
ON THE COMPUTABILITY OF GRAPHONS

NATHANAEL L. ACKERMAN, JEREMY AVIGAD, CAMERON E. FREER,
DANIEL M. ROY, AND JASON M. RUTE

Abstract. We investigate the relative computability of exchangeable bi-
nary relational data when presented in terms of the distribution of an
invariant measure on graphs, or as a graphon in either L1 or the cut dis-
tance. We establish basic computable equivalences, and show that L1

representations contain fundamentally more computable information than
the other representations, but that 0′ suffices to move between computable
such representations. We show that 0′ is necessary in general, but that in
the case of random-free graphons, no oracle is necessary. We also provide
an example of an L1-computable random-free graphon that is not weakly
isomorphic to any graphon with an a.e. continuous version.

1. Introduction 2
1.1. Summary of main results 3
1.2. Notation 4
2. Graphons and invariant measures on graphs 4
2.1. Graphons 4
2.2. Invariant measures on graphs 7
3. Notions of computability for graphons and invariant measures on graphs 9
3.1. Computable pseudometric spaces 9
3.2. Computable relationships between representations 10
4. d�-names vs. d1-names: Upper bound 14
5. d�-names vs. d1-names: Lower bound 17
6. Almost-everywhere continuity 18
Acknowledgments 23
References 23

Keywords: graphons, cut distance, invariant measures, random-freeness, computable proba-
bility distributions. January 31, 2018

ON THE COMPUTABILITY OF GRAPHONS 2

1. Introduction

A sequence of random variables is exchangeable when its distribution does
not depend on the ordering of its elements. A well-known theorem of de
Finetti shows that infinite exchangeable sequences of random variables are
conditionally independent and identically distributed (i.i.d.), meaning that, by
introducing a new random variable and conditioning on its value, any apparent
dependence between the random variables in the exchangeable sequence is
removed and all the variables have the same distribution.

Exchangeable sequences are models for homogeneous data sets and serve
as building blocks for statistical models with more interesting dependency
structures. Conditional independence and exchangeability are also central to
the probabilistic programming. Infinite exchangeable sequences arise naturally
in functional probabilistic programming languages. Indeed, any sequence of
evaluations of a closure is a finite prefix of an infinite exchangeable sequence.
The sequence is even manifestly conditionally i.i.d.: conditioning on the closure
itself, every evaluation is independent and identically distributed.

The more interesting phenomenon is the existence of (potentially stateful)
probabilistic code with the property that repeated evaluations produce an
exchangeable sequence yet no existing variable renders the sequence condition-
ally i.i.d. Exchangeability, nevertheless, licenses a programmer or compiler to
commute and even prune these repeated evaluations. These types of transfor-
mations are central to several probabilistic programming systems, including
Church [GMRBT08] and Venture [MSP14].

As described in [AAFRR17], a fundamental question for probabilistic pro-
gramming is whether or not support for exchangeability is in some sense
necessary on the grounds of efficiency or even computability. By de Finetti’s
theorem, an infinite exchangeable sequence of random variables X1, X2, . . . ad-
mits a representation Xj = f(θ, ξj) a.s., for all i ∈ N, where f : Ω×[0, 1]→ [0, 1]
is a measurable function and θ, ξ1, ξ2, . . . are random variables, with ξ1, ξ2, . . .
i.i.d. and independent also from θ. Clearly, there are many such f . On the
other hand, any such f could be taken to be a concrete “representation” of
the conditional independence underlying the sequence X1, X2, . . . , and so it
is natural to ask when some such f is computable. (Indeed, it suffices to
establish the computability of the distribution of random probability measure
ν = P[f(θ, ξ1) ∈ ·|θ].) This question was studied in the setting of exchangeable
sequences of real random variables in [FR12], which established the computabil-
ity of the distribution of ν, and showed that it was even uniformly computable
from the distribution of the exchangeable sequence, yielding an effectivization
of de Finetti’s theorem that acts like a program transformation.

ON THE COMPUTABILITY OF GRAPHONS 3

Here we study a generalization of de Finetti’s theorem to two dimensions, and
in particular, the binary symmetric case of the Aldous–Hoover theorem for two-
dimensional jointly exchangeable arrays. Our focus will be on the computability
of various representations of the distribution of these two-dimensional arrays,
with a special emphasis on the representation of graphons. (The function f(θ, ·)
is a one-dimensional analogue of a graphon. For more details on graphons
and exchangeable arrays, see [Lov12] and [Kal05], respectively.) The situation
here is more complicated, and depends on the choice of metric. Several of the
standard metrics are computably equivalent to each other, but we find that
one natural way of expressing the relevant measurable object — corresponding
to the so-called edit distance — is not computable from the distribution of the
exchangeable data itself, unlike in the one-dimensional case. This mapping is
possible using the halting problem 0′ as an oracle, and we provide an example
showing that this dependence is necessary. On the other hand, for a natural
subclass, the so-called random-free case, one can recover the graphon in the
edit distance metric from the distribution of the array.

In the case of computable distributions on binary symmetric exchangeable
arrays, all these results fall short of establishing that some graphon is com-
putable on a measure one set of points. In fact, one cannot hope for such
representations. We show that, in the case of computable distributions on
arrays, there need not be any graphon generating the array that is almost-
everywhere continuous, providing a fundamental topological impediment to
computable representations that would render it continuous on a measure-one
set.

It follows that the two-dimensional setting is fundamentally different from
the one-dimensional one. There need not be a representation of an exchangeable
array that exposes the conditional independence inherent in the exchangeable
array, even if the exchangeable array itself has some computable representation.
In some special cases, we can compute an L1 representation, which exposes
the conditional independence, but only allows us to represent the distribution
of the exchangeable array up to an arbitrarily small, but nonzero, error term.
Our results suggest that probabilistic programming languages may need to
have special support for probabilistic symmetries, such as exchangeability in
the case of arrays.

1.1. Summary of main results. In this paper, we examine four main repre-
sentations of invariant measures on graphs, as elements of complete pseudo-
metric spaces, as we describe in Section 2. We consider the space of invariant
measures with a metric equivalent to weak convergence, and the space of
graphons under the metrics d1, d�, and δ�. The distance d1 is the L1 pseu-
dometric on graphons, and is closely related to edit distance on graphs. The
δ� distance between two graphons can be seen as measuring the difference

ON THE COMPUTABILITY OF GRAPHONS 4

in distribution between graphs sampled from them, and is obtained from the
simpler d� upon taking the infimum under measure-preserving transformations
of the graphon.

We establish the key computable relationships between these representations
in Section 3, using the framework of computable analysis. In particular, we
show that there is a computable equivalence between names for invariant
measures and δ�-names for the corresponding graphons, and show that the
identity map from d�-names to δ�-names has a computable section.

