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Abstract: Directed graphs occur throughout statistical modeling of net-
works, and exchangeability is a natural assumption when the ordering of
vertices does not matter. There is a deep structural theory for exchangeable
undirected graphs, which extends to the directed case via measurable objects
known as digraphons. Using digraphons, we first show how to construct
models for exchangeable directed graphs, including special cases such as tour-
naments, linear orderings, directed acyclic graphs, and partial orderings. We
then show how to construct priors on digraphons via the infinite relational
digraphon model (di-IRM), a new Bayesian nonparametric block model for
exchangeable directed graphs, and demonstrate inference on synthetic data.
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1. Introduction

Directed graphs arise in many applications involving pairwise relationships among
objects, such as friendships, communication patterns in social networks, and
logical dependencies (Wasserman and Faust, 1994). In machine learning, latent
variable models are popular tools for modeling relational data in applications
such as clustering (Airoldi et al., 2008; Kemp et al., 2006; Wang and Wong,
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1987; Xu et al., 2007), feature modeling (Hoff et al., 2002; Miller et al., 2009;
Palla et al., 2012), and network dynamics (Blundell et al., 2012; Fu et al., 2009;
Heaukulani and Ghahramani, 2013; Kim and Leskovec, 2013).

Many such models assume exchangeability, i.e., that the joint distribution of
the edges is invariant under permutations of the vertices. Undirected exchangeable
graphs have been extensively studied. The foundational Aldous–Hoover theorem
(Aldous, 1981; Hoover, 1979) characterizes undirected exchangeable graphs in
terms of certain measurable functions. Our perspective in this paper is closer to
the equivalent characterization in terms of graphons due to Lovász and Szegedy
(2006). A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1].
Given a graphon W , there is an associated countably infinite exchangeable
graph G(N,W ) with random adjacency matrix (Gij)i,j∈N defined as follows (see
Figure 1):

Ui
iid∼ Uniform[0, 1] for i ∈ N,

Gij |Ui, Uj ind∼ Bernoulli(W (Ui, Uj)), for i < j,
(1)

and set Gji = Gij for i < j, and Gii = 0. Every exchangeable undirected
graph can be written as a mixture of such sampling procedures. For n ∈ N, we
write G(n,W ) to denote the finite random undirected graph on underlying set
{1, . . . , n} induced by this sampling procedure. For more details on graphons
and exchangeable graphs, see the survey by Diaconis and Janson (2008) and
book by Lovász (2012).

Most work involving priors on exchangeable graphs has focused on undirected
graphs; for various extensions, see the end of Section 5. For directed graphs,
much of the work has extended the undirected case by using a single asymmetric
measurable function Wasym : [0, 1]2 → [0, 1] to model the directed graph (see Or-
banz and Roy (2015, §4) for a survey of such models). While such an asymmetric
function is appropriate for exchangeable bipartite graphs (Diaconis and Janson,
2008), this representation cannot express all exchangeable directed graph models
(see Section 3.1). Exchangeable directed graphs are also characterized by a sam-
pling procedure given by the Aldous–Hoover theorem. As with the undirected
case, we will work with an equivalent formulation in terms of measurable objects
known as digraphons (Diaconis and Janson, 2008); see also Offner (2009), Aroskar
(2012), and Aroskar and Cummings (2014). The Aldous–Hoover theorem implies
that exchangeable directed graphs are determined by specifying a distribution
on digraphons. Indeed, a digraphon is a more complicated representation for
exchangeable directed graphs than a single asymmetric measurable function; a
digraphon describes the possible directed edges between each pair of vertices
jointly, rather than independently. We define digraphons in Section 2; for related
work, see Section 5.

1.1. Contributions

This paper presents two main contributions. We first show how digraphons can
be used to model directed graphs, highlighting special cases that make use of
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(a) left: Gradient graphon W ; right: Schematic of sampling procedure

(b) G(50,W ) (c) G(100,W ) (d) G(500,W )

Fig 1: (a) An example of a graphon, given by the function W (x, y) = (1−x)+(1−y)
2 .

(b-d) top: Samples from the finite random graphs G(50,W ), G(100,W ), and
G(500,W ), shown as “pixel pictures” of the adjacency matrix, where black
corresponds to 1 and white to 0; bottom: The samples resorted by increasing
order of the sampled uniform random variables Ui.

dependence in the edge directions. In particular, we characterize the form of
digraphons that produce tournaments, linear orderings, directed acyclic graphs,
and partial orderings (Section 3). We briefly discuss how these formulations can
be used to produce estimators for directed graph models (Section 3.3).

Next, we given an explicit example of a prior on digraphons: we present the
infinite relational digraphon model (di-IRM), a Bayesian nonparametric block
model for exchangeable directed graphs, which uses a Dirichlet process stick-
breaking prior to partition the unit interval and Dirichlet-distributed weights
for each pair of classes in the partition (Section 4). We derive a collapsed
Gibbs sampling inference procedure (Section 6), and demonstrate applications
of inference on synthetic data (Section 7), showing some limitations of using the
infinite relational model with an asymmetric measurable function to model edge
directions independently.
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2. Background

We begin by defining notation and providing relevant background on directed
exchangeable graphs. Our presentation largely follows Diaconis and Janson
(2008).

2.1. Notation

Let [n] := {1, . . . , n}. For a directed graph (or digraph) G whose vertex set V is
[n] or N, we write (Gij)i,j∈V for its adjacency matrix, i.e., Gij = 1 if there is an
edge from vertex i to vertex j, and 0 otherwise. We will omit mention of the set
V when it is clear. In general, for a directed graph, (Gij) may be asymmetric,
and we allow self-loops, which correspond to values Gii = 1 on the diagonal.
The adjacency matrix of an undirected graph (without self-loops) is a symmetric
array (Gij) satisfying Gii = 0 for all i.

We write X
d
= Y to denote that the random variables X and Y are equal in

distribution.

