{2} core Comparison The π^{2} case

$$
S(t) \mu_{0}:=\int \hat{\mu}_{0}(\xi) e^{i\left(t|\xi|^{2}+x \xi\right)} d \xi(t) \mu_{0}:=\sum_{\substack{k \in \mathbb{R}^{2} \\ c}} \hat{\mu}_{0}(k) e^{i\left(t|k|_{k}^{2}+x \cdot k\right)}
$$

Strichertz Estimates Via Fourier Restriction Theorems.

Do Strichartz Estimates follow fam ondy tic number theory?

Rational and irrational tori
Definition: A torus π^{2} of periods $\left(\omega_{1}, \omega_{2}\right)$ is callol rational $\Leftrightarrow \omega_{1} / \omega_{2} \in \mathbb{Q}$

$$
\text { irrational } \Leftrightarrow \omega_{1} / \omega_{2} \in \mathbb{R} \backslash \mathbb{Q}
$$

Remarks: If π^{2} is rational then $S(t) \mu_{0}$ is also periodic in time.
Theorem (Bargain 195) Assume π^{2} is a rational torus then

$$
\text { then } \forall s>0 \quad\left\|S(t) \mu_{0}\right\| L^{4}\left(\pi \times \pi^{2}\right) \leqslant c\left\|\mu_{0}\right\|_{H^{s}} \text { the mons is not }
$$

"Proof"
Step 1: $\left\|S(t) \mu_{0}\right\|_{L^{4}}^{2}=\left\|S(t) \mu_{0} \cdot S(t) \mu_{0}\right\|_{L^{2}\left(\pi x \pi^{2}\right)}$ $\approx \| S\left(+1 \mu_{0} \cdot S\left(+1 \mu_{0} \|_{l^{2}\left(\mathbb{Z} \times \mathbb{Z}^{2}\right)}\right.\right.$
Step 2: Write $\left(S(t) \mu_{0} \cdot S(t) \mu_{0}\right)(\tau, k)$ explicitly J. Bourgain
Step 3: For simplicity onume $\left(\omega_{2}, \omega_{2}\right) \in \mathbb{N} \times \mathbb{N}$, one has to estimate $|E|$ where

$$
\left\{(x, y) \in \mathbb{Z}^{2} / \omega_{1} x^{2}+\omega_{2} y^{2}=R^{2}\right\}=: \varepsilon
$$

$$
\varepsilon=\left\{(x, y) \in \mathbb{Z}^{2} / \omega_{1} x^{2}+\omega_{2} y^{2}=R^{2}\right\}
$$

$\omega_{i} \in \mathbb{N} \quad i=1,2$
Suppose $\omega_{i}=1, i=1,2$, then we count lattice points on circles. Using a lemme by bens
, ε

$$
|\varepsilon| \leq \exp \left(\frac{\log R}{\log \log R}\right) \ll R^{5}
$$

for any $s>0$.

Some Remarks

* If π^{2} is irrationd:
- $S(t) \mu_{0}$ is no longer periodic in time
- There are no good estimates of how mon lattia points are on ellipses.
to In Bourgain's proof
Analytic Number Theory \Rightarrow Honmanic Analysis
the irrational lose
Strichartz estimates for genera tori were proved by Bourgain-Demeter in 2014!

Surprisingly ANT Mas not part of the proof. O the Strichartz estimates were proved as a corollary of the l^{2}-decoupling theorem

1. Bour rein

This theorem hod been a major open conjecture in HA for decodes. This theorem is also related to the Fourier Restriction Theorem mentioned above.

Following Bourgein- Demeter work, improned Strichartz estimates were proved by myself with:

Chengie Fans

Hong Kong

Bobby Wilson

Finally we con state:
Theorem Assume $\mu_{0} \in H^{s}\left(\pi^{2}\right), s>0$. Then the cubic NCS initial value problem is well posed in $[0, \delta]$ $\delta=\delta\left(\left\|\mu_{0}\right\|_{H^{s}}^{-1}\right)$.

The ℓ^{2} decoupling theorem
The main goal is to "reconstruct" in the right spaces of functions the size of a signal from the sizer of its parts.

What happens when we interat Q_{i} with
Q_{j} ? Hou do we make sure we do not over count the interactions?

- Classical homanic ocualysis
- Combinatorics
- Inciolence geometry
- Polynomial methool

The Kakeye problem in spires
The work of Bourgain-Demeter is strictly connected to nark of Bourgoin-Gerth on the Kakeye problem.
Definition: A ka keya needle set is a set in the plane such that a unit line segment con be rotated contimousely through 180° uithim it returning to its original position but with reversed direction.