While every d1-name is also a d�-name, in Section 4 we show how to transform
a computable d�-name into a d1-name using the halting problem 0′. In Section 5
we show that 0′ is necessary, by constructing a graphon with a computable
d�-name such that 0′ can be computed from any d1-name — although d1 names
are computable from d� names in the random-free case. Finally, we establish in
Section 6 that there is a d1-computable graphon that is not even a.e. continuous
in any topology consisting of Borel sets.

1.2. Notation. Let λ denote Lebesgue measure on R (though for notational
convenience, we will often use λ to also refer to Lebesgue measure on R2, etc.).
For n ∈ N, write [n] := {0, . . . , n− 1}. All logarithms, written log, will be in
base 2.

For e ∈ N, let {e} denote the partial computable function N→ N given by
computer program e. For n ∈ N write {e}(n)↓ to denote that this program
halts on input n, and {e}(n)↑ to denote that it does not halt. For s ∈ N write
{e}s(n)↓ to denote that this program has halted after at most s steps, and
{e}(n)s↑ to denote that it has not yet halted after s steps.

Write 0′ := {e ∈ N : {e}(0)↓} to denote the halting set. Recall that a set
X ⊆ N is (co-)c.e. complete when it (its complement) is computably enumerable
and any computably enumerable set admits a computable many-one reduction,
called an m-reduction, to it (its complement, respectively). For example, 0′ is
c.e. complete.

2. Graphons and invariant measures on graphs

In this section we provide the basic definitions and results about the two
main objects of interest in this paper, graphons and invariant measures on
graphs.

2.1. Graphons. We will formulate most of our results in terms of graphons,
both for concreteness and simplicity of notation. In this subsection we summa-
rize the standard notions that we will need. For more details on graphons, their
basic properties, and notation, we refer the reader to [Lov12, Chapter 7], from
which most of the definitions in this subsection are borrowed. In many cases,

ON THE COMPUTABILITY OF GRAPHONS 5

analogous notions and results were developed earlier in terms of exchangeable
arrays; for details on this connection and the history, see [Aus08] and [DJ08].

Definition 2.1. A graphon is a symmetric measurable function W : [0, 1]2 →
[0, 1]. Let W0 denote the set of all graphons.

Three classes of graphons play a special role in this paper.

Definition 2.2. A graphon G is random-free if it is {0, 1}-valued a.e., in
other words, when λ

(
G−1({0, 1})

)
= 1.

Definition 2.3. Let T be a topology on [0, 1]. A graphon G is almost
everywhere (a.e.) continuous with respect to T if there is a set X ⊆ [0, 1]2

such that λ(X) = 1 and G|X is continuous with respect to T |X .

Definition 2.4. A graphon G is a step function if there is a (finite) measur-
able partition P of [0, 1] such that for every pair of parts p, q ∈ P , the graphon
G is constant on p × q. Write S to denote the class of step functions whose
underlying partition divides [0, 1] into some finite number of equally-sized
intervals, and whose range is contained in the rationals. Write S0 to denote the
subset of its random-free graphons. Each of S and S0 admits a straightforward
computable enumeration.

One can associate to each finite graph (on [n] for some n ∈ N) a random-free
step function graphon, as we now describe, such that the space of graphons is
the completion of the finite graphs (embedded this way) under an appropriate
pseudometric on finite graphs.

Definition 2.5. Let G be a graph with vertex set [n], for some n ∈ N. Define
the step function graphon WG : [0, 1]2 → {0, 1} to be such that WG(x, y) = 1 if
and only if there is an edge between bnxc and bnyc in G. In other words, WG

is equal to 1 on [i/n, (i+ 1)/n)× [j/n, (j + 1)/n) if there is an edge from i to
j, and 0 otherwise. Observe that WG ∈ S0.

We will use three key pseudometrics on the space of graphons. We begin
by describing the cut norm ‖·‖�, which will allow us to define d� and then δ�,
the latter of which is closely related to subsampling. The third pseudometric
is d1, more closely related to edit distance and the L1 norm.

Definition 2.6. The cut norm of a symmetric measurable function F : [0, 1]2 →
[−1, 1] is defined by ∥∥F∥∥

�
:= sup

S,T⊆[0,1]

∣∣∣∣∫
S×T

F (x, y) dx dy

∣∣∣∣ (1)

where S and T range over measurable sets. For graphons U and W , define
d�(U,W) := ‖U −W‖�.

ON THE COMPUTABILITY OF GRAPHONS 6

It is straightforward to verify that ‖·‖� is a norm on W0, and that d� is a
pseudometric on W0.

As we will see, this cut norm is too coarse for many of our purposes.

Definition 2.7. The L1 norm of a symmetric measurable function F : [0, 1]2 →
[−1, 1] is defined by

‖G‖1 :=
∫
|F (x, y)| dx dy. (2)

For graphons U and W , define d1(U,W) := ‖U −W‖1.

It is a standard fact that the L1 norm is a norm on W0, and that d1 is a
pseudometric on W0.

While the cut norm is much coarser than the L1 norm, they do agree on the
notion of norm zero. The following easy lemma follows from the fact that if
‖W‖� = 0 then W = 0 a.e.

Lemma 2.8. If W is a graphon, then ‖W‖1 = 0 if and only if ‖W‖� = 0.

This lemma implies that the pseudometrics d1 and d� can be thought of
as metrics on the same quotient space, namely W0/{(G,H) : d1(G,H) = 0},
even though the metrics they induce on this space are very different.

As we will see in §2.2, there is a standard way to associate to each graphon
an invariant measure on countable graphs and given two graphons we would
like to have a condition equivalent to the corresponding invariant measures
being the same. However, it is easy to see, by applying a non-trivial measure-
preserving transformation to any non-constant random-free graphon, that there
are graphons which give rise to the same distribution but which are very far in
either d1 or d�. Hence we will need an even coarser notion of distance, which
we now define.

Definition 2.9. Let W be a graphon and let ϕ : ([0, 1], λ) → ([0, 1], λ) be a
measure-preserving map. Define Wϕ to be the graphon satisfying

Wϕ(x, y) = W
(
ϕ(x), ϕ(y)

)
(3)

for all x, y ∈ [0, 1].

Definition 2.10. For graphons U and W , define

δ�(U,W) := inf
ϕ
d�(U,Wϕ), (4)

where the infimum is taken over all measure-preserving maps of ([0, 1], λ) to
itself.

The following standard result will be important when we consider the com-
putability of the representations of graphons in these various metric spaces.

ON THE COMPUTABILITY OF GRAPHONS 7

Lemma 2.11. The set S is dense in (W0, d1), and its subset S0 is dense in
(W0, d�) and (W0, δ�).

