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Dispersive equations

Question: Why certain PDE are called dispersive equations?
Because, these PDE, when globally defined in space, admit solutions that are
wave that spread out spatially while maintaining constant mass and energy.
Probably the best well known examples are the Schrödinger and the KdV
equations and a large literature has been compiled about the multiple aspects
of these equations and their solutions.
In these two lectures I will consider the situation in which existence,
uniqueness, stability of solutions are available globally in time (global
well-posedness) and our goal is to investigate if a certain phenomena
physically relevant and already studied experimentally or numerically can be
proved also mathematically: the Forward Cascade or Weak Turbulence.
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Notion of Forward Cascade
Assume that u(x , t) is a smooth wave solution to a certain nonlinear
dispersive PDE defined for all times t .
How do frequency components of this wave interact in time at different scales
due to the presence of nonlinearity?
Consider the function f (k , t) := |û(k , t)|2 and its subgraph at times t = 0 and
t > 0
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Notion of Weak Turbulence

We know that from conservation of mass and Plancherel’s theorem,∫
|û(k , t)|2dk = Constant,

that is the subgraph of the function f (k , t) := |û(k , t)|2 has a constant volume.
But how is its shape?
Expectation: when dispersion is limited by imposing boundary conditions (i.e.
periodic case), a migration from low frequencies to high ones could happen
for certain solutions.

Definition
For us today weak turbulence is the phenomenon of global-in-time solutions
shifting toward increasingly high frequencies.

This is the reason why this phenomenon is also called forward cascade.
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How do we capture forward cascade?

• How can we capture mathematically a low-to-high frequency cascade or
weak turbulence?
One way to capture this phenomenon is by analyzing the growth of high
Sobolev norms. In fact by using Plancherel’s theorem we see that

‖u(t)‖2
Hs =

∫
|û(k , t)|2〈k〉2sdk

weighs the higher frequencies more as s becomes larger, and hence its
growth in time t gives us a quantitative estimate for how much of the support
of û has transferred from the low to the high frequencies k .

Gigliola Staffilani (MIT) Very weak turbulence and dispersive PDE December, 2010 6 / 72



Weak Turbulence, Scattering & Integrability

Weak turbulence is incompatible with scattering or complete integrability.
Scattering: In this context scattering (at +∞) means that for any global
solution u(t , x) ∈ Hs there exists u+

0 ∈ Hs such that, if S(t) is the linear
Schrödinger operator, then

lim
t→+∞

‖u(t , x)− S(t)u+
0 (x)‖Hs = 0.

Since ‖S(t)u+
0 ‖Hs = ‖u+

0 ‖Hs , it follows that ‖u(t)‖2
Ḣs cannot grow.

Complete Integrability: For example the 1D equation

(i∂t −∆)u = −|u|2u

is integrable in the sense that it admits infinitely many conservation laws.
Combining them in the right way one gets that ‖u(t)‖2

Ḣs ≤ Cs for all times.
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The trivial exponential estimate

For the problems we consider we have a very good local well-posedness
theory that allows us to say that for a given initial datum u0 there exists a
constant C > 1 and a time constant δ > 0, depending only on the energy of
the system (hence on u0) such that for all t :

(2.1) ‖u(t + δ)‖Hs ≤ C‖u(t)‖Hs .

Iterating (2.1) yields the exponential bound:

(2.2) ‖u(t)‖Hs ≤ C1eC2|t|.

Here, C1, C2 > 0 again depend only on u0.
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From exponential to polynomial bounds

The first significant improvement over the exponential (trivial) bound is due to
Bourgain. The key estimate is to improve the local bound in (2.1) to:

(2.3) ‖u(t + δ)‖Hs ≤ ‖u(t)‖Hs + C‖u(t)‖1−r
Hs .

As before, C, τ0 > 0 depend only on u0 and r ∈ (0, 1) and usually satisfies
r ∼ 1

s . One can show then that (2.3) implies that for all t ∈ R:

‖u(t)‖Hs ≤ C(u0)(1 + |t |) 1
r .
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How to obtain the improved local estimate

1 Bourgain: used the Fourier multiplier method, together with the WKB
method from semiclassical analysis.

2 Colliander, Delort, Kenig and S. and S.: used multilinear estimates in
an X s,b-space with negative first index.

3 Catoire and W. Wang and Zhong: analyzed the local estimate in the
context of compact Riemannian manifolds following the analysis in the
work of Burq, Gérard, and Tzvetkov.