Area $=\pi / 4$

Area $=\frac{1}{\sqrt{3}}$

$A_{\text {res } \rightarrow 0}$ 48

Besicovitch 128 demonstrated that on the plane then exist. Kakeye sets of obbitrerely small area:

By subdividing the triougle by 2^{n} parts as above, and letting $n \rightarrow \infty$, one obtains a tree of anbitravely small area. This is the Perron Tree.

Besicovitch actually proved eien more: There are Kakega sets of meame zero.
Kakeya Conjecture: Evany Kakeya set in \mathbb{R}^{d} has Minkousti dimension ol.

* If $d=2$ the congecture isproval (Davis'z1)
* If $d \geqslant 3$ the conjecture is really hard!
(see Bourgain, Guth, Katz, Laba, Too, 火 K_{o} eff...)

From hamomic ondysis to number theory
Recently Bourgain-Demeter - Guth implemented teckipens fam the proof of the " l 'decoupling theorem" to prove the "Vinogrados Hear Value Theorem":
let $s, n, N \in \mathbb{Y}, s \geqslant 1, n, N \geqslant 2$. Let $J_{s, n}(M)$ be the number of integral solutions to the system:

$$
x_{1}^{i}+\cdots+x_{s}^{i}=x_{s+1}^{i}+\cdots+x_{2 s}^{i} \quad 1 \leq i \leq n
$$

and $1 \leq x_{1}^{i}, \ldots, x_{2 s}^{i} \leq N$. Then

$$
J_{s, n}(M) \underset{s}{\leftrightharpoons} N^{S+\varepsilon}+N^{2 s-\frac{n(n+1)}{2}+\varepsilon}
$$

$\forall \varepsilon>0$.

Back to NCS
$\left((v p)\left\{\begin{array}{l}i c_{+} \mu+\Delta \mu= \pm|\mu|^{2} \mu \\ \left.\mu\right|_{t=0}=\mu_{0} \quad x \in \pi^{2}\end{array}\right.\right.$
From the Strichartz estimate

$$
\begin{gathered}
M(\mu)=\int_{\pi^{2}}|\mu|^{2}(t, x) d x \\
E(\mu)=\frac{1}{2} \int_{\pi^{2}}|D u|^{2} d x \pm \frac{1}{4} \int|\mu|^{4} d x
\end{gathered}
$$

$\left\|S(t) \mu_{0}\right\|_{L^{4}\left([0,1] \times \pi^{2}\right)} \approx\left\|\mu_{0}\right\|_{H^{s}}$ and refinements:
Theorem: Assume $s>0$. Then $\theta \mu_{0} \in H^{s}\left(\pi^{2}\right)$子! Solution $\mu(t, x) \in C\left([0, \delta], H^{s}\left(\pi^{2}\right)\right) \cap x^{s}$, "stable" and $\delta=\delta\left(\left\|\mu_{0}\right\|_{H_{S}}^{-1}\right)$.

If the IVP is defocusingue can iterate and prove: Theorem: Assume $s \geqslant 1$, then $\Theta \mu_{0} \in H^{s}\left(\pi^{2}\right)$ J! global stable solution $\mu(t, x) \in \odot\left(\mathbb{R}, H^{s}\left(\pi^{2}\right)\right) \cap x^{s}$. Moreover if $s>1$

$$
\|u(t)\|_{H^{s}} \leq C_{0} \exp \left(C_{1}|t|\right) \quad \text { os }|t| \rightarrow \infty_{0}
$$

Question: Can one prove scollering?
Scattering is not expected ole to effects from the boundary. So chat hoppers when $|t| \rightarrow \infty$?

Transfer of energy

Are Subgraph $=\sum_{k}|\mu(t, k)|^{2} \approx M\left(\mu_{0}\right)$ constant!
Question: Does the support of $|\hat{\mu}(t, k)|^{2}$ moves to higher frequencies?
Weak turbulence, forward cascrole....

Even more interesting

If then is a migration to high freprencies is the process happening in a incoherent May
or in a coherent nomen?
He ore very for foin under standing this for MCS.