Proof. The density of step functions in d1 is a standard measure-theoretic fact.
The density of S0 in δ� follows from [Lov12, Theorem 11.52]. This implies that{

Wϕ : W ∈ S0 and ϕ is a measure-preserving map
}

(5)

is dense in d�. But for every W ∈ S0, measure-preserving map ϕ, and ε > 0,
there is an element V ∈ S0 such that

d�(Wϕ, V) < ε. (6)

Hence S0 is also dense in d�. �

We will later need the following definition.

Definition 2.12. A graphon W is twin-free if for each pair of distinct points
x, y ∈ [0, 1], the functions z 7→ W (x, z) and z 7→ W (y, z) disagree on a set of
positive Lebesgue measure.

2.2. Invariant measures on graphs. Invariant measures on graphs with
underlying set N are the main object of study in this paper. In the probability
theory literature, one often studies exchangeable arrays rather than their
distributions, but here we focus on their distribution as we will be interested
in the measures rather than the random variables, and so that we can avoid
certain technicalities and notational difficulties.

Definition 2.13. Let G ⊆ {0, 1}N2
denote the space of adjacency matrices of

symmetric irreflexive graphs with underlying set N. A probability measure µ on
the space G is called an invariant measure on graphs if µ(A) = µ(σ−1(A))
for all Borel A ⊆ G and all permutations σ : N→ N.

We will use the term invariant measure to refer to invariant measures on
graphs.

An important subclass of the invariant measures are those that are extreme.

Definition 2.14. An invariant measure µ is extreme if there do not exist
invariant measures ν and π such that µ = αν + (1− α)π for some α ∈ (0, 1).

In our setting, the extreme measures coincide with the ergodic ones (with
respect to permutations of N).

Graphons naturally give rise to extreme invariant measures on graphs, via
the distribution of the countably infinite random graph obtained by sampling
from the graphon, as we now describe.

Definition 2.15. Let W be a graphon and let S be a countable set. Let 〈ζi〉i∈S
be an i.i.d. collection of uniform [0, 1]-valued random variables. Consider the

random graph Ĝ(S,W) with vertex set S where for all distinct i, j ∈ S, there is

ON THE COMPUTABILITY OF GRAPHONS 8

an edge between i and j independently, with probability W (ζi, ζj). For n ∈ N,

we write Ĝ(n,W) to refer to Ĝ([n],W). When H is a finite graph, we write

Ĝ(S,H) to refer to Ĝ(S,WH). Finally, let G(S,W) denote the distribution of

Ĝ(S,W).

For 0 < p < 1, if W is the constant graphon W ≡ p, then G(N,W) is the
distribution of an Erdős–Rényi random graph.

The following lemma is standard.

Proposition 2.16 ([Lov12, Theorem 11.52]). If W is a graphon, then G(N,W)
is an extreme invariant measure on graphs.

Conversely, every extreme invariant measure arises from a graphon.

Proposition 2.17 ([Lov12, Theorem 11.52]). If µ is an extreme invariant
measure on graphs then there is some graphon W such that G(N,W) and µ are
the same distribution.

It is then natural to ask when two graphons give rise to the same invariant
measure.

Theorem 2.18 ([Lov12, Theorem 13.10]). For graphons U and W , the follow-
ing are equivalent.

(1) G(N, U) and G(N,W) are the same distribution.
(2) δ�(U,W) = 0.
(3) There are measure-preserving maps ϕ, ψ : [0, 1]→ [0, 1] such that Uϕ =

Wψ a.e.

When any of these equivalent conditions holds, we say that U and W are
weakly isomorphic.

We now describe a natural metric on the space of invariant measures.

Definition 2.19. Let E be the collection of extreme invariant measures, let
µ ∈ E , and let F be a finite graph on [n]. Define tind(F, µ) := µ({G ∈ G :
G|[n] = F}). Fix an enumeration 〈Fi〉i∈N of finite graphs with underlying set
[n] for some n ∈ N. For µ, ν ∈ E , define

dw(µ, ν) :=
∑
i∈N

2−i
∣∣tind(Fi, µ)− tind(Fi, ν)

∣∣. (7)

The following is standard.

Lemma 2.20. The space (E , dw) of extreme invariant measures is a compact
Polish space with the topology of weak convergence. Further,

S∗0 :=
{
G(N, G) : G is a finite graph

}
(8)

is a dense subset.

ON THE COMPUTABILITY OF GRAPHONS 9

Note that S∗0 also admits a straightforward computable enumeration.
The previous lemma tells us that we can approximate an extreme invariant

measure arbitrarily well by measures which come from sampling graphons
induced by finite graphs. A natural question is whether it is possible to take
an invariant measure and find a (possibly random) sequence of finite graphs
whose corresponding graphons almost surely converge to the invariant measure
we started with. This is possible, as the following result states.

Lemma 2.21 ([Lov12, Corollary 11.15]). Suppose U is a graphon. Then〈
G
(
N, Ĝ(n, U)

)〉
n∈N (9)

is a random sequence of extreme invariant measures that almost surely converges
in (E , dw) to G(N, U).

3. Notions of computability for graphons and invariant
measures on graphs

We begin by describing the notions of computability for graphons and
invariant measures on graphs, and then present some of the basic relationships
between them.

3.1. Computable pseudometric spaces. In order to describe computable
elements of the spaces of graphons and invariant measures with respect to
various pseudometrics, we will use the notion of a computable pseudometric
space, a straightforward generalization of the notion of a computable metric
space in computable analysis (see, e.g., [HR09]).

Definition 3.1. A computable (complete) pseudometric space consists of a
triple (M,d, 〈si〉i∈N) such that

• (M,d) is a complete pseudometric space,
• 〈si〉i∈N is dense in (M,d), and
• the sequence 〈d(si, sj)〉i<j∈N is a computable sequence of real numbers.

Definition 3.2. Suppose (M,d, 〈si〉i∈N) is a computable pseudometric space.
A rapidly converging Cauchy sequence is a sequence 〈skj〉j∈N for which

d(skj , sk`) ≤ 2−j (10)

for j < ` ∈ N.
A rapidly converging Cauchy sequence is called a d-name for the limiting

value limn→∞ skn . We say that 〈skj〉j∈N is computable in d if the sequence of
natural numbers 〈kj〉j∈N is computable, and that an element s ∈ M is com-
putable if it has some d-name that is computable. (These notions relativized
to an oracle are defined in the obvious way.)

ON THE COMPUTABILITY OF GRAPHONS 10

Roughly, a name for an element of the pseudometric space is a sequence of
approximations that converges with rate n 7→ 2−n. Note that the choice of this
rate is somewhat arbitrary, since given a sequence that converges with some
other computable rate, one can computably “thin out” the sequence so that it
converges at the rate we have chosen.

