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Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport
networks are driven by small-scale local energy input. Here, we introduce and explore an analytically
tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems,
we find that active friction selects discrete states with a limited number of oscillation modes activated at
distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy
networks and find good agreement with a Bayesian state estimation based on a hidden Markov model
applied to simulated time series data. Our results suggest that the macroscopic response of active network
structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly
reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well
suited to study topological sound modes and spectral band gaps in active matter.
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Active networks constitute an important class of non-
equilibrium systems spanning a wide range of scales, from
the intracellular cytoskeleton [1] and amoeboid organisms
[2–4] to macroscopic transport networks [5]. Identify-
ing generic self-organization principles [6,7] that control
the dynamics of these biological or artificial far-from-
equilibrium systems remains one of the foremost challenges
of modern statistical physics. Despite promising experi-
mental [3,8–10] and theoretical [1,4,11–13] advances over
the past decade, it is not well understood how the inter-
actions between local energy input, dissipation, and net-
work topology determine the coordinated global behaviors
of cells [8], plasmodia [3], or tissues [14]. Further progress
requires analytically tractable models that help clarify the
underlying nonequilibrium mode-selection principles [15].
We introduce here a generic model for active flows on a

network, motivated by recent experimental studies of
bacterial fluids [12,16] and ATP-driven microtubule sus-
pensions [17] in microfluidic channel systems. Building on
Rayleigh’s work [18] on driven vibrations and the Toner-Tu
model of flocking [19], the theory accounts for network
activity through a nonlinear friction [19–21]. We work in a
fully compressible framework allowing accumulated matter
at vertices to affect flow through network pressure gradients,
generalizing previous work on incompressible pseudoequi-
librium active flow networks [22,23], as suited to the many
biological systems exhibiting flexible network geometry [3]
or variations in the density of active components [7].
Although inherently nonlinear, the model can be system-
atically analyzed through perturbation theory. Such an
analysis shows how slow global dynamics emerge naturally
from the fast local dynamics, enabling the prediction of the
typical states in large noisy networks; these states have

significantly fewer active modes than for energy equiparti-
tion [24] in thermal equilibrium. More broadly, our model
provides an accessible framework for investigating generic
physical phenomena in active systems, including topologi-
cally protected soundmodes [7] and the influence of spectral
band gaps (Supplemental Material [25]).
We consider activity-driven mass flow on an arbitrarily

oriented graph G ¼ ðV; EÞ with V ¼ jVj vertices and E ¼
jEj edges. The elements of the V × E gradient (incidence)
matrix ∇ are ∇ve ¼ −1 if edge e is oriented outwards from
vertex v, ∇ve ¼ þ1 if e is oriented inwards into v, and
∇ve ¼ 0 otherwise. The dynamical state variables are the
deviations from the mean mass ϱ̄ ¼ M=V on the nodes,
(ϱ1ðtÞ;…; ϱVðtÞ), and the mass fluxes on the edges,
(ϕ1ðtÞ;…;ϕEðtÞ), governed by the nondimensionalized
(Supplemental Material [25]) transport equations
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where ξeðtÞ is standard Gaussian white noise. Equation (1a)
ensures mass conservation. The first term on the rhs of
Eq. (1a) represents the gradient of an ideal gas-type node
pressure pv ∝ ϱv, corresponding to the leading term in a
virial expansion; the second term is a Toner-Tu type
(Supplemental Material [25]) active friction force derived
from a depot model [20,27] with coupling ε > 0 and active-
passive control parameter μ, which drives the edge fluxes
ϕe towards preferred values % ffiffiffi

μ
p

when μ > 0. Many
networks have nonuniform edge and vertex weights, which
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can be incorporated into equations of identical form to
Eqs. (1) with appropriate rescaling of ϱ, ϕ, and ∇
(Supplemental Material [25]).
Active flow networks described by Eqs. (1) exhibit rich

oscillatory transport behavior, including the mode selection
illustrated in Movie 1 and Fig. 1 for a hierarchically
weighted network with vertex degrees at most 3 as is
typical of Physarum polycephalum [28]. When this net-
work is initialized with zero pressure variation and flux, it
typically settles into a quasisteady state with a single
dominant oscillation frequency on the highest-weight path.
This is a manifestation of the fact that single-frequency
selection is the norm on actively driven path graphs, as we
shall show analytically below.
Generally, the features of the steady-state attractor will

be determined by the topology of the subgraph of high-
weight edges, which may be much sparser than the original
network. For this reason, as well as for ease of analysis and
illustration, we will henceforth assume G to be a tree, as
realized in certain peripheral sensory neurons [29], though

in general the full model in Eqs. (1) is not restricted to any
particular class of graph. The behaviors observed on trees
can be extended to denser graphs by choosing appropriate
edge weights.
The complex active flow dynamics encoded by Eqs. (1)

can be understood analytically by considering the basis of
oscillation modes of the network, as we illustrate now in the
fully deterministic case (D ¼ 0). To progress, we adopt a
Rayleigh [18] approximation εðμ − ϕ2

eÞϕe for the active
friction (Supplemental Material [25]). Now, expand the
pressure ϱv ¼

PE
n¼1 rnðtÞϱvn and flux ϕe ¼

PE
n¼1 fnðtÞϕen

in the right and left singular vectors ϱn ¼ ðϱvnÞ and ϕn ¼
ðϕenÞ of ∇⊤ corresponding to the E ¼ V − 1 nonzero
singular values λn. (On a tree, there is a single zero
eigenvalue of ∇∇⊤ yielding an additional right singular
vector for the pressure, but this corresponds to a constant
mass shift and so can be safely neglected.) Defining mode
amplitudes A2

n ¼ r2n þ f2n, the network energy then takes
the simple form H ¼ 1

2

P
nλ

2
nA2

n (Supplemental Material
[25]). When ε is small, there are two distinct time scales,
namely the fast oscillation time scale t and the slow friction
time scale τ ¼ εt, which we separate in the perturbation
ansatz rn ¼