4 Sohinger: used the upside-down I-method,
5 Collinder, Kwon and Oh : combined the upside-down I-method with

normal for reduction.
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A linear equation with potential

In the case of the linear Schrödinger equation with potential on Td :

(2.4) iut + ∆u = Vu.

better results are known.
1 Bourgain: Assume d = 1, 2, smooth V with uniformly bounded partial

derivatives. Then for all ε > 0 and all t ∈ R:

(2.5) ‖u(t)‖Hs .s,u0,ε (1 + |t |)ε

The proof of (2.5) is based on separation properties of the eigenvalues
of the Laplace operator on Td .

2 W. Wang: She improved the bound from (1 + |t |)ε to log t .
3 Delort: Proved (2.5) for any d-dimensional torus, and for the linear

Schrödinger equation on any Zoll manifold, i.e. on any compact manifold
whose geodesic flow is periodic.
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Open Problems

The results above listed do not complete the whole picture. For example one
would like to prove

‖u(t)‖Hs .s,u0,ε (1 + |t |)ε

• for the linear Schrödinger equation with potential in Rd when scattering is
not available.
• for some nonlinear dispersive equations on Td or in any other manifold that
prevents scattering.
• Can one exhibit a solution for either NLS or KdV which Sobolev norms grow
at least as log t ?
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Can one show growth of Sobolev norms?

About the last open problem listed one should recall the following result of
Bourgain:

Theorem
Given m, s � 1 there exist ∆̃ and a global solution u(x , t) to the modified
wave equation

(∂tt − ∆̃)u = up

such that
‖u(t)‖Hs ∼ |t |m.

The weakness of this result is in the fact that one needs to modify the
equation in order to make a solution exhibit a cascade.
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More references

Recently Gerard and Grellier obtained some growth results for Sobolev norms
of solutions to the periodic 1D cubic Szegö equation:

i∂tu = Π(|u|2u),

where Π(
∑

k f̂ (k)exk ) =
∑

k>0 f̂ (k)exk is the Szegö projector.

Physics: Weak turbulence theory due to Hasselmann and Zakharov.
Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.
Probability: Benney and Newell, Benney and Saffman.

To show how far we are from actually solving the open problems proposed
above I will present what is known so far for the 2D cubic defocusing NLS in
T2.
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The 2D cubic NLS Initial Value Problem in T2

We consider the defocusing initial value problem:

(4.1)
{

(−i∂t + ∆)u = |u|2u
u(0, x) = u0(x), where x ∈ T2.

We have (see Bourgain)

Theorem (Global well-posedness for smooth data)
For any data u0 ∈ Hs(T2), s ≥ 1 there exists a unique global solution
u(x , t) ∈ C(R, Hs) to the Cauchy problem (4.1).

We also have

Mass = M(u) = ‖u(t)‖2 = M(0)

Energy = E(u) =

∫
(
1
2
|∇u(t , x)|2 +

1
4
|u(x , t)|4) dx = E(0).
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Two Theorems

Consider again the IVP

(4.2)
{

(−i∂t + ∆)u = |u|2u
u(0, x) = u0(x), where x ∈ T2,

Theorem (Bourgain, Zhong, Sohinger)
For the smooth global solutions of the periodic IVP (4.2) we have:

‖u(t)‖Ḣs ≤ Cs|t |s+.

Theorem (Colliander-Keel-S.-Takaoka-Tao)
Let s > 1, K � 1 and 0 < σ < 1 be given. Then there exist a global smooth
solution u(x , t) to the IVP (4.2) and T > 0 such that

‖u0‖Hs ≤ σ and ‖u(T )‖2
Ḣs ≥ K .
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On the proof of Theorem 1

Here I will propose a recent proof given by Sohinger (Ph.D. Thesis 2011). In
this approach the iteration bound comes from an almost conservation law,
which is reminiscent of the work of Colliander-Keel-S.-Takaoka-Tao (I-Team).
In other words, given a frequency threshold N, one can construct a “energy”
Ẽ(u), which is related to ‖u(t)‖Hs , and can find δ > 0, depending only on the
initial data such that, for some α > 0 and all t ∈ R:

(5.1) Ẽ(u(t + δ)) ≤ C
(
1 +

1
Nα

)
Ẽ(u(t)).