The computational strength needed to produce a d-name provides a measure
of the complexity of the corresponding element of the represented space.

The pseudometric spaces we have considered so far can be straightforwardly
made into computable pseudometric spaces using the computable enumerations
of dense subsets we have identified.

Lemma 3.3. The following are computable pseudometric spaces:

• (W0, d1,S),
• (W0, d�,S),
• (W0, δ�,S), and
• (E , dw,S∗0).

In this paper we are interested in the relative computability of names
for graphons and invariant measures considered as elements in these various
computable pseudometric spaces.

3.2. Computable relationships between representations. In this section
we want to consider the computable relationship between various representations
of graphons and exchangeable arrays. In order to do this we need a notion of a
computable function two pseudometric spaces.

Definition 3.4. Suppose (M,d, S) and (N, f, T) are computable pseudometric
spaces. We say a map g : M → N is a computable function, or is simply
computable, if there is a computer program e such that wheneverK := 〈kj〉j∈N
is an index sequence for a d-name of an element a then {e}K,` outputs an index
set for an f -name of g(a).

Suppose h : N →M is a computable map. We say that a computable map
g : M → N is a computable equivalence witnessed by h if d

(
x, h(g(x))

)
=

0 for all x ∈M and f
(
y, g(h(y))

)
= 0 for all y ∈ N . In this case we say that

the spaces are computably equivalent.
Let k : M → N be a surjective function. A computable map h : N →M is a

computable section for k if f
(
y, k(h(y))

)
= 0 for all y ∈ N .

In other words, a function is computable if there is an algorithm that
takes a name in one space and computably transforms it into a name in the
other. A computable equivalence provides a uniform method for transforming
a name in one space to a name in the other and vice-versa. Note that a
computable equivalence induces a bijection between the corresponding metric
spaces obtained by taking the quotient by distance 0 on each side.

ON THE COMPUTABILITY OF GRAPHONS 11

We will consider computable sections in the case where the underlying sets M
and N are the same and k is the identity function. In this case, a computable
section takes an f -name for a computable element of N and returns a d-name
for a (possibly different) computable element of M such that (N, f, T) cannot
“distinguish” the points, in the sense that they have f -distance 0.

Consider the following notions for an invariant measure µ.

(1) There is a computable dw-name for µ.
(2) There is a graphon W with a computable δ�-name such that G(N,W) =

µ.
(3) There is a graphon W with a computable d�-name such that G(N,W) =

µ.
(4) There is a graphon W with a computable d1-name such that G(N,W) =

µ.

The next theorem establishes relationships between these four notions which
yield the implications in Corollary 3.6. In fact, as we will later see, these
implications are all that are possible.

Theorem 3.5. The following functions between pseudometric spaces are com-
putable.

(a) A map α : (E , dw)→ (W0, δ�) which takes G(N,W) to some graphon U
weakly isomorphic to W .

(b) The map β : (W0, δ�)→ (E , dw) which takes W to G(N,W).
(c) The identity map id : (W0, d�)→ (W0, δ�).
(d) The identity map id : (W0, d1)→ (W0, d�).

Furthermore, α is a computable equivalence witnessed by β, and vice-versa, and
there is a computable section of the identity map (c). Finally, (a), (b), and (d)
induce bijections on the corresponding metric spaces.

Proof. The d1-distance between two graphons is at least their d�-distance, and
so any d1-name is a d�-name. Similarly, any d�-name is a δ�-name. Hence (c)
and (d) are computable.

Now to show (b) we want to show that if 〈WGn〉n∈N ⊆ S is a rapidly
convergent Cauchy sequence in S then 〈G(N,WGn)〉n∈N is a rapidly convergent
sequence in E . By the Counting Lemma ([Lov12, Exerise 10.30]), for any
graphons U and V and finite graph F with k vertices, we have∣∣tind(F,U)− tind(F, V)

∣∣ ≤ 4
(
k
2

)
d�(U, V). (11)

For any measure-preserving map ϕ : [0, 1] → [0, 1], we have tind(F, V) =
tind(F, V ϕ). Therefore∣∣tind(F,U)− tind(F, V)

∣∣ ≤ 4
(
k
2

)
δ�(U, V) (12)

ON THE COMPUTABILITY OF GRAPHONS 12

holds by Definition 2.10. Hence given a δ�-name for U we can computably thin
out its entries to form a dw-name.

To show (a) we need the following Chernoff bound to obtain a representation
in terms of δ� given the distribution of an exchangeable array. As shown in
[Lov12, Lemma 10.16], for each k ∈ N, with probability at least 1− e−k/(2 log k),
we have

δ�
(
U,WĜ(k,U)

)
≤ 22√

log k
. (13)

As G(k, U) depends only on the distribution of the induced exchangeable
array we can find an element Gk which is within 44√

log k
in δ� of WĜ(k,U) with

probability at least 1− e−k/(2 log k), and so in particular

δ�(Gk, U) ≤ 44√
log k

. (14)

This therefore lets us create a sequence 〈Gn〉k∈N such that 〈WGk〉k∈N is a
δ�-name for any graphon with the same distribution as U .

To establish the computable equivalences in (a) and (b), we use the fact that
convergence in δ� is equivalent to convergence of the corresponding random
graphs (Theorem 2.18). This also shows that (a) and (b) induce bijections on
the corresponding metric spaces.

We now show that (c) has a computable section. Assume we have a δ�-name
of U , and know a graph Gn such that

δ�(WGn , U) < 2−(2
2n+1). (15)

We will find a graph Gn+1 such that

d�(WGn+1 ,WGn) ≤ 45 · 2−n (16)

and

δ�(WGn+1 , U) ≤ 2−(2
2(n+1)+1). (17)

This is enough to get a fast Cauchy sequence in d�. Find H such that

δ�(WH , U) < 2−(2
2(n+1)+1). (18)

Then

δ�(WH ,WGn) < 2−(2
2n+1) + 2−(2

2(n+1)+1) < 2−2
2n

. (19)

There are graphs G′n and H ′ both on the set [|Gn| · |H|] (where |Gn| denotes
the number of vertices of Gn, and similarly with H) such that

d�(WG′
n
,WGn) = d�(WH′ ,WH) = 0, (20)

ON THE COMPUTABILITY OF GRAPHONS 13

by taking blow-ups to a common refinement. Following the notation in [Lov12,
§8.1.3], define the quantity

δ̂�(G′n, H
′) := min

Ĝ′
n,Ĥ′

d�(W
Ĝ′
n
,W

Ĥ′), (21)

where Ĝ′n ranges over the images of G′n under permutations of [|Gn| · |H|], and

similarly with Ĥ ′. By [Lov12, Theorem 9.29], we have

δ̂�(G′n, H
′) ≤ 45√

− log δ�(WG′
n
,WH′)