P∞
σ¼0 ε

σrσn and fn ¼
P∞

σ¼0 ε
σfσn [30]. Active

friction does not contribute at the lowest order, so the
Oð1Þ contribution to each mode ðrn; fnÞ is an uncoupled
harmonic oscillator r0nðtÞ¼A0nðτÞcos½λnt−δnðτÞ' and
f0nðtÞ¼−A0nðτÞsin½λnt−δnðτÞ' with t-independent ampli-
tude A0n and phase δn (Supplemental Material [25]).
The influence of activity becomes apparent at first order

in ε, introducing couplings betweenmode amplitudeswhose
dynamics encode the state-selection behavior of the active
network. Requiring that the OðεÞ amplitudes r1n and f1n
remain small relative to the leading terms implies that the
secular (unbounded) terms in the first-order equations must
vanish [30]. Assuming negligible mode degeneracies, the
slow dynamics of the Oð1Þ mode amplitudes A0nðτÞ are
found to obey (Supplemental Material [25])

dðA2
0nÞ

dτ
¼
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where the overlap matrix Pnk ¼ 3
2 ð1 −

1
2 δnkÞ

P
eϕ

2
enϕ2

ek
encodes the network topology. Fixed points of Eq. (2)
can then be found by choosing a subset of the A0n to be zero
and solving

PE
k¼1 PnkA2

0k ¼ μ for A2
0n over the remaining

nonzero modes. If all the nonzero solutions for A2
0n are

positive, then there is a stationary point with those modes
activated (Supplemental Material [25]).
Activity-driven fixed points with exactly one mode

active always exist. If only mode p is active at leading
order, then A0n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=Ppp

p
δnp is a fixed point of Eq. (2).

These amplitudes, which closely match both those calcu-
lated with the full unapproximated active friction force
and those from averages computed over fully nonlinear
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FIG. 1. Activity can select a single dominant oscillation mode
on hierarchically weighted networks. (a) The edges in the graph
simulated in (b) and (c) are given weights decreasing exponen-
tially with their distance from the central red path. (b) Oscillations
in pressure and flux develop primarily along the central high-
weight path (Movie 1). (c) Edge fluxes ϕe settle into steady
synchronized oscillations as exemplified for two edges indicated
in (b), one on (ϕ17) and one off (ϕ59) the path. (d) Plotting the
time-dependent amplitude of each analytically determined flow
eigenmode confirms the selection of a single oscillatory mode.
The ten modes with the highest average amplitude in this
simulation run are pictured; the marked top two rows are
oscillatory modes, while the remaining rows are cyclic modes.
See Fig. S6 for all modes. Simulation parameters were ε ¼ 0.1,
μ ¼ 1, and D ¼ 10−4.
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simulations (Supplemental Material [25]), show that as μ
crosses 0 there is a supercritical Hopf bifurcation with
A0n ∼

ffiffiffi
μ

p
. However, the stability of such a single-mode

state depends on topology: Our simulations suggest that
activity always selects exactly one oscillation mode in
simple path graphs, whereas single-mode states are typi-
cally unstable in networks with complex topologies. We
can use this observation to model more complex active
networks with single mode selection by appropriately
weighting the edges: If the edge weights for a path are
large enough compared to the weights elsewhere in the
network, the path behavior dominates (Fig. 1).
Insight into stability is provided by the case with up to

two modes active. Writing A0n ¼ A0pδnp þ A0qδnq, Eq. (2)
yields

dðA2
0pÞ=dτ ¼ ðμ − PppA2

0p − PpqA2
0qÞA2

0p; ð3Þ

and symmetrically for A2
0q. Depending on the topology-

encoding overlap coefficients Pnk, this gives up to four fixed
points: the zero state A0p¼A0q¼ 0, which is always linearly
unstable; the single-mode state ðA0p; A0qÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=Ppp

p
; 0Þ,

which is stable if Ppq > Ppp and a saddle if not, plus
analogously for ð0;

ffiffiffiffiffiffiffiffiffiffiffiffi
μ=Pqq

p
Þ; and, potentially, a mixed state

ðA(
0p;A

(
0qÞ, where A(

0p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðPqq−PpqÞ=ðPppPqq−P2

pqÞ
q

with A(
0q defined symmetrically. When it exists, the mixed

state is either stable (if P2
pq < PppPqq) or a saddle (if

P2
pq > PppPqq), but if one of the single-mode states is stable

and one is unstable, then one ofA(
0p andA

(
0q is imaginary and

there is no mixed state. Hence, we have three possible

scenarios (Fig. 2): one stable single mode and the other a
saddle with no mixed state [Figs. 2(b) and 2(c), left]; two
stable single-mode states with a mixed saddle in between
[Figs. 2(b) and 2(c), center]; and two single-mode saddles
with a stable mixed state in between [Figs. 2(b) and 2(c),
right]. These predictions match simulations quantitatively
even for relatively large ε beyond the small-ε perturbation
regime (Fig. 2). In fact, simulations show the same qualitative
behavior for ε ¼ 2, suggesting the perturbation analysis
remains predictive at high activity.
This two-mode analysis yields a simple topological

heuristic for the stability of single-mode states. Since
jϕpj ¼ 1, Ppp is small when ϕp is spread over many edges
and large when ϕp is localized to a few edges. If ϕq is
localized to the same edges as ϕp, Ppq will also be large and
modepwill be stable to perturbations inmodeq. However, if
ϕq is localized to a disjoint set of edges, Ppq will be a scaled
inner product of near-orthogonal vectors ðϕ2

epÞ and ðϕ2
eqÞ and

will be small. Thus, localized modes will be unstable to
modes in other regions, while conversely if a mode is to be
stable alone, then it will be spread out across the entire
network. Therefore, a stable combination of modes will
possess significant flows on all edges of the network.
Biological systems exhibit vastly different macroscopic

and microscopic time scales [31–34]. This phenomenon is
present in our compressible active flow network, where
higher-order nonlinear effects induce slow global time
scales from faster small-scale dynamics. When the zeroth-
order amplitudes A0n are at a fixed point, the first-order
corrections r1n and f1n are harmonic oscillators with natural
frequency λn driven at linear combinations of the frequen-
cies active at zeroth order (Supplemental Material [25]). For
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FIG. 2. First-order perturbation theory accurately predicts the stable states on small trees. (a) A five-vertex tree possessing four
nontrivial modes, as illustrated. (b) On the tree in (a), mode amplitudes settle into one of two stable stationary states, as seen in
simulations for three different initial conditions. Modes are ordered by frequency from high (top) to low (bottom). (c) Simulated mode
trajectories (rainbow) in (b) match our analytic predictions (blue streamlines) in the subspaces of activated modes. There are three
possible arrangements of nonzero critical points in each 2D subspace: a saddle point on one axis and a stable node on the other axis (left),
a stable node on each axis and a saddle point in the middle (center), or a saddle point on each axis and a stable node in the middle (right;
Movie 2). Higher-order effects cause both the convergence to a point with A2 > 0 in the left and middle plots and the oscillations in the
trajectories. Parameters used are ε ¼ 0.5, μ ¼ 1, and D ¼ 0.
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instance, if two modes p and q are active at zeroth order, the
driving frequencies are 3λp − kðλp % λqÞ for k ¼ 0;…; 3.
This introduces new, slower time scales into the dynamics,
including oscillations in the energy H ¼ 1