2.2. Exchangeability for directed graphs

A random (infinite) directed graph G on N is exchangeable if its joint distri-
bution is invariant under all permutations π of the vertices:

(Gij)i,j∈N
d
= (Gπ(i)π(j))i,j∈N. (2)

By the Kolmogorov extension theorem, it is equivalent to ask for this to hold
only for those permutations π that move a finite number of elements of N.

Such an array (Gij) is sometimes called jointly exchangeable. The case where
the distribution is preserved under permutation of each index separately, i.e.,

where (Gij)
d
= (Gπ(i)σ(j)) for arbitrary permutations π and σ, is called separately

exchangeable, and arises for adjacency matrices of bipartite graphs.

2.3. Digraphons

As described by Diaconis and Janson (2008), using the Aldous–Hoover theo-
rem one may show that every exchangeable countably infinite directed graph
is expressible as a mixture of G(N,W) with respect to some distribution on
digraphons W.

We now define digraphons; in Section 2.4 we will describe the sampling
procedure that yields G(N,W).

Definition 2.1. A digraphon is a 5-tuple W := (W00,W01,W10,W11, w),
where Wab : [0, 1]2 → [0, 1], for a, b ∈ {0, 1}, and w : [0, 1]→ {0, 1} are measurable
functions satisfying the following conditions for all x, y ∈ [0, 1]:
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W00(x, y) = W00(y, x);

W11(x, y) = W11(y, x); (3)

W01(x, y) = W10(y, x);

and W00(x, y) +W01(x, y) +W10(x, y) +W11(x, y) = 1.

Given a digraphon W, write W4 for the map [0, 1]2 → [0, 1]4 given by
(W00,W01,W10,W11).

The functions Wab represent the joint probability of Gij = a and Gji = b for
a, b ∈ {0, 1}, i.e.,

Pr(Gij = a,Gji = b) = Wab(Ui, Uj), (4)

conditioned on Ui and Uj . In this way, W00 determines the probability of having
neither edge direction between vertices i and j, W01 of only having a single edge
to j from i (“right-to-left”), W10 of a single edge from i to j (“left-to-right”),
and W11 of directed edges in both directions between i to j. The function w
represents the probability of Gii; because it is {0, 1}-valued, this merely states
whether or not i has a self-loop.

(There is an equivalent alternative set of objects that may be used to specify
an exchangeable digraph, where W00,W01,W10,W11 are as before and p ∈ [0, 1]
gives the marginal probability of a self-loop, which is independent of the other
edges; see Diaconis and Janson (2008) for details.)

2.4. Sampling from a digraphon

The adjacency matrix (Gij)i,j∈N of a countably infinite random graph G(N,W)
is determined by the following sampling procedure:

1. Draw Ui
iid∼ Uniform[0, 1] for i ∈ N.

2. For each pair of distinct vertices i, j, assign the edge values for Gij and
Gji according to an independent Categorical(W4(Ui, Uj)) such that Equa-
tion (4) holds.

3. Assign self-loops Gii = w(Ui) for all i.

In other words, in step 2 we assign (Gij , Gji) |Ui, Uj ind∼ Categorical(W4(Ui, Uj)),
where we interpret the categorical random variable as a distribution over the
choices (0, 0), (0, 1), (1, 0), (1, 1), in that order. Note that step 2 is well-defined
by the symmetry condition in Equation (3). Figure 2 illustrates this sampling
procedure via a schematic.

An analogous sampling procedure yields finite random digraphs: Given n ∈ N,
in step 1, instead sample only Ui for i ∈ [n]. Then determine Gij for i, j ∈ [n] as
before. We write G(n,W) to denote the random digraph thereby induced on [n].
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W00(U1, U2) W01(U1, U2) W10(U1, U2) w(U1)W11(U1, U2)

(G12, G21) ⇠ Categorical(W4(U1, U2)) G11

P1
a,b=0 Wab(U1, U2) = 1

Fig 2: Schematic illustrating digraphon sampling procedure for W =
(W00,W01,W10,W11, w). The x-axis is vertical and y-axis horizontal, with (0, 0) in
the upper left, so that the notation Wab(x, y) coheres with the usual (row, column)
convention for matrix indexing.

2.5. Aldous–Hoover theorem for directed graphs

Diaconis and Janson (2008) derived the following corollary of the Aldous–Hoover
theorem for directed graphs.

Theorem 2.2 (Diaconis–Janson). Every exchangeable random countably infinite
directed graph is obtained as a mixture of G(N,W); in other words, as G(N,W)
for some random digraphon W.

Therefore the problem of specifying the distribution of an infinite exchangeable
digraph may be equivalently viewed as the problem of specifying a distribution
on digraphons.

3. Digraphons and statistical modeling

We first motivate the use of digraphons instead of asymmetric measurable
functions for modeling exchangeable directed graphs. We then discuss the repre-
sentations via digraphons for several random structures which are special cases
of directed graphs. Finally, we discuss how to estimate digraphons, in the context
of both Bayesian and frequentist estimation.

3.1. Modeling limitations of asymmetric measurable functions

Asymmetric measurable functions Wasym : [0, 1]2 → [0, 1] characterize exchange-
able bipartite graphs by the Aldous–Hoover theorem for separately exchangeable
arrays; for details see Diaconis and Janson (2008, §8). These functions can also be
used to generate and model directed graphs (without self-loops) by considering
the edge directions Gij and Gji independently, i.e., Pr(Gij = 1) = Wasym(Ui, Uj)
for all i 6= j, conditioned on Ui and Uj , according to the following sampling
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procedure:

Ui
iid∼ Uniform[0, 1] for i ∈ N,

Gij |Ui, Uj ind∼ Bernoulli(Wasym(Ui, Uj)), for i 6= j,

and Gii = 0 for i ∈ N. Currently priors on these asymmetric functions are
popular in Bayesian modeling of directed graphs, as we note in Section 5.