<
45√
22n

= 45 · 2−n. (22)

Hence there is some reordering Gn+1 of H ′ such that

d�(WGn+1 ,WG′
n
) ≤ 45 · 2−n. (23)

Because d�(WG′
n
,WGn) = 0, we have

d�(WGn+1 ,WGn) ≤ 45 · 2−n. (24)

By definition, δ�(WGn+1 ,WH′) = 0. Because d�(WH′ ,WH) = 0, we therefore
have

δ�(WGn+1 , U) = δ�(WGn+1 , H) < 2−(2
2(n+1)+1), (25)

as desired.
Finally, (d) induces a bijection on the corresponding metric spaces, as noted

in Lemma 2.8. �

We have seen there there is a computable equivalence between δ�-names for
a graphon and names for the corresponding invariant measure. Further, given
a δ�-name, we can computably find a d�-name for a graphon yielding the same
invariant measure. We have also seen that it is possible to transform a d1-name
to a d�-name in a computable way. It is therefore natural to ask whether there
is a computable equivalence from a d�-name to a d1-name. As we will see, in
general there is not. This tells us that the d1-name for a graphon contains
fundamentally more computable information than an d�-name for a graphon.

As a consequence of Theorem 3.5, we obtain the following relationships
among the numbered notions appearing after Definition 3.4.

Corollary 3.6. For an invariant measure µ, notions (1), (2) and (3) are
equivalent, and are all implied by notion (4).

Our later results show that (4) is not implied by (1), (2), or (3).

ON THE COMPUTABILITY OF GRAPHONS 14

4. d�-names vs. d1-names: Upper bound

Recall that a d1-name is already a d�-name. In this section we establish
that the halting problem 0′ suffices as an oracle to computably transform a
computable d�-name to a d1-name. Further, in the random-free case, this
oracle is not needed. In the next section we show that this is tight, in the sense
that the use of 0′ is necessary in general.

For k ∈ N, let Pk denote the equipartition of [0, 1] into 2k-many intervals of
width 2−k. For a graphon U we write UPn (as in [Lov12, §7.1]) to denote the
step function graphon E[U | Pn × Pn], i.e., the conditional expectation of the
function U averaged on this 2n × 2n square grid.

The following version of the weak regularity lemma for graphons follows
immediately from [Lov12, Lemma 9.15 (a) and (b)] (taking m = 1 and k =
dn/4e in (a) and then m = 2dn/4e and k = 2n in (b), analogously to the proof
of [Lov12, Lemma 10.16]).

Lemma 4.1 ([Lov12, Lemma 9.15]). Let U be a graphon. Then for all n,
d�(UPn , U) ≤ 8/

√
n.

Consider the space M of all martingales 〈fn〉n∈N where fn is a [0, 1]-valued
step function graphon that is Pn ×Pn-measurable. Recall that being a martin-
gale means that for every n, we have E[fn+1 | Pn × Pn] = fn.

We endow this space with a natural topology which makes it effectively com-
pact. In particular, we can view M as a closed subspace of the compact space
[0, 1]N as follows. For each martingale f = 〈fn〉n∈N we define a corresponding

element xf = 〈xfn〉n∈N ∈ [0, 1]N. Define the first coordinate xf0 to be the value of

the constant function f0. Then define the next 4 coordinates xf1 , . . . , x
f
4 to be

the values of the 2× 2 step function f1. Continue this way for each n, reading
off 2n+1-many coordinates from the 2n × 2n step function fn. Clearly this is an
injection from M into [0, 1]N. A martingale f ∈M is said to be computable
if the corresponding sequence xf ∈ [0, 1]N is computable.

We say that an element of [0, 1]N encodes a martingale when it equals xf for
some martingale f . The subspace of [0, 1]N encoding a martingale is a Π0

1 class,
since if y does not code a martingale, then there is a computer program that,
given y as an oracle, outputs this fact (by noticing that averaging fails at some
level).

Given a graphon U that is computable in d�, we will find a Π0
1 subclass of

M that has a single element, which converges in d1 to U . To establish the
computability of this point, we will use the following lemma.

Lemma 4.2. Suppose a Π0
1 subset of [0, 1]N is a singleton. Then its unique

member is computable.

ON THE COMPUTABILITY OF GRAPHONS 15

Proof. Let T = {〈xn〉n∈N} be the singleton set. We can enumerate all the
rational cylinder sets [a0, b0]×· · ·× [an−1, bn−1]× [0, 1]N which are disjoint from
the set T . We now describe how to compute the coordinate xn for a given
n ∈ N.

Consider any rational numbers a and b such that a < xn < b. By the
compactness of [0, 1]N, we will eventually enumerate a finite rational cover of
[0, 1]n × [0, a]× [0, 1]N and a finite rational cover of [0, 1]n × [b, 1]× [0, 1]N since
these are compact sets disjoint from T . Moreover, since these enumerated
covers are made of rational intervals, we will be able to computably determine
when enough has been enumerated to cover the desired sets. By waiting for
such covers to occur, we can computably learn that a < xn < b.

This argument holds for all rationals a and b for which a < xn < b, and so
we can approximate xn to arbitrary precision. �

We now find the Π0
1 subclass of M that has a single element.

Lemma 4.3. Let U be a graphon computable in d�. Then the martingale
〈UPn〉n∈N is computable.

Proof. Let KU ⊆ M be the collection of all martingales 〈fn〉n∈N satisfying
d�(fn, U) ≤ 8/

√
n for all n ∈ N. Because U is computable in d�, KU is a Π0

1

class. Also note that KU is nonempty since the martingale UPn is in KU by
Lemma 4.1. Further, every martingale in KU converges in d1 by the martingale
convergence theorem (see, e.g., [Kal02, Theorem 7.23]) to a graphon V .

Now pick some 〈fn〉n∈N ∈ KU . Since

d�(fn, V) < d1(fn, V)→ 0 (26)

and

d�(fn, U) ≤ 8/
√
n→ 0 (27)

we have d�(V, U) = 0 and hence U = V a.e. This shows that KU only has one
element, namely UPn , and so 〈fn〉n∈N = UPn . Since KU is a Π0

1 class and has
only one element, that element is computable by Lemma 4.2. �

Note that this tells us that UPn is a computable martingale that converges
in d1, but it need not converge quickly. As we will see, in general we cannot
computably identify a rapidly converging subsequence.

Theorem 4.4. Let U be a graphon. Then from the jump of any d�-name of
U , we can compute an d1-name for it. In particular, if U has a computable
d�-name, then it has a 0′-computable d1-name.

