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Depending on the exact experimental conditions, the
thermodynamic properties of physical systems can be
related to one or more thermostatistical ensembles.
Here, we survey the notion of thermodynamic
temperature in different statistical ensembles,
focusing in particular on subtleties that arise
when ensembles become non-equivalent. The
‘mother’ of all ensembles, the microcanonical
ensemble, uses entropy and internal energy (the
most fundamental, dynamically conserved quantity)
to derive temperature as a secondary thermodynamic
variable. Over the past century, some confusion
has been caused by the fact that several competing
microcanonical entropy definitions are used in
the literature, most commonly the volume and
surface entropies introduced by Gibbs. It can be
proved, however, that only the volume entropy
satisfies exactly the traditional form of the laws of
thermodynamics for a broad class of physical systems,
including all standard classical Hamiltonian systems,
regardless of their size. This mathematically rigorous
fact implies that negative ‘absolute’ temperatures and
Carnot efficiencies more than 1 are not achievable
within a standard thermodynamical framework.
As an important offspring of microcanonical
thermostatistics, we shall briefly consider the
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canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude
by addressing open mathematical problems that arise for systems with discrete energy spectra.

1. Introduction
The fundamental differential relation [1]

1
T

=
(

∂S
∂E

)
Z

(1.1)

connects the thermodynamic state functions temperature T, internal energy E and entropy S.
Given S as a function of E, and possibly other constant control parameters Z = (Z1, . . .) in the
Hamiltonian such as volume or an external magnetic field, equation (1.1) in fact defines the
thermodynamic temperature. The concept of entropy was introduced by Rudolf Clausius [2] in
1865. Clausius chose the symbol S in honour of (Nicolas Léonard) Sadi Carnot, who laid the
groundwork for the second law of thermodynamics. The celebrated Clausius relation dS = δQ/T
identifies the inverse of the thermodynamic temperature T as the integrating factor for the
second law, with δQ � 0 denoting quasi-static and reversible infinitesimal heat exchange. After

Clausius’ seminal paper [2], it took about 30 more years until Gibbs [3], Einstein, Planck [4,5]1

and others [6,7] were able to connect firmly thermodynamics and statistical mechanics—and yet
certain aspects of this connection have remained a subject of debate up to this day.

The standard approach in statistical mechanics is to identify thermodynamic state functions
with specific average values of a suitably chosen statistical ensemble that correctly reflects the
physical conditions under which measurements are performed (perfect isolation, coupling to an
energy or matter reservoir, etc.). The most fundamental statistical ensemble is the microcanonical
ensemble (MCE), describing the thermodynamics of isolated systems that are governed by energy
conservation and which, at equilibrium,2 cannot exchange heat or matter with their surroundings.
The MCE is the foundation of other thermostatistical ensembles, including the canonical ensemble
(which permits permanent energy and/or heat exchange with the environment) and the grand-
canonical ensemble (which allows both energy and matter exchange). These two subordinate
ensembles can be derived from the MCE by considering a subsystem of interest that is weakly
coupled to the rest of the globally isolated microcanonical system, which is then interpreted as an
environment (heat bath or particle reservoir) for the particular subsystem.

Recent experimental advances make it possible to investigate thermodynamic properties of
very small systems (single molecules, Brownian colloids or even individual atoms) that may be,
in good approximation, decoupled from the environment or that can be in weak or strong contact
with a much larger system. Such finite-system studies provide a valuable testbed for the notion
and meaning of thermodynamic temperature in the context of various statistical ensembles.
Particularly interesting from a theoretical and practical perspective are situations in which
different ensemble descriptions are not guaranteed to be equivalent. Ensemble inequivalence
is more norm than exception in finite-size systems but can also occur in macroscopic systems
with long-range interactions or when the density of states (DoS) is a non-monotonic function
of energy. Equilibrium systems of the latter type are often classified as anomalous [1] and, if
entropy is chosen naively, they can give rise to the paradoxical notion of a negative ‘absolute’
temperature.

1In [5] see in particular §117, p. 226 and also equation (372) on p. 252, where the Gibbs volume Ω(E, Z) is selected to define
the entropy.
2To change the energy of a microcanonical system, an external operator can vary the control parameters Z, or inject or extract
heat by coupling the system temporarily to an external heat source or sink. However, such couplings have to be switched off
during the equilibration phase.
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In the remainder of this contribution, we will survey the meaning of temperature in
thermodynamics by summarizing and commenting on results from recent more detailed
studies [8,9].

