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The nature of triad interactions in
active turbulence
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Generalised Navier–Stokes (GNS) equations describing three-dimensional active fluids
with flow-dependent narrow spectral forcing have been shown to possess numerical
solutions that can sustain significant energy transfer to larger scales by realising
chiral Beltrami-type chaotic flows. To rationalise these findings, we study here the
triad truncations of polynomial and Gaussian GNS models focusing on modes lying
in the energy injection range. Identifying a previously unknown cubic invariant for
the triads, we show that their asymptotic dynamics reduces to that of a forced rigid
body coupled to a particle moving in a magnetic field. This analogy allows us to
classify triadic interactions by their asymptotic stability: unstable triads correspond to
rigid-body forcing along the largest and smallest principal axes, whereas stable triads
arise from forcing along the middle axis. Analysis of the polynomial GNS model
reveals that unstable triads induce exponential growth of energy and helicity, whereas
stable triads develop a limit cycle of bounded energy and helicity. This suggests
that the unstable triads dominate the initial relaxation stage of the full hydrodynamic
equations, whereas the stable triads determine the statistically stationary state. To test
whether this hypothesis extends beyond polynomial dispersion relations, we introduce
and investigate an alternative Gaussian active turbulence model. Similar to the
polynomial case, the steady-state chaotic flows in the Gaussian model spontaneously
accumulate non-zero mean helicity while exhibiting Beltrami statistics and upward
energy transport. Our results suggest that self-sustained Beltrami-type flows and
an inverse energy cascade may arise generically in the presence of flow-dependent
narrow spectral forcing.

Key words: biological fluid dynamics, complex fluids, turbulence theory

1. Introduction

Originally introduced by Kraichnan (1973) to study energy transfer in inertial
turbulence, the triad truncation projects the fluid dynamics onto three Fourier modes
with wavevectors {k, p, q} such that k + p + q = 0. The truncated dynamics of
isolated triads differs from the exact fluid flow, failing for example to conserve
the topology of the vorticity field (Moffatt 2014b). Notwithstanding, the analysis of
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triadic interactions has yielded important qualitative insights about the direction of
energy transfer in externally forced (Waleffe 1992, 1993) and magnetohydrodynamic
(Lessinnes, Plunian & Carati 2009; Linkmann et al. 2016; Linkmann & Dallas 2017)
turbulence. Kraichnan (1973) combined the triad truncation with absolute equilibrium
considerations to argue against the possibility of an inverse inertial energy cascade
in three-dimensional (3-D) helical turbulence (Brissaud et al. 1973). Direct numerical
simulations of the Navier–Stokes equations (NS) verified later that such turbulence
indeed produces only direct energy and helicity cascades (Borue & Orszag 1997). In
the meantime, Waleffe (1992, 1993) formulated his instability assumption, suggesting
that there exists a subclass of triads capable of transferring energy to larger scales,
but that this subclass is not dominant in isotropic and reflection-invariant turbulence.
To amplify the impact of such upward-cascading triads, Biferale, Musacchio & Toschi
(2012, 2013) studied a projection of the NS equations onto positive helicity states,
which breaks reflection invariance and eliminates triads promoting forward energy
transfer, and found that inverse energy transfer can develop in such a reduced system.
Similar conclusions apply to NS-like equations where the nonlinear term is modified
to weight various types of triadic interactions differently (Sahoo, Alexakis & Biferale
2017). New analytical properties of the triadic system continue to be discovered,
including pseudo-invariants for a subclass of the interactions (Rathmann & Ditlevsen
2017), with direct implications for externally driven turbulence in passive fluids.

Building on work by Moffatt (2014b), we will extend here the analysis of triad
truncations to a class of generalised Navier–Stokes (GNS) equations that constitute
effective phenomenological models (Słomka & Dunkel 2017a,b) for intrinsically
driven chaotic flows in active fluids (Saintillan & Shelley 2008; Brotto et al. 2013;
Marchetti et al. 2013; Giomi 2015), arising from the non-equilibrium stresses exerted
by biological or engineered active components (Mendelson et al. 1999; Dombrowski
et al. 2004; Howse et al. 2007; Walther & Muller 2008). The recent numerical
investigation of a polynomial GNS model (Słomka & Dunkel 2017b) suggested
that active suspensions, such as water-based solutions driven by swimming bacteria
(Sokolov et al. 2007; Dunkel et al. 2013) or microtubule networks (Sanchez et al.
2012), can spontaneously break mirror symmetry and develop upward energy transfer
even in three dimensions. The analysis below rationalises these findings by identifying
a previously unknown cubic invariant, which allows us to classify and contrast the
triad dynamics for the classical Euler and the GNS equations. For the GNS case, we
show that the asymptotic dynamics reduces to that of a forced rigid body coupled
to a particle moving in a magnetic field. For the classical Euler triads, we combine
the cubic invariant with the conservation of in-plane energy and enstrophy (Moffatt
2014b) to characterise in detail the geometry of the solution space.

1.1. Generalised Navier–Stokes equations for active turbulence
Classical turbulence concerns externally driven flows at high Reynolds number (Frisch
2004; Falkovich & Sreenivasan 2006). By contrast, energy injection in suspensions
of self-motile structures (Needleman & Dogic 2017) is delocalised and inherently
coupled to the flow field. For example, swimming microorganisms (Mendelson et al.
1999; Dombrowski et al. 2004; Pedley 2010; Ishikawa et al. 2011; Dunkel et al.
2013) stir the surrounding fluid, but also respond to the flow field and interact through
the fluid. Similar flow-dependent forcing mechanisms are present in suspensions of
artificial microswimmers (Howse et al. 2007; Walther & Muller 2008; Bricard et al.
2013) or adenosine triphosphate-driven microtubule networks (Sanchez et al. 2012).
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When the concentration of such active objects is sufficiently high, self-sustained
chaotic flow patterns emerge; this phenomenon is commonly referred to as active
turbulence nowadays (Wolgemuth 2008; Wensink et al. 2012; Bratanov, Jenko &
Frey 2015; Giomi 2015; Urzay, Doostmohammadi & Yeomans 2017). A striking
difference between classical and active turbulence is that the latter often exhibits
characteristic scales, leading to a preferred eddy size (Sokolov et al. 2007; Sanchez
et al. 2012; Sokolov & Aranson 2012; Wensink et al. 2012; Dunkel et al. 2013).
A minimal phenomenological model combining scale selection with flow-dependent
driving is given by the higher-order GNS equations for the velocity field v(x, t)
(Słomka & Dunkel 2017a,b)

∇ · v = 0, (1.1a)

∂tv + v · ∇v =−∇p+∇ · σ, (1.1b)

where p is the pressure, and the higher-order stress tensor

σ= (Γ0 − Γ2∇
2
+ Γ4∇

4)[∇v + (∇v)>], (1.2)

with ∇2n
≡ (∇2)n, n > 2, accounts effectively for both passive contributions from the

intrinsic solvent fluid viscosity and active contributions representing the stresses
exerted by the microswimmers on the fluid. By construction, equations (1.1)
and (1.2) neglect non-advective nonlinearities such as nematic alignment interactions
that become important at very high swimmer concentrations. Related higher-order
Navier–Stokes models have been studied previously in the context of soft-mode
turbulence and seismic waves (Beresnev & Nikolaevskiy 1993; Tribelsky & Tsuboi
1996; Tribelsky 2008) so that the considerations below may extend to these systems
as well. On a periodic cubic domain, the Fourier representation of (1.1) and (1.2)
reads [

∂

∂t
+ ξ(k)

]
v̂a(k, t)=−i

∑
k+p+q=0

Pab(k)qcv̂
∗

c (p, t)v̂∗b(q, t), (1.3)

where k = |k|, the projector Pab = δab − kakb/k2 enforces incompressibility and the
dispersion relation is given by the polynomial

ξ(k)= Γ0k2
+ Γ2k4

+ Γ4k6, (1.4)

see figure 1(a). Microswimmer activity is modelled by letting Γ2<0, which introduces
a band of linearly unstable modes with ξ(k) < 0, while Γ0 > 0 and Γ4 > 0 represent
damping at large and small scales with ξ(k) > 0. The most unstable wavenumber kΛ
determines the typical eddy size Λ = π/kΛ, the corresponding growth rate sets the
time scale τ =−ξ(kΛ)−1, and we denote by κ the bandwidth of the unstable modes,
see figure 1(b). The parameters (Λ, τ , κ), uniquely determined by (Γ0, Γ2, Γ4),
characterise the resulting flow structures and can be inferred from experimental data
(Słomka & Dunkel 2017b). Numerical simulations showed that the polynomial GNS
model defined by (1.3) and (1.4) exhibits spontaneous mirror symmetry breaking
by developing helical flow structures that are statistically close to Beltrami fields.
The strength of the symmetry breaking is controlled by the active bandwidth κ ,
corresponding to the red domain in figure 1(b). For sufficiently small κ � Λ−1, an
upward energy transfer develops in an otherwise homogeneous and isotropic active
turbulence (Słomka & Dunkel 2017b).
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FIGURE 1. (a) Dispersion relations ξ(k) for the polynomial GNS model (1.4) and the
Gaussian GNS model (5.1). Modes with ξ(k) < 0 define the energy injection and scale
selection domain typical of active turbulence. (b) Illustration of the key model parameters
in 3-D Fourier space. The spectral bandwidth κ defines the width of the unstable
domain II (red), which is localised around the characterised vortex-scale Λ and separates
dissipative Fourier modes at large (region I) and small scales (region III); reproduced with
permission from Słomka & Dunkel (2017b).