This type of iteration bound can be iterated O(Nα) times without obtaining
exponential growth. We note that this method doesn’t require s to be a
positive integer (needed by Bourgain and Zhong).
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Upside-down I-operator

We construct an Upside-down I-operator. This operator is defined as a
Fourier multiplier operator.

Suppose N ≥ 1 is given. Let θ : Z2 → R be given by:

θ(n) :=

{( |n|
N

)s
, if |n| ≥ N

1, if |n| ≤ N

Then, if f : T2 → C, we define Df by:

D̂f (n) := θ(n)f̂ (n).

We observe that:
‖Df‖L2 .s ‖f‖Hs .s Ns‖Df‖L2 .

Our goal is to estimate ‖Du(t)‖L2 , from which we can then estimate ‖u(t)‖Hs .
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Good Local estimates
We first define the space X s,b as:

f (x , t) ∈ X s,b iff
∫ ∑

k

|̂f (k , τ)|2〈k〉2s〈τ − |k |2〉2b dτ < ∞.

Theorem
There exist δ = δ(s, E(u0), M(u0)), C = C(s, E(u0), M(u0) > 0, which are
continuous in energy and mass, such that for all t0 ∈ R, there exists a globally
defined function v : T2 × R → C such that:

|v |[t0,t0+δ] = |u|[t0,t0+δ].

‖v‖
X 1, 1

2 + ≤ C(s, E(u0), M(u0))

‖Dv‖
X 0, 1

2 + ≤ C(s, E(u0), M(u0))‖Du(t0)‖L2 .
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Definition of E1

We then define the modified energy:

E1(u(t)) := ‖Du(t)‖2
L2 .

Differentiating in time, and using an appropriate symmetrization, we obtain
that for some c ∈ R, one has:

d
dt

E1(u(t)) = ic
∑

n1+n2+n3+n4=0

(
θ2(n1)− θ2(n2) + θ2(n3)− θ2(n4)

)
×û(n1)̂̄u(n2)û(n3)̂̄u(n4).
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Definition of E2

We now consider the higher modified energy, by adding an appropriate
quadrilinear correction to E1:

E2(u) := E1(u) + λ4(M4; u).

Some notation: Given k , an even integer, The quantity Mk is taken to be a
function on the hyperplane

Γk := {(n1, . . . , nk ) ∈ (Z2)k , n1 + · · ·+ nk = 0},

and:
λk (Mk ; u) :=

∑
n1+···+nk =0

Mk (n1, . . . , nk )û(n1)̂̄u(n2) · · · ̂̄u(nk ).

Reason: We are adding the multilinear correction to cancel the quadrilinear
contributions from d

dt E
1(u(t)) and “replace” it with a new term with the same

order of derivatives, but more factors of u to distribute these derivatives better.
Hence, we expect E2(u(t)) to vary more slowly than E1(u(t)).
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We denote nij := ni + nj , nijk := ni + nj + nk . If we fix a multiplier M4, we
obtain:

d
dt

λ4(M4; u) = −iλ4(M4(|n1|2 − |n2|2 + |n3|2 − |n4|2); u)

−i
∑

n1+n2+n3+n4+n5+n6=0

[
M4(n123, n4, n5, n6)−M4(n1, n234, n5, n6)+

+M4(n1, n2, n345, n6)−M4(n1, n2, n3, n456)
]

×û(n1)̂̄u(n2)û(n3)̂̄u(n4)û(n5)̂̄u(n6).
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The choice of M4

To cancel the forth linear term in d
dt E

1(u) we would like to take

M4(n1, n2, n3, n4) := C
(θ2(n1)− θ2(n2) + θ2(n3)− θ2(n4))

|n1|2 − |n2|2 + |n3|2 − |n4|2

but we have to make sure that this expression is well defined. There is the
problem of small denominators

|n1|2 − |n2|2 + |n3|2 − |n4|2

which in fact become zero in the resonant set of four wave interaction.
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For (n1, n2, n3, n4) ∈ Γ4, one has:

|n1|2 − |n2|2 + |n3|2 − |n4|2 = 2n12 · n14.

