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Abstract
Recent experiments show that both natural and artificialmicroswimmers in narrow channel-like
geometries will self-organise to form steady, directed flows. This suggests that networks offlowing
activematter could function as novel autonomousmicrofluidic devices. However, little is known
about how information propagates through these far-from-equilibrium systems. Through a
mathematical analogywith spin-ice vertexmodels, we investigate here the input–output character-
istics of generic incompressible activeflownetworks (AFNs). Our analysis shows that information
transport through anAFN is inherently different from conventional pressure or voltage driven
networks. Active flows on hexagonal arrays preserve input information over longer distances than
their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be
inferred frommarginal input–output distributions alone. This sensitivity further allows controlled
permutations on parallel inputs, revealing an unexpected link between activematter and group theory
that can guide newmicrofluidicmixing strategies facilitated by activematter and aid the design of
generic autonomous information transport networks.

Introduction

Group theory [1, 2] forms themathematical foundation of ancient [3] andmodern [4] cryptography. Systematic
permutations of the symbols in a given alphabet define themost basic algorithms for encoding information
[3, 4]. The efficiency and robustness of such encryption schemes is tightly linked to the structural properties of
the underlying permutation groups. This profound connectionwasfirst realised by the Polishmathematician
Marian Rejewski [5] in 1932 and, a few years later, used byAlanTuring to decipher codes produced by the
Enigmamachine [6], amechanical encoding device employed by theGermanArmy duringWWII. Nowadays,
information transfer and encryption assume ever-increasing importance in the development of new
technologies, from the internet [7] and smart phones [8] to quantum communication [9]. Yet, information
transport is also a salient feature ofmany, if not all, biological systems [10–12]. This raises interesting conceptual
and practical questions as towhether one can use biological or engineered activematter components [13–15] to
transport and encrypt information, and how efficiently such active information transportation devices can
operate relative to conventional passive information flownetworks [16, 17].

Here, we explore these questions theoretically by focusing on quasi-incompressible activeflownetworks
(AFNs) that can be realisedwith dense suspensions of bacteria [18, 19] or other types of natural or engineered
microswimmers [20–23]. In contrast to voltage-driven electric [17] or pressure-drivenmicrofluidic [24, 25]
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circuits,material and information transport in AFNs is facilitated by the conversion of chemical energy into
kinetic energy [19, 26, 27] at the level of themicroscopic constituents, such as bacteria [19] or Janus particles
[20], which can carry information individually or collectively. Building on amathematical correspondencewith
discrete spin-ice vertexmodels [28], wewill investigate the similarities and differences between the propagation
of input signals through internally driven active and externally driven passiveflownetworks for different lattice
geometries. This analysis shows that topological constraints intrinsic to incompressible AFNs enablemore
robust information flow than in comparable passive networks. In the second part, wewill demonstrate howbulk
topological defects in AFN lattices can be detected holographically from input–output correlations—that is,
fromboundary flows alonewithout any observation of the bulk—and can be utilised to realise specific
permutation groups. In doing so, wewill establish a fundamental connection between activematter flows in
complex topologies and theCayley graph structure of permutation groups.We conclude by showing how these
ideas can be extended to general randomgraphs to achievemore efficient signal coding.

Results andDiscussion

Activematter vertexmodels
Activematter systems self-organise and spontaneouslyflowbypersistent conversionof chemical energy to stress and
are therefore, bynature, non-equilibriumsystems.Their great diversity, encompassingmotile cells [18, 29], driven
microfilaments [21] andartificialmicroswimmers [20, 22] toname just three classes,means that awide rangeof
precise behaviours exist.Generically these systemspossessnon-Boltzmann steady state distributions andnon-zero
probability currents in state space [30], but certain reductions and limits suchas those for colourednoise [31, 32] can
reveal pseudo-equilibriumbehaviour. Inparticular, previouswork [18]has shown that adense suspensionof bacteria
confinedwithin a lattice of interacting circular cavities canbe capturedby apseudo-equilibriummodel in coarse-
graineddegrees of freedom,namely the average ‘spin’of each circular cavity. Linear confinementhas alsobeen shown
experimentally to causenear-unidirectionalflow in various active systems [19, 22, 23, 29], reducing complex
behaviour to a single degreeof freedom.These ideasnaturally extend tonetwork-like environments, suggesting that
the behaviourof anAFN—that is, a networkof narrowchannelsfilledwithdense activematter—canbe reduced to
the coarse-grainedmeanflowalong each channel of thenetwork, representedbydirectedflows along the edgesof a
graph.Adynamicalmodelwith active friction leads to slime-mould-like oscillatorypumping states [33],while in the
dense incompressible limit, a pseudo-equilibriummodel basedon that verified for circular confinement [18]displays
topologically-determined stochastic selectionofnetworkflow loops [28]mediated throughflow interactions at the
mass-conserving junctionsbetween edges. Extending this incompressiblemodel to add inputs andoutputs as
boundary verticeswhosemassflux is controlledor free, respectively, leads to the ability toperformelementary logical
operations by appropriate networkdesign [15]. It is this premisewhichwe adopt here, formalised as follows.