1.2. Triad interactions in active turbulence
In this work, we investigate analytically and numerically the dynamical system arising
from the triad truncation of (1.3). In contrast to the approach typically adopted when
studying the inertial energy transfer in classical turbulence, our analysis does not
neglect the linear term ξ(k), although we will later discuss the implications for
the classical case ξ(k) ≡ 0 as well. Specifically, we focus on the subclass of all
possible triad interactions in which one or two ‘legs’ lie in the energy injection
range, while the remaining legs are dissipative. We refer to such triads as ‘active
triads’, to distinguish them from the ‘classical triads’ for which ξ(k)≡ 0. Utilising a
previously unrecognised cubic invariant, we show that the resulting triad dynamics is
asymptotically equivalent to a coupled system of a rigid body and a particle moving
in a magnetic field. This analogy allows us to classify the active triads by their
asymptotic stability: triads forced at the small or large scale are unstable and increase
energy and helicity exponentially, whereas triads forced at the intermediate scale are
stable and develop a limit cycle. This asymptotic behaviour of the active triads is in
stark contrast to the classical triadic dynamics, for which the rigid-body analogy does
not hold in general but whose solutions one can classify using the cubic invariant.
For the untruncated system (1.3), it is plausible that unstable active triads dominate
the initial relaxation characterised by helicity growth, whereas stable active triads
determine the subsequent statistically stationary stage. To support this hypothesis, and
to demonstrate that the predictions of the polynomial model generalise to a broader
class of flow-dependent forcing schemes, we will also consider a non-polynomial
active turbulence model (5.1) which combines the usual viscous dissipation ∼Γ0k2

with a Gaussian forcing term, see blue solid curve in figure 1(a). We will use direct
numerical simulations to show that the Gaussian activity model develops strongly
aligned steady-state velocity and vorticity fields and an inverse energy cascade. The
upward energy transfer is non-inertial, yet the weak dependence of the energy flux
on the wavenumber generates energy spectra that approximately follow −5/3 scaling
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(Kolmogorov 1941) at large wavelengths. These results suggest that Beltrami-type
flows and an inverse energy cascade are generic features of 3-D active turbulence
models with flow-dependent narrow spectral forcing.

2. Triad truncation and its asymptotic dynamics
We introduce the triad truncation of (1.3) for ξ(k) 6= 0, extending the approach of

Kraichnan (1973) who considered the case ξ(k)≡ 0 corresponding to the inertial range
approximation. We adopt the notation and build on the results of Moffatt (2014b).

2.1. Truncation
Triad truncation is the projection of the dynamics (1.3) onto three Fourier modes
{v̂(k, t), v̂(p, t), v̂(q, t)} such that k+ p+ q= 0. The truncation is a first step beyond
full linearisation (which completely decouples the Fourier modes), to keep the smallest
non-trivial portion of the quadratic nonlinearity. The velocity field reduces to

v(x, t)= v̂(k, t)eik·x
+ v̂(p, t)eip·x

+ v̂(q, t)eiq·x
+ c.c., (2.1)

where c.c. denotes complex conjugate terms which ensure that v(x, t) is real. Since the
triad {k, p, q} forms a triangle, it may be taken to lie in the (x, y)-plane by rotating
the coordinate system, implying that the velocity field is independent of the spatial
variable z. This allows one to introduce a streamfunction ψ and write the velocity field
as v= (∂ψ/∂y,−∂ψ/∂x, vz). Thus, rather than working with the representation (2.1),
it is more convenient to introduce the triadic expansions of the scalars ψ and vz
(Moffatt 2014b)

ψ(x, y, t) = Ak(t)eik·x
+ Ap(t)eip·x

+ Aq(t)eiq·x
+ c.c., (2.2a)

vz(x, y, t) = Bk(t)eik·x
+ Bp(t)eip·x

+ Bq(t)eiq·x
+ c.c. (2.2b)

Following step by step the derivation in Moffatt (2014b), the triad truncation of (1.3)
in terms of the complex vectors A= (Ak, Ap, Aq) and B= (Bk, Bp, Bq) results in the
following system of coupled differential equations

IȦ+ DIA = 2∆(IA∗ ×A∗), (2.3a)
Ḃ+ DB = 2∆(B∗ ×A∗), (2.3b)

where ∆= (kxpy − kypx)/2 is the area of the triangle formed by {k, p, q} and

I = diag(k2, p2, q2), D = diag(ξ(k), ξ(p), ξ(q)). (2.4a,b)

The positive and negative entries of D represent dissipation and forcing of the three
modes, respectively. The key difference between the system (2.3) and the classical
triad truncation is the matrix D, which vanishes in the latter case. The typically studied
case D = 0 is suitable for the inertial range considerations in classical turbulence and
arises formally from the truncation of the inviscid Euler equation. In the context of
active turbulence, we are interested in the case D 6= 0.

Energy E and helicity H of the triad are given by Moffatt (2014b)

2E = k2
|Ak|

2
+ p2
|Ap|

2
+ q2
|Aq|

2
+ |B|2, (2.5a)

H = IA ·B∗ + IA∗ ·B. (2.5b)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

27
 F

eb
 2

01
8 

at
 1

8:
19

:5
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.108


Triad interaction in active turbulence 707

In the remainder, we restrict our analysis to the triads obeying

tr(D)= ξ(k)+ ξ(p)+ ξ(q) > 0. (2.6)

Since in a finite spatial domain the number of active modes with ξ(k) < 0 is finite,
this condition is always satisfied for triads with at most two active legs, say ξ(p) < 0
and ξ(k) < 0 but ξ(q) > 0, provided the forcing is sufficiently weak.

Finally, we express the helical decomposition (Constantin & Majda 1988; Waleffe
1992; Alexakis 2017; Biferale, Buzzicotti & Linkmann 2017) in terms of A and B.
Since the triad lies in the (x, y)-plane, the curl eigenmodes can be taken as

h±(k)= ẑ× k̂± iẑ= (−ky, kx,±ik)/k. (2.7)

Projecting v̂(k) onto these eigenmodes gives the helical decomposition

a±(k)=
1
2

h±(k)∗ · v̂(k)=−
i
2
(kAk ± Bk). (2.8)

Analogous expressions hold for p and q.

2.2. Asymptotic rigid-body dynamics: a cubic invariant
Since, according to (2.3), the dynamics of A affects B, but not vice versa, we
study (2.3a) first. In components, equation (2.3a) reads

k2Ȧk + ξ(k)k2Ak = 2∆(p2
− q2)A∗pA∗q

p2Ȧp + ξ(p)p2Ap = 2∆(q2
− k2)A∗qA∗k

q2Ȧq + ξ(q)q2Aq = 2∆(k2
− p2)A∗kA∗p.

 (2.9)

This system has the following three properties:

(i) If the initial conditions are real, then A(t) is real for all t. In this case,
equation (2.3a) reduces to the Euler equations for the rotation of a rigid body.

(ii) The change of variables given by the constant phase shifts (φk, φp, φq)

(A′k, A′p, A′q)= (Ake−iφk , Ape−iφp, Aqe−iφq) where φk + φp + φq = 0 (2.10)

leaves the equations (2.9) unchanged.
(iii) The following identity holds

Im(AkApAq)= |Ak||Ap||Aq| sin(φk + φp + φq)=C exp[−tr(D)t], (2.11)

where C = Im[Ak(0)Ap(0)Aq(0)] and we introduced polar representations Ak =

|Ak|eiφk , etc. Equation (2.11) also implies that

Im(k2Ȧ∗kAk)= k2 det

[
Re Ȧk Re Ak

Im Ȧk Im Ak

]
= 2∆(p2

− q2)C exp[−tr(D)t], (2.12)

where we introduced the real and imaginary components, Ak = Re Ak + i Im Ak.
Analogous expressions hold for Ap and Aq. Equation (2.12) has a useful
geometrical interpretation: it gives the areal velocity (rate at which area is swept
out) as a function of time of the complex trajectory traced out by the mode
Ak(t). Since we focus on triads with tr(D) > 0, this immediately implies that the
mode eventually vanishes, becomes stationary, or its trajectory approaches a line
through the origin.
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The property (i) was pointed out in Waleffe (1992), Moffatt (2014b). The second
property is easily verified by direct substitution. To derive the last property, multiply
the first equation in (2.9) by ApAq, etc., to obtain

k2ȦkApAq + ξ(k)k2AkApAq = 2∆(p2
− q2)|Ap|

2
|Aq|

2

p2AkȦpAq + ξ(p)p2AkApAq = 2∆(q2
− k2)|Aq|

2
|Ak|

2

q2AkApȦq + ξ(q)q2AkApAq = 2∆(k2
− p2)|Ak|

2
|Ap|

2.