2. Microcanonical thermodynamics and absolute temperature
The MCE describes the thermostatistics of a strictly isolated system through the density operator
ρ = δ(E − H)/ω, where the normalization constant ω is the DoS. The MCE is the most fundamental
ensemble as it only relies on the conservation of energy E, arising from the time-translation
invariance of the underlying Hamiltonian H. External thermodynamic control parameters Z, such
as available system volume, particle numbers, electric or magnetic fields, enter as parameters
through the Hamiltonian H(Z) and the DoS ω(E, Z). To connect the MCE to thermodynamics,
Gibbs [3] studied two different candidates for the thermodynamic entropy of an isolated system.
The first is the volume entropy, which in modern notation takes the form

SG = kB ln Ω(E, Z). (2.1)

Here, kB denotes the Boltzmann constant and the dimensionless volume quantity Ω(E, Z) is the
integrated DoS, classically obtained by integrating the non-negative DoS ω ≥ 0 up to energy E,

Ω(E, Z) =
∫E

0
dE′ω(E′, Z), (2.2)

assuming zero ground-state energy for a physically stable system. Since Ω is a non-decreasing
function of E, the temperature TG obtained from SG and equation (1.1) is strictly non-negative.

For classical Hamiltonian systems H(ξ , Z) with phase-space variables ξ , the integrated DoS
Ω(E, Z) equals the properly normalized (via division by the symmetries of the degrees of freedom)
and dimensionless (via division by the appropriate power of Planck’s constant) integrated phase-
space volume up to the energy E. We may write this formally as

Ω(E, Z) = T rξΘ[E − H(ξ , Z)], (2.3)

where Θ denotes the unit step function and T r the phase-space integral over distinguishable
microstates ξ . For isolated quantum systems with discrete energy spectra, ξ comprises the
complete set of quantum numbers, and we may interpret Ω in equation (2.3) as a discrete level
counting function, defined on the spectrum {En} of the Hamiltonian. Intuitively, the discrete
function Ω(En, Z) sums the eigenspace dimensions of the eigenvalues Ej ≤ En. In the quantum
case, one needs to postulate additional smoothing procedures before one can apply differential
thermodynamic relations such as equation (1.1) (see discussion in §4).

Following Gibbs’ seminal work, Hertz [6,7] demonstrated the mechanical adiabatic invariance
of the volume entropy SG for classical systems. The exact connection between SG, its
corresponding temperature TG and equipartition for classical finite-size systems was emphasized
in early works by Schlüter [10] and Khinchin [11]. More recent discussions and applications of
Gibbs’ volume entropy can be found in [8,9,12–21].

The second microcanonical entropy candidate studied by Gibbs [3] is the surface entropy,

SB = kB ln[ω(E, Z)ε]. (2.4)

The quantity ε denotes an arbitrary energy constant, needed to make the argument of the
logarithm dimensionless. That the definition of SB requires such an additional ad hoc parameter
is conceptually unappealing, but bears no relevance for thermodynamic quantities that are
related to derivatives of SB(E, Z)—provided ε is assumed to be independent of (E, Z). One
can show however that the presence of ε can cause SB to violate Planck’s formulation of
the second law [8]. For discrete quantum systems with singular DoS ω, equation (2.4) also
requires additional interpolation and/or smoothing procedures (see §4). The subscript ‘B’ in
equation (2.4) signals that this definition is also commonly referred to as Boltzmann entropy
nowadays, which unfortunately does not seem to reflect properly the actual history. Although

 on February 22, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150039

.........................................................

Boltzmann’s tombstone famously carries the entropy formula S = kB log W, it was, according to
Arnold Sommerfeld [22], Max Planck [4,5] who first established this relation. As described in
many textbooks, the entropy expression SB in equation (2.4) can be heuristically obtained by
identifying log = ln and interpreting W = εω(E, Z) as the number of microstates accessible to a
physical system at energy E. This may explain the popularity of the term ‘Boltzmann entropy’.

It is well known that for macroscopic normal systems [1] with a large number of microscopic
degrees of freedom, most of the phase-space volume is contained in a narrow shell just below
the energy E. In such cases, the two entropy definitions become essentially indistinguishable
and predict practically identical thermodynamic equations of state. There exists, however, a wide
range of systems for which SB and SG are non-equivalent.

(a) Self-consistency checks
The question as to whether SG or SB are viable candidates for the thermodynamic entropy
of isolated systems can be answered directly by testing either candidate against the laws of
thermodynamics. The approximation-free analysis in [8] shows that for a broad class of physical
systems, which includes all standard classical Hamiltonian systems3 of arbitrary size, the Gibbs
volume entropy SG satisfies the traditional formulations of the zeroth, first and second laws
exactly. By contrast, the surface entropy SB is found to violate these laws in many situations [3,8,9].
While referring the reader to [8] for technical details, we briefly summarize the most essential
results.

(i) That SG, but not SB, satisfies the zeroth law is a reflection of the fact [8,10,11,15–17,21] that
only SG satisfies the microcanonical equipartition theorem exactly. More precisely, denoting the
microcanonical averages by 〈 · 〉E, the Stokes theorem implies [11] that, for all standard classical
Hamiltonian systems with topologically simple phase space R

d, the equipartition identity4

kBTG = kB

(
∂SG

∂E

)−1

Z
=

〈
ξk

∂H
∂ξk

〉
E

(2.5)

holds for any of the canonical coordinates (ξ1, . . . , ξd). By contrast, this relation is in general violated
for the surface entropy, ruling out SB as a consistent thermodynamic entropy.