Asymmetric measurable functions are also equivalent to the following special
case of the digraphon representation. Via the above sampling procedure, every
asymmetric measurable function Wasym yields the same directed graph as the
digraphon W = (W00,W01,W10,W11, w) given pointwise by

W(x, y) = ((1− p)(1− q), (1− p)q, p(1− q), pq, 0),

where p := Wasym(x, y) and q := Wasym(y, x). In particular, conditioned on
x = Ui and y = Uj , the marginal probability p(1− q) + pq = p of an edge from i
to j and (1− p)q + pq = q of an edge from j to i are independent.

On the other hand, many common kinds of digraphs are not obtainable from
a single asymmetric function. Consider the following two classes:

1. Undirected graphs: between any two vertices i and j, there are either no
edges (Gij = Gji = 0), or edges in both directions (Gij = Gji = 1).

2. Tournaments: between any two vertices i and j, there is exactly one directed
edge, i.e., Gij = 1 or Gji = 1 but not both.

For digraphs of either of these two sorts, the directions are correlated, and
hence not obtainable from the above sampling procedure for an asymmetric
measurable function, as this procedure generates Gij and Gji independently.
This demonstrates how the use of an asymmetric measurable function is poorly
suited for graphs with correlated edge directions. Though constructing a model
for general digraphs using the function Wasym leads to misspecification, one
might hope to perform inference nevertheless; however, as we show in Section 7.2,
doing so may fail to discern structure that may be discovered through posterior
inference with respect to a prior on digraphons.

In contrast to the use of asymmetric measurable functions, where one considers
edge directions independently, with digraphons one considers the edge directions
between vertex i and vertex j jointly, as in Equation (4). Thus, digraphons give
a more general and flexible representation for modeling digraphs.

3.2. Special cases

We discuss several special cases of directed graphs and specify the form of their
digraphon representations.

3.2.1. Undirected graphs

Undirected graphs can be viewed as directed graphs with no self-loops, where
each pair of distinct vertices either has edges in both directions or in neither.
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Fig 3: left: Erdős–Rényi undirected graph as a digraphon W; right: G(20,W)

Hence a digraphon that yields an undirected graph is one having no probability
in the single edge directions, i.e., such that W01 = W10 = 0 (or equivalently,
W00 +W11 = 1) and w = 0. Such a digraph is therefore determined by merely
specifying the graphon W11, where W00 = 1−W11 is implicit.

Example 3.1. In Figure 3, we display an example of a digraphon whose samples
are undirected Erdős–Rényi graphs with edge density 1/2, i.e.,

(W00,W01,W10,W11, w) = (1/2, 0, 0, 1/2, 0) .

This digraphon corresponds to the graphon W (x, y) = 1/2.

3.2.2. Tournaments

A tournament is a directed graph without self-loops, where for each pair of
vertices, there is an edge in exactly one direction. In other words, a tournament
has Gij = 1 if and only if Gji = 0 for i 6= j, and Gii = 0. Therefore a digraphon
yielding a tournament is one satisfying w = 0 and W01 +W10 = 1 (or equivalently,
W00 = W11 = 0).

Example 3.2. An example of a tournament digraphon is displayed in Figure 4:

(W00,W01,W10,W11, w) = (0, 1/2, 1/2, 0, 0) .

The random tournament induced by sampling from this digraphon is almost
surely isomorphic to a countable structure known as the generic tournament.
(For more details on this example, see Chung and Graham (1991) and Diaconis
and Janson (2008, Example 9.2).)

As discussed in Section 3.2.1, exchangeable undirected graphs can be specified
in terms of single functions W11 (graphons) and their associated sampling proce-
dure (described in Equation 1). Similarly, tournaments also have a single-function
representation and associated sampling procedure. Namely, a tournament di-
graphon is determined by a measurable function WT : [0, 1]2 → [0, 1] that is
anti-symmetric in the sense that WT (x, y) = 1 −WT (y, x) for all x, y ∈ [0, 1]
(corresponding to the digraphon condition W01(x, y) = W10(y, x)). To sample

from WT , first sample Gij |Ui, Uj ind∼ Bernoulli(WT (Ui, Uj)) for i < j, and then
set Gji = 1−Gij (and Gii = 0). The digraphon in Example 3.2 corresponds to
the anti-symmetric, measurable function WT (x, y) = 1/2.
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Fig 4: left: Digraphon W that yields a generic tournament; right: G(20,W)

Tournament digraphons have recently been studied in detail by Thörnblad
(2016), which calls the single function WT a tournament kernel.

Statistical models for tournaments appear in the ranking theory literature,
often using a variant of the Bradley–Terry model (Bradley and Terry, 1952),
first described by Zermelo (1929). For more details, including the relation to
graphons, see Chatterjee (2015, §2.7). This literature, and related estimation
papers such as Chatterjee and Mukherjee (2016), is also often framed in terms
of a single-function representation.

3.2.3. Linearly ordered sets

A digraph is a (strict) linear ordering when the directed edge relation is transitive,
and every pair of distinct vertices has an edge in exactly one direction. Consider
the digraphon given by W00 = W11 = w = 0 and W01 = 1−W10, where

W10(x, y) =

{
1 if x < y,

0 otherwise.

The countable directed graph induced by sampling from this digraphon is
almost surely a linear order. In fact, this is essentially the only such example —
by Glasner and Weiss (2002, §8), its distribution is the same as that of every
exchangeable linear ordering. (In other words, any digraphon yielding the (unique)
exchangeable linear ordering is weakly isomorphic to this one; see Section 7 for
details.) Furthermore, the countable linear ordering obtained from sampling this
digraphon is almost surely dense and without endpoints, and hence isomorphic
to the rationals. A finite sample with n vertices has distribution equal to the
uniform measure on all n! ways of linearly ordering {1, . . . , n}.

This digraphon is displayed in Figure 5 alongside a 20 vertex random sample,
rearranged by increasing Ui; note that for almost every sample, the corresponding
rearranged graph will have all vertices strictly above the diagonal.

3.2.4. Directed acyclic graphs

A directed acyclic graph (DAG) is a directed graph having no directed path
from any vertex to itself. Various work has focused on models for DAGs (e.g., see
Roverato and Consonni (2004)), and especially their use in describing random
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Fig 5: left: Linear ordering digraphon; right: G(20,W)

Fig 6: left: Example of a DAG digraphon; right: G(20,W)

instances of directed graphical models (also known as Bayesian networks). DAGs
also arise naturally as networks describing non-circular dependencies (e.g., among
software packages), and in other key data structures.