Growth of Soboler nouns
But we con stevoly:

$$
\sum_{k \in \mathbb{Z}}|\hat{\mu}(t, k)|^{2}(|k|+1)^{2 s}=\|\mu(t)\|_{H^{s}}^{2} \quad \text { as }|t| \rightarrow \infty,
$$

and check what lepers when $|t| \rightarrow \infty$.
Remark: From"iteration" of local kell-posedness We have on exponential (trivial) bound:

$$
\|u(t)\|_{H^{s}} \leq C_{1} \exp \left(e_{2}|t|\right) \text { as }|t| \rightarrow \infty
$$

Some Facts
Fact 1: Complete integrability may preveut grouth of Sobolev norms. (iee 10 arbic NCS).

Fact 2: Sarttering prevents groceth of Sobolev noums.
Dodson: In \mathbb{R}^{2} 子 $\mu^{ \pm} \in H^{s}\left(\mathbb{R}^{2}\right) \quad s \geqslant 0$ s.t.

$$
\left\|u(t)-S(t) u^{ \pm}\right\|_{H^{s}} \longrightarrow \neq 0
$$

Hence

$$
\begin{aligned}
\|u(t)\|_{H^{s}} & \leq\left\|u(t)-s(t) \mu^{ \pm}\right\|_{H^{s}}+\left\|s(t) \mu^{ \pm}\right\|_{H^{s}} \\
& \leq C+\left\|\mu^{ \pm}\right\|_{H^{s}}
\end{aligned}
$$

Some bounds from above
(1) If $\mu(t, x)$ is solution to the cubic defocuring NLS in π^{2} then

$$
\|\mu(t)\|_{H^{s}} \leq C|t|^{2(s-1)+\varepsilon}
$$

(Bourgain, Sohinger)
$\frac{\text { Remove: the original proof of Bourgain nosouly }}{\pi^{2}}$, for π^{2} rational, but it is buseal an Strichoctz estimates oud it con be extended to our π ?
(2) Consider the NCS with noulineerity $|\mu|^{p-1} \mu, 3<p<5$ in generic tori π^{3}. Then one has

$$
\left\|\|(t)\|_{H^{2}\left(\pi^{3}\right)} \leq\left((1+|t|)^{\frac{2}{5-p+\theta(p)}}\right.\right.
$$

where $\theta(p)=\min (p-3,5-p) / 182$ tori this is not the ne

Remons: (Y. Deuge - Germain)

- In this coax "genic" means that the vector $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ of the periods hos a certain Diophoutine property.
- Neither (1)or (2) are sharp re salts.

Are then solutions that gron?
(3) Fix $s>0,0<\delta \ll 1, k \geqslant 1$. Then for the cubric olfocuring NLS in π^{2} rational, \exists initial date μ_{0} oud a time $T \gg 1$ s.t.

$$
\left\|\mu_{0}\right\|_{H^{s}}<\delta \text { and }\|\mu(T)\|_{H^{s}}>K
$$

(Geliauder -Keel-S - Takaoke - Tas)
(4)
 $t=0$
π^{2} rational
 orbitravely lorge mode exiteol. (Cales-Faou) 50

Some ides for the proof of (3)

* This is a constreachive proof. Look for a solution $\mu(t, x)$

$$
\begin{aligned}
& \pi^{2}=\text { square torus: } \\
& \mu \mu(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(t|n|^{2}+x \cdot n\right)} \\
& \Leftrightarrow-1 \eta_{t} a_{n}=-\left|a_{n}\right|^{2} a_{n}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} \\
& \Leftrightarrow \in \mathbb{Z}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \omega_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-|n|^{2} \\
& \Gamma(n)=\left\{\left(n_{1}, n_{2}, n_{3}\right) / n_{1}-n_{2}+n_{3}=n\right\}
\end{aligned}
$$

He make several reductions:
R1) Assume that $\left(n, n_{2}, n_{2}, n_{3}\right)$ are in resonance:

$$
w_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-\left|n_{4}\right|^{2}=0
$$

Fact: $\left(n, n_{1}, n_{2}, n_{3}\right)$ are in resonona if and only if they are venteces of recteugls in \mathbb{Z}^{2}.
special
R2) Among all then rectoughs we pick asset of fupenncies

$$
\Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \cdots \Lambda_{M} \quad N \gg 1
$$

Where the olynomics weill take place.