2

P
nλ

2
nðr2n þ f2nÞ

with frequency λp − λq. Their magnitude depends on the
difference in frequency: Slower oscillations, driven by
modes with similar frequencies λp ≈ λq, have higher ampli-
tudes (Supplemental Material [25], Fig. S7).
The number of activated modes in an arbitrary com-

pressible active network depends on intricate interactions
between local activity and global flow configurations. The
total number of available modes is equal to the number of
edges E, meaning that, were each combination of modes to
be a fixed point, a tree could have up to 2E stationary states.
To see how the true number of stationary and stable states
depends on tree size, we performed an exhaustive numerical
fixed point search of Eq. (2) over a large sample of trees
with E ≤ 24 [Figs. 3(a)–3(d)]. The naive upper bound
of 2E suggests exponential growth of the mean number
of steady states with edges E; this is indeed what we see,
going as ∼ð2EÞ4=5. However, though still exponential in E,
the mean number of stable states is much smaller at
∼ð2EÞ1=4 [Fig. 3(a)]. Remarkably, these stable states have

only ∼E=4 modes active on average [Fig. 3(c)] in stark
contrast to the activation of all E modes under thermal
equipartition [24]. Pathlike topologies lead to even more
dramatic reductions in the number of modes active
[Fig. 3(c)], suggesting that a biological system can further
reduce the number of active modes through an optimal
choice of topology; moreover, hierarchically tuned edge
capacities as realized in Physarum [3,28] can further
enhance mode selection even in nontree topologies (Fig. 1).
Real active transport networks will have some nonzero

level of thermal or athermal noise [35]. Provided the noise
is not too large, it will render previously stable states now
only metastable, with flow patterns exhibiting small fluc-
tuations around these metastable states punctuated by
noise-driven stochastic transitions between them [22,35].
Long-time simulations of Eqs. (1) with D > 0 therefore
offer an independent numerical way to find stable fixed
points of the amplitude dynamics. We use vbFRET [36], a
variational Bayesian analysis of a continuous time hidden
Markov model, to identify states from simulated time
series. Almost all of the states discovered by vbFRET
match stable states predicted by Eq. (2) even in the presence
of non-negligible noise [Figs. 3(e)–3(g)], justifying the
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FIG. 3. States on larger trees possess surprisingly few active modes, which can be inferred from time series with nonzero noise. (a) The
mean number of stationary states of Eq. (2) grows exponentially with edges E as 1.77E ≈ ð2EÞ4=5 (solid orange line), close to the upper
bound of 2E states (dashed black line), while the mean number of stable states grows as 1.21E ≈ ð2EÞ1=4 (solid blue line). We counted
states on all nonisomorphic trees with E ≤ 14 edges (solid circles) and on a random sample of ∼175 trees per point for 15 ≤ E ≤ 24
(open circles). Averages are over trees with a fixed number of edges. (b) As E increases, both the mean and the variance of the
distribution of trees with each number of stable states increase rapidly. (c) Distribution of the average number of modes active in a stable
state. The mean over trees scales like 0.26E ≈ E=4 (solid line), significantly below E=2 expected if modes were selected randomly.
(d) Two example trees indicated in (a)–(c) by the corresponding colored symbols. Stable states on paths (×) always activate only one
mode; complex trees (þ) have more modes active. (e) Noisy networks (D > 0) transition stochastically between stable states,
exemplified by an amplitude-time trace for the tree shown. Modes are ordered by frequency from high (top) to low (bottom). Simulation
parameters are ε ¼ 0.5, μ ¼ 1, and D ¼ 5 × 10−3. (f) States found by vbFRET from simulations on the tree in (e) (Supplemental
Material [25]). The second, first, and fifth columns are states seen in (e), indicated by the colored bars above. (g) States predicted by
Eq. (2) for the tree in (e). The first five states in (f) match those in (g); the sixth column in (f) is likely a transient combination of
analytically stable states.

PRL 119, 028102 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

028102-4



simplifications used in deriving Eq. (2). This also promises
that Bayesian methods like vbFRET will function as
reliable inference tools for experimental data from real-
life active flow networks [3,10].
Beyond active density oscillations [12], the above

theoretical framework can be used to probe the effects
of topology on the physical properties of complex active
systems. For instance, it was recently shown that con-
tinuum Toner-Tu systems in finite lattice confinement
possess topologically protected edge-localized sound
modes [7]. Similar edge modes can be reproduced in our
coarse-grained model through a simplified network repre-
sentation of complex channel geometries (Supplemental
Material [25] and Movie 3). In addition, generalizing to
allow different effective weights at vertices opens up band
gaps, reflected in the excitation spectrum of spontaneous
activity modes (Supplemental Material [25]). As we focus
on phenomenological properties shared by many active
systems, akin to the Toner-Tu approach [19], the results and
techniques presented here promise insights into the mode-
selection mechanisms governing a wide range of non-
equilibrium transport and force networks.
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I. NONDIMENSIONALIZATION OF GOVERNING EQUATIONS

We can define the model in terms of the dimensional quantities %̂v, �̂e, and t̂; global dimensional parameters ✏̂,
�̂, and D̂; dimensionless edge conductances �e and vertex volumes mv; and a dimensionless global parameter µ and
function g as

d%̂v
dt̂

=
X

e

rve�̂e,

d�̂e

dt̂
= ��̂e

X

v

r>
evm

�1
v %̂v + ✏̂g

✓

µ,
�̂e

�̂�̂e

◆

�̂e +
p

2D̂⇠̂e(t̂).

The scaling by conductance in the argument of g is chosen to match the phenomenology observed in dense bacterial
suspensions, where activity selects a characteristic velocity �e/�e and not a fixed flux �e. If we choose a conductance
scale �̂ and volume scale m̂ and insert the rescaled, nondimensional parameters

�e = �̂�1�̂e, mv = m̂�1m̂v, ✏ = �̂� 1
2 ✏̂, De = �̂�2�̂� 1

2 ��1
e D̂

and variables

%v = m
1
2
v �̂

1
2 �̂�1%̂v, �e = �

� 1
2

e �̂�1�̂e, t = �̂
1
2 t̂, ⇠e(t) = �̂� 1

4 ⇠̂e(t̂),

we are left with
d%v
dt

=
X

e

m�1/2
v rve�

1/2
e �e,

d�e

dt
= �

X

v

�1/2
e r>

evm
�1/2
v %v + ✏g

✓

µ,
�ep
�e

◆

�e +
p

2De⇠e(t).