One can show, using the main result of Hladký et al. (2015) (which we describe
in Section 3.2.5), that any exchangeable DAG can be obtained from sampling
a digraphon satisfying W10(x, y) = 0 for x ≥ y and W11 = w = 0. Note that
this constrains the digraphon to have the same zero-valued regions as those in
the canonical presentation of a linear ordering digraphon (as described above
and displayed in Figure 5), except that W00 may be arbitrary. (Equivalently, for
x < y, the value W10(x, y) may be chosen arbitrarily, so that the remaining terms
are given by W01(x, y) = W10(y, x) and W00 = 1 −W01 −W10.) A digraphon
of this form thereby specifies one way in which the exchangeable DAG can be
topologically ordered (i.e., extended to some exchangeable linear ordering).

Specifying a digraphon in this way always yields a DAG upon sampling, as
the standard linear ordering on [0, 1] does not admit directed cycles, and one
can show that all exchangeable DAGs arise in this way, as mentioned above.

Example 3.3. An example of a digraphon that yields exchangeable DAGs is the
generic DAG digraphon given by

W00 = 1/2,

W10(x, y) =

{
1/2 if x < y,

0 otherwise, and

W11 = 0,

where W01 is such that W01(x, y) = W10(y, x). This example is displayed in
Figure 6. We can see that the reordered sample is indeed a DAG, as the edges
clearly all lie above the diagonal in the adjacency matrix.
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3.2.5. Partially ordered sets

A partially ordered set, or poset, is a set with a binary relation � that is reflexive,
antisymmetric, and transitive. A poset can be viewed as a digraph having a
directed edge from a to b if and only if a � b. Note that the transitive closure of
any DAG is a poset, i.e., if in a DAG, there is a directed path from a to b, the
transitive closure has an edge from a to b, thereby producing a partial ordering.
(One can similarly define the “transitive closure digraphon” of a digraphon that
yields DAGs to obtain a digraphon yielding the corresponding transitive closures).
Conversely, any poset (with self-loops removed) is already a DAG. Therefore
exchangeable posets are obtainable by some digraphon of the form described in
Section 3.2.4 (except with w = 1), though not all such digraphons yield posets.
Analogously, representing an exchangeable poset via a digraphon of this form
amounts to specifying a linearization of the poset.

Janson (2011) develops a theory of poset limits (or posetons) and their relation
to exchangeable posets. By Hladký et al. (2015), any exchangeable poset is given
by some digraphon W for which W10(x, y) > 0 implies that x < y, i.e., W is
compatible with the standard linear ordering on [0, 1].

Example 3.4. Consider the following example of a digraphon that yields an
exchangeable poset, specified by the following blockmodel:

W10 =





1/2 if x < 1/4 and 1/4 ≤ y < 3/4,
1/2 if 1/4 ≤ x < 3/4 and y ≥ 3/4,

1 if x < 1/4 and y ≥ 3/4, and

0 otherwise,

where W11 = 0, where W01 is such that W01(x, y) = W10(y, x), and where
W00 = 1−W01 −W10.

This example is displayed in Figure 7. In particular, the block structure of
the model is reflected in the rearranged sample on the right. We can see that
this is an exchangeable poset: if the loops (the diagonal) are removed from this
digraph, it is a DAG (as all the edges in the rearranged sample are above the
diagonal), and one can check that it is transitively closed.

This is a key example among posets. Work of Kleitman and Rothschild (1975)
and Compton (1988), characterizing the combinatorial structure of a typical
large finite poset, implies that the sequence of uniform distributions on labeled
posets of size n converges (in the sense of poset limits) to this example.

3.3. Digraphon estimation

For undirected graphs, the graphon estimation problem has received considerable
attention in recent years. In graphon estimation, one seeks to infer either the
function W , or the associated probability matrix with entries Mij := W (Ui, Uj),
given a single sample (or multiple samples) of the graph. From the Bayesian
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Fig 7: left: Example of a 3× 3 SBM poset digraphon; right: G(20,W)

modeling perspective, one places a prior on graphons and performs an inference
procedure to estimate the parameters of the random function prior.

From the frequentist perspective, one is interested in producing an estimator
for a fixed graphon, and many such algorithms have been developed, including
histogram and degree-sorting based methods. To produce a frequentist digraphon
estimator, one can extend methods developed for graphons. Just as a single
asymmetric measurable function is insufficient for representing correlated edge
directions, one must likewise estimate the edge directions jointly. Although a
directed graph can be simply represented with a single asymmetric matrix,
digraphon estimators must consider the impact on pairs of entries (Gij , Gji)
jointly when partitioning, rearranging, or otherwise manipulating vertices i, j.

Histogram estimators for digraphons A histogram estimation procedure
for graphons partitions the vertices into several classes, and then uses the average
edge density across each pair of classes as an estimate of the probability of an
edge between two vertices in those classes. This reduces the problem to that
of estimating a partition that yields a good estimate of these edge densities.
Many methods have been developed for this problem; for further details see the
references within Borgs et al. (2015, §§1.3 and 1.7).

To estimate a digraphon (ignoring loops), we must estimate four edge-direction
histograms, where the goal is to estimate a partition of the vertices that simulta-
neously yields good estimates of the four types of edge densities. After producing
a partition of the vertices, one likewise computes the average edge density in each
of the four cases, resulting in four histograms. (If considering loops, there is one
additional 1-dimensional histogram whose estimates are to be jointly optimized
by the partition.)

The Frieze–Kannan and Szemerédi regularity lemmas lead to bounds on how
well a large graph can be approximated using edge densities across a partition
(Lovász, 2012, Chapters 9 and 10); see also Kallenberg (1999). The generalization
of the Szemerédi regularity lemma to directed graphs by Alon and Shapira (2004)
likewise provides a bound in terms of directed edge densities.