LetΓ be a graphwith edge setE and vertex setV È ¶G, whereV is the set of interior vertices and∂Γare
degree-1 boundary vertices used as inputs and outputs. Every edge e EÎ is assigned an arbitrary orientation,
fromwhichwe define the V E´∣ ∣ ∣ ∣ incidencematrix DveD = [ ]whereDve is−1 if edgee is oriented outwards
fromvertexv,+1 if e points into v, and 0 if v and e are not incident. Aflow configurationΦ=(fe) onΓ is then a
vector of signed flowsfeä {−1, 0,+1} along each e EÎ , wherefe=+1 represents flowwith the orientation
ofe andfe=−1 isflow against the orientation ofe, so that theflux into vertexv along edge e is fve=Dvefe. A
non-zeroflow 1ef =∣ ∣ indicates self-organised unidirectional flow along e at the typical velocity of the active
matter systemunder consideration, normalised to unity, whilefe=0 corresponds to a quiescent, overturning
or turbulent state within the channel with zero netflux. This discretisation offlow states is a simplification of
velocities fluctuatingwithin a double-welled potential [28, 34], modelling the tendency of active suspensions to
adopt either a unidirectional flow state at a preferred velocity or, failing that, a qualitatively different state [19].

The space of permissible flowsΦ is constrained byflux conservation, throughwhichwe implement inputs
and outputs. Every internal vertex v VÎ must have asmany in-flows as out-flows, corresponding to theflux
incompressibility condition

f 0.
e

ve vDå = F =( · )

Inputs and outputs are set and read through the flux at the boundary vertices in outÈ¶G = ¶G ¶G , where the
input vertices∂Γin and output vertices∂Γout are disjoint. For a given digital input vector I I 0, 1v

in= Î ¶G( ) { }∣ ∣

we impose that the vertex v inÎ ¶G corresponding to input Ivhas net flux

f I ,
e

ve v vDå = F = -( · )

so that an activated input injectsmatter into the network. Output vertices, on the other hand, are left
unconstrained to allowmatter toflowout of themor not as network interactions dictate; the output vector
O O 0, 1v

out= Î ¶G( ) { }∣ ∣ forflow stateΦ is then read off as theflow
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O fv
e

ve vDåº = F( · )

through each v outÎ ¶G . Finally, to prevent spuriousmatter inflow through the outputs, we impose that each
edge e incident to an output vertex (ofwhich there is one per output, as outputs have degree 1) only permits flow
toward the output, 0, 1ef Î +{ }. Inmicrofluidic realisations, such an activematter diode can be realised
through geometric channel patterning [35].

Tomodel the spontaneous self-organised flow typical of activematter [18, 19, 23, 29], we adopt a pseudo-
equilibrium approach. Define the energy of a configurationΦ to be

H
1

12
,

e E
eål fF = -

Î

( ) ∣ ∣

with polarisation strength constantλ (where the factor of 1/12 is for consistencywith previous continuum
models [28]). For afixed input vector I we then assume a pseudo-equilibriummodel selecting states according
to the Boltzmann distribution Ip e HF µ b- F( ∣ ) ( ) subject to the incompressibility and input–output constraints.
This favours configurationswithmoreflowing edges, as wemight expect from activematter systems in
confinement [19, 22, 29, 36]. Indeed, the establishedToner–Tumodel of self-organised flow [34, 37, 38] reduces
to that of overdamped diffusion in a double-welled potential when averaged along a narrow channel [15],
yielding Boltzmann statistics as per a Landau theory; even if real-world AFNs do not obey exact equilibrium
statistics in coarse-grained variables, as is likely, the intrinsic propensity of activematter toward flowing states at
characteristic velocities at the heart of the Toner–Tumodel suggests that we should expect statistics at least
similar to the pseudo-energy fluctuations encoded in the Boltzmann distribution. The result is a formof vertex
model on general graphs in the same family as ice-type or loopmodels [39–42], endowedwith input–output
capability, which qualitatively replicates the full continuous lattice fieldmodel of [28] (SMText).