With constant conductances �e = 1 and volumes mv = 1, we recover the model introduced in the main text, namely

d%v
dt

=
X

e

rve�e, (S1a)

d�e

dt
= �

X

v

r>
ev%v + ✏g(µ,�e)�e +

p
2D⇠e(t), (S1b)

with nonzero entries of the gradient matrix equal to ±1. All of our analysis applies equally well to the varying weights

case: the only substantive change is replacing rve with the weighted gradient r⇤
ve = m�1/2

v rve�
1/2
e .

We can combine Eqs. (S1a) and (S1b) into one second order equation for the pressure dynamics reading

%̈v =
X

e

rve

 

�
X

u

r>
eu%u + ✏g(µ,�e)�e +

p
2D⇠e(t)

!

. (S2)

In the absence of friction, when g(µ,�e) = 0, the dynamics are Hamiltonian with energy

H =
1

2

X

v,e,u

%vrver>
eu⇢u +

1

2

X

e,v,f

�er>
evrvf�f . (S3)

The energy is particularly simple when written in the basis of singular vectors of r> with non-zero singular values,
giving

H =
1

2

X

n

�2
n

�

r2n + f2
n

�

⌘
X

n

Hn.
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II. RELATION TO PHYSICAL FLOW SYSTEMS

We chose to explore a minimal model coupling local active energy input to network structure, rather than capture
the details of any particular model system. Nevertheless, the key features of our model, namely mass conservation
and a polynomial expansion of the active term, are generic enough to be straightforwardly adapted to a range of
applications.

Mass conservation and pressure driven flow are likely to remain in any active flow model; the form of the active
term may change in di↵erent contexts. In our case, staying close to examples of bacterial suspensions, we model
activity as driving spontaneous flow on all edges. An alternative option, more closely related to shuttle streaming in
networks, would be to apply an active force fv that compresses or expands each vertex and drives flow in or out, with
modified dynamics

d%v
dt

=
X

e

rve�e,

d�e

dt
= �

X

v

r>
ev(%v + ✏fv) +

p
2D⇠e(t).

The correct form of the active force depends on the microscopic details of the driving. Some generic features, however,
will not depend on the exact form of fv and will be discoverable by choosing a simple function of local quantities
(%v, %̇v, etc.) as an approximate driving force.

The same method is used to derive the Toner-Tu equations for continuous active flows [1]; our model can be
understood as a discrete version of a special case of these equations. If advective and di↵usive terms are rendered
negligible in favor of pressure-driven and activity-driven flow by geometric e↵ects or otherwise, and we take only the
linear term in the virial expansion of the active pressure, the general Toner–Tu model simplifies to

@~v

@t
= ↵~v � �|~v|2~v � �1

~r(⇢� ⇢0) + ~f,
@⇢

@t
+ ~r · (~v⇢) = 0.

In a limit where deviations from the mean density are small, so ⇢ = ⇢0 + ⌘% for some ⌘ ⌧ 1, we can further reduce to

@~v

@t
= ↵~v � �|~v|2~v � ⌘�1

~r%+ ~f, ⌘
@%

@t
+ (⇢0 + ⌘%)~r · ~v + ⌘~v · ~r% = 0.

Then on short time scales ⌧ = t/⌘, we have

@~v

@⌧
= ⌘↵~v � ⌘�|~v|2~v � ⌘2�1

~r%+ ⌘ ~f,
@%

@⌧
⇡ �⇢0~r · ~v,

where we neglect terms that must be of order ⌘: if the coe�cients ↵, �, and �1 are su�ciently large, their terms will
remain relevant. The scaling of ⌧ ensures that t is small when ⌧ is order one or smaller. Discretizing the velocity and
density fields as well as the noise ~f and replacing the continuous gradient with either r>

ev or �rve as appropriate
yields Eqs. (S1).

III. COMPRESSIBILITY

Compressibility as included in our model is intended to describe changes in density or volume of the active com-
ponent, not the underlying fluid. For example, variations in % may be interpreted as variations in the density of
swimmers in a bacterial system or variations in the tube volume in Physarum polycephalum. Such systems may be
e↵ectively compressible even though the solvent fluid (e.g. water) is incompressible.

In some cases, compressibility is the primary object of interest. For example, a recent preprint [2] discusses sound in
active fluids in a network using a continuous wave equation derived from the Toner-Tu model. On top of a background
flow taking the form of a lattice of counter-rotating cycles, they find modes confined to the edges of a Lieb lattice,
which we can reproduce in our discretized setting (Fig. S1 and Movie 3). In both their setting and ours, these edge
modes decay over time without propagating into the bulk (cf. discussion in App. I.B of Ref. [2]).

We can recover an incompressible limit of our model by first extending it to include damping on the vertices:

d%v
dt

=
X

e

rve�e � ⌘%v, (S8a)

d�e

dt
= ��

X

v

r>
ev%v + ✏g(µ,�e)�e +

p
2D⇠e(t). (S8b)



3

0.1

0

Ed
ge

 fl
ux

0.1

0

|V
er

te
x 

pr
es

su
re

|

(a) (b)

Fig. S1. Our active network model exhibits behavior similar to the topological edge modes of [2]. (a) A discretized version of
the Lieb lattice considered in [2]. Edges shared by adjacent 8-cycles have weight �e = 2 to account for the additional width of
the corresponding channels. The most stable flow on this network consists of a lattice of counter-rotating cycles, in which both
the active friction term g(µ,�e/

p
�e) and the pressure variations %v are everywhere zero. (b) This lattice has modes confined

to the edges of the domain, allowing sound waves to propagate and decay without scattering into the bulk (cf. discussion in
App. I.B of Ref. [2]); one such mode is pictured. Simulations started in this mode as a perturbation to the most stable flow
pattern do not cause density changes in the center (Movie 3). The network model allows study of such phenomena without
resorting to full scale simulation of the flow patterns.

This paper examines the limit ⌘ ! 0 where total mass is exactly conserved. Previous work [3] has looked at the
opposite limit, ⌘ ! 1, where Eq. (S8a) can only be balanced if %v ! 0 and

%v =
1

⌘

X

e

rve�e.