(ii) Compliance of S = SG and T = TG with the first law

dS = 1
T

dE +
∑

i

Fi

T
dZi, Fi := T

(
∂S
∂Zi

)
E

!= −
〈
∂H
∂Zi

〉
E

, (2.6)

follows directly from a simple integration by parts [8,20]. Note that the last equality in
equation (2.6) ensures that statistical averages agree with thermodynamic observables. One can
easily verify that this consistency criterion is, in general, violated for the Boltzmann entropy SB.

(iii) Planck’s second law of thermodynamics for isolated systems can be, in essence, stated
as follows: consider two isolated microcanonical systems that are initially separated and have
entropies S1(E1) and S2(E2), respectively. Now couple the two systems weakly and let them
equilibrate. Assuming energy conservation throughout the process, the joint equilibrated system
is again microcanonical and has entropy S1+2(E1+2) = S1+2(E1 + E2). Then, Planck’s second law
demands that the entropy of the final state is larger than the sum of the initial entropies

S1+2(E1+2) ≥ S1(E1) + S2(E2). (2.7)

Basic integral convolution properties imply that equation (2.7) is always satisfied for SG (in most
cases, even with strictly ‘>’) but not necessarily by SB [8].

3These are confined systems with quadratic kinetic energy and finite ground-state energy.

4For systems with complex phase-space topology, equation (2.5) can be violated, see example in §2b, where the phase-
space regions corresponding to clockwise and anticlockwise motion become disconnected for supercritical energy values.
Such topologically peculiar systems do not thermalize in the traditional sense. However, for the most commonly considered
standard classical Hamiltonian systems, equation (2.5) is strictly satisfied.
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In this context, it is worthwhile to note that any subsequent attempt to decouple the two
systems results in non-microcanonical distributions for the separated systems, since the exact
individual energies are not known any more due to the permanent energy exchange during
the equilibration phase (i.e. thermal coupling is irreversible). This means that, without further
manipulation or measurements (or the introduction of a Maxwell demon), the total entropy
remains S1+2(E1 + E2) after separation, a fact that has been missed by authors [23], who recently
criticised the Gibbs entropy. Unsurprisingly, this basic error led to paradoxical conclusions [23],
such as an apparent violation of mathematically exact inequalities.

For completeness, we mention that previous studies rarely focused on the third law,
mainly because it is well known that many classical systems (including the ideal gas) do
not obey the third law. Typically, verification of the third law requires a consistent quantum-
mechanical treatment.5 Evidently, the Gibbs entropy satisfies SG(E0) = kB ln g0 with g0 denoting
the degeneracy of the ground-state energy E0 and hence fulflls the most basic version of the
third law.

(b) Positive and negative temperatures: an example
The primary thermodynamic state variables of an isolated system with Hamiltonian H(Z) = E are
energy E and control parameters Z. By contrast, the temperature T is a secondary derived quantity
determined by equation (1.1). For the Gibbs volume entropy, one finds explicitly

kBTG = Ω(E, Z)
ω(E, Z)

, ω(E, Z) = ∂Ω

∂E
. (2.8)

As both the integrated DoS Ω ≥ 0 and the DoS ω ≥ 0 are non-negative, the Gibbs temperature is
strictly non-negative. For comparison, the Boltzmann temperature is given by

kBTB = ω(E, Z)
ν(E, Z)

, ν(E, Z) = ∂ω

∂E
. (2.9)

The Boltzmann temperature TB is negative whenever the DoS ω is locally decreasing with E (see
example in figure 2). This happens for Ising-type spin or laser systems in the population-inverted
regime, as well as in Hamiltonian systems exhibiting singular points in their DoS that separate
regions of ν(E, Z) > 0 with regions with negative-valued ν(E, Z).

An instructive one-dimensional example [21] is the classical pendulum (mass m, length L,
gravitational acceleration g) with Hamiltonian

H(φ, pφ) =
p2
φ

2m
− mgL cos φ. (2.10)

The energy range is bounded from below but unbounded from above, −mgL < E < ∞. The DoS
ω can be given analytically in terms of complete elliptic integrals of the first kind [21]. The DoS
increases in the oscillatory regime −mgL < E < mgL, exhibits a singularity at Ec = mgL, where the
orbit period diverges, and decreases in the continuous-rotation regime, mgL < E < ∞ (figure 1a).
Accordingly, the Boltzmann entropy decays monotonically as E → ∞ (figure 1b), implying a
negative Boltzmann temperature for E > mgL. By contrast, the Gibbs temperature is positive for
all E > −mgL (figure 1c). In particular, for E 	 mgL, any further increase of energy is, in essence,
purely kinetic and the system approaches an ideal one-particle gas on a circle, which should
asymptotically satisfy E = + 1

2 kBT, unless one is willing to give up this standard caloric equation
of state. It easy to check that this relation holds only for T = TG (figure 1c).

(c) Additional remarks

5As a note of caution: one can find many partially conflicting versions of the third law in the literature, and some naive
formulations are not applicable to isolated systems, or only apply to systems with