 (2.13)

Subtract from each equation its complex conjugate and add the resulting expressions

ȦkApAq + AkȦpAq + AkApȦq + [ξ(k)+ ξ(p)+ ξ(q)]AkApAq − c.c.= 0. (2.14)

Now use the chain rule and substitute ξ(k)+ ξ(p)+ ξ(q)= tr(D)

d
dt
(AkApAq − A∗kA∗pA∗q)=−tr(D)(AkApAq − A∗kA∗pA∗q). (2.15)

Property (iii) then follows from integrating this first-order equation. To derive (2.12),
multiply the first equation in (2.9) by A∗k , etc., subtract from each such obtained
equation its complex conjugate and then use (2.11).

We note that (iii) also implies that Im(AkApAq) is conserved in the inertial range
of classical turbulence, where D = 0 holds. This adds a cubic invariant to a list of
quadratic invariants of the classical triadic system (Waleffe 1992; Moffatt 2014b;
Rathmann & Ditlevsen 2017). In § 4 we combine the cubic invariant with the
conservation of in-plane energy and enstrophy (Moffatt 2014b) to obtain a detailed
geometric classification of the solutions of the system (2.3a) when D = 0.

2.3. Asymptotic dynamics: rigid body and particle in a magnetic field
We use the properties (i)–(iii) to argue that the dynamics (2.9) is asymptotically
equivalent to that of a forced rigid body with principal moments of inertia (k2, p2, q2).
Since we consider triads for which tr(D) > 0, equation (2.11) suggests that the phase
curves of (2.9) approach the following algebraic subset S at an exponential rate

Im(AkApAq)= |Ak||Ap||Aq| sin(φk + φp + φq)= 0. (2.16)

For the purposes of asymptotic analysis, we assume it is sufficient to consider initial
conditions A(0) lying on the attractor S. There are two possibilities:

|Ai| = 0 for some i ∈ {k, p, q} or φk + φp + φq = nπ. (2.17a,b)

Regardless which of the three conditions A(0) satisfies, the property (ii) implies it
is always possible to perform a change of variables that makes A(0) a real vector
without altering the dynamics (2.9). But then it follows from property (i) that A(t) is
real for all t. The asymptotic dynamics of the complex system (2.9) therefore becomes
effectively equivalent to that of the real system

Iω̇+ DIω= Iω×ω, (2.18)

where ω= (ωk, ωp, ωq) is a real vector. Equation (2.18) has the structure of the Euler
equations for a forced rigid body with inertia tensor I and angular velocity ω. When a
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triadic leg lies in the active or passive range, the rigid body is either forced or
damped along the corresponding axis of inertia. Importantly, the forcing/damping
is proportional to the component of angular momentum Iω along that axis. The
system (2.18) admits exact solutions corresponding to exponential growth or decay
of rotations about one principal axis only, for example ω= c(e−Dkk t, 0, 0).

We now focus on the asymptotic dynamics of the system (2.3b) for B. Since by
the above analysis A can be eventually taken to be the real vector ω, the real and
imaginary parts of B asymptotically decouple into two equations

Re Ḃ+ D Re B = Re B×ω, (2.19a)
Im Ḃ+ D Im B = −Im B×ω. (2.19b)

The first equation has the structure of Newton’s equations for a forced particle with
velocity u=Re B and charge +1 moving in a magnetic field ω. The second equation
describes an analogous dynamics with velocity Im B and charge −1. Since for real-
valued ω the helicity (2.5b) is determined by the real part of B, we may conclude that
the triadic system (2.3), in the long-time limit, becomes equivalent to the following
equations for the real vectors ω and u

Iω̇+ DIω = Iω×ω, (2.20a)
u̇+ Du = u×ω. (2.20b)

The second equation means that the angular velocity ω of the forced rigid body acts
as a magnetic field for a forced particle moving with velocity u. In this notation, the
triad helicity is the dot product between the rigid-body angular momentum and the
particle velocity

H = 2Iω · u. (2.21)

Thus, the helicity is positive when the particle moves in the direction of the angular
momentum and negative when it moves in the opposite direction.

3. Triad classification
We would like to classify active triads according to their long-time behaviour; we

call triads stable or unstable if they tend to produce bounded or unbounded energy,
respectively. It is useful to develop first an intuitive understanding based on the
asymptotic correspondence with the ‘rigid body and a particle in a magnetic field’
system (2.20). Subsequently, we will confirm the intuitive picture through explicit
numerical simulations.

Without forcing, D = 0 in (2.20a), the rigid-body dynamics admits three fixed
points, which correspond to constant angular velocity rotation about one of the three
principal axes. The rotations about the small (p2) or large (q2) axis are stable fixed
points, whereas rotation about the middle axis (k2) is unstable (Arnold 1989). With
forcing, D 6= 0, the linear part of (2.20a) promotes exponential growth of the mode
for which Dii < 0 and damping of the remaining modes. It is conceivable that, when
combined with the Eulerian nonlinearity, the coupled dynamical system (2.20), and
hence the system (2.3), becomes unstable (asymptotically produces infinite energy)
when the rigid body is forced at the small or large principal axis, for in this case
the nonlinearity does not counteract the exponential growth. However, when forced at
the middle principal axis, the nonlinearity should induce motion about the remaining
axes. Since these axes are dissipative, the system should soon realign with the middle
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FIGURE 2. Numerical simulations of (2.3) with polynomial dispersion (1.4) initiated with
random complex initial conditions show that active triads (p< k < q) are unstable when
forced at large wavenumbers q. Energy and helicity increase exponentially (a), reflecting
the exponential growth of the forced helical mode (d) and underdamped decay of the
passive helical modes (b,c). Parameters: {k, p, q} = [(−5, 9, 0), (1, 2, 0), (4,−11, 0)], box
size L= 24Λ.

principal axis, until the nonlinearity becomes dominant again, and so on. Numerical
investigations presented in § 3.2 suggest that the dynamics (2.3a) indeed approaches a
limit cycle, although we do not rule out the possibility of more complicated attractors
for some particular triads and parameters Dii.

In all numerical simulations of (2.3) we use the polynomial dispersion relation ξ(k)
given by (1.4) with parameters (Γ0, Γ2, Γ4) corresponding to the characteristic triple
(Λ= 75 µm, τ = 6.4 s, κ = 8.4 mm−1), as studied in Słomka & Dunkel (2017b). For
time stepping, we use the classical Runge–Kutta method (RK4).

3.1. Unstable triads: rigid body forced at the small or large principal axis
Suppose the triadic system is forced at the small scale q, implying that Dqq < 0 but
Dkk > 0 and Dpp > 0 in (2.3). The rigid-body correspondence suggests the q-mode
should become unstable as the exponential growth and the nonlinearity reinforce each
other. Indeed, A= c(0, 0, e−Dqqt) is an exact unstable solution of (2.3a). The remaining
part of the triadic system (2.3) is the equation (2.3b) for B. In the long-time limit,
when A→ c(0, 0, e−Dqqt), we find the exact solution B= c′(0, 0, e−Dqqt). Our numerical
simulations suggest that this solution is an attracting phase curve for generic initial
conditions, confirming the rigid-body correspondence in this case, see figure 2.
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FIGURE 3. Numerical simulations of (2.3) with polynomial dispersion (1.4) initiated with
random complex initial conditions show that active triads (p< k < q) are unstable when
forced at small wavenumbers p. Energy and helicity increase exponentially (a), reflecting
the exponential growth of the forced helical mode (c) and overdamped decay of the
passive helical modes (b,d). Parameters: {k, p, q}= [(−14,−13, 0), (4,−11, 0), (10, 24, 0)],
box size L= 24Λ.

The asymptotic growth of the forced modes Aq and Bq implies that both energy
and helicity increase exponentially, as confirmed in figure 2(a). Thus, at the level
of a single triad, the mirror-symmetry breaking may be generated by the following
process in the full model (1.3): the rigid body quickly approaches a state in which it
is rotating about the q-axis, with the angular speed growing exponentially, while the
particle accelerates in the direction of q or in the direction directly opposite, producing
positive or negative helicity, respectively, depending on initial conditions. Spontaneous
generation of non-zero helicity thus is a direct consequence of forcing through a linear
instability.