This quantity vanishes not only when n12 = n14 = 0, but also when n12 and
n14 are orthogonal. Hence, on Γ4, it is possible for

|n1|2 − |n2|2 + |n3|2 − |n4|2 = 0

but
θ2(n1)− θ2(n2) + θ2(n3)− θ2(n4) 6= 0,

hence our first choice for M4 is not suitable in our 2D case!
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The fix

We remedy this by canceling the non-resonant part of the quadrilinear term. A
similar technique was used in work of the I-Team. More precisely, given
β0 � 1, which we determine later, we decompose:

Γ4 = Ωnr t Ωr .

Here, the set Ωnr of non-resonant frequencies is defined by:

Ωnr := {(n1, n2, n3, n4) ∈ Γ4; n12, n14 6= 0, |cos∠(n12, n14)| > β0}

and the set Ωr of resonant frequencies is defined to be its complement in Γ4.
In the sequel, we choose:

β0 ∼
1
N

.
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The final choice of M4

We now define the multiplier M4 by:

M4(n1, n2, n3, n4) :=

{
c (θ2(n1)−θ2(n2)+θ2(n3)−θ2(n4))

|n1|2−|n2|2+|n3|2−|n4|2 in Ωnr

0 in Ωr

Let us now define the multiplier M6 on Γ6 by:

M6(n1, n2, n3, n4, n5, n6) := M4(n123, n4, n5, n6)−M4(n1, n234, n5, n6)

+ M4(n1, n2, n345, n6)−M4(n1, n2, n3, n456)
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We obtain:
d
dt

E2(u) =∑
Ωr

(
θ2(n1)− θ2(n2) + θ2(n3)− θ2(n4)

)
û(n1)̂̄u(n2)û(n3)̂̄u(n4)+

+
∑

n1+...+n6=0

M6(n1, ..., n6)û(n1)̂̄u(n2)û(n3)̂̄u(n4)û(n5)̂̄u(n6)

It is crucial to prove pointwise bounds on the multiplier M4. We dyadically
localize the frequencies, i.e, we find dyadic integers Nj s.t. |nj | ∼ Nj . We then
order the Nj ’s to obtain:

N∗
1 ≥ N∗

2 ≥ N∗
3 ≥ N∗

4 .

The bound we prove is:
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Bound on M4

Lemma (Pointwise bounds on M4)
With notation as above,

M4 ∼
N

(N∗
1 )2 θ(N∗

1 )θ(N∗
2 ).

This bound allows us to deduce for example the equivalence of E1 and E2:

Lemma

One has that:
E1(u) ∼ E2(u)

Here, the constant is independent of N as long as N is sufficiently large.
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The main lemma

But more importantly, for δ > 0, we are interested in estimating:

E2(u(t0 + δ))− E2(u(t0)) =

∫ t0+δ

t0

d
dt

E2(u(t))dt

The iteration bound that one show is:

Lemma
For all t0 ∈ R, one has:∣∣E2(u(t0 + δ))− E2(u(t0))

∣∣ . 1
N1−E2(u(t0)).

In the proof of this lemma the key elements are the local-in-time bounds for
the solution, the pointwise multiplier bounds for M4, and the known Strichartz
Estimates on T2.
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Conclusion of the proof

To finish the proof we now observe that the estimate

E2(u(t0 + δ)) ≤ (1 +
C

N1− )E2(u(t0))

can be iterated ∼ N1− times without getting any exponential growth. We
hence obtain that for T ∼ N1−, one has:

‖Du(T )‖L2 . ‖Du0‖L2 .

It follows that:
‖u(T )‖Hs . Ns‖u0‖Hs

and hence:
‖u(T )‖Hs . T s+‖u0‖Hs . (1 + T )s+‖u0‖Hs .

This proves Theorem 1 for times t ≥ 1. The claim for times t ∈ [0, 1] follows
by local well-posedness theory.
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Theorem 2 and the elements of its proof
We recall that Theorem 2 states:

Theorem (Colliander-Keel-S.-Takaoka-Tao)
Let s > 1, K � 1 and 0 < σ < 1 be given. Then there exist a global smooth
solution u(x , t) to the IVP{

(−i∂t + ∆)u = |u|2u
u(0, x) = u0(x), where x ∈ T2,

and T > 0 such that

‖u0‖Hs ≤ σ and ‖u(T )‖2
Ḣs ≥ K .