States comprise flowing edges with 1ef =∣ ∣ and non-flowing edges withfe=0, withflows balanced at every
internal vertex and flowout of each activated input. If we now restrictΓ to have vertices of degree atmost3, then
incompressibility implies thatflows becomemutually excluding: each internal vertexmust have either zero
flowing edges or twoflowing edges, one in and one out, so stable states comprise non-intersecting flowpaths
from each activated input to an outputwith the remaining edges filled by non-intersecting closed cycles offlow
(figures 1 (A) and (B)). Since this is where topology design has the greatest potential impact on active flow,we
restrict attention to this case here.We also confine ourselves to the low-noise regime 11bl - ( ) where
appropriate, relevant for strongly confined activematter in awell-controlled environment [19, 23, 43].

Topologically protected information transport
Active flownetworks displaymarkedly different characteristics compared to passive pressure-driven flows or
simple randomwalks. This is best explored in a lattice topology. LetΓ be anM×Nhexagonal lattice withN
inputs andN outputs labelled i=1,K,N, as infigure 1(A).We refer to the numberM of lattice layers between
the inputs and the outputs as the depth ofΓ.When one input is activated, the AFNpicks out a distinct path from
the input to an output, with any remaining space filledwith vertex-disjoint closed cycles (figure 1(A)). The
particular output chosen is probabilistic [15], and taking an ensemble average (or time average, if dynamics are
specified) yields a probability distribution p j i O I1 1j i= = =( ∣ ) ( ∣ ) for the output from a given input
(figure 1(C)).

Output from anAFN ismarkedly different to that of an equivalent passive flownetwork.We compare AFN
output to the steady-state output flux in a linearmicrofluidic network driven by afixed constant inflowon∂Γin

equal to the input vectorI , with zero (reference)pressure on∂Γout and equal resistance on every edge (see SM
Text for themathematical formulation).Mass conservation implies that this has the same total input–output
flux as the AFN.Upon activation, the edge resistances drive the flow towards a unique attracting steady state,
whose distribution of outputflux on∂Γout can then be compared to the ensemble-averaged output Oá ñof the
equivalent AFN. In addition, the steady-state output distribution of thismicrofluidic network is equivalent to
the steady-state probability distribution of a symmetric randomwalk starting at input iwith sinks at the outputs
[44]; we henceforth refer to either of thesemathematically identical systems as ‘passive flow’.With a single input
active, so that Ii=1 for the active input i and Ij=0 for j i¹ , a passiveflownetwork disperses the input among
all output nodes, while the equivalent ensemble-averaged output distribution Oá ñ from theAFN instead retains
a distinct signature of its input for larger lattices where passive output is near-uniform (figure 1(C)). Thus, the
globally exploratory nature of active networkflow allows for output from anon-trivial active network to be
traceable to the original input, whereas passive flow is virtually untraceable on all lattices.

Whenmultiple inputs are activated, the vertex-disjoint input–output pathsmutually exclude one another in
AFNs. This alters the output distribution in a fashion dependent on the graph topology, offering additional
control over signal propagation comparedwith passive networks. Furthermore, the discrete nature of activeflow
means that each input can be traced to its outputwithout visualising the intervening network by distinctly
marking the inputflows. For a planar network such as that infigure 1, the order of the outputsmustmatch the
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order of the inputs: if input1 is activated and connects to output3, say, then input2 can only connect to
output4 onwards (figure 1(B)), in stark contrast to the linearity of passive network flow. This suggests that active
flowsmay be particularly adept at retaining input configurationmemorywhenmore than one input is activated.