Degree-sorting estimators for digraphons Many degree-sorting algorithms
have been proposed for graphon estimation. These algorithms often involve “sort-
ing” followed by “smoothing”. In the sorting step, the vertices are sorted by
their degrees, where the degree of a vertex i is defined to be

∑n
j=1Gij , In the

smoothing step, the {0, 1}-valued adjacency matrix is used to produce a [0, 1]-
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valued matrix using some smoothing algorithm. For example, Chan and Airoldi
(2014) compare a degree-sorting algorithm that uses total variation distance
minimization as a smoothing step to one that uses universal singular value
thresholding (Chatterjee, 2015) as the smoothing step. Degree-sorting estimators

assume that the degree distribution
∫ 1

0
W (x, y)dy is strictly monotonizable in x,

i.e., in order for sorting to be effective, the degrees of the vertices must vary.
This idea can be similarly applied to digraphon estimation: First sort the

degrees of the vertices by the four types of edge directions, to obtain four
adjacency matrices, and then smooth these matrices. It would suffice to require,
after possibly applying a single measure-preserving transformation to [0, 1], that

the map x 7→
(∫ 1

0
W00(x, y)dy,

∫ 1

0
W01(x, y)dy,

∫ 1

0
W10(x, y)dy,

∫ 1

0
W11(x, y)dy

)

is strictly increasing with respect to the lexicographic ordering of [0, 1]4.
In this paper, we do not comment further on digraphon estimators, but many

other graphon estimation techniques should generalize similarly. One way of
describing the general pattern is to jointly consider the corresponding techniques
applied to the four matrices obtained from the adjacency matrix restricted to
each joint edge type.

Priors on digraphons Bayesian approaches may also be use to estimate a
digraphon; this is the focus of much of the rest of the paper. One may likewise use
similar techniques to those that have been developed for graphons. Analogously to
the case of undirected graphs, a Bayesian model for exchangeable directed graphs
involves placing a prior on digraphons. This is justified by the characterization
in Section 2.5 of exchangeable directed graphs in terms of random digraphons.
We discuss such an approach in depth in Section 4, where we present a Bayesian
nonparametric model based on random partitions using the Dirichlet process.

4. Infinite relational digraphon model

We now proceed to describe a prior on digraphons that makes use of block
structure. For directed graphs, the infinite relational model (IRM) (Kemp et al.,
2006) models edges between vertices using an asymmetric measurable function
and is a nonparametric extension of the (asymmetric) stochastic block model. In
this section, we present the infinite relational digraphon model (di-IRM), which
gives a prior on digraphons. This model can be viewed as a generalization of the
symmetric IRM, a graphon model, to the digraphon case. We then show how the
di-IRM can be used to model a variety of digraphs, including ones that cannot
be modeled using an asymmetric IRM.

4.1. Generative model

We present two equivalent representations of the di-IRM model: (1) a digraphon
representation and (2) a clustering representation. The digraphon representation
uses a stick-breaking Dirichlet process prior to partition the unit interval, while
the clustering representation uses a Chinese restaurant process prior to partition
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the vertices. The difference between the two representations is analogous to that
between the representations of the IRM given by Orbanz and Roy (2015, §4.1).

4.1.1. Digraphon representation

We first introduce some notation. Let α > 0 be a concentration hyperparameter,
and β := (β(00), β(01), β(10), β(11)) be a hyperparameter vector for the weight
matrices η := (η(00),η(01),η(10),η(11)), where β(ab) ∈ [0,∞) for a, b ∈ {0, 1}.
We allow some (but not all) of the Dirichlet parameters to take the value zero,
at which the corresponding components must be degenerate. As a shorthand,

we write ηr,s := (η
(00)
r,s , η

(01)
r,s , η

(10)
r,s , η

(11)
r,s ) for the 4-tuple of weights of the classes

r and s, where r, s ∈ N. The following generative process gives a prior on
digraphons:

1. Draw a partition of [0, 1]:

Π |α ∼ DP-Stick(α).

2. Draw weights for each pair of classes (r, s) of the partition:

(a) Draw weights for the upper diagonal blocks, where r < s:

ηr,s |β ∼ Dirichlet(β).

(b) Draw weights for the diagonal blocks:

(η(00)
r,r , η

(01)
r,r + η(10)

r,r , η
(11)
r,r ) | β ∼ Dirichlet(β(00), β(01) + β(10), β(11)),

subject to the constraint

η(01)
r,r = η(10)

r,r .

(c) Set weights for the lower diagonal blocks, where r > s, such that the
symmetry requirements in Equation (3) are satisfied:

η(00)
r,s = η(00)

s,r , η(11)
r,s = η(11)

s,r ,

η(01)
r,s = η(10)

s,r , η(10)
r,s = η(01)

s,r .

In Section 4.2 we show different types of random digraphons that arise from
various settings of β. The partition is drawn from a Dirichlet stick-breaking

process: for each i ∈ N, draw Xi
iid∼ Beta(1, α), and for every k ∈ N, set

Vk = Xk

∏k−1
i=1 (1 −Xi), so that

∑∞
k=1 Vk = 1, thereby determining a random

partition of [0, 1].
The self-loops can be specified using the same partition of [0, 1], either with

a deterministic {0, 1}-valued function w or a single weight p, as described in
Section 2.3. For our purposes, we assume w = 0. This generative process fully
specifies a random digraphon W, from which random digraphs G(n,W) can
then be sampled according to the process given in Section 2.4.
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4.1.2. Clustering representation

An alternative representation of the generative process for a partition described
above can be formulated directly in terms of clustering: in this generative process,
each vertex i has a cluster assignment zi. This yields an equivalent assignment to
that given by the digraphon formulation if, after sampling the uniform random
variable Ui, we assign vertex i to the cluster corresponding to the class of the
partition of [0, 1] that Ui belongs to.