Substituting this into Eq. (S8b) gives

d�e

dt
= ��

⌘

X

v

r>
evrva�a + ✏g(µ,�e)�e +

p
2D⇠e(t).

With g(µ,�e) = �2
e(1� �2

e), this is equivalent to the model discussed in [3]. If � ! 1 so that �/⌘ is constant, small
deviations from incompressibility are allowed; if �/⌘ ! 1, incompressibility is fully enforced. However, compressibility
is a necessary ingredient for sound waves [2] and density oscillations [4].

IV. RAYLEIGH FRICTION APPROXIMATION

While choosing the friction function to be [5]

g(µ,�e) =
µ� �2

e

1 + �2
e

has convenient theoretical properties, namely that it gives a passive constant friction coe�cient ✏ for µ = �1 and
for � ! 1, it is analytically di�cult. To simplify the analysis, we approximate this g(µ,�e) with a symmetric
quadratic [6]

ĝ(µ,�e) = a� b�2
e, (S9)

where a = µ and b = 1 are chosen so that ĝ(µ, 0) = g(µ, 0) and ĝ(µ,�e) has the same zeros as g(µ,�e). This ensures
that the two functions approximately match when they are both negative, that is, when activity is putting energy
into the flow. The large di↵erence between g(µ,�e) and ĝ(µ,�e) when the flux is large is less important, as the flow
will be damped down in either case. The larger damping in ĝ(µ,�e) does result in slightly lower steady amplitudes,
both analytically and in simulations.
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V. PERTURBATION EXPANSION

If ✏ is small, there will be two widely separated timescales: the fast oscillation timescale t and the slow friction
timescale ⌧ = ✏t. After writing %v and �e in the mode basis, we can further expand in ✏ as

rn(t) =
1
X

k=0

✏krkn(t, ⌧), (S10a)

fn(t) =
1
X

k=0

✏kfkn(t, ⌧), (S10b)

where we explicitly separate the dependence on the two timescales. Then

r̈kn(t, ⌧) = @2
t rkn + 2✏@t@⌧rkn + ✏2@2

⌧ rkn,

f̈kn(t, ⌧) = @2
t fkn + 2✏@t@⌧fkn + ✏2@2

⌧fkn.

At zeroth order in ✏, with D = 0, Eq. (S2) becomes

V
X

n=1

@2
t r0n%vn = �

V
X

n=1

�2
nr0n%vn.

The modes %vn are orthonormal, so the terms decouple into separate harmonic oscillators; fkn can be found from rkn
using Eq. (S1a). The leading order solution is then

r0n(t) = A0n(⌧) cos(�nt� �n(⌧)),

f0n(t) = �A0n(⌧) sin(�nt� �n(⌧)).

At first order in ✏, with g(µ,�e) = (µ� �2
e),

V
X

n=1

(@2
t r1n + 2@t@⌧r0n)%vn = �

V
X

n=1

�2
nr1n%vn +

X

e

rve

2

4µ�
 

E
X

n=1

f0n�en

!2
3

5

E
X

l=1

f0l�el.

Multiplying by %vm and summing over v, we find

@2
t r1m + 2@t@⌧r0m = ��2

mr1m + �m

2

4µf0m �
X

e

�em

 

E
X

n=1

f0n�en

!3
3

5 . (S11)

VI. LEADING ORDER AMPLITUDE DYNAMICS

In order for the expansion in Eqs. (S10a) and (S10b) to make sense, the magnitudes of the summands rkn and fkn
must remain bounded. From Eq. (S11), r1m is a harmonic oscillator with natural frequency �m driven by the zeroth
order oscillations. It will have bounded oscillations only if the resonant terms in Eq. (S11), those that drive r1m at
its natural frequency, are zero. Finding the resonant terms and setting them to zero will fix the leading order mode
amplitudes An(⌧).
Expanding the cube in Eq. (S11) gives

@2
t r1m + 2@t@⌧r0m =� �2

mr1m + �m



µf0m �
X

e

�em

E
X

k,`,n=1

f0k�ekf0n�e`f0n�en

�

=� �2
mr1m + �m



µf0m +
E
X

k,`,n=1

 

X

e

�em�ek�e`�en

!

⇥A0kA0`A0n sin(�kt� �k) sin(�`t� �`) sin(�nt� �n)

�

. (S12)
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Now, the product of sines can be expanded into

sin(�kt� �k) sin(�`t� �`) sin(�nt� �n) =
1

4

h

sin(�k � �` � �n � �kt+ �nt+ �`t)

� sin(�k � �` + �n � �kt� �nt+ �`t)

� sin(�k + �` � �n � �kt+ �nt� �`t)

+ sin(�k + �` + �n � �kt� �nt� �`t)
i

.

We seek only resonant terms, which only occur when ±�k, ±�`, and ±�n sum to �m. This happens most often
in one of two ways. First, we might have k = ` and n = m or similar. Alternatively, we might have degenerate
modes, �k = �` and �n = �m. However, we ignore the latter possibility because degeneracies add significant analytic
complications, including nontrivial dynamics of their relative phases. We also ignore the rare possibility of resonant
terms arising from interactions of modes with three or four distinct singular values. The results we get with these
assumptions closely match simulated time series (Fig. 3e-g), suggesting that the existence of degeneracies has little
impact on the dynamics of nondegenerate modes.

The remaining resonant terms in Eq. (S12) must cancel so that r1m is not an oscillator of frequency �m driven at
frequency �m. Thus,

2@t@⌧r0m = �m

2

4µf0m +
1

4

 

X

e

�4
em

!

A3
0m(3 sin(�mt� �m)) + 3

E
X

k=1,k 6=m

 

X

e

�2
em�2

ek

!

A2
0kA0m

1

4
(2 sin(�mt� �m))

3

5.

Substituting in r0m and f0m,

�2A0
0m�m sin(�mt� �m) + 2�2

m cos(�mt� �m)�0m =

�m

"

�µA0m sin(�mt� �m) +
1

4

 

X

e

�4
em

!

A3
0m(3 sin(�mt� �m))+ 3

E
X

k=1,k 6=m

 

X

e

�2
em�2

ek

!

A2
0kA0m

1

4
(2 sin(�mt� �m))

3

5,

where primes denote di↵erentiation with respect to ⌧ . For this to hold for all t we need the coe�cients of the sine
and cosine terms to separately cancel. From the cosine term, �0m = 0; from the sine term,

A0
0m =

1

2
A0m

0

@µ� 3

4

 

X

e

�4
em

!