1 Reduction to a resonant problem RFNLS
2 Construction of a special finite set Λ of frequencies
3 Truncation to a resonant, finite-d Toy Model
4 “Arnold diffusion” for the Toy Model
5 Approximation result via perturbation lemma
6 A scaling argument
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2. Finite Resonant Truncation of NLS

We consider the gauge transformation

v(t , x) = e−i2Gtu(t , x),

for G ∈ R. If u solves NLS above, then v solves the equation

((NLS)G) (−i∂t + ∆)v = (2G + v)|v |2.

We make the ansatz

v(t , x) =
∑
n∈Z2

an(t)ei(〈n,x〉+|n|2t).

Now the dynamics is all recast trough an(t):

−i∂tan = 2Gan +
∑

n1−n2+n3=n

an1an2an3e
iω4t

where ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2.
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The FNLS system

By choosing
G = −‖v(t)‖2

L2 = −
∑

k

|ak (t)|2

which is constant from the conservation of the mass, one can rewrite the
equation above as

−i∂tan = −an|an|2 +
∑

n1,n2,n3∈Γ(n)

an1an2an3e
iω4t

where

Γ(n) = {n1, n2, n3 ∈ Z2 / n1 − n2 + n3 = n; n1 6= n; n3 6= n}.

From now on we will be refering to this system as the FNLS system, with the
obvious connection with the original NLS equation.
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The RFNLS system

We define the set

Γres(n) = {n1, n2, n3 ∈ Γ(n) / ω4 = 0},

where again ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2.
The geometric interpretation for this set is the following: If n1, n2, n3 are in
Γres(n), then these four points represent the vertices of a rectangle in Z2.
We finally define the Resonant Truncation RFNLS to be the system

−i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)

bn1bn2bn3 .
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Finite dimensional resonant truncation

A finite set Λ ⊂ Z2 is closed under resonant interactions if

n1, n2, n3 ∈ Γres(n), n1, n2, n3 ∈ Λ =: n = n1 − n2 + n3 ∈ Λ.

A Λ-finite dimensional resonant truncation of RFNLS is

(RFNLSΛ) −i∂tbn = −bn|bn|2 +
∑

(n1,n2,n3)∈Γres(n)∩Λ3

bn1bn2bn3 .

∀ resonant-closed finite Λ ⊂ Z2, RFNLSΛ is an ODE.

We will construct a special set Λ of frequencies.
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3. Abstract Combinatorial Resonant Set Λ

Our goal is to have a resonant-closed Λ = Λ1 ∪ · · · ∪ ΛN with the properties
below.

Define a nuclear family to be a rectangle (n1, n2, n3, n4) where the
frequencies n1, n3 (the ’parents’) live in generation Λj and n2, n4 (’children’) live
in generation Λj+1.

Existence and uniqueness of spouse and children: ∀ 1 ≤ j < N and
∀ n1 ∈ Λj ∃ unique nuclear family such that n1, n3 ∈ Λj are parents and
n2, n4 ∈ Λj+1 are children.
Existence and uniqueness of siblings and parents: ∀ 1 ≤ j < N and
∀ n2 ∈ Λj+1 ∃ unique nuclear family such that n2, n4 ∈ Λj+1 are children
and n1, n3 ∈ Λj are parents.
Non degeneracy: The sibling of a frequency is never its spouse.
Faithfulness: Besides nuclear families, Λ contains no other rectangles.
Integenerational Equality:The function n 7−→ an(0) is constant on each
generation Λj .
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Cartoon Construction of Λ
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More properties for the set Λ

Multiplicative Structure: If N = N(σ, K ) is large enough then Λ consists
of N × 2N−1 disjoint frequencies n with |n| > N = N(σ, K ), the first
frequency in Λ1 is of size N and the last frequency in ΛN is of size C(N)N.
We call N the Inner Radius of Λ.
Wide Diaspora: Given σ � 1 and K � 1, there exist M and
Λ = Λ1 ∪ .... ∪ ΛN as above and

∑
n∈ΛN

|n|2s ≥ K 2

σ2

∑
n∈Λ1

|n|2s.