Thus, in place of the first step of the generative process given in the digraphon
representation (Section 4.1.1), we draw a partition of the vertices from a Chinese
restaurant process (CRP) (as described in, e.g., Aldous (1985)): z ∼ CRP(α),
where each zi gives the cluster assignment of vertex i, and α > 0 is a hyperpa-
rameter. The weights η are drawn in the same manner as in the second step of
the digraphon representation of the di-IRM. Finally, edges are drawn analogously

to the general digraphon sampling procedure: (Gij , Gji)
ind∼ Categorical(ηzi,zj ),

so that Equation (4) holds, where again the Categorical distribution is over the
choices (0, 0), (0, 1), (1, 0), (1, 1).

This representation is particularly convenient for performing inference, espe-
cially when using a collapsed Gibbs sampling procedure, as we show in Section 6.

4.2. Special cases obtained from the di-IRM

In Figure 8, we display examples of random di-IRM draws using several settings
of the hyperparameter vector β. The parameter settings were specifically chosen
to illustrate some of the special cases the di-IRM model can cover.

Undirected To get a prior on graphons using the di-IRM, we can set β(01) =
β(10) = 0. Figure 8a shows a parameter setting that produces undirected graphs
and is equivalent to a symmetric IRM when taking W11 to be the IRM; we can
see from the sample on the right that the graph is indeed undirected.

Tournaments We can specify a di-IRM tournament prior by setting β(00) =
β(11) = 0. Figure 8c shows the parameter setting β = (0, 2, 1, 0), which puts all
the mass on the middle two functions. The tournament structure is easy to see
in the 20-vertex sample; for distinct i and j, whenever there is an edge from i to
j, there is not an edge from j to i.

Figure 8e shows a less extreme (non-tournament) variant that still has strong
correlations between the edge directions, by virtue of retaining most of the
mass on the functions W01 and W10. Here we set β = (0.9, 2, 1, 0.5). Note
that the block structure in a sample from this digraphon is more subtle than
in the undirected sample, demonstrating the importance of counting all four
edge-direction combinations rather than just marginals for the two directions.

Directed acyclic graphs To obtain a directed acyclic graph from the di-IRM,
we set the hyperparameters so that the resulting function W11 is empty and W10
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(a) Undirected: β(01) = β(10) = 0 (b) G(20,W), G(100,W)

(c) Tournament: β = (0, 2, 1, 0) (d) G(20,W), G(100,W)

(e) Correlated directions: β = (0.9, 2, 1, 0.5) (f) G(20,W), G(100,W)

(g) Acyclic: β = (0.5, 0, 0.5, 0) (h) G(20,W), G(100,W)

(i) Near-ordering: β = (0, 0, 1, 0) (j) G(20,W), G(100,W)

Fig 8: Each row shows a random digraphon drawn from the di-IRM prior along
with a 20-vertex sample and a 100-vertex sample, arranged in order of increasing
Ui. In the smaller samples, one can see certain properties of the digraph (e.g.,
that (b) is symmetric and (d) is a tournament), while in the larger samples one
can discern block structure with approximate edge densities. For (g) and (i),
the values given for β only apply to the classes r 6= s, and instead the tuple of
hyperparmeters βr = (1, 0, 0) is used for the diagonal.
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has nonzero values only on blocks above the diagonal, as in Section 3.2.4. To
achieve this, we set the Dirichlet weight parameters β such that β(01) = β(11) = 0
for the weights ηr,s where r 6= s, and for each class r let βr refer to the 3-tuple
of hyperparameters used for the ηr,r weights on the diagonal, each set to
βr = (1, 0, 0). With these hyperparameter choices, we obtain a directed acyclic
di-IRM, as seen in Figure 8g. We can see in both samples that the directed
edges in the resorted sample lie above the diagonal. Note that we make use of
βr only in this section, to show how to get a DAG prior; in our later inference
examples, we use the di-IRM model as introduced in the previous subsection
with the single vector of hyperparameters β.

Near-ordering Consider the hyperparameter settings β = (0, 0, 1, 0) for the
weights ηr,s when r 6= s, and βr = (1, 0, 0) for every class r. The resulting
digraph is “nearly” ordered, in the sense that it is linearizable and any two

elements in different classes are comparable, as seen in Figure 8i. Here η
(10)
r,s = 1

for any blocks (r, s) above the diagonal, and the resulting partial ordering is
apparent in both of the resorted samples, with all directed edges above the
diagonal.

4.3. Other partitions for the di-IRM

Any block model digraphon can be specified in a similar manner: first define a
partition of [0, 1], which then gives a partition of [0, 1]2; next let each block on
[0, 1]2 be piecewise constant such that the symmetry requirements in Equation (3)
are satisfied.

In the case where the number of classes and the size of the classes are
fixed parameters, the directed IRM behaves similarly to some random directed
SBM. In addition to the CRP, we can also consider other partitioning schemes.
Alternatively, one can consider other random partitions of [0, 1] as well. For
instance, if one is interested in power law scaling in the number of clusters
(and the sizes of particular clusters), the Pitman–Yor process (Pitman and Yor,
1997) provides a suitable generalization of the Dirichlet process. It has both
a stick-breaking and urn representation analogous to those for the Dirichlet
process.

5. Related work

The stochastic block model (see Holland et al. (1983) and Wasserman and
Faust (1994)) has been well-studied in the case of directed graphs (Holland and
Leinhardt, 1981; Wang and Wong, 1987), including from a Bayesian perspective
(Gill and Swartz, 2004; Nowicki and Snijders, 2001; Wong, 1987). Although
working within a restricted class of models, already Holland and Leinhardt
(1981) consider the full joint distribution on edge directions, rather than making
independence assumptions.
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The directed stochastic blockmodel (di-SBM) can be represented as a di-
graphon W4 given by four step-functions that are piecewise constant on a finite
number of classes. We display an example of a directed SBM in Figure 9. The
di-IRM model presented in this paper can be seen as a nonparametric extension
of the di-SBM, just as the undirected IRM (introduced independently by Kemp
et al. (2006) and Xu et al. (2007)) is a nonparametric undirected SBM.