A similar description characterised by exponential growth of energy and helicity
applies when active triads are forced at the large scale p, see figure 3. What
distinguishes the two types of forcing is the nature of the damping of the dissipative
modes. When forced at large wavenumbers q, the decay is underdamped exhibiting
oscillations, figure 2(b,c), whereas forcing at the small wavenumbers p results in
overdamped dynamics, as shown in figure 3(b,d), a direct consequence of the
dependence of the damping force on the wavenumber magnitude. The asymptotic
response of the system (2.3) when two modes are forced is identical to the above
scenarios when one mode is forced, as discussed in the appendix A.
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FIGURE 4. Numerical simulations of (2.3) with polynomial dispersion (1.4) initiated
with random complex initial conditions show that active triads (p < k < q) are stable
when forced at intermediate scales k. The energy and helicity (a) as well as the
amplitudes of the helical modes (b–d) stay bounded and soon take the form of very
rapid charge–discharge bursts, reflecting the collapse of the dynamics onto a limit
cycle, see figure 5. Note the different y-scales in (b–d), which indicate that the
energy produced by the intermediate scale is primarily send to large scales. This is a
manifestation of the upward transfer at the level of a single triad. Parameters: {k, p, q} =
[(12, 1, 0), (3, 7, 0), (−15,−8, 0)], box size L= 24Λ.

3.2. Stable triads: rigid body forced at the middle principal axis
For a rigid body forced at the middle principal axis we expect periodic behaviour
since the nonlinearity destabilises the action of the linear forcing in this case.
Numerical simulations of (2.3) with Dkk < 0 but Dpp > 0 and Dqq > 0 show that
the system equilibrates by developing periodic bursts characterised by alternating
exponential growth and decay of energy, helicity and the helical modes, suggesting
the existence of a stable limit cycle, see figure 4.

To numerically verify the existence of a limit cycle in the system (2.3a) initiated
with generic complex initial conditions, we now illustrate how to determine the three-
dimensional real subspace onto which the system converges. We first note that the
numerical solutions obey the property (iii) until the machine precision is reached; see
figure 5(a). As a consequence, equation (2.12) implies that each mode either vanishes,
stops moving or its trajectory in the complex plane approaches a line through the
origin. In the present case of forcing the intermediate wavenumber k all three modes
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FIGURE 5. Asymptotic analysis of the results in figure 4: the dynamics of stable
active triads eventually collapses onto a limit cycle in a real three-dimensional subspace.
(a) The cubic quantity Im(AkApAq) decays in accordance with (2.11) until the machine
double-precision limit is reached. (b) Complex trajectories traced out by the modes A(t)=
(Ak(t),Ap(t),Aq(t)) approach straight lines at an exponential rate. (c) Trajectories in (b) for
t> 100τ . The lines are characterised by the angles (φk, φp, φq)= (0.759,−0.185,−0.574),
such that φk + φp + φq = 0, as required by vanishing of Im(AkApAq). (d) The phases
define the change of variables (A′k, A′p, A′q)= (e

−iφk Ak, e−iφp Ap, e−iφq Aq) and (B′k, B′p, B′q)=
(e−iφk Bk, e−iφp Bp, e−iφq Bq), which leaves the differential equations (2.3) unchanged, but
rotates the complex trajectories so that the variables (A′k(t),A

′

p(t),A
′

q(t)) become real in the
limit t→∞. (e) In this three-dimensional real subspace, A′(t) collapses onto a stable limit
cycle. ( f –h) Projections of the limit cycle of A′(t) onto the coordinate planes. (i) B′(t)
also develops a limit cycle, shown is the real part. ( j–l) The corresponding projections of
Re B′(t) onto the coordinate planes.
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follow the last scenario: the complex trajectories (Ak(t), Ap(t), Aq(t)) become straight
lines, see figure 5(b), with well-defined phase angles (φk, φp, φq), that satisfy φk +

φp + φq = 0, see figure 5(c). We use these angles to define the change of variables
(A′k, A′p, A′q) = (e

−iφk Ak, e−iφpAp, e−iφqAq) and (B′k, B′p, B′q) = (e
−iφk Bk, e−iφpBp, e−iφqBq).

This change of variables does not affect (2.3), it only rotates the complex trajectories
so that the three modes (A′k,A′p,A′q) approach a real three-dimensional subspace at an
exponential rate, figure 5(d). The asymptotic trajectory in that subspace reveals a limit
cycle, figure 5(e–h), as expected from the rigid-body correspondence. The limit cycle
represents exponential growth of the rotation rate about the k-axis until the nonlinear
effects destabilise it, followed by a rapid discharge along the two dissipative axes.
The discharge along the q-axis represents energy transfer to small scales, while the
discharge along the p-axis represents energy transfer to large scales. This behaviour
likely explains, at the level of individual triadic interactions, the origin of the steady-
state upscale energy transfer in the full system (1.3).

3.3. Only stable triads admit a fixed point
We still mention that the triadic system (2.3) forced at the intermediate wavenumber
(and only in that case) exhibits a family of fixed points (see appendix B for details)Ak

Ap

Aq

 = √α

√
|p2 − q2|/|Dkk|/k√
|q2 − k2|/|Dpp|/p√
|k2 − p2|/|Dqq|/q

 , (3.1a)

Bk

Bp

Bq

 =
k
√
|p2 − q2|/|Dkk|[c1 + ic2(−k2

+ p2
+ q2)]

p
√
|q2 − k2|/|Dpp|[c1 + ic2(k2

− p2
+ q2)]

q
√
|k2 − p2|/|Dqq|[c1 + ic2(k2

+ p2
− q2)]

 , (3.1b)

where

α =−det(ID)/(4∆2
|p2
− q2
||q2
− k2
||k2
− p2
|). (3.1c)

The arbitrary real constants c1 and c2 determine energy and helicity. The property (ii)
in § 2.2 also implies that we can rotate the solution in the complex plane provided
the three phases sum to zero. The fixed points are unstable to linear perturbations.

4. Implications for classical triads
In this section, we classify the geometry of the solutions of (2.3a) for the case D=0

corresponding to the triad truncation of the Euler equations

IȦ= 2∆(IA∗ ×A∗). (4.1)

The system (4.1) exhibits three constants of motion

k2
|Ak|

2
+ p2
|Ap|

2
+ q2
|Aq|

2
= E

k4
|Ak|

2
+ p4
|Ap|

2
+ q4
|Aq|

2
=Ω

AkApAq − A∗kA∗pA∗q =C.

 (4.2)

The quadratic constants E and Ω were found by Moffatt (2014b), the new cubic
constant C was derived in § 2.2 above. The triple (4.2) suggests that the system (4.1)
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FIGURE 6. Types of orbits A(t) in the complex plane for the classical system (2.3a) with
D = 0 include: fixed points (not shown), circular orbits for initial conditions in the set
Z3 (a), orbits resulting from trajectories on a three-torus for generic initial conditions (b),
straight lines for initial conditions with C= 0 in (4.2), in which case the system reduces
to the classical Euler equations for a rigid body (c).

is confined to a three-dimensional surface in a six-dimensional phase space. We next
summarise a series of results classifying the solutions to (4.1), which are rigorously
proven in appendix C.

In the six-dimensional phase space for the system for A(t), we consider separately
the following subsets of R6

Z1 = {Ap = 0, Aq = 0} ∪ {Aq = 0, Ak = 0} ∪ {Ak = 0, Ap = 0}, (4.3a)
Z3 = {|Ak||Ap||Aq| 6= 0,Re(AkApAq)= 0}

∩
{
|Aq|

2
|Ak|

2k2q2(k2
− q2)+ |Ap|

2
|Ak|

2p2k2(p2
− k2)

+ |Ap|
2
|Aq|

2q2p2(q2
− p2)= 0

}
. (4.3b)

Initial conditions in Z1 correspond to fixed points of (4.1). For initial conditions in Z3,
the system (4.1) is solved exactly by a quasi-periodic motion with constant amplitudes
and phases evolving linearly in time according to

φk =±[(p2
− q2)|Ap||Aq|/(k2

|Ak|)]t+ ck

φp =±[(q2
− k2)|Aq||Ak|/(p2

|Ap|)]t+ cp

φq =±[(k2
− p2)|Ak||Ap|/(q2

|Aq|)]t+ cq,

 (4.4)

where the equalities hold modulo 2π and the constants ci are chosen so that φk+φp+

φq=π/2 or φk+φp+φq=3/2π holds, as required by the definition of Z3. Importantly,
for initial conditions in Z3 the sum of phases is conserved, so the system (4.1) stays
in Z3 and the phase space in fact can be reduced to a torus T2. A typical trajectory for
initial conditions on Z3 is shown in figure 6(a). In summary, fixed points and quasi-
periodic motion completely characterise the solutions of (4.1) for initial conditions in
Z1 and Z3, respectively.