The extent towhich inputs can be inferred fromoutputs is captured by themutual information [45].
Supposewe uniformly at random choose one inputX to activate. This connects to one outputY according to a
topology-dependent probability distribution p y x( ∣ ) (figure 1(C)). If we can onlymeasure the output and do not
knowwhich inputwas activated, then howwell the activated input can be inferred from an observed output is
described by the 1-input relativemutual information (SMText)

U X Y
N N

p y x
p y x

p y

1

log
log .

x y
1

,
å=

⎡
⎣⎢

⎤
⎦⎥( ∣ ) ( ∣ ) ( ∣ )

( )

Thismeasures the information gained relative to themaximumpossible Nlog2 bits, so thatU1=1means exact
input–outputmatching andU1=0means input and output are independent. The equivalent notion of output
observation in the case of passive flow is that of seeing a single randomwalker arrive at an output for random
walks, or observing the destination of a single input tracer particle in pressure-drivenmicrofluidicflow.
Numerically evaluatingU1 over a range of hexagonal lattice sizes shows that AFNs preserve input information
over notably larger graphs than passive flow (figure 1(D)), allowing the activated input to be inferredwith high
confidence using comparatively few system samples.

With two labelled inputs activated,mutual information [45] captures a fundamental difference between
AFNs and classical flow. The randomly chosen activated inputsX1 andX2 are now represented by an ordered
pairX=(X1,X2)with X X1 2¹ , whereX1 is labelled red andX2 is labelled blue, say. This yields an output pair
Y=(Y1,Y2), whereY1 is the output observed red andY2 the output observed blue, again sampled from a
distribution p y x( ∣ ). The two-input relativemutual information is then (SMText)

Figure 1.Topological protection of input–output correlations in planar AFNs. (A)Example configuration of activeflowon a 7-input
13-deep hexagonal lattice with input 1 activated, with the input–output flow route highlighted. Thick edges are actively flowing, thin
edges are in a zero-flow state. (B)As in (A) butwith inputs 1 and 2 both activated. The input–output flows are topologically prohibited
from crossing. (C)Marginal densitymaps of output distributionswith one activated input at lownoise (βλ)−1=0.02. Shown are
three depths of hexagonal lattice network for activeflow (upper) compared to passive pressure-driven flow (bottom). Eachmap
indicates the probability of an output being activated for a fixed activated input. Active flowdata was determined by exhaustive
evaluation (depths 1 and 3) andMonte Carlo simulation (depth 5) (SMText). (D)Relativemutual informationU X Y1( ∣ ) in
determining an activated inputX, chosen uniformly at random, fromobserving a particular outputY at (βλ)−1=0.02, for one
activated input over a range of hexagonal lattice sizes. Circles denote active flow, squares denote passiveflow; comparing the two
shows the greater input information retention of active flow across non-trivial networks. Active flowdata computed for small lattices
by exhaustive evaluation and other lattices byMonte Carlo simulation (SMText). (E)As in (D), but for the informationU X Y2( ∣ )
between two activated inputs and outputs. Active flows in planar lattices preserve input ordering, so themutual information is
bounded below by a non-zero constant.
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U X Y
N N N N

p y x
p y x

p y

1

1 log 1
log ,

x y
2

,
å=

- -

⎡
⎣⎢

⎤
⎦⎥( ∣ )

( ) ( )
( ∣ ) ( ∣ )

( )

where themodified prefactor reflects theN (N−1) possible labelled input pairs. EvaluatingU2 for AFNs and
classical flow (figure 1(E))now yields a qualitative distinction: not only doAFNs preserve information better on
larger graphs, as with one input, butU2 asymptotes to a non-zero constant N N1 log 12 -( ). This is because
mutual exclusion of input–output streams in planar networksmeans that these AFNs preserve the ordering of
their inputs, implying a guaranteed bit of information for even the largest planar lattices.

With regard to applications, the partial topological protection of input–output correlations in planar AFNs
suggests interesting possibilities for tuning and enhancing information propagation through the inclusion of
auxiliary control currents.Moreover, as we shall shownext, it also allows holographic detection of non-planar
lattice defects from input and output distributions alone.