Proof. Let X be some d�-name for U . Then using X we can compute a name
for the martingale UPn . Since UPn converges in d1, its limit is computable in d1

ON THE COMPUTABILITY OF GRAPHONS 16

from the jump of a name for UPn , which in turn is computable from the jump
of X. �

It is natural to consider the case of random-free graphons, especially since
the ability to flip between greyscale regions and black-and-white ones will be
key to the lower-bound proof in Section 5.

In fact, in the random-free case, convergence of the martingale is tamer.

Lemma 4.5. If 〈fn〉n∈N is a computable martingale that converges to a random-
free graphon U , then U has a computable d1-name.

Proof. The key idea is that since U is 0–1-valued a.e., the value d1(fn, U) is
computable. This is because given a square in Pn ×Pn, the Lebesgue measure
of those points (x, y) in the square such that U(x, y) = 1 is equal to the value
that fn takes there, and this suffices to compute the L1 norm of the difference
on that square. For example, for the constant function f0, if f0 ≡ p, then

d1(f0, U) = λ{U = 0} · p+ λ{U = 1} · (1− p)
= (1− p)p+ p(1− p) = 2p(1− p).

Since 〈fn〉n∈N is a d1-name for U , and since we can compute each quantity
d1(fn, U), we may find a subsequence 〈fkn〉n∈N such that d1(fkn , U) < 2−n.
From this sequence 〈fkn〉n∈N we can find a computable d1-name for U . �

This implies that there is a computable procedure for translating d1-names
to d�-names in the case of a random-free graphon.

Theorem 4.6. Let U be a random-free graphon computable in d�. Then U is
computable in d1.

Proof. Since U is computable in d�, by Theorem 4.3 we can compute the
martingale 〈UPn〉n∈N, which converges to U in d1. Then, because U is random-
free, we can compute a d1-name for the limit of this martingale by Lemma 4.5.

�

We have just seen that for random-free graphons, unlike the general case,
d1 and d�-names can be computably transformed into each other. One might
therefore wonder whether one can computably determine that a graphon is
random-free. In fact, it is not possible to recognize when a graphon is random-
free, as we now demonstrate. On the other hand 0′ does allow us to recognize
this.

Proposition 4.7. The collection of d1-names for random-free graphons is
co-c.e. complete.

Proof. Recall that W (1−W) ≥ 0 a.e. for a graphon W , as it takes values in
[0, 1]. Also, W is random-free if and only if

∫
W (1 −W) dλ = 0. (See, e.g.,

ON THE COMPUTABILITY OF GRAPHONS 17

[Jan13, Lemma 10.4].) Therefore, given a d1-name for a graphon, we may
compute

∫
W (1−W) dλ, and hence by noticing when this quantity is positive,

we may enumerate the d1-names of the non-random-free graphons. Hence the
d1-names of random-free graphons are co-computably enumerable.

We now show that the collection of d1-names of random-free graphons is
complete. For s, e ∈ N, let U s

e be the constant function 2−s if {e}s(0)↑, and U s
e

be the constant function 2−k if k ≤ s and minimal with {e}k(0)↓.
Observe that for each e ∈ N, the sequence 〈U s

e 〉s∈N is a computable d1-name
for a graphon that is not random-free if and only if e ∈ 0′. �

In particular, there is no computer program that, given a d1-name of a
graphon, correctly asserts whether or not the graphon is random-free.

Having shown that every graphon with a computable d�-name has a d1-name
that is 0′-computable, one may ask if this is tight, i.e., if 0′ is necessary. We
have just seen that this is not tight in the random-free case, and so any witness
to the necessity of 0′ must not be random-free. Next, in Section 5, we provide
such an example.

5. d�-names vs. d1-names: Lower bound

We have just seen that using 0′ we can compute a d1-name of a graphon
given a computable d�-name for it. We now show that this is tight in the sense
that there is a graphon that is computable in d� such that 0′ is computable
from any d1-name for a graphon weakly isomorphic to it. Furthermore, we may
take this graphon to be a.e. continuous.

Theorem 5.1. There is an a.e. continuous graphon U that is computable in
d�, such that if V is weakly isomorphic to U then any d1-name for V computes
the halting problem 0′.

Proof. For each n ∈ N, define the open interval An := (1−2−n, 1−2−(n+1)). The
graphon U will take the value zero outside the block-diagonal

⋃
n∈N(An × An).

Also, for each n ∈ N, let `n := 1 − 2−(2n+1), let rn := 1 − 2−(2n+2), and let
mn := `n+rn

2
, so that

0 < `0 < m0 < r0 < `1 < m1 < r1 < . . . < 1. (28)

Define the constant graphon H∗ ≡ 1
2
. Because H∗ is computable in d�,

for each s ∈ N we can computably find a random-free step function graphon
G∗s ∈ S such that ‖H∗ −G∗s‖� < 2−s. For each e ∈ N, let ιe : [0, 1]→ [`e, re] be
the unique increasing linear bijection. Note that ιe(

1
2
) = me. Let Ge,s := ιe ◦G∗s

and He := ιe ◦H∗. Observe that

‖He −Ge,s‖� < ‖H∗ −G∗s‖� < 2−s. (29)

ON THE COMPUTABILITY OF GRAPHONS 18

Now for s ∈ N, define Us to be the graphon that is 0 outside of
⋃
e≤s(Ae×Ae)

and for each e ≤ s is equal to the scaling to fit Ae×Ae of the following graphon
Ke,s on [0, 1]× [0, 1]:

Ke,s :=

{
He if {e}s(0)↑, and

Ge,t if t ≤ s is minimal such that {e}t(0)↓ .
(30)

Note that

‖Us − Us+1‖� ≤ 2−s +
∑
n>s

λ(An × An)

< 2−s + 2−(s+1) · 2−(s+1)

< 2−s+1.

Clearly the graphons Ke,s are uniformly computable in d�, and so the sequence
〈Us〉s∈N is a computable d�-name. For x, y ∈ [0, 1], define

U(x, y) = lim
s→∞

Us(x, y) (31)

when it is defined, and 0 otherwise. Note that U is a limit of the sequence
〈Us〉s∈N, and it is a.e. continuous, as it is piecewise constant (i.e., a step function
with countably many steps).