We now consider the most important generic case of initial conditions in the
complement N =R6

\(Z1 ∩ Z3). In N, the differential of (4.2) has full rank, implying
that (4.2) defines a three-dimensional manifold in N, that is, the solutions of (4.1)
are confined to a smooth three-dimensional surface. For generic values of the triple
(E, Ω, C), this surface is in fact a three-torus T3 (or several copies of such tori).
A typical trajectory in such a generic case is shown in figure 6(b). There are also
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special cases of (E, Ω,C) for which the manifold looks like (copies of) a product of
a line and a torus R×T2 and/or (copies of) T3. The reader is referred to appendix C
for more details and rigorous proofs.

Finally, we still note that, since the solutions A(t) remain continuous and bounded
for all t, the linear system for B(t) can be solved exactly, at least formally, in terms
of time-ordered matrix exponentials (Gantmacher 2000). In the future, it would be
interesting to explore in detail potential relations between the above results and recent
studies of turbulence in two-dimensional three-component flows (Biferale et al. 2017).

5. Gaussian active turbulence model
The behaviour of individual active triads suggests that the mirror-symmetry breaking

and upward energy transfer observed in the GNS system (1.3) are first triggered by
unstable active triads and then sustained by stable active triads. Moreover, these effects
likely hold for a broader class of forcing schemes provided the dispersion relation
ξ(k) in (1.3) introduces a narrow band of unstable modes. To test this hypothesis,
we numerically study an alternative GNS model where the dispersion relation has the
form

ξ(k)= Γ0k2
− α exp[−(k− k0)

2/(2σ 2)]. (5.1)

The main difference between (5.1) and the polynomial model (1.1) is that the Gaussian
activity model (5.1) behaves like a Newtonian fluid with viscosity Γ0 at both large
and small scales, see figure 1(a). Equation (5.1) leads to an integro-partial differential
equation in position space. In our simulations, we always fix Γ0 = 10−6 m2 s−1,
corresponding to the kinematic viscosity of water. To relate the parameters (α, k0, σ )
to the characteristic triple (Λ, τ , κ), we must solve

ξ ′(kΛ)= 0, τ =−ξ−1(kΛ), ξ(k±)= 0, κ = k+ − k−, (5.2a−d)

where kΛ = π/Λ is the most unstable wavenumber and k± are the non-trivial zeros
of the dispersion relation ξ(k). Since no closed-form solutions exist, we solve the
system (5.2) numerically. We set (α, k0, σ )= (2.544165 ms−1, 52.36 mm−1, 10 mm−1),
yielding (Λ, τ , κ) = (65.14 µm, 0.1 s, 1.94 mm−1), which is in the range of
typical bacterial suspension values (Słomka & Dunkel 2017b). Non-dimensionalising
according to

x=
L

2π
x̃, t= Tt̃, v =

L/(2π)

T
ṽ, k=

2π

L
k̃, (5.3a−d)

gives, after dropping the tildes and setting T = (L/2π)2/Γ0,

ξ(k)= k2
− Tα exp{−[(2π/L)k− k0]

2/(2σ 2)}. (5.4)

We simulate the dimensionless system in the vorticity-vector potential formulation
as described in (Słomka & Dunkel 2017b) using the Fourier pseudo-spectral method
with the ‘3/2’-rule (Canuto et al. 1988), discretisation size N = 2433 and time step
dt = 5× 10−4τ/T . We set the domain size L= 42Λ, which corresponds to the most
unstable wavenumber at kΛ= 21. For time stepping, we use a third-order semi-implicit
backward differentiation scheme (Ascher, Ruuth & Wetton 1995). For this choice of
parameters, the resulting flow patterns arise from the balance between the active and
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FIGURE 7. Simulation results for the Gaussian model (5.1). (a) Energy and helicity time
series show the initial relaxation phase and the subsequent statistically stationary stage.
Time instants and interval labels refer to figure 8. (b) Normalised histograms of the
angles between velocity v and vorticity ω at three different time instants confirm that
mirror-symmetry breaking is achieved by developing Beltrami-type flows, where velocity
and vorticity are nearly aligned. (c) Snapshot of the helicity density field at t = 60τ
showing spontaneous symmetry breaking towards positive values.

passive stresses mediated by the nonlinear advection. Hence, advection and stresses
are equally important, suggesting an effective Reynolds number of the order of unity.
Indeed, adopting the standard definition of the integral-scale Reynolds number Re
(Frisch 2004), we find that Re∼ 4.7 for the simulations in figure 7.

To discuss the results of numerical simulations, we use the helical decomposition
(Constantin & Majda 1988; Waleffe 1992) to expand the velocity field in an
orthogonal basis of curl operator eigenvectors h±

v(t, k)= u+(t, k)h+(k)+ u−(t, k)h−(k), (5.5)

where h± satisfy ik × h± = ±kh± with k = |k|. The decomposition (5.5) yields a
splitting into cumulative energy and flux contributions e±(k) and Π±(k) from helical
modes u±(k) lying on the wavenumber shell k. Specifically, Π+(k)=

∑4
i=1 Π

i(k) and
Π−(k)=

∑8
i=5Π

i(k), where Π i(k) is one of the eight types of helicity-resolved fluxes
and the summation follows the binary ordering of Waleffe (1992). To analyse which
triads are spontaneously activated at various time instants, we consider combinations
K, P, Q ∈ {I, II, III} of the three spectral domains in figure 1(b), with region I
corresponding to large scales, II to the energy injection range and III to small scales,
and distinguish modes by their helicity index sK, sP, sQ ∈ {±}. The helicity-resolved
integrated energy flow into the region (K, sK) due to interaction with regions (P, sP)

and (Q, sQ) is given by

T
sK sPsQ
KPQ =

1
2(T̃

sK sPsQ

KPQ + T̃
sK sQsP

KQP ), (5.6)

where the unsymmetrised flows are defined by

T̃
sK sPsQ

KPQ =−

∫
d3x vsK

K · [(v
sP
P · ∇)v

sQ
Q ], (5.7)

with v
sK
K (t, x) denoting the helical Littlewood–Paley velocity components, obtained

by projecting on modes of a given helicity index sK ∈ {±} restricted to the Fourier
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FIGURE 8. Numerical results for the Gaussian activity model (5.1) based on the
simulation in figure 7. Instantaneous (a–f ) and average (g–i) energy spectra, fluxes and
dominant integrated triads for time instants and intervals indicated in figure 7(a). Vertical
dashed lines mark the energy injection range.

space domain K. Entries of the tensor T are large when the corresponding triads
are dominant. For example, a positive (negative) value of T+++I,II,III indicates that energy
flows into (out of) large scale (I) positive helicity modes due to interactions of these
modes with positive helical modes corresponding to energy injection range (II) and
small scales (III).

Our numerical simulations show that the Gaussian forcing model (5.1) and the
polynomial model (1.4) exhibit qualitatively similar behaviour, cf. figures 7, 8 and
corresponding plots in Słomka & Dunkel (2017b). The Gaussian activity model
also undergoes mirror-symmetry breaking and spontaneously develops a non-zero
net helicity, by realising chaotic Beltrami-type flow states in which velocity v and
vorticity ω are almost aligned, see figure 7. Figure 8 shows instantaneous and
time-averaged energy spectra, energy fluxes and the dominant entries of the integrated
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triadic energy flows (5.6) for the time instants and intervals marked in figure 7(a).
The energy spectra in figures 8(a,d,g) indicate that the system spontaneously selects
positive helicity modes at all relevant wavenumbers in this particular realisation,
while the energy fluxes in figures 8(b,e,h) are always negative at scales larger than
the energy injection range (vertical dashed lines), demonstrating the inverse energy
cascade. The corresponding helicity fluxes are shown in figure 11 of the appendix.
Similarly to the polynomial case, the upward energy transfer in the Gaussian model
is not inertial, as indicated by the wavenumber dependence of the energy fluxes. In
particular, it is not necessary to introduce hyper-viscosity at large scales to arrest the
upward transfer, and the instantaneous and averaged energy fluxes can be computed
directly from the balance between the nonlinear and dissipative and active terms
according to equations (S23) and (S33) in Słomka & Dunkel (2017b). Unlike the
polynomial model, however, the long-time spectra of the Gaussian model develop
an approximate Kolmogorov −5/3 scaling at large wavelengths, see figure 8(d). We
attribute this effect to the weak dependence of the energy flux on the wavenumber.
More importantly, the dominant integrated energy flows shown in figure 8(c, f,i),
where broken arrows indicate the direction of the inter-scale energy transfer and their
thickness the relative magnitude of the transfer, are in agreement with the hypothesis
that unstable triads drive the initial relaxation until stable triads become dominant
and sustain the statistically stationary chaotic flow states.