Holographic defect detection
IfΓ is not planar then input streams can cross, yieldingqualitative changes in the joint distributionof output
probabilities compared to that of a similar planar graph. Suppose, for instance, that inputs 2, 3 and4 are activatedon
the 5×5hexagonal lattice offigure 2(A).Denoting the activated inputs’ respective randomoutputs byX,Y andZ,
planarity of the latticemeans thatwemust alwayshave X Y Z< < (under our labellingof inputs andoutputs as in
figure 2(A)). This implies that the joint distribution p x y z x y z, , 2 , 3 , 4=   ( ) ( ) is only non-zero in the
small subspace x y z< < (figure 2(B)).Now, introduce a small planarity defect into the lattice by exchanging
endpoints between twohorizontal edges of onehexagon (figure 2(C)), akin to the rewiring constructionofWatts–
Strogatz networks [46]. Two input–output streams cannowcross once, allowingoutput ordering to change and
thereby introducingnon-zeroprobabilitieswithinpreviously prohibited regions ofp(x, y, z) (figure 2(D)). This
reflectionof bulk lattice structure in the surfacemarginals presents a planarity rejection test if the intervening graph is
unknownordifficult to embed.

Realising permutation groupswith activeflows
Activating all inputs of a hexagonal lattice with crossover defects results in a stochastic permutation device. In
this case, since there are asmany outputs as inputs, each permissible flow configuration defines a bijection
f N N: 1 , 1, ,¼  ¼{ } { } (that is, a permutation of the integers 1 toN)where input i connects to output f (i).
If the stream at input i is then given label vi , this arrives at output f (i). Denoting the vector of all input labels by
v vi= ( ) and the vector of output labels by w wj= ( ), wherewj is the label read at output j, any such permutation

Figure 2.Holographic detection of lattice defects. (A)Example active flowon a 5×5 lattice with 3 activated inputs. (B)Joint
distribution p(x, y, z) of activated outputs X2  , Y3  , Z4  for the three activated inputs 2, 3, 4 in (A) at low noise
(βλ)−1=0.02, shown by the threemarginal densities derived from summing over one each ofX,Y andZ as determined by exhaustive
evaluation (SMText). Grey cells indicate topologically prohibited output orderings violatingX<Y<Z. (C)As in (A) but for a lattice
with a planarity defect, allowing input–output streams to cross. (D)Output densities as in (B) but now for the defective lattice in (C),
demonstrating non-zero probabilities in regions of the distribution previously prohibited by topology.
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can be compactly written asw vs= for some unique invertible permutationmatrixσ [1, 2]. Now,without any
crossover defects, planarity implies that the only possibleσ is the identitymap, since flows cannot swap due to
the complete topological protection in this case. However, introducing crossover defectsmakes non-trivialσ
possible. In general, an output configuration of such anAFN consists of a permutation s Î S randomly chosen
from the setΣ of all possible permutations, whereΣ, and each permutation’s selection probability, is defined by
the placement of interior defects. Furthermore, when all inputs are activated, the lattice topology implies that
permissible flow configurationsΦ all have the same number offlowing edges and hence the same energyH(Φ).
The Boltzmann distribution e Hµ b- F( ) is therefore uniform, rendering the flow states and permutation selection
probabilities independent of the noise strength(βλ)−1 for these lattices.

As an example, consider the 1-defect lattice infigure 2(C).When all inputs are activated, this can realise three
different permutations f, mapping (1, 2, 3, 4, 5) to one of (1, 2, 3, 4, 5), (1, 3, 2, 4, 5) or (2, 1, 3, 4, 5). These are,
respectively, the identity and the transpositions (23) and (12) in group-theoretic cycle notation [2]. Thus, this
lattice has a setΣ={σ1,σ2,σ3} of three possiblematrices representing these permutations acting on the input
vector v . Thefirst is the 5×5 identitymatrix 1 5s = , while the second and third read

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

,

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. 12 3s s= =

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

These have respective selection probabilities p1=1/3, p2=1/2 and p3=1/6, as computed by exhaustive
evaluation (SMText).

Inmany technological applications, includingmaterialmixing and signal encoding, one is interested not in
generating a few particular permutations but instead in realising an entire permutation group. For instance,
perhapswewish to employ amicrofluidic AFN to combine five components. If wewant this to occur in any
randomorder at all, the full symmetric group S5 is called for; alternatively, wemay have certain restrictions on
ordering—objects 1 to 3must precede objects 4 and 5, say—necessitating subgroups of S5 acting on thosefive
objects. This can be compactly achieved by concatenation of anAFNwith copies of itself. Repeatedly chaining
together a small hexagonal lattice containing one ormore crossover defects (figure 3(A)) causes the inputflows
to repeatedly permute, akin to a braid [47, 48], realising different permutation groups according to the lattice
defect structure. Formally, because label permutation vs obeys (matrix) composition v vt s t s=( ◦ ) ( ),
passing the outputs of anAFNΓ straight into the inputs of a copy ofΓ gives a newAFNwith permutation set

