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Lecture 13: Graphs of high girth and high chromatic number

Instructor: Jacob Fox

1 Markov’s inequality

Another simple tool that’s often useful is Markov’s inequality, which bounds the probability that a
random variable X is too large, based on the expectation E[X].

Lemma 1. Let X be a nonnegative random variable and t > 0. Then

Pr[X ≥ t] ≤ E[X]
t

.

Proof.
E[X] =

∑
a

aPr[X = a] ≥
∑

a≥t

t Pr[X = a] = tPr[X ≥ t].

Working with expectations is usually easier than working directly with probabilities or more
complicated quantities such as variance. Recall that E[X1 + X2 + . . . + Xn] =

∑n
i=1 E[Xi] for any

collection of random variables.

2 Graphs of high girth and high chromatic number

We return to the notion of a chromatic number χ(G). Observe that for a graph that does not
contain any cycles, χ(G) ≤ 2 because every component is a tree that can be colored easily by 2
colors. More generally, consider graphs of girth `, which means that the length of the shortest
cycle is `. If ` is large, this means that starting from any vertex, the graph looks like a tree within
distance `/2 − 1. One might expect that such graphs can be also colored using a small number
of colors, since locally they can be colored using 2 colors. However, this is far from being true, as
shown by a classical application of the probabilistic method.

Theorem 1. For any k and `, there is a graph of chromatic number > k and girth > `.

Proof. We start by generating a random graph Gn,p, where each edge appears independently with
probability p. We fix a value λ ∈ (0, 1/`) and we set p = nλ−1. Let X be the number of cycles of
length at most ` in Gn,p. The number of potential cycles of length j is certainly at most nj , and
each of them appears with probability pj , therefore

E[X] ≤
∑̀

j=3

njpj =
∑̀

j=3

nλj ≤ nλ`

1− n−λ
.
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Because λ` < 1, this is less than n/4 for n sufficiently large. By Markov’s inequality, Pr[X ≥
n/2] ≤ 1/2. Note that we are not able to prove that there are no short cycles in Gn,p, but we will
deal with this later.

Now let us consider the chromatic number of Gn,p. Rather than the chromatic number χ(G)
itself, we analyze the independence number α(G), i.e. the size of the largest independent set in G.
Since every color class forms an independent set, it’s easy to see that χ(G) ≥ |V (G)|/α(G). We set
a = d3

p ln ne and consider the event that there is an independent set of size a. By the union bound,
we get

Pr[α(G) ≥ a] ≤
(

n

a

)
(1− p)(

a
2) ≤ nae−pa(a−1)/2 ≤ nan−3(a−1)/2 → 0.

For n sufficiently large, this probability is less than 1/2. Hence, again by the union bound, we get

Pr[X ≥ n/2 or α(G) ≥ a] < 1.

Therefore there is a graph where the number of short cycles is X < n/2 and the independence
number α(G) < a. We can just delete one vertex from each short cycle arbitrarily, and we obtain
a graph G′ on at least n/2 vertices which has no cycles of length at most `, and α(G′) < a. The
chromatic number of this graph is

χ(G′) ≥ |V (G′)|
α(G′)

≥ n/2
3n1−λ ln n

=
nλ

6 ln n
.

By taking n sufficiently large, we get χ(G′) > k.

We should mention that constructing such graphs explicitly is not easy. We present a construc-
tion for triangle-free graphs, which is quite simple.

Proposition 1. Let G2 be a graph consisting of a single edge. Given Gn = (V,E), construct Gn+1

as follows. The new set of vertices is V ∪ V ′ ∪ {z}, where V ′ is a copy of V and z is a single new
vertex. Gn+1[V ] is isomorphic to Gn. For each vertex v′ ∈ V which is a copy of v ∈ V , we connect
it by edges to all vertices w ∈ V such that (v, w) ∈ E. We also connect each v′ ∈ V ′ to the new
vertex z.

Then Gn is triangle-free and χ(Gn) = n.

Proof. The base case n = 2 is trivial. Assuming that Gn is triangle-free, it is easy to see that Gn+1

is triangle-free as well. Any triangle would have to use one vertex from V ′ and two vertices from
V , because there are no edges inside V ′. However, by the construction of Gn+1, this would also
imply a triangle in Gn, which is a contradiction.

Finally, we deal with the chromatic number. We assume χ(Gn) = n. Note that it’s possible to
color V and V ′ in the same way, and then assign a new color to z, hence χ(Gn+1) ≤ n + 1. We
claim that this is essentially the best way to color Gn+1. Consider any n-coloring of V . For each
color c, there is a vertex vc of color c, which is connected to vertices of all other colors - otherwise,
we could re-color all vertices of color c and decrease the number of colors in Gn. Therefore, there
is also a vertex v′c ∈ V ′ which is connected to all other colors different from c. If we want to color
Gn+1 using n colors, we must use color c for v′c. But then, V ′ uses all n colors and z cannot use
any of them. Therefore, χ(Gn+1) = n + 1.
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