A2
0m � 3

2

E
X

k=1,k 6=m

 

X

e

�2
em�2

ek

!

A2
0k

1

A ⌘ 1

2
A0m

 

µ�
E
X

k=1

PmkA
2
0k

!

,

where the matrix P has entries Pmk = 3
2 (1�

1
2�mk)

P

e �
2
em�2

ek. Rewriting in terms of the squared amplitudes,

d

d⌧
(A2

0m) = 2A0mA0
0m = A2

0m

 

µ�
E
X

k=1

PmkA
2
0k

!

. (S13)

As a matrix equation, with xm = A2
0m, this reads

x

0 = x� (µ1� Px), (S14)

where 1 denotes the vector of ones and � is the component-wise product.
To find stationary points, we set x� (µ1�Px) = 0. The obvious way to solve Eq. (S14) for all stationary points is

to exhaustively search over combinations of active modes: on picking certain elements of x to be zero, the remaining
nonzero entries x̂ are found by solving P̂x̂ = µ1, where P̂ is P restricted to those modes chosen to be nonzero.
Stability of a fixed point x0 then follows by standard perturbation analysis: inserting a small perturbation x0+ �x(⌧)
into Eq. (S14) gives

�x0 = �x� x0 � (P�x)� (Px0)� �x+O(�x2) ⌘ M�x+O(�x2),

where I denotes the identity matrix, and the eigenvalues of M then determine stability in the usual fashion.
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Fig. S2. Steady state amplitudes Ai as a function of activity µ for the tree pictured undergo a Hopf bifurcation as µ crosses 0.
Dots are long-time root-mean-square amplitudes from simulations started in each mode; lines are numerical solutions of
Eq. (S15). Mode A2 is too unstable to reliably observe in simulations, so it is omitted. For µ < 0, all amplitudes go to
zero in simulations; the dot included in that region is at µ = �1 where the friction is purely passive. Some deviations between
simulation and analytics are expected because the simulations do not use the Rayleigh friction approximation and ✏ 6= 0.
Parameters were ✏ = 0.5 and D = 0.

VII. ACCURACY OF RAYLEIGH FRICTION APPROXIMATION

To verify that the Rayleigh friction approximation does not significantly impact the results, we check the amplitude
and stability of single modes for the full model with g(µ,�e) = (µ� �2

e)/(1 + �2
e) on all edges. Here setting the first

order secular terms to zero in a perturbation expansion with A0n = A0p�np leads to

A2
0p = (µ+ 1)

X

e

 

2� 2

s

1

1 +A2
0p�

2
ep

!

. (S15)

Numerically solving Eq. (S15) for µ = 1 yields solutions within a few percent of the Rayleigh approximation solution
1/
p

Ppp which additionally match numerical simulations of the full model even for ✏ as large as 0.5 (Fig. S2).
When the system transitions from no energy input to active flow, the steady state amplitudes will grow with µ.

If we assume µ ⌧ 1 (so Ap ⌧ 1) and expand the square root to order A4
p, we find A2

p + O(A4
p) = µ/Ppp, exactly

matching the Rayleigh friction result. The scaling Ap ⇠ p
µ is typical of a supercritical Hopf bifurcation.

VIII. ATTRACTOR CHARACTERISTICS ON TREE NETWORKS

The mode interactions of Eq. (S14) can lead to complex oscillation patterns dependent on global, not local, topology,
as shown for a 127-vertex complete binary tree in Movie 4 and Fig. S3. After initializing with zero pressure variation
and flux, the system settles into quasi-steady states with dramatically di↵erent dynamics in separate regions of the
tree (Fig. 3a,b). Flux in edges near the leaves of the tree tends to oscillate rapidly, driving large pressure fluctuations
in nearby vertices, whereas flux oscillations near the root are comparatively slow with nearly constant pressure in the
vertices (Fig. 3b,d). Since, apart from the root and leaves, each vertex has the same local topology, the di↵erent time
scales emerge from the interaction of the local active friction with the global structure of the tree.

A comprehensive and precise characterization of the relative lifetimes of di↵erent attractors in large active flow
networks remains out of reach with current numerical methods, in part because the range of noise levels low enough
to observe state selection and high enough to observe transitions is quite small. Such a fine-tuning between thermal
and active transport processes is a characteristic feature of many, if not all, biological systems that function optimally
in a narrow temperature range: bacterial flagellar motors are designed to barely beat Brownian di↵usion at room
temperature, ATP-driven intracellular transport is tuned such that it improves moderately over thermal di↵usion,
and so-on. Another well-known example in this context is stochastic resonance in driven multistable systems [7].
However, as all these systems typically exhibit exponential Arrhenius-type waiting times, it is practically impossible
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to completely explore their attractor statistics in the moderate-to-weak noise regime, except for the simplest two-state
systems [8].

Nevertheless, long simulation runs as shown in Fig. S4 o↵er some insight into the qualitative behavior of attractors
in active flow networks. Specifically, our simulations suggest that, while there is considerable variation in the relative
occupancy of di↵erent attractors, stable states can be approximately divided in two classes: (1) states with one high
energy mode at high amplitude and a few low energy modes at low amplitude and (2) states with multiple low-energy
modes active at moderate amplitude, some of them degenerate. States of type (2) tend to quickly transition to other
states of type (2) (Fig. S4); states of type (1) have a wide range of lifetimes but no obvious transition patterns.
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Fig. S3. Activity causes depth-dependent separation of time scales on a large tree. (a) Most pressure variation occurs near the
leaves on large binary trees (Movie 4). (b) The tree in (a) develops an activity-driven steady state with slow oscillations in the
center and fast oscillations near the edges, as illustrated by the flux �e on the three edges labelled in (a). (c) Unnormalized
correlations between the Fourier transforms of the flux through the edges of the tree in (a), with phases ignored. Colors indicate
the tree level of the tail vertex of the edge. There are strong correlations within each level and between neighboring levels,
but low correlations for edges in widely-separated levels. (d) Frequency spectra of each tree level, computed by taking Fourier
transforms of the edge fluxes as in (c) and averaging the magnitudes across all edges at each level. A distinct primary oscillation
frequency for each level can be seen, which increases with distance from the tree center. Simulation parameters in all panels
are ✏ = 0.5, µ = 1, and D = 10�3. (e-h) While adding edges in the center leads to steady flow on cycles there, frequency still
increases with distance from the center in the outer, tree-like sections.
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Fig. S4. Lower energy modes transition more often for the graph in Fig. 3e of the Main Text. Modes are ordered by frequency
from high (top) to low (bottom). Simulation parameters are ✏ = 0.5, µ = 1, D = 5 ⇥ 10�3, identical to those in Fig. 3. Note
that rows 7 and 8, the two modes that switch on and o↵ most, are degenerate.