Any prior on exchangeable undirected graphs can be described in terms of
a corresponding prior on graphons. As alluded to in the introduction, many
Bayesian nonparametric models for graphs admit a nice representation in this
form (even if not originally described in these terms); see Orbanz and Roy (2015,
§4) for additional details and examples from the machine learning literature,
including the IRM. Likewise, priors on exchangeable digraphs (which have been
less thoroughly explored) can be described in terms of the corresponding priors
of digraphons, as we have begun to do here.

As noted in Lloyd et al. (2012), when existing models are expressed in
these terms, various restrictions (and in particular, unnecessary independence
assumptions) become more apparent. As we have seen, the use of the IRM on
directed graphs models the edge directions as independent (see Kemp et al.
(2004) for examples), a condition that can be straightforwardly relaxed when
the model is expressed in the general setting provided by digraphons.

Exchangeable directed graphs have also been considered by Austin (2008),
via an application of the Aldous–Hoover theorem, although this work does not
describe digraphons explicitly. We conclude this section by describing several
extensions of the graphon formalism, some of which can be combined with
the directed case. In particular, edges may be more general than {0, 1}-valued.
Variants of graphons for weighted and edge-colored graphs have been considered
by Lovász (2012, Chapter 17) and Austin (2008). Graphs with edge multiplicity,
or multigraphs, can be viewed as integer-valued arrays, a case also covered by
the Aldous–Hoover theorem, although the corresponding extension of graphons
is more complicated when the edge multiplicities are unbounded; see Kolossváry
and Ráth (2011), Lovász (2012, Chapter 17), and Kunszenti-Kovács et al. (2014).
Graphs (that are not necessarily symmetric) with real-valued edges are also
covered by the Aldous–Hoover theorem through real-valued exchangeable arrays,
and have many applications in statistics and machine learning; see Lloyd et al.
(2012) and Orbanz and Roy (2015). The Aldous–Hoover theorem also covers
real-valued d-dimensional arrays for d > 2, although the corresponding extension
of graphons to the case of hypergraphs is considerably more involved; for details,
see Lovász (2012, Chapter 23.3), Austin (2008), and Lloyd et al. (2013).

6. Posterior inference

In this section, we perform collapsed Gibbs sampling for the di-IRM. We use the
notation for the clustering representation of the di-IRM, so we can use Gibbs
sampling to repeatedly sample the cluster assignment of each vertex.

Let G be a digraph on [n]; for simplicity we assume that G has no self-edges,
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(a) W00 (b) W01 (c) W10 (d) W11 (e) w

Fig 9: Example of a directed stochastic block model digraphon with 2 classes
and a 0.7 division. This example is assortative, i.e., there are more edges within
the same group than between different groups.

and that, as in Section 4.1.1, the di-IRM parameters are chosen so that no self-
edges are produced. Consider a partition of [n] into a countably infinite number
of clusters, and for i ∈ [n], let zi ∈ N denote the cluster assignment of i. Write z
for the vector of all cluster assignments, and η for the 4-tuple of weight matrices.
Because of the symmetry requirement of the diagonal, we are able to simplify

notation as follows: let m∗r := m
(01)
r,r + m

(10)
r,r , let η∗r := η

(01)
r,r + η

(10)
r,r , and let

β∗ := β(01) +β(10). Let β∗ := (β(00), β∗, β(11)) be the 3-tuple of hyperparameters
for the diagonal blocks.

The likelihood of G being drawn from the di-IRM, given cluster assignments
z and weights η, is given by

p(G | z,η) =
∏

r≤s

∏

a,b

(η(ab)
r,s )m

(ab)
r,s

=
[∏

r<s

∏

a,b

(η(ab)
r,s )m

(ab)
r,s

] [∏

r

(η(00)
r,r )m

(00)
r,r ( 1

2η
∗
r )m

∗
r (η

(11)
r,r )m

(11)
r,r

]
,

where m
(ab)
r,s denotes the number of directed edges of type (ab) between class r

and class s, for a, b ∈ {0, 1} and r, s ∈ N.
Since the weights η have a factorized Dirichlet distribution prior, we have

p(η |β) =
[
B(β)−1

∏

r<s

∏

a,b

(η(ab)
r,s )β

(ab)−1
]

×
[
B(β∗)−1

∏

r

(η(00)
r,r )β

(00)−1(η∗r )β
∗−1(η(11)

r,r )β
(11)−1

]
,

where B(θ) :=
∏

i Γ(θi)

Γ(
∑

i θi)
is the multivariate beta function.

We sample each cluster assignment zi conditional on all other assignment
variables:

zi | z−i ∼ p(zi | z−i, G) ∝ p(G|z) p(zi|z−i), (5)

where z−i denotes the vector of all assignments zj such that j 6= i.
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To compute the first term in Equation (5), we can integrate out the parameters

η
(ab)
r,s :

p(G | z) =
[
B(β)−1

∏

r<s

∫ ∏

a,b

(η(ab)
r,s )m

(ab)
r,s +β(ab)−1 dη(ab)

r,s

]

×
[
B(β∗)−1

∏

r

2−m
∗
r

∫
(η(00)
r,r )m

(00)
r,r +β(00)−1(η∗r )m

∗
r+β∗−1(η(11)

r,r )m
(11)
r,r +β(11)−1 dηr

]

=
[
B(β)−1

∏

r<s

B(mr,s + β)
][

B(β∗)−1
∏

r

2−m
∗
r B(mr + β∗)

]
,

where we simplify calculations on the diagonal using the shorthand mr :=

(m
(00)
r,r ,m∗r ,m

(11)
r,r ), and ηr := (η

(00)
r,r , η∗r , η

(11)
r,r ).

The second term in Equation (5) comes from the CRP distribution on z:

p(zi = r | z−i) =

{
cr

i−1+α if cr > 0, and
α

i−1+α if r is a new cluster,

where cr denotes the number of elements in cluster r, and α > 0 is the concen-
tration hyperparameter.

We can reconstruct the weights η using their MAP estimate:

η(ab)
r,s = (m(ab)

r,s + β(ab))/Nr,s, (6)

where Nr,s :=
∑
a′,b′∈{0,1}

(
m

(a′ b′)
r,s + β(a′ b′)

)
.