Note that for each n ∈ N, we have

λ(U−1{`n,mn, rn}) = λ(An × An) = 2−2(n+1) (32)

by construction, as each Kn,s only takes values among `n, mn, or rn. For any
graphon W define the set

XW :=
{
x ∈ [0, 1] : λ

(
W−1(x)

)
> 0
}
. (33)

Note that for any V weakly isomorphic to U , by Theorem 2.18 condition (3)
we have XV = XU . Further, as

{`n,mn, rn} ∩ {`p,mp, rp} = ∅ (34)

for p 6= n, from a d1-name for V we can compute the countable discrete set
XU . But me ∈ X if and only if {e}(0)↑, and so XU computes 0′. �

6. Almost-everywhere continuity

In this section, we describe a random-free graphon that is computable in d1
but not weakly isomorphic to any a.e. continuous graphon. Note that this is in
contrast to the computable de Finetti theorem [FR12], which can be seen as
saying that in a 1-dimensional analogue of this setting, the measurable object
representing the sampler is a.e. computable, and in particular a.e. continuous.
This provides another example of how the 2-dimensional case is considerably
more complicated than the 1-dimensional case.

ON THE COMPUTABILITY OF GRAPHONS 19

The notion of a.e. continuity is sensitive to the underlying topology of the
space. Since a graphon is a function from [0, 1]× [0, 1] to [0, 1], it is reasonable
to consider, as the topology on the domain, the product topology with respect
to the usual topology on [0, 1]. But there are situations where it is natural to
consider graphons that are a.e. continuous with respect to other topologies on
[0, 1] but are not weakly isomorphic to an a.e. continuous graphon with respect
to the standard topology on [0, 1]. We show that our result holds even in these
more general situations, as long as the topology on [0, 1] still generates the
Borel sets.

We begin by describing the construction of a random-free graphon G, which
can be thought of as a symmetric measurable subset of [0, 1]2. We have drawn
this measurable subset in Figure 1 as a black (1) and white (0) picture, with
(0, 0) in the upper-left corner (similar to an adjacency matrix, and as is common
when drawing graphons).

Construction. First, draw a 2 × 2 square grid (given by products of the
intervals [0, 1

2
) and [1

2
, 1] on each axis) and color the 2 squares on the diagonal

black. Then on each of the 2 off-diagonal squares, draw a 4 × 4 square grid
(similarly, from products of half-open or closed intervals) and color the 8
diagonal squares black. Then on each of the remaining 24 squares, draw an
8× 8 grid and color the diagonal black. Continue in this way, filling diagonal
squares within unfilled squares to obtain the graphon G.

This clearly describes a symmetric measurable subset of [0, 1]2, and hence a
random-free graphon.

Figure 1. The graphon G, viewed as a subset of [0, 1]2.

ON THE COMPUTABILITY OF GRAPHONS 20

The countable random graph induced by sampling from G may be thought
of informally in the following way, which shows that it can be sampled in
polynomial time: There is a questionnaire with an infinite list of questions
indexed by positive integers. The nth question has 2n possible answers. Each
vertex corresponds to a person who has independently answered each question
uniformly at random, independently from each other person. Two vertices are
connected by an edge when the corresponding people agree on at least one
answer to their questionnaires.

Lemma 6.1. The graphon G constructed above is not a.e. continuous, has a
computable d1-name, and is twin-free.

Proof. The black region G−1({1}) is clearly dense. Also the white region
G−1({0}) has measure equal to α := 1

2
· 3

4
· 7

8
· · · which is positive by the

following calculation:

− log(
1

2
· 3

4
· 7

8
· · ·) = −

∞∑
n=1

log(1− 2−n)

=
∞∑
n=1

∞∑
k=1

2−kn

k

=
∞∑
k=1

1

k

∞∑
n=1

2−kn

=
∞∑
k=1

1

k

1

2k − 1
<∞.

So this graphon itself is not a.e. continuous, since G−1({0}) is a nowhere dense
set of positive measure.

But G has a computable d1-name since one can approximate the graphon in
d1 with some initial stage of the construction, as we now describe. Let Gn be
the nth stage of the construction, and let βn :=

∫
Gn dλ. Then the measure of

the remaining black area yet to be added to G is (1− α)− βn, a computable
real that rapidly tends to 0 as n→∞.

Finally, observe that G is twin-free, as by construction, each horizontal line
gives rise to a different cross-section. �

The main result of this section is that no graphon H weakly isomorphic to
G is a.e. continuous (even with respect to other topologies that generate the
Borel sets). The key combinatorial fact is the following.

Lemma 6.2. Let G be the random-free graphon constructed above. Suppose
X, Y ⊆ [0, 1] are measurable sets such that X × Y is contained in G−1({0}) up
to a nullset. Then λ(X × Y) = 0.

ON THE COMPUTABILITY OF GRAPHONS 21

Proof. For each n ∈ N, let Xn (respectively Yn) be the union of all dyadic
half-open intervals of size 2−(2

n−1) whose intersection with X (respectively Y)
has positive measure. To show that λ(X × Y) = 0, we will show by induction
that λ(Xn × Yn) ≤ 4−n.

The base case is trivial as λ(X0 × Y0) ≤ 1. For the induction step, consider
each dyadic square I × J where I ⊆ Xn and J ⊆ Yn are both of size 2−(2

n−1).
By construction, for each sub-dyadic interval I ′ ⊆ I of size 2−(2

n+1−1), there is
a corresponding dyadic interval J ′ ⊆ J of the same size such that I ′ × J ′ is a
black square. If I ′ is disjoint from X (up to a nullset), then I ′ ⊆ Xn \Xn+1.
Otherwise, J ′ is disjoint from Y (up to a nullset), and J ′ ⊆ Yn \ Yn+1; for if
not, then the black square I ′ × J ′ intersects X × Y outside a nullset, which
cannot happen, since X × Y ⊆ G−1({0}) is white. After considering all such
sub-dyadic intervals I ′ we have that

λ(Xn+1 ∩ I) + λ(Yn+1 ∩ J) ≤ λ(I) + λ(J)

2
= λ(I). (35)

By the arithmetic–geometric mean inequality,

λ
(
(Xn+1 × Yn+1) ∩ (I × J)

)
= λ(Xn+1 ∩ I) · λ(Yn+1 ∩ J)

≤
(
λ(Xn+1 ∩ I) + λ(Yn+1 ∩ J)

2

)2

≤
(
λ(I)

2

)2

=
λ(I)2

4
.

Summing up over all such I × J and using the induction hypothesis we have

λ(Xn+1 × Yn+1) ≤
λ(Xn × Yn)

4
≤ 4−(n+1). (36)

Therefore λ(X × Y) = 0. �

We may now prove the main result about G.

Theorem 6.3. Let G be the random-free graphon (which has a computable
d1-name) constructed above. Let H be a graphon weakly isomorphic to G, and
let T be some topology on [0, 1] every open set of which is a standard Borel set.
Then H is not a.e. continuous with respect to T × T .

Proof. Because G is twin-free and weakly isomorphic to H, by [Jan13, The-
orem 8.6 (vi)] there is a measure-preserving map ψ : [0, 1] → [0, 1] such that
H = Gψ a.e. Hence H must be random-free as well.