6. Conclusions

We derived a previously unknown cubic invariant for the triad dynamics and used it
to analyse and compare the triad truncations of two generalised Navier–Stokes (GNS)
models and the classical Euler equations. In the GNS case, we focused on active triads
with one or two modes in the energy injection range and found that their dynamics is
asymptotically equivalent to a coupled system consisting of a forced rigid body and a
forced particle in a magnetic field. This analogy allows one to distinguish unstable and
stable active triads, based on whether the rigid body is forced along the small/large
principal axes (large/small scales) or the middle principal axis (intermediate scales),
respectively. The dynamics of the active GNS triads differs strongly from those of
the classical Euler triads, for which the rigid-body analogy does not hold in general
and solutions are confined to a three-torus for generic initial conditions (§ 4).

The existence of unstable and stable triads explains recent numerical results in
Słomka & Dunkel (2017b), which suggested that the polynomial 3-D GNS models
can spontaneously break mirror symmetry by developing Beltrami-like flow states
and upward energy transfer: unstable triads induce exponential helicity growth from
small perturbations and dominate the initial relaxation. Because of the nonlinear
coupling between the triads, the stable triads eventually become dominant and the
system settles into a statistically stationary chaotic flow state. In the stationary regime,
energy is transferred from the spectral injection range to both large and small scales.
This is consistent with the behaviour of stable triads, which develop a limit cycle.
In the rigid-body analogy, this limit cycle represents a periodic two-phase process.
During the first phase, the rigid body accumulates energy by increasing its spinning
rate along the middle principal axis; during the second phase, the accumulated
energy is released along the small and large principal axes. This release of the
energy corresponds to energy transfer to large and small scales in the untruncated
hydrodynamic equations. We confirmed the above picture for an alternative GNS
model (5.1), which combines viscous dissipation and active Gaussian forcing, by

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

27
 F

eb
 2

01
8 

at
 1

8:
19

:5
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
10

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.108


720 J. Słomka, P. Suwara and J. Dunkel

computing the integrated energy flow between the three spectral domains (large
scales, energy injection range and small scales). Unlike the previously studied
polynomial model, the Gaussian active turbulence model develops energy spectra
that approximately follow Kolmogorov’s −5/3 scaling at large wavelengths, which
may be desirable in applications to microbial suspensions.

More broadly, the above results suggest that parity violation and an inverse energy
cascade may be generic features of turbulence models where the forcing term depends
on the velocity field. The degree to which the mirror symmetry is broken or the
proportion of energy that is transferred to small and large scales should depend on the
particular forcing considered. The two GNS models (1.4) and (5.1) analysed here are
basic examples that introduce a bandwidth of linearly unstable modes. These models
can help guide theoretical efforts to find other forcing schemes that realise specific
desired features, such as the magnitude of the upward transfer or its inertial character.
Biological and engineered active fluids are promising candidates for the experimental
implementation, as GNS models can be fitted to reproduce experimentally observed
velocity correlation functions (Słomka & Dunkel 2017b). However, the general nature
of the triad-based arguments presented here suggests that other non-equilibrium fluids
might also be capable of breaking mirror symmetry and developing upward energy
transfer. Last but not least, our results indicate that helical flows (Moffatt 2014a)
and the Beltrami-type flows in particular, which have been primarily studied as exact
stationary solutions of the Euler equations (Arnold & Khesin 1999) and in the context
of magnetodynamics (Marsh 1996; Yoshida et al. 2001; Hudson, Hole & Dewar 2007),
could be more ubiquitous than previously thought.
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Appendix A. Triads forced at two legs
Figures 9 and 10 show the results of numerical simulations of the system (2.3) when

it is forced at intermediate and small scales (figure 9) and at large and intermediate
scales (figure 10). In both cases, even though the intermediate scale is forced, it is
eventually suppressed and the asymptotic behaviour becomes identical to the single-
mode forcing case, as described in § 3.1.

Appendix B. Fixed points of the active triadic system and their linear stability
We show that the triadic system (2.3) forced at the intermediate wavenumber

exhibits a linearly unstable fixed point. To this end, we first look for time-independent
solutions of (2.3a), satisfying

DIA= 2∆(IA∗ ×A∗). (B 1)

Remembering the convention p< k< q and using the polar representation Ak= |Ak|eiφk

we demand that

−sk|Dkk|k2
|Ak|eiφ

= 2∆|p2
− q2
||Ap||Aq|, (B 2)

sp|Dpp|p2
|Ap|eiφ

= 2∆|q2
− k2
||Aq||Ak|, (B 3)

sq|Dqq|q2
|Aq|eiφ

= 2∆|k2
− p2
||Ak||Ap|, (B 4)
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FIGURE 9. Numerical simulations of the triad dynamics (2.3) initiated with generic
complex initial conditions show that active triads (p < k < q) are unstable when forced
at intermediate k and small q scales. Energy and helicity increase exponentially (a),
reflecting the exponential growth of one of the forced modes (d) and underdamped decay
of the remaining forced mode (b) and the passive mode (c). Parameters: {k, p, q} =
[(4,−11, 0), (−9,−1, 0), (5, 12, 0)], box size L= 24Λ.

where sk = 1 if Dkk > 0 and sk =−1 if Dkk < 0 and φ = φk + φp + φq. Matching the
phases, requires that

φ + φ−sk = φ + φsp = φ + φsq = 0, (B 5)

where the equalities hold modulo 2π. The only way to satisfy the above restrictions
is to choose sk = −1 and sp = sq = 1, that is, a fixed point can exist only when
the intermediate wavenumber is forced. Of course, we must then have φ = 0, which
leaves a two-parameter family of fixed points. Without loss of generality, we can set
all phases to zero φk = φp = φq = 0. Matching the amplitudes gives

|Dkk|k2
|Ak| = 2∆|p2

− q2
||Ap||Aq|, (B 6)

|Dpp|p2
|Ap| = 2∆|q2

− k2
||Aq||Ak|, (B 7)

|Dqq|q2
|Aq| = 2∆|k2

− p2
||Ak||Ap|. (B 8)
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FIGURE 10. Numerical simulations of the triad dynamics (2.3) initiated with generic
complex initial conditions show that active triads (p < k < q) are unstable when forced
at large p and intermediate k scales. Energy and helicity increase exponentially (a),
reflecting the exponential growth of one of the forced modes (c) and overdamped decay
of the remaining forced mode (b) and the passive mode (d). Parameters: {k, p, q} =
[(5, 11, 0), (8, 8, 0), (−13,−19, 0)], box size L= 24Λ.

Furthermore, we still have the following two identities

−|Dkk|k2
|Ak|

2
+ |Dpp|p2

|Ap|
2
+ |Dqq|q2

|Aq|
2
= 0, (B 9)

−|Dkk|k4
|Ak|

2
+ |Dpp|p4

|Ap|
2
+ |Dqq|q4

|Aq|
2
= 0, (B 10)

which represent energy and in-plane enstrophy balance: energy and enstrophy
produced at the wavenumber k are dissipated at wavenumbers p and q. The two
constraints leave one degree of freedom represented by the line

|Ak|
2

|Ap|
2

|Aq|
2

= α


|p2
− q2
|

|Dkk|k2

|q2
− k2
|

|Dpp|p2

|k2
− p2
|

|Dqq|q2


. (B 11)
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The positive constant α is fixed by inserting the above expression into (B 6), which
then yields for A the fixed point

Ak

Ap

Aq

= α1/2



√
|p2 − q2|

|Dkk|k2√
|q2 − k2|

|Dpp|p2√
|k2 − p2|

|Dqq|q2


, (B 12)

where

α =−det(ID)/(4∆2
|p2
− q2
||q2
− k2
||k2
− p2
|). (B 13)

All other fixed points are obtained by the transformationAk

Ap

Aq

→
Akeiφk

Apeiφp

Aqeiφq

 , (B 14)

where φk + φp + φq = 0.
We now turn to the fixed points of the system for B(t)= Re B(t)+ i Im B(t), that

is, we look for time-independent solutions of (2.3b) with A given by (B 12). In this
case, the system decouples into two linear equations for the real and imaginary parts

D Re B = 2∆Re B×A, (B 15)
D Im B = −2∆ Im B×A. (B 16)

In both cases the null-space is one-dimensional, generated by the vectors

Re Bk

Re Bp

Re Bq

=



k

√
|p2 − q2|

|Dkk|

p

√
|q2 − k2|

|Dpp|

q

√
|k2 − p2|

|Dqq|


,

Im Bk

Im Bp

Im Bq

=



k

√
|p2 − q2|

|Dkk|
(−k2
+ p2
+ q2)

p

√
|q2 − k2|

|Dpp|
(k2
− p2
+ q2)

q

√
|k2 − p2|

|Dqq|
(k2
+ p2
− q2)


. (B 17a,b)

The fixed point for B is obtained by combining the real and imaginary parts,

Bk

Bp

Bq

 α1/2



k

√
|p2 − q2|

|Dkk|
[c1 + ic2(−k2

+ p2
+ q2)]

p

√
|q2 − k2|

|Dpp|
[c1 + ic2(k2

− p2
+ q2)]

q

√
|k2 − p2|

|Dqq|
[c1 + ic2(k2

+ p2
− q2)]