: ,2 st s tS = Î S{ }built from all pairwise products of elements inΣ. Concatenating a further copy ofΓ
yields anAFNwith set : , ,3 rst r s tS = Î S{ }, and so on. This process either converges, in that there exists

Figure 3.Realising permutationgroups throughAFNconcatenation. (A)Exampleflow througha 3-fold concatenationof a 3×5
hexagonal latticewith 3planarity defects, realising the permutation (12)(345) as the composition (23)(45) ◦ (2354) ◦ (12)(45). (B)Groups
convergedonby repeated concatenationof a 3×5 latticewithbetween1 and5defects.Group frequencies are shownas their likelihoodof
occurrence fromrandomdefect placements, determinedover all possible configurationswith eachnumberof defects. Thepermutation set
for each graphwas foundby exhaustive evaluation fromwhich the group convergencewas thenevaluated (SMText). ‘Æ’denotesnon-
convergence in repeated concatenation.
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an s such thatΣn=Σs for all n�s, or eventually results in a repeating periodic sequence of permutation sets. In
general, concatenation converges when k k 1S Í S + for somek, inwhich case itmust converge on a group (SM
Text). Alternatively,Markov chain theory yields a geometric condition: concatenation converges precisely when
theCayley graph generated byΣ contains a set of cycles whose lengths have a greatest common divisor of1. The
underlying proofs, whose details are given in the SMText, establish a remarkablemathematically rigorous
connection between topologically protected activematterflows and theCayley graph structure of permutation
groups, with direct practical implications formaterialmixing and information encryption.

Continuing the example above, if the network infigure 2(C) is concatenatedwith one copy of itself, the
permutationsΣ={σ1,σ2,σ3} in equation (1) yield a larger set , , , ,2

1 2 3 4 5s s s s sS = { }offive permutations,
where the two new elements read

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

,

0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

.4 5s s= =

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

These arise as 4 2 3s s s= and 5 3 2s s s= , representing the permutations 132( ) and 123( ) in cycle notation [2].
Concatenating a second copy of the network results in the 6-element set 3 2

6È sS = S { }, whereσ6 represents
the transposition (13). Any further concatenation creates no newpermutations—that is,Σn=Σ3 for n�3—
so the concatenation converges, in this case to the symmetric group S3 acting on thefirst three inputs. Observe
that convergence was guaranteed by finding 2S Í S , itself a consequence ofΣ containing the identity
(SMText).

Through concatenation, a variety of groups can be constructed. Figure 3(B) illustrates the relative abundance
of the groups generated by repeated concatenation of 3×5 lattices with up to 5 local crossover defects,
determined by evaluating all possible networkswith each number of defects. The largest possible group onfive
inputs, the symmetric group S5, is present, alongwith six of its 14 non-trivial non-isomorphic proper subgroups.
In fact, S5 can be generated evenwith only two defects, but this comes at the expense ofmany concatenations; as
the number of defects increases, the probability of generating S5 rises [49] and the requisite number of
concatenations falls(figure S1 is available online at stacks.iop.org/NJP/20/035003/mmedia). The swapping
performed by the local crossover defects is reflected in the subgroups generated: all butA5 are precisely those that
can be generated by a set of transpositions. Notable among the absences are the familiar dihedral groupsD8 and
D10, the symmetry groups of the square and pentagon, respectively. Though S3× C2 is generated frequently and
is technically isomorphic to the hexagonal symmetry groupD12, it only appears here through the natural action
of S3× C2 on 5 points rather than as hexagonal symmetries of 6 points. To generate these particular group
actions necessitatesmore complex fundamental permutations than the local swap defects we consider here. In
fact, these can be generated bymore general AFN topologies, as wewill soon describe.