Now assume, towards a contradiction, that the map H is a.e. continuous
with respect to T × T . Because ψ is measure-preserving,

λ
(
G−1({0})

)
= λ

(
H−1({0})

)
. (37)

ON THE COMPUTABILITY OF GRAPHONS 22

Define A ⊆ [0, 1]2 to be the set H−1({0}).
Since H is a.e. continuous with respect to T × T , we have that A is a

λ-continuity set, and therefore its interior (in the product topology T × T) is
standard Borel and has the same (positive) measure as A. Hence there is some
open set B × C ⊆ A where B and C are T -open sets of [0, 1] (and hence are
standard Borel sets) that have positive measure.

Let λ(·|B) denote Lebesgue measure conditioned on B, that is

λ(A|B) =
λ(A ∩B)

λ(B)
. (38)

Both λ(·|B) and λ(·|C) are well-defined since B and C have positive measure.
Now, let µB and µC denote the pushforward measures on [0, 1] of λ(·|B) and
λ(·|C) along the map ψ. That is, µB(S) = λ(ψ ∈ S|B) for all measurable
S ⊆ [0, 1], and likewise with C. We claim that µB and µC are absolutely
continuous with respect to λ. Indeed, if λ(S) = 0, then

µB(S) = λ(ψ ∈ S|B) ≤ λ(ψ ∈ S)

λ(B)
=
λ(S)

λ(B)
= 0. (39)

Therefore, the supports of µB and µA have positive λ-measure.
Because ψ is a measure-preserving map, we have

(µB ⊗ µC){G = 0} =
1

λ(A)λ(B)

∫
C

∫
B

1{Gψ=0} dλ dλ

=
1

λ(A)λ(B)

∫
C

∫
B

1{H=0} dλ dλ

= 1,

where the last equality follows from the fact that H = 0 on B × C.
Now let X be the support of µB and Y be the support of µC . Then X×Y is

contained in G−1({0}) up to a nullset. By Lemma 6.2, we have λ(X × Y) = 0,
and so one of X and Y has measure 0, a contradiction to the fact that µB
and µC are absolutely continuous probability measures. Hence H is not a.e.
continuous with respect to T × T . �

We note that by taking the direct sum of this example with the lower bound
construction of Section 5, we may obtain a 0′-computable d1-name for a graphon
for which no weakly isomorphic graphon is a.e. continuous and from which any
d1-name computes 0′. Namely, scale the graphon from Theorem 5.1 by 1

2
and

place it on [0, 1
2
]2, along with G scaled by 1

2
on [1

2
, 1]2.

ON THE COMPUTABILITY OF GRAPHONS 23

Acknowledgments

The authors would like to thank Jan Reimann and Ted Slaman for helpful discus-

sions. Work on this publication was made possible through the support of United

States Air Force Office of Scientific Research (AFOSR) Contract No. FA9550-15-1-

0074. J.A. was supported by AFOSR MURI award FA9550-15-1-0053 and National

Science Foundation (NSF) grant DMS-1615444. C.E.F. was supported by United

States Air Force (USAF) and the Defense Advanced Research Projects Agency

(DARPA) Contracts No. FA8750-14-C-0001 and FA8750-14-2-0004, Army Research

Office (ARO) grant W911NF-13-1-0212, Office of Naval Research (ONR) grant

N00014-13-1-0333, NSF grants DMS-0800198 and DMS-0901020, and grants from

the John Templeton Foundation and Google. D.M.R. was supported by a Newton

International Fellowship, Emmanuel Research Fellowship, NSERC Discovery Grant,

and Connaught Award. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the

views of the United States Air Force, Army, Navy, DARPA, or the John Templeton

Foundation.

References

[AAFRR17] N. L. Ackerman, J. Avigad, C. E. Freer, D. M. Roy, and J. M. Rute, On
computable representations of exchangeable data, Workshop on Probabilistic
Programming Semantics (PPS 2017), 2017.

[Aus08] T. Austin, On exchangeable random variables and the statistics of large graphs
and hypergraphs, Probab. Surv. 5 (2008), 80–145.

[DJ08] P. Diaconis and S. Janson, Graph limits and exchangeable random graphs, Rend.
Mat. Appl. (7) 28 (2008), no. 1, 33–61.

[FR12] C. E. Freer and D. M. Roy, Computable de Finetti measures, Ann. Pure Appl.
Logic 163 (2012), no. 5, 530–546.

[GMRBT08] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum, Church: A language for generative models, Proc. of 24th Conf.
on Uncertainty in Artificial Intelligence (UAI 2008) (Corvalis, Oregon), AUAI
Press, 2008, pp. 220–229.

[HR09] M. Hoyrup and C. Rojas, Computability of probability measures and Martin-
Löf randomness over metric spaces, Inform. and Comput. 207 (2009), no. 7,
830–847.

[Jan13] S. Janson, Graphons, cut norm and distance, couplings and rearrangements,
New York J. Math. Monographs, vol. 4, Univ. at Albany, State Univ. of New
York, Albany, NY, 2013.

[Kal02] O. Kallenberg, Foundations of modern probability, 2nd ed., Springer, New York,
2002.

[Kal05] , Probabilistic symmetries and invariance principles, Probability and
its Applications, Springer, New York, 2005.

[Lov12] L. Lovász, Large networks and graph limits, Amer. Math. Soc. Colloq. Publ.,
vol. 60, Amer. Math. Soc., Providence, RI, 2012.

[MSP14] V. Mansinghka, D. Selsam, and Y. Perov, Venture: a higher-order probabilistic
programming platform with programmable inference, 2014.

ON THE COMPUTABILITY OF GRAPHONS 24

Harvard University, Cambridge, MA 02138, USA
E-mail address: nate@math.harvard.edu

Carnegie Mellon University, Pittsburgh, PA 15213, USA
E-mail address: avigad@cmu.edu

Borelian Corp., Cambridge, MA 02139, and Remine, Fairfax, VA 22031, USA
E-mail address: freer@borelian.com

University of Toronto, Toronto, ON M5S 3G3, Canada
E-mail address: droy@utstat.toronto.edu

Penn State University, University Park, State College, PA 16802, USA
E-mail address: jmr71@math.psu.edu

	1. Introduction
	1.1. Summary of main results
	1.2. Notation

	2. Graphons and invariant measures on graphs
	2.1. Graphons
	2.2. Invariant measures on graphs

	3. Notions of computability for graphons and invariant measures on graphs
	3.1. Computable pseudometric spaces
	3.2. Computable relationships between representations

	4. d-names vs. d1-names: Upper bound
	5. d-names vs. d1-names: Lower bound
	6. Almost-everywhere continuity
	Acknowledgments
	References