, (B 18)
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724 J. Słomka, P. Suwara and J. Dunkel

where c1 and c2 are some arbitrary real constants and the prefactor α1/2 has been
factored out for convenience. Note that if we started with any other fixed point for A
obtained by the transformation (B 14), then the above argument still applies, provided
we apply the same phase transformation to the vector B. The real constants c1 and c2
set the helicity and energy of the fixed point. Indeed

H = 2IA ·Re B= 2αc1

(
k2 |p

2
− q2
|

|Dkk|
+ p2 |q

2
− k2
|

|Dpp|
+ q2 |k

2
− p2
|

|Dqq|

)
, (B 19)

and

2E
α
=
|p2
− q2
|

|Dkk|
+
|q2
− k2
|

|Dpp|
+
|k2
− p2
|

|Dqq|

+ c2
1

(
k2 |p

2
− q2
|

|Dkk|
+ p2 |q

2
− k2
|

|Dpp|
+ q2 |k

2
− p2
|

|Dqq|

)
+ c2

2

(
k2 |p

2
− q2
|

|Dkk|
(p2
+ q2
− k2)2 + p2 |q

2
− k2
|

|Dpp|
(q2
+ k2
− p2)2

+ q2 |k
2
− p2
|

|Dqq|
(k2
+ p2
− q2)2

)
. (B 20)

We now show that the fixed point for the triadic system (2.3) is linearly unstable by
studying the perturbation A= Ā+ δA around the fixed point Ā given by (B 12). The
real and imaginary parts of the linearised dynamical equation (2.3a) for δA=Re δA+
i Im δA read

Re δȦ+ D Re δA = 2∆I−1(I Re δA× Ā)+ 2∆I−1(IĀ×Re δA), (B 21)
Im δȦ+ D Im δA = −2∆I−1(I Im δA× Ā)− 2∆I−1(IĀ× Im δA). (B 22)

Since these two equations are decoupled, it suffices to show linear instability of the
first equation. The corresponding Jacobian J reads

J =−D − 2∆I−1M ĀI + 2∆I−1M IĀ, (B 23)

where Mw denotes the antisymmetric matrix with components Mab= εacbwc, correspond-
ing to the cross-product with w. Direct computation reveals that the Jacobian has the
following properties

tr(J)=−tr(D), tr(J2)− tr2(J)= 0, det (J)= 4 det (D). (B 24a−c)

We recall the Routh–Hurwitz stability criterion for the eigenvalues of a 3× 3 matrix
M to have negative real parts (Gantmacher 2000)

tr(M) < 0, det (M) < 0, tr(M)[tr(M2)− tr2(M)]>−2 det (M). (B 25a−c)

The Jacobian J satisfies the first condition because of our restriction (2.6), it also
satisfies the second condition because the fixed point only exists for det D< 0. But it
violates the last one, since for the fixed point one always has det D < 0. Thus J has
an eigenvalue with positive or vanishing real part. We now show that the real part is
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Triad interaction in active turbulence 725

always positive, implying that the fixed point is linearly unstable. To this end, note
that the properties (B 24) imply that the characteristic equation of J has the form

det(λI − J)= λ3
+ λ2tr(D)+ 4| det (D)| = 0. (B 26)

Since we assume that tr(D) > 0, this cubic equation has negative discriminant

−16tr3(D)| det (D)| − 432| det (D)|2 < 0, (B 27)

implying that (B 26) has one real root and two non-real complex conjugate roots.
Equivalently, (B 26) must have the form

det(λI − J)= (λ− r1)(λ− r2)(λ− r∗2), (B 28)

where r1 is real and r2 is complex. Thus, we want to eliminate the possibility that
Re(r1)= r1 = 0 or Re(r2)= 0. If r1 = 0, then (B 28) reduces to

det(λI − J)= λ(λ− r2)(λ− r∗2)= λ
3
− λ2(r2 + r∗2)+ λ|r2|

2, (B 29)

which is incompatible with (B 26), since | det (D)| 6= 0 for the active triads considered
here. If Re(r2)= 0, then (B 28) reduces to, for some real r,

det(λI − J)= (λ− r1)(λ− ir)(λ+ ir)= λ3
− λ2r1 + λr2

− r1r2, (B 30)

which is also incompatible with (B 26), since imposing that r = 0 to eliminate the
term proportional to λ, also eliminates the constant term. Thus, J has at least one
eigenvalue with positive real part, implying that the fixed point (2.3) is linearly
unstable.

Appendix C. The phase space of the system for A(t) when D = 0

C.1. Geometry of the solutions
Consider the system (2.3a) when D = 0

k2Ȧk = 2∆(p2
− q2)A∗pA∗q

p2Ȧp = 2∆(q2
− k2)A∗qA∗k

q2Ȧq = 2∆(k2
− p2)A∗kA∗p,

 (C 1)

which has the three constants of motion

k2
|Ak|

2
+ p2
|Ap|

2
+ q2
|Aq|

2
= E

k4
|Ak|

2
+ p4
|Ap|

2
+ q4
|Aq|

2
=Ω

AkApAq − A∗kA∗pA∗q =C.

 (C 2)

The quadratic invariants E and Ω were found by Moffatt (2014b), and the cubic
invariant C was derived in § 2.2.

Equations (C 2) provide three constraints for (Ak, Ap, Aq) ∈ C3
' R6 depending on

(E, Ω, C) ∈ R>0 × R>0 × iR. Denote by M(E,Ω,C) the set defined by these equations.
We will show that for generic values of (E,Ω,C) the set M(E,Ω,C) is a compact three-
dimensional manifold (possibly empty) and that each of its connected components is
a three-torus.
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726 J. Słomka, P. Suwara and J. Dunkel

To show that the system (C 2) defines a manifold in an appropriate subset
of R6, it is enough to show that its differential J has full rank on that subset.
Differentiating (C 2) with respect to ∂Ai and ∂A∗i yields

J =

k2A∗k k2Ak p2A∗p p2Ap q2A∗q q2Aq

k4A∗k k4Ak p4A∗p p4Ap q4A∗q q4Aq

ApAq −A∗pA∗q AkAq −A∗kA∗q AkAp −A∗kA∗p

 . (C 3)

Note that the matrix above is in fact the complexification of J, which has the same
rank. First, consider the minor J123:

J123 = det

k2A∗k k2Ak p2A∗p
k4A∗k k4Ak p4A∗p
ApAq −A∗pA∗q AkAq

= 2p2k2(p2
− k2)A∗p Re(AkApAq). (C 4)

We see that Re(AkApAq) 6= 0 implies that J has full rank. We now consider the various
cases when Re(AkApAq)= 0.

Case 1. Two (or more) modes vanish, say Ap = Aq = 0. Then the last row of J is
zero and thus J can have rank at most 2. Therefore, we will consider the subset

Z1 = {Ap = 0, Aq = 0} ∪ {Aq = 0, Ak = 0} ∪ {Ak = 0, Ap = 0} (C 5)

of R6 separately.
Case 2. One mode vanishes, say Ak = 0 but Ap 6= 0 and Aq 6= 0. The differential J

takes the form

J|Ak=0 =

 0 0 p2A∗p p2Ap q2A∗q q2Aq

0 0 p4A∗p p4Ap q4A∗q q4Aq

ApAq −A∗pA∗q 0 0 0 0

 . (C 6)

Taking linear combination of the first two rows gives

J̃|Ak=0 =

 0 0 0 0 q2A∗q(p
2
− q2) q2Aq(p2

− q2)

0 0 p4A∗p p4Ap q4A∗q q4Aq

ApAq −A∗pA∗q 0 0 0 0

 , (C 7)

which has full rank, since Ap 6= 0 and Aq 6= 0.
Case 3. None of the modes vanish, i.e. |Ak||Ap||Aq| 6= 0, but Re(AkApAq) = 0. To

simplify the analysis, note that the system (C 2) has the property (ii) of § 2.2, that is,
it is invariant under the change of variables

(A′k, A′p, A′q)= (Akeiψk , Apeiψp, Aqeiψq) where ψk +ψp +ψq = 0. (C 8)

Therefore, without loss of generality we can assume Ap ∈ R, Aq ∈ R, and then
Re(AkApAq)= 0 together with |AkApAq| 6= 0 implies Ak ∈ iR. The differential becomes

J =

−k2Ak k2Ak p2Ap p2Ap q2Aq q2Aq

−k4Ak k4Ak p4Ap p4Ap q4Aq q4Aq

ApAq −ApAq AkAq AkAq AkAp AkAp

 . (C 9)
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The second, fourth and sixth columns are, up to a sign, the same as the first, third
and fifth columns, respectively. Thus J has full rank if and only if the minor J135 is
non-zero. We have:

J135 = det

−k2Ak p2Ap q2Aq

−k4Ak p4Ap q4Aq

ApAq AkAq AkAp


= −A2

qA2
kk2q2(k2

− q2)− A2
pA2

kp2k2(p2
− k2)+ A2

pA2
qq2p2(q2

− p2)