Approximation: If spt(an(0)) ⊂ Λ then FNLS-evolution an(0) 7−→ an(t) is
nicely approximated by RFNLSΛ-ODE an(0) 7−→ bn(t).
Given ε, s, K , build Λ so that RFNLSΛ has weak turbulence.
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4. The Toy Model

The truncation of RFNLS to the constructed set Λ is the ODE

(RFNLSΛ) −i∂tbn = −bn|bn|2 +
∑

(n1,n2,n3)∈Λ3∩Γres(n)

bn1bn2bn3 .

The intergenerational equality hypothesis (n 7−→ bn(0) is constant on
each generation Λj .) persists under RFNLSΛ:

∀ m, n ∈ Λj , bn(t) = bm(t).

RFNLSΛ may be reindexed by generation number j .
The recast dynamics is the Toy Model (ODE):

−i∂tbj(t) = −bj(t)|bj(t)|2 − 2bj−1(t)2bj(t)− 2bj+1(t)2bj(t),

with the boundary condition

(BC) b0(t) = bN+1(t) = 0.
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Conservation laws for the ODE system

The following are conserved quantities for (ODE)

Mass =
∑

j

|bj(t)|2 = C0

Momentum =
∑

j

|bj(t)|2
∑
n∈Λj

n = C1,

and if

Kinetic Energy =
∑

j

|bj(t)|2
∑
n∈Λj

|n|2

Potential Energy =
1
2

∑
j

|bj(t)|4 +
∑

j

|bj(t)|2|bj+1(t)|2,

then
Energy = Kinetic Energy + Potential Energy = C2.
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Toy model traveling wave solution

Using direct calculation1, we will prove that our Toy Model ODE evolution
bj(0) 7−→ bj(t) is such that:

(b1(0), b2(0), . . . , bN(0)) ∼ (1, 0, . . . , 0)

(b1(t2), b2(t2), . . . , bN(t2)) ∼ (0, 1, . . . , 0)

.

.

.

(b1(tN), b2(tN), . . . , bN(tN)) ∼ (0, 0, . . . , 1)

Bulk of conserved mass is transferred from Λ1 to ΛN . Weak turbulence lower
bound follows from Wide Diaspora Property.

1Maybe dynamical systems methods are useful here?
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Instability for the ODE : the set up

Global well-posedness for ODE is not an issue. Then we define

Σ = {x ∈ CN / |x |2 = 1} and W (t) : Σ → Σ,

where W (t)b(t0) = b(t + t0) for any solution b(t) of ODE . It is easy to see that
for any b ∈ Σ

∂t |bj |2 = 4<(i b̄j
2
(b2

j−1 + b2
j+1)) ≤ 4|bj |2.

So if
bj(0) = 0 implies bj(t) = 0, for all t ∈ [0, T ].

If moreover we define the torus

Tj = {(b1, ...., bN) ∈ Σ / |bj | = 1, bk = 0, k 6= j}

then
W (t)Tj = Tj for all j = 1, ...., N

(Tj is invariant).
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Instability for the ODE

Theorem (Sliding Theorem)
Let N ≥ 6. Given ε > 0 there exist x3 within ε of T3 and xN−2 within ε of TN−2
and a time t such that

W (t)x3 = xN−2.

Remark
W (t)x3 is a solution of total mass 1 arbitrarily concentrated near mode j = 3
at some time t0 and then arbitrarily concentrated near mode j = N − 2 at later
time t.
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The sliding process

To motivate the theorem let us first observe that when N = 2 we can easily
demonstrate that there is an orbit connecting T1 to T2. Indeed in this case we
have the explicit “slider” solution

(11.1) b1(t) :=
e−itω√

1 + e2
√

3t
; b2(t) :=

e−itω2√
1 + e−2

√
3t

where ω := e2πi/3 is a cube root of unity.

This solution approaches T1 exponentially fast as t → −∞, and approaches
T2 exponentially fast as t → +∞. One can translate this solution in the j
parameter, and obtain solutions that “slide” from Tj to Tj+1. Intuitively, the
proof of the Sliding Theorem for higher M should then proceed by
concatenating these slider solutions......
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This is a cartoon of what we have:

Tj T1 T2

Figure: Explicit oscillator solution around Tj and the slider solution from T1 to T2

This though cannot work directly because each solution requires an infinite
amount of time to connect one circle to the next, but it turns out that a suitably
perturbed or “fuzzy” version of these slider solutions can in fact be glued
together.
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5. A Perturbation Lemma

Lemma
Let Λ ⊂ Z2 introduced above. Let B � 1 and δ > 0 small and fixed. Let
t ∈ [0, T ] and T ∼ B2 log B. Suppose there exists b(t) ∈ l1(Λ) solving RFNLSΛ

such that
‖b(t)‖l1 . B−1.