Accartoon of 1

Λ_{2}

$$
\Lambda_{4} \ldots
$$

63

Toy Model

$$
\left\{\begin{array}{l}
-i \dot{b}_{j}=-\left|b_{j}\right|^{2} b_{j}+2 b_{j-1}^{2} \bar{b}_{j}+2 b_{j+1}^{2} \bar{b}_{j} \quad J=1,-, M \\
b_{1}(t)=b_{M}(t)=0 \leadsto \text { boundoy dote } \\
b_{j}(0)=\widetilde{b}_{j} \leadsto \text { initial olota }
\end{array}\right.
$$

Rework: Althagh this is not the origin system, one con prove that its solutions approximate well those of the original NCS.

This Toy Model consen mes mess, momentem ono energy.
Its dynamics take place on

and on \sum_{1} then ore $\Sigma_{j}, J=1 \ldots, M$ great circles the ot are invariant.
the heart of the matter
Theorem:

$$
J=1
$$

(loce fuprency)
(see olso Gurdie-Kaloshim, Hous-Procesi).

Remarks

* He do not knove khat happens after time T.
* In the work of Couler - Faou the procedure is different but the some set 1 of fuperencies is used
Question: What happens when π^{2} is not rational?
Answer: In collaboration with B. Wilson we recently proved that indeed the dynamics in C-K-S-T-T and C-F cannot happen!

If π^{2} is irrational:
Why?
these configurations

 count happen!

If π^{2} is irrationd only rectougles II to axis one allowed, or degenerate rectangles!

$$
\left(k^{\prime}, k^{2}\right)
$$

Move on resonant set
$\forall k \in \mathbb{Z}^{2}$ define $|k|_{*}^{2}:=\omega_{1}\left(k^{\prime}\right)^{2}+\omega_{2}\left(k^{2}\right)^{2}$ for $\left(\omega_{1}, \omega_{2}\right) \in \mathbb{R}_{+}^{2}$
π^{2} rational $\Rightarrow \omega_{1} / \omega_{2} E \mathbb{Q}$
Π^{2} irrational $\Rightarrow \omega_{1} / \omega_{2} \in \mathbb{R}, \mathbb{R}$
For simplicity ossume
Π^{2} ration $\Rightarrow\left(\omega_{1}, \omega_{2}\right)=(1,1)|k|_{x}^{2}=\left(k^{\prime}\right)^{2}+\left(k^{2}\right)^{2}$
π^{2} irrational $\Rightarrow\left(\omega_{1}, \omega_{2}\right)=(1, \sqrt{2}) \quad|K|_{x}^{2}=\left(k^{\prime}\right)^{2}+\sqrt{2}\left(K^{2}\right)^{2}$

The resonant set is $R=\left\{\left(k_{1}, k_{2}, k_{3,}, k_{n}\right) /\left|k_{1}\right|_{x}^{k_{1}-k_{2}-k_{e}+\left.k_{3}\right|_{x} ^{2}+\left|k_{3}\right|_{x}^{2}=\left|k_{4}\right|_{x}^{2}=0}\right\}$
Remark: When the torus π^{2} is rations, That is in our $\overline{\operatorname{case}}|K|_{x}^{2}=\left(K^{\prime}\right)^{2}+\left(K^{2}\right)^{2}$, first and second components get mixed up.
When the torus Π^{2} is irrationd, that is in our case $|k|_{x}^{2}=\left(k^{1}\right)^{2}+\sqrt{2}\left(k^{2}\right)^{2} \Rightarrow Q=R_{1} \cap R_{2}$

$$
R_{i}:=\left\{\left(k_{1}, k_{2}, k_{3}, k_{n}\right) / \begin{array}{l}
k_{1}^{i}-k_{2}^{i}+k_{3}^{i}-k_{4}^{i}=0 \\
\left(k_{1}^{i}\right)^{2}-\left(k_{2}^{i}\right)^{2}+\left(k_{3}^{i}\right)^{2}-\left(k_{4}^{i}\right)^{2}=0
\end{array}\right\}
$$

Complete decoupling by coorobinots!

Condusions

* In the irrational cos the resonant set decouples into two 1D resonant sets.
(Recall that the 1D cubic NCS is integrable \Rightarrow no energy transfer!)
* We are not claiming that on irrational tori then is no energy transfer, but the mechanism for graith of Soboler norms comet be the our in C-K-S-T-T or C-F.

Research olirections

1) The periodic focusing NCS
2) A direct proof of Strichartz estimates in π^{d}
3) Enengytronsfer: polynomial bounds for Soboler nom
4) Enuengtronsfer: Construction of solutions with growing Soboler nouns.
5) understanding better the rational and irrational cases.
6) Mon numerical examples.
7) Prove more results in ANT via theseus in HA.

Thank you!