IX. NETWORKS WITH CYCLES

We focus on tree networks in this paper as they allow substantial analytical progress. However, Eqs. (S1) can be
applied without modification to networks with cycles. Cycles correspond to right singular vectors �n of r> with
singular value zero. As these are always degenerate, we expect the conclusions of Section VI to be most accurate
when there are few or no cycles. Alternatively, on a weighted graph where the edges of high conductance form a tree,
the attractor characteristics will be similar to the attractors on that tree (Fig. 1; all modes pictured in Fig. S6).

Qualitatively, we find the same stochastic switching between states with subsets of modes active in simulations of
Eqs. (S1) on cyclic graphs even with equal weights, with the additional feature that cyclic modes are particularly
stable and take longer to transition on average (Fig. S5). For further discussion of similar dynamics on cycles, see [3].
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Fig. S5. States on graphs with cycles, like the one shown, tend to be more stable. Modes are ordered by frequency from high
(top) to low (bottom). Note that the eight modes at the bottom, which are the only ones active in the lower half of the trace,
are all cycles. Simulation parameters are ✏ = 0.5, µ = 1, D = 5⇥ 10�3.
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weighted network. Edges a distance d from the central red path were given weight e�d. Modes are ordered by frequency from
high (top) to low (bottom); the last thirty modes, marked in red, are cycles. The modes pictured in Fig. 1 are marked in black.

X. HIGHER ORDER OSCILLATIONS

Before, by setting resonant terms to zero, we found the slow dynamics of An. Now we look at the non-resonant
terms driving r1m to find higher order e↵ects. If we let
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Fig. S7. Slow global oscillations emerge from the fast active dynamics. (a) First order considerations fix a constant mean flow
energy; higher order e↵ects cause significant slow oscillations about that mean. Simulation parameters were µ = 1, ✏ = 0.5,
and D = 0; the tree used is inset. (b) The mode amplitudes A2 and A3, like the energy, oscillate much more slowly than the
harmonic oscillations of f2 and f3. All other mode amplitudes (unlabelled traces) are close to zero. (c) Frequency spectra of
the two active modes and the energy H for the simulation in (a) and (b). The energy oscillates due to higher-order interactions
between modes at frequencies that are linear combinations of active mode frequencies, not the harmonic frequencies alone
(dashed lines).

assume the resonant terms are zero, and assume A0m = A0p�mp +A0q�mq, the remainder of Eq. (S11) is

@2
t r1m + �2

mr1m =
1

4
�m

n

Smp3A3
0p sin(3�pt) + 3Smq2pA0pA

2
0q

⇥

sin((2�q � �p)t)� sin((2�q + �p)t)
⇤

+3Smqp2A2
0pA0q

⇥

sin((2�p � �q)t)� sin((2�p + �q)t)
⇤

+Smq3A
3
0q sin(3�qt)

o

. (S16)

Setting m = p and only looking at the terms closest to resonance, we obtain

@2
t r1p + �2

pr1p ⇡ 1

4
�p

�

3Sq2p2A0pA
2
0q sin((2�q � �p)t) + 3Sp3qA

2
0pA0q sin((2�p � �q)t)

 

.

Thus

r1p ⇡ c1 cos((2�q � �p)t� �1) + c2 cos((2�p � �q)t� �2),

f1p ⇡ �c1 sin((2�q � �p)t� �1)� c2 sin((2�p � �q)t� �2),

where

c1 =
3

4((2�q � �p)2 � �2
p)
�pSq2p2A0pA

2
0q,

c2 =
3

4((2�p � �q)2 � �2
p)
�pSqp3A2

0pA0q.

The energy in this mode to first order in ✏ is

Hp =
�2
p

2

�

(r20p + ✏r1p)
2 + (f2

0p + ✏f1p)
2
�

+O(✏2)

=
�2
p

2

n

A2
0p + 2✏A0p

⇥

c1 cos((2�q � 2�p)t) + c2 cos((�p � �q)t)
⇤

o

+O(✏2),

exhibiting an order ✏ time dependence. The coe�cients c1 and c2 are small unless �p ⇡ �q. If we kept the frequency
3�p, 3�q, 2�p + �q, and 2�q + �p terms from Eq. (S16), we would find energy oscillations with frequencies 2�p, 2�q,
3�q � �p, and �p + �q (Fig. S7); those oscillations have smaller amplitudes as the driving is farther from resonance.

XI. NOISE AND THERMALIZATION

In Eqs. (S1a) and (S1b) we add Gaussian white noise only to the flux as a physically intuitive source of random
fluctuations that preserve mass conservation. However, even with purely passive friction, this does not lead to
equipartition of energy as seen in thermal systems.
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Written as stochastic di↵erential equations with g(µ,�) = �1, Eqs. (S1a) and (S1b) become

d%v =
X

e

rve�edt, (S17a)

d�e = �
X

v

r>
ev%vdt� ✏�edt+

p
2DdB̃e(t), (S17b)

where each B̃e(t) is standard Brownian motion. The components of the E-dimensional Brownian motion B(t) =
(B̃1, . . . , B̃E(t)) in any orthonormal basis are also standard Brownian motions, so we can rewrite the system in the
mode basis as

drn = �nfndt, (S18a)

dfn = ��nrndt� ✏fndt+
p
2DdBn(t). (S18b)

The associated Fokker-Planck equation for the probability distribution p(r, f , t) is

@tp =
X

n



� @

@rn
(�nfnp) +

@

@fn
(�nrnp) +

@

@fn
(✏fnp) +D

@2p

@f2
n

�

with p ! 0 as rn, fn ! 1 and p integrating to 1. Now, without friction or noise, the dynamics are governed by the
Hamiltonian

H =
1

2
%vrvereu%u +

1

2
�erevrva�a =

1

2

X

n

�2
n(r

2
n + f2

n) ⌘
X

n

Hn.

If p is a function of the Hn alone, the Fokker-Planck equation in steady state reduces to

0 =
X

n

@

@fn
(✏fnp) +D

@2p

@f2
n

,

which has solution

p(H1, . . . , HM ) /
M
Y

n=1

e�
Hn
kTn ,

where kTn = �2
nD/✏.