Then there exists a solution a(t) ∈ l1(Z2) of FNLS such that

a(0) = b(0), and ‖a(t)− b(t)‖l1(Z2) . B−1−δ,

for any t ∈ [0, T ].

Proof.
This is a standard perturbation lemma proved by checking that the “non
resonant” part of the nonlinearity remains small enough.
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Recasting the main theorem

With all the notations and reductions introduced we can now recast the main
theorem in the following way:

Theorem
For any 0 < σ � 1 and K � 1 there exists a complex sequence (an) such that∑

n∈Z2

|an|2|n|2s

1/2

. σ

and a solution (an(t)) of (FNLS) and T > 0 such that∑
n∈Z2

|an(T )|2|n|2s

1/2

> K .
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6. A Scaling Argument

In order to be able to use “instability” to move mass from lower frequencies to
higher ones and start with a small data we need to introduce scaling.

Consider in [0, τ ] the solution b(t) of the system RFNLSΛ with initial datum b0.
Then the rescaled function

bλ(t) = λ−1b(
t
λ2 )

solves the same system with datum bλ
0 = λ−1b0.

We then first pick the complex vector b(0) that was found in the “instability”
theorem above. For simplicity let’s assume here that bj(0) = 1− ε if j = 3 and
bj(0) = ε if j 6= 3 and then we fix

an(0) =

{
bλ

j (0) for any n ∈ Λj

0 otherwise .
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Estimating the size of (a(0))

By definition

(∑
n∈Λ

|an(0)|2|n|2s

)1/2

=
1
λ

 N∑
j=1

|bj(0)|2
∑

n∈Λj

|n|2s

1/2

∼ 1
λ

Q1/2
3 ,

where the last equality follows from defining∑
n∈Λj

|n|2s = Qj ,

and the definition of an(0) given above. At this point we use the proprieties of
the set Λ to estimate Q3 = C(N)N2s, where N is the inner radius of Λ. We
then conclude that(∑

n∈Λ

|an(0)|2|n|2s

)1/2

= λ−1C(N)Ns ∼ σ.
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Estimating the size of (a(T ))

By using the perturbation lemma with B = λ and T = λ2τ we have

‖a(T )‖Hs ≥ ‖bλ(T )‖Hs − ‖a(T )− bλ(T )‖Hs = I1 − I2.

We want I2 � 1 and I1 > K . For the first

I2 ≤ ‖a(T )− bλ(T )‖l1(Z2)

(∑
n∈Λ

|n|2s

)1/2

. λ−1−δ

(∑
n∈Λ

|n|2s

)1/2

.

As above
I2 . λ−1−δC(N)Ns

At this point we need to pick λ and N so that

‖a(0)‖Hs = λ−1C(N)Ns ∼ σ and I2 . λ−1−δC(N)Ns � 1

and thanks to the presence of δ > 0 this can be achieved by taking λ and N
large enough.
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Estimating I1

It is important here that at time zero one starts with a fixed non zero datum,
namely ‖a(0)‖Hs = ‖bλ(0)‖Hs ∼ σ > 0. In fact we will show that

I2
1 = ‖bλ(T )‖2

Hs ≥
K 2

σ2 ‖b
λ(0)‖2

Hs ∼ K 2.

If we define for T = λ2t

R =

∑
n∈Λ |bλ

n (λ2t)|2|n|2s∑
n∈Λ |bλ

n (0)|2|n|2s ,

then we are reduce to showing that R & K 2/σ2. Now recall the notation

Λ = Λ1 ∪ ..... ∪ ΛN and
∑
n∈Λj

|n|2s = Qj .
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More on Estimating I1
Using the fact that by the theorem on “instability” one obtains bj(T ) = 1− ε if
j = N − 2 and bj(T ) = ε if j 6= N − 2, it follows that