= |Aq|
2
|Ak|

2k2q2(k2
− q2)+ |Ap|

2
|Ak|

2p2k2(p2
− k2)

+ |Ap|
2
|Aq|

2q2p2(q2
− p2). (C 10)

Therefore, we must treat the following subset separately:

Z3 = {|Ak||Ap||Aq| 6= 0,Re(AkApAq)= 0}

∩ {|Aq|
2
|Ak|

2k2q2(k2
− q2)+ |Ap|

2
|Ak|

2p2k2(p2
− k2)

+ |Ap|
2
|Aq|

2q2p2(q2
− p2)= 0}, (C 11)

which will be analysed in § C.2.
We conclude that the system (C 2) defines a foliation of N = R6

\ (Z1 ∪ Z3) by
three-dimensional manifolds since the differential J has full rank on N. Precisely, N
is foliated by the manifolds M̃(E,Ω,C) =M(E,Ω,C) ∩N. We call the closed set

Z = {rk J < 3} = Z1 ∪ Z3 = {Re(AkApAq)= 0}

∩ {|Aq|
2
|Ak|

2k2q2(k2
− q2)+ |Ap|

2
|Ak|

2p2k2(p2
− k2)+ |Ap|

2
|Aq|

2q2p2(q2
− p2)= 0},

(C 12)

the singular locus (of J). Its complement, N=R6
\Z, is called the regular locus (of J).

The considerations above prove that M̃(E,Ω,C) is a three-dimensional smooth
submanifold of R6. We now prove that for generic values of (E, Ω, C) the set
M(E,Ω,C) does not intersect Z and thus is equal to M̃(E,Ω,C), and therefore is a compact
three-dimensional submanifold. Moreover, we prove that it is in fact a sum of disjoint
copies of the three-torus T3.

First, note that M(E,Ω,C), as well as the sets Z1 and Z3 are invariant under the change
of variables

(Ak, Ap, Aq) 7→ (Akeiψk , Apeiψp, Aqeiψq) where ψk +ψp +ψq = 0, (C 13)

which defines a group action of the two-torus T2
= S1
× S1 on M(E,Ω,C). For g ∈ T2,

denote by g · x the action of the group element g on x. Moreover, this action is free on
R6
\ Z1, and in particular on every M̃(E,Ω,C). By Corollary 21.6 and Theorem 21.10 in

Lee (2013) the orbit space Õ(E,Ω,C)= M̃(E,Ω,C)/T2 is a smooth manifold of dimension 1.
Thus, the manifold M̃(E,Ω,C) is a fibre bundle over Õ(E,Ω,C) with fibre T2 (in fact, it is
a principal T2-bundle). We denote the quotient map by Π : M̃(E,Ω,C)→ Õ(E,Ω,C).

Since Õ(E,Ω,C) is one-dimensional, it is a union of circles S1 and lines R. Consider
any component Õ of Õ(E,Ω,C) and the component M̃ of M̃(E,Ω,C) projecting to Õ, i.e.
M̃ =Π−1(Õ). Suppose Õ is diffeomorphic to R. Since R is contractible, every fibre
bundle over it is trivial, so M̃ is diffeomorphic to R×T2.
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Suppose now Õ is diffeomorphic to S1. Consider the map γ : [0, 1]→ Õ' S1 given
by γ (t)= e2πit. Lift this map to a map γ̄ : [0, 1]→ M̃, that is, take any map such that
Π(γ̄ (t))= γ (t). Note that γ (0)= γ (1)= 1, thus γ̄ (0), γ̄ (1) belong to the same fibre
of Π , Π−1(1). But T2 acts transitively on the fibres of Π , thus there is an element
g ∈ T2 such that γ̄ (0)= g · γ̄ (1). Now take a path s : [0, 1] → T2 such that s(1)= g
is as above and s(0) is the identity element. Then the map η(t) = s(t)γ̄ (t) has the
property that η(0)= η(1), and thus it descends to a map η : S1

→T2 such which lifts
γ , i.e. Π ◦ η= γ . Finally, after smoothing η, the map F :T3

= S1
×T2
→ M̃ given by

F(t, g)= g · η(t) gives the desired diffeomorphism of T3 and M̃.
In particular, what follows is that whenever M(E,Ω,C) does not intersect Z, it is

a disjoint union of a finite number of three-tori. This may be empty when M(E,Ω,C)
is empty, for instance if Ω/E > max(k2, p2, q2), or Ω/E < min(k2, p2, q2) etc. Now
we determine a residual subset of triples (E, Ω, C) ∈ R>0 × R>0 × iR for which
M(E,Ω,C) ∩ Z =∅.

Consider (Ak, Ap, Aq) ∈M(E,Ω,C) ∩ Z. Since Re(AkApAq)= 0, we have C= AkApAq −

A∗kA∗pA∗q = 2iIm(AkApAq)= 2AkApAq, thus |C|2 = 4|Ak|
2
|Ap|

2
|Aq|

2. Denote x= |Ak|
2, y=

|Ap|
2, z= |Aq|

2. The system (C 2) together with the equations defining Z thus implies

k2x+ p2y+ q2z= E

k4x+ p4y+ q4z=Ω

k2q2(k2
− q2)xz+ p2k2(p2

− k2)xy+ q2p2(q2
− p2)yz= 0

4xyz= |C|2.

 (C 14)

The first two equations express y, z as linear functions of x. Inserting these into the
third equation one obtains a quadratic equation for x with a non-zero leading term,
which has at most 2 solutions. These solutions give at most 2 possible values of |C|
using the last equation. Denote the set of triples (E, Ω, C) obtained this way by S.
This is a codimension 1 subset, thus a generic (E, Ω, C) does not belong to S, and
for such a triple (E, Ω, C) outside of S the set M(E,Ω,C) is deemed to be a sum of
three-tori as explained earlier.

Since the differential J is of full rank on N = R6
\ Z, the set F−1(S) ∩ N is of

codimension 1, where F : R6
→ R3 is the map determined by (C 2). However, the

set Z is of codimension 1, too, and since F−1(S)= (F−1(S) ∩ N) ∪ (F−1(S) ∩ Z), we
conclude that F−1(S) is of codimension 1. The complement of this set is foliated by
three-tori, so taking all things together it follows that a generic point in R6 lies on
one of these smooth three-tori.

C.2. Exact solutions for initial conditions on Z1 and Z3

To finish this section, we comment on the nature of the dynamics (C 1) when
the initial conditions are taken from the subsets Z1 and Z3. It is easy to see
that points on Z1 are simply fixed points. Taking initial conditions on Z3 results
in evolution with constant amplitudes |Ak|, |Ap| and |Aq| and phases exhibiting
periodic motion on two-torus. Indeed, consider the following ansatz (Ak, Ap, Aq) =
(|Ak|eiφk(t), |Ap|eiφp(t), |Aq|eiφq(t)), where the amplitudes are independent of time. The
system (C 1) gives

k2
|Ak|φ̇k = (p2

− q2)|Ap||Aq|e−i(φk+φp+φq+π/2)

p2
|Ap|φ̇p = (q2

− k2)|Aq||Ak|e−i(φk+φp+φq+π/2)

q2
|Aq|φ̇q = (k2

− p2)|Ak||Ap|e−i(φk+φp+φq+π/2)

 . (C 15)
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FIGURE 11. (Colour online) Instantaneous (a,b) and average (c) helicity fluxes for the
Gaussian activity model (5.1) for time instants and intervals indicated in figure 7(a).
Vertical dashed lines mark the energy injection range.

On Z3, e−i(φk+φp+φq+π/2)
=±1. If we assume that this holds for any time t, we easily

find solutions to these equations:

φk =±[(p2
− q2)|Ap||Aq|/(k2

|Ak|)]t+ ck

φp =±[(q2
− k2)|Aq||Ak|/(p2

|Ap|)]t+ cp

φq =±[(k2
− p2)|Ak||Ap|/(q2

|Aq|)]t+ cq

 . (C 16)

Moreover, multiplying the first equation of (C 15) by p2q2
|Ap||Aq|, the second by

k2q2
|Ak||Aq|, the third by k2p2

|Ak||Ap| and adding them together gives

±k2p2q2
|Ak||Ap||Aq|(φ̇k + φ̇p + φ̇q) = (p2

− q2)p2q2
|Ap|

2
|Aq|

2

+ (q2
− k2)q2k2

|Aq|
2
|Ak|

2

+ (k2
− p2)k2p2

|Ak|
2
|Ap|

2

= 0. (C 17)

The right-hand side is zero by the definition of Z3, implying that the sum of phases
φk + φp + φq is indeed constant and equal to π/2 or 3π/2 also by the definition of
Z3. Therefore (C 16) gives the solutions to the system (C 1) on Z3 and these exhibit
quasi-periodic motion.
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