Loosely, adding noise this way couples each mode to a heat bath with a distinct temperature. The result is
equipartition of amplitude, not energy: the long-time average hA2

ni is independent of n. Adding weak coupling
between modes by making µ > �1 does not change this.

To get equipartition of energy one could change the coupling to noise, replacing the final term in Eq. (S18b) with

p

2DndBn(t) ⌘
p
2D

�n
dBn(t).

This is only possible for �n 6= 0, which precludes cyclic modes. Equation (S1b) becomes

d�e = �
X

v

r>
ev%vdt+ ✏g(µ,�e)�edt+

X

n

1

�n
�en

p
2DdBn(t).

The previous analysis goes through identically, leading to kTn = �2
nDn/✏ = D/✏.

XII. DIFFERENTIAL GROWTH RATES

While the E/4 active modes per state that we observe is significantly reduced relative to the total number of modes
available, it is still a not insignificant fraction of E. There are, however, several straightforward generalizations of our
model that may lead to more strict mode selection. We discuss two possibilities in this and the subsequent section:
variations in activity across the network and variations in weights of vertices or edges.

For simplicity, we introduced Eqs. (S1) with a uniform activity level µ across the entire network. This leads to
equal driving on all modes: if Eq. (S13) is initialized near zero, it can be linearized to

d

d⌧
(A2

0m) = µA2
0m,
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where all modes grow at the same rate. Mode selection occurs in this system only because of interactions between
modes.

In many physical systems, however, di↵erences in growth rate between modes are important for mode selection. For
example, the Rayleigh-Plateau instability [9] causes fluid jets to break apart into droplets whose size is determined
by the fastest growing unstable perturbation to the jet radius. Nonlinear mode competition akin to that in Eqs. (S1)
may only act on the subset of modes that grow quickly.

We can add this e↵ect to our model by replacing µ in Eqs. (S1) with edge-dependent parameters µe. With the
quadratic driving of Eq. (S9), Eq. (S1b) becomes

d�e

dt
= �

X

v

r>
ev%v + ✏

�

µe � �2
e

�

�e +
p
2D⇠e(t).

Following through the previous calculations with this change, Eq. (S11) becomes

@2
t r1m + 2@t@⌧r0m = ��2

mr1m + �m

2

4

X

e,l

�emµef0l�el �
X

e

�em

 

E
X

n=1

f0n�en

!3
3

5 .

The first term inside the square brackets no longer simplifies, since the �en are not orthonormal with the weighting
µe. However, if we again ignore degeneracies, the only resonant term is

P

e �
2
emµef0m from l = m. In this case,

defining ⌫m =
P

e �
2
emµe, Eq. (S13) then reads

d

d⌧
(A2

0m) = A2
0m

 

⌫m �
E
X

k=1

PmkA
2
0k

!

, (S19)

where modes have distinct growth rates independent of their interactions. Alternatively, one could specify ⌫m arbi-
trarily in Eq. (S19), though this would require more complex changes in Eq. (S1b) coupling activity across edges.

XIII. BAND GAPS

In addition to distinct activity levels µe across edges, we can also introduce edge weights �e or vertex weights
mv that vary across the network. Changing the conductances �e and volumes mv changes our system in two ways:
first, by changing the modes to the singular vectors of �⇤

ve; and second, by changing the coupling matrix to P̃mk =
3
2 (1�

1
2�mk)

P

e �
�1
e �2

em�2
ek, which depends explicitly on the edge weights.

Such changes are known to cause qualitative changes in the physics of classical spring-mass networks, including the
introduction of band gaps. In an infinite one-dimensional line of beads of equal mass m connected by springs with
equal spring constant f , for example, the dispersion relation between frequency ! and wavenumber q is

!(q) = 2

r

f

m
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⌘
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Fig. S8. The emergence of an activity-driven spectral band gap is exhibited by a simulation on a 14-vertex path with (a)
all weights equal to 1 and (b) alternating vertex weights 1 and 5. Modes are ordered by frequency from high (top) to low
(bottom). Note that in (b) the central n = 7 mode is always active and the low energy states on the right half of the plot
are significantly more suppressed than they ever are in (a). The qualitative di↵erence is due to the presence of vertices with
unequal weights, not the overall scale of the vertex weights; changing vertex weights uniformly is equivalent to rescaling other
parameters. Parameters were µ = 1.2, D = 5⇥ 10�3, and ✏ = 0.5. Both simulations used the same random seed.
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where a is the size of the unit cell, in this case equal to distance between adjacent beads [10]. If instead of equal
masses the beads alternate between a smaller mass m1 and larger mass m2, the dispersion relation splits into two
branches,

!(q)2± = f

✓

1

m1
+

1

m2

◆

± f

s

✓

1

m1
+

1

m2

◆2

� 4

m1m2
sin2

⇣qa

2

⌘

.

Here a unit cell has two beads, so the distance between beads is a/2. At q = ⇡/a, there is a gap between !+ =
p

2f/m1

and !� =
p

2f/m2. This band gap shows up in a finite system as a large di↵erence in frequency between modes
above and below the gap.

Since varying what are e↵ectively vertex weights causes such a clear qualitative change in behavior in the spring
system, we can reasonably expect similar changes in our model. Simulations on paths with alternating vertex weights
show a distinct separation of of low- and high-energy states not present with uniform weights (Fig. S8), with stronger
and more consistent suppression of the low-energy states and few transitions across the band gap created by nonuniform
weights. Band gaps in more realistic topologies may have similar e↵ects, allowing for enhanced control of the large-scale
behavior.

[1] J. Toner, Y. Tu, and S. Ramaswamy, Annals of Physics 318, 170 (2005).
[2] A. Souslov, B. C. van Zuiden, D. Bartolo, and V. Vitelli, arXiv:1610.06873.
[3] F. G. Woodhouse, A. Forrow, J. B. Fawcett, and J. Dunkel, Proc. Natl. Acad. Sci. U.S.A. 113, 8200 (2016).
[4] M. Paoluzzi, R. Di Leonardo, and L. Angelani, Phys. Rev. Lett. 115, 188303 (2015).
[5] F. Schweitzer, W. Ebeling, and B. Tilch, Phys. Rev. Lett. 80, 5044 (1998).
[6] J. W. S. B. Rayleigh, The Theory of Sound vol. 1, 2nd ed. (Macmillan, New York, 1894) p. 81.
[7] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).
[8] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
[9] J. W. S. B. Rayleigh, Proc. Lond. Math. Soc. s1-10, 4 (1878).

[10] P. Misra, Physics of Condensed Matter (Elsevier Science, 2011).