Repeated concatenation continues to have a quantitative effect beyond the point where the qualitative effect
ends. Asmore copies are added on, even if the permutation setΣn is constant as n increases, the underlying
probability of generating each element ofΣn changes with each additional copy. ProvidedΣn converges to a
group,Markov chain theory implies that these probabilities approach the uniformdistribution in the limit
n  ¥ (SMText), allowing fine-grained control over output frequencies. To exemplify this, consider once
more the network infigure 2(C) and letG=Σ3 be the group it generates by concatenation. If we let Pij be the
probability that a single copy of theAFNpermutes state giäG to state gjäG, then the probability that our
initial unpermuted (identity) state g1 is sent to giäG aftern concatenations is P i

n
1 . Using the permutation

probabilities found above, this transitionmatrix reads (SMText)

P

1 3 1 2 1 6 0 0 0

1 2 1 3 0 0 1 6 0

1 6 0 1 3 1 2 0 0

0 0 1 2 1 3 0 1 6

0 1 6 0 0 1 3 1 2

0 0 0 1 6 1 2 1 3

,ij =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

[ ]

with row and column indexes corresponding to the permutations as before. Then at n=3we have non-uniform
probabilities—P 0.3212

3 » versus P 0.0616
3 » , for example—but by n=20 these have converged to 1/6 at two

decimal places.

General randomgraphs
Finally, we turn to permutations realised by general graphs. As the internal structure linking inputs to outputs
becomes topologicallymore complex,manymore permutations can often be realisedwith the same number of
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internal vertices than in a defect-riddled hexagonal lattice, trading complexity for functionality. General graphs
are also typically not independent ofβ, commonly realising farmore permutations whenT 01b= >- beyond
the ground-state permutations seenwhenT=0. To illustrate this, we computed the exact number of
permutations S∣ ∣output by samples of input–output-augmented random cubic graphs atfixed (necessarily
even)numbers|V| of bulk vertices for|V| between 22 and 56 (SMText). As shown infigure 4, S∣ ∣clearly tends to
increase with|V| in both theT=0 andT>0 regimes. Indeed, themajority of 56-vertex graphs attain all
possible 5!=120 permutations whenT>0, thus directly outputting S5 with fewer vertices than any of the
S5-generating concatenations infigure 3.

When repeatedly concatenated, zero-noise randomAFNs generate a large zoo of S5 subgroups. Upon
analysing the random sample infigure 3(B), we foundT=0AFNs generating almost all subgroups of S5,
including the familiarD8 andD10missing from the hexagonal lattices offigure 2(B). This suggests that general
AFNs atT=0 can realise almost any desired group action on repeated concatenation. A less exotic list of groups
is generatedwhenT>0, identical to those infigure 2(B). However, the elements of rarer groups can likely still
be realisedwith high probability providedT is low and the number of concatenations is as few as possible.

Conclusion

Toconclude, recent technological advances in the fabricationof soft [50, 51] andfluid-based [20, 22, 26, 52] active
materials demandnovel theoretical and algorithmic ideas to guide the functional designof autonomous logical units
[13–15], pattern recognition systems [53] and information transport devices operating far from thermal equilibrium.
Vertexmodels that account for the relevant physical conservation laws and locally drivenmatterfluxes offer aflexible
testbed for exploring generic properties and limitations of signal transduction in active systems. Buildingon this
framework, our analysis showshow topological constraints inherent to quasi-incompressibleAFNs canbeutilised to

Figure 4.Efficient generation of permutations in randomAFNs. (A)Example of active flowon a random cubic networkwith 5 inputs
and outputs. (B)Number of distinct permutations realised by a sample of random5-input/output cubic AFNs atfixed numbers of
bulk vertices, at both non-zero (blue diamonds) and zero (red squares)noise strengthT=β−1. Graphswere generated by 10 random
choices of 5 input and output insertions in each of 50 samples of non-isomorphic random cubic graphs, discarding networks
possessing no valid ground state when all inputs are activated (SMText).Markers denote samplemedian, bars are 10%and 90%
quantiles.
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realise the actions of fundamental symmetry groupsunderlyingdiscretemixingprocesses and standard signal
encryptionprotocols, providing a conceptual basis for potential future implementationof suchprocesses using active
matter-baseddevices.

The planar and non-planar network designs proposed and investigated here could be implemented and
tested inmicrofluidic chips, exploiting recent progress in 3Dprinting [54] and in the geometric control of
collective transport in dense suspensions ofmicroorganisms [18, 19] andATP-poweredmicrotubule bundles
[23]. Furthermore, recent progress in experimental realisation of artificialmagnetic and colloidal spin-ice
systems [40, 55, 56] suggests that the input–output spin-icemodel studied here could itself be directly realised.
More broadly, however, the above results establish a direct link between activematter and ostensibly unrelated
mathematical concepts in information and group theory, thus promising novel symmetry-based approaches to
autonomous network design.
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