R =

∑N
i=1
∑

n∈Λi
|bλ

i (λ2t)|2|n|2s∑N
i=1
∑

n∈Λi
|bλ

i (0)|2|n|2s

≥ QN−2(1− ε)

(1− ε)Q3 + εQ1 + .... + εQN
∼ QN−2(1− ε)

QN−2

[
(1− ε) Q3

QN−2
+ .... + ε

]
&

(1− ε)

(1− ε) Q3
QN−2

=
QN−2

Q3

and the conclusion follows from ”large diaspora” of Λj :

QN−2 =
∑

n∈ΛN−2

|n|2s &
K 2

σ2

∑
n∈Λ3

|n|2s =
K 2

σ2 Q3.
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Where does the set Λ come from?

Here we do not construct Λ, but we construct Σ, a set that has a lot of the
properties of Λ but does not live in Z2.

We define the standard unit square S ⊂ C to be the four-element set of
complex numbers

S = {0, 1, 1 + i , i}.

We split S = S1 ∪ S2, where S1 := {1, i} and S2 := {0, 1 + i}. The
combinatorial model Σ is a subset of a large power of the set S. More
precisely, for any 1 ≤ j ≤ N, we define Σj ⊂ CN−1 to be the set of all
N − 1-tuples (z1, . . . , zN−1) such that z1, . . . , zj−1 ∈ S2 and zj , . . . , zN−1 ∈ S1.
In other words,

Σj := Sj−1
2 × SN−j

1 .
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Note that each Σj consists of 2N−1 elements, and they are all disjoint. We
then set Σ = Σ1 ∪ . . . ∪ ΣN ; this set consists of N2N−1 elements. We refer to
Σj as the j th generation of Σ.

For each 1 ≤ j < N, we define a combinatorial nuclear family connecting
generations Σj ,Σj+1 to be any four-element set F ⊂ Σj ∪ Σj+1 of the form

F := {(z1, . . . , zj−1, w , zj+1, . . . , zN) : w ∈ S}

where z1, . . . , zj−1 ∈ S2 and zj+1, . . . , zN ∈ S1 are fixed. In other words, we
have

F = {F0, F1, F1+i , Fi} = {(z1, . . . , zj−1)} × S × {(zj+1, . . . , zN)}

where Fw = (z1, . . . , zj−1, w , zj+1, . . . , zN).
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It is clear that
F is a four-element set consisting of two elements F1, Fi of Σj (which we
call the parents in F ) and two elements F0, F1+i of Σj+1 (which we call the
children in F ).
For each j there are 2N−2 combinatorial nuclear families connecting the
generations Σj and Σj+1.
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Properties of Σ

One easily verifies the following properties:

Existence and uniqueness of spouse and children: For any 1 ≤ j < N
and any x ∈ Σj there exists a unique combinatorial nuclear family F
connecting Σj to Σj+1 such that x is a parent of this family (i.e. x = F1 or
x = Fi ). In particular each x ∈ Σj has a unique spouse (in Σj ) and two
unique children (in Σj+1).
Existence and uniqueness of sibling and parents: For any 1 ≤ j < N and
any y ∈ Σj+1 there exists a unique combinatorial nuclear family F
connecting Σj to Σj+1 such that y is a child of the family (i.e. y = F0 or
y = F1+i ). In particular each y ∈ Σj+1 has a unique sibling (in Σj+1) and
two unique parents (in Σj ).
Nondegeneracy: The sibling of an element x ∈ Σj is never equal to its
spouse.
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Example:

If N = 7, the point x = (0, 1 + i , 0, i , i , 1) lies in the fourth generation Σ4. Its
spouse is (0, 1 + i , 0, 1, i , 1) (also in Σ4) and its two children are
(0, 1 + i , 0, 0, i , 1) and (0, 1 + i , 0, 1 + i , i , 1) (both in Σ5). These four points
form a combinatorial nuclear family connecting the generations Σ4 and Σ5.
The sibling of x is (0, 1 + i , 1 + i , i , i , 1) (also in Σ4, but distinct from the
spouse) and its two parents are (0, 1 + i , 1, i , i , 1) and (0, 1 + i , i , i , i , 1) (both in
Σ3). These four points form a combinatorial nuclear family connecting the
generations Σ3 and Σ4. Elements of Σ1 do not have siblings or parents, and
elements of Σ7 do not have spouses or children.
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