7. Experiments

In this section, we experimentally evaluate the di-IRM model on synthetic data.
We present two examples: the first is meant to illustrate the correct behavior
of inference on di-IRM parameters, and the second is designed to show the
advantage of using a digraphon representation (given by the di-IRM) over using
an asymmetric function (given by the IRM).

Multiple digraphons may induce the same distribution on exchangeable di-
graphs, in which case they are said to be weakly isomorphic. This is not just
because a digraphon can be perturbed on a measure-zero set without changing
the induced distribution on digraphs, but also because measurable rearrange-
ments of the digraphon will also leave the distribution invariant (analogously to
how relabeling the vertices of a digraph does not change it up to isomorphism).
Hence a digraphon W is not identifiable from the random digraph G(N,W); in
general only its weak isomorphism class can be determined. For details (in the
analogous setting of graphons), see Diaconis and Janson (2008, §7) and Orbanz
and Roy (2015, §3.4).
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(a) Random digraphon W drawn from the di-IRM with β = (1, 1, 1, 1)

(b) Inferred weights η, drawn in proportion to cluster sizes

(c) Sampled order (d) True clusters (e) Inferred clusters

Fig 10: (a) A random digraphon W sampled from the di-IRM; (b) the inferred
weights η; (c) a digraph sampled from G(100,W); (d) the sample sorted by
increasing Ui, with true clusters shown via blue lines; (e) the sample sorted by
the inferred clusters.

Therefore, in the following inference problems, we can only expect to estimate
a digraphon up to its weak isomorphism class. In a block model, this results in
the nonidentifiability of the order of the blocks.

7.1. Random di-IRM from uniform weights

We first draw a random di-IRM W with the weights β = (1, 1, 1, 1), which
is displayed in Figure 10a. We then generate a 100-vertex sample from this
digraphon (Figure 10c). We ran a collapsed Gibbs sampling procedure for 200
iterations, beginning from a random initial clustering. This inference procedure
is able to recover the original weights, up to reordering; the inferred weight
matrices are displayed in Figure 10, drawn in proportion to the inferred cluster
sizes.
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(a) Half-undirected, half-tournament digraphon W00,W01,W10,W11

group 1 group 2

1
2

1
2

1
2

1
2

or

1

(b) Schematic of example

(c) left: Sample; middle: Sample reordered by di-IRM
clusters (true clusters are colored), right: Sample re-
ordered by IRM clusters

Fig 11: Half-undirected, half-tournament block model example. In the schematic,
arrows show the probability of connecting in that direction; i.e., any two distinct
vertices in the same group have probability 1/2 of an arrow in both directions
(and 1/2 of an arrow in neither direction), while for any vertex from group 1 and
vertex from group 2, either there is just an arrow from the first to the second, or
there is just an arrow from the second to the first, each occurring with probability
1/2. The bottom right shows the random sample from the digraphon and the
results of collapsed Gibbs sampling in the di-IRM and the IRM. White indicates
no edge, red indicates an edge between vertices from group 1, blue indicates
an edge between vertices from group 2, and purple indicates an edge between
vertices from different groups. Black lines indicate the inferred partition.

7.2. Half-undirected, half-tournament example

We consider the 2-class step-function digraphon with half the vertices in each
class that is given by w = 0,

W00(x, y) = W11(x, y) =





1/2 if x < 1/2 and y < 1/2,
1/2 if x ≥ 1/2 and y ≥ 1/2,

0 otherwise,

and

W01(x, y) = W10(x, y) =





1/2 if x ≥ 1/2 and y < 1/2,
1/2 if x < 1/2 and y ≥ 1/2,

0 otherwise.

This digraphon is displayed in Figure 11a, and a schematic illustrating the model
is in Figure 11b. This example demonstrates the importance of being able to
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distinguish regions having different correlations between edge directions (but the
same marginal left-to-right and right-to-left edge probabilities).

We generated a synthetic digraph sampled from G(100,W) and then ran
a collapsed Gibbs sampling procedure for the di-IRM. We also ran a similar
collapsed Gibbs sampler for the IRM. Both samplers began with a random
clustering and ran until the cluster assignments approximately converged. The
results are shown in Figure 11c; here the random sample is displayed alongside
the sample resorted according the clusters inferred using the di-IRM model, as
well as the clusters inferred by the IRM model. In both resorted images, the
true clusters are colored, white indicates no edge, red indicates an edge between
vertices from group 1, blue indicates an edge between vertices from group 2, and
purple indicates an edge between vertices from different groups. Note that the
true clusters are correctly inferred using the di-IRM model, as reordering the
vertices according to the inferred clusters identifies the true groups, while the
IRM model fails to discern the correct structure. The IRM only considers the
marginal left-to-right and right-to-left edge probabilities, which do not distinguish
the two clusters; in this particular inference run, almost all vertices were put into
the first of the two clusters, which is consistent with not being able to distinguish
between vertices with similar marginal edge probabilities. This result is what
one would expect from an algorithm that has inferred uniform independent edge
probabilities, i.e., the edge probabilities of an Erdős–Rényi graph.

8. Discussion

We have described how priors on digraphons can be used in the statistical
modeling of exchangeable dense digraphs, and have exhibited several key classes
of structures that one can model with particular subclasses of these priors.
We have also illustrated why merely using asymmetric measurable functions is
insufficient, as this produces a misspecified model for any exchangeable digraphs
having correlations between the edge directions.

While models based on digraphons (and graphons) are almost surely dense
(or empty) and not directly suitable for real-world network applications that are
sparse, it is still useful to study models using digraphons (see, e.g., the discussion
in Orbanz and Roy (2015, §7.1)). Some recent work, e.g., Borgs et al. (2015,
2016); Cai et al. (2016); Caron and Fox (2014); Crane and Dempsey (2016);
Herlau and Schmidt (2016); Veitch and Roy (2015), has pointed to methods for
extending exchangeable graphs to the case of sparse graphs, but many interesting
problems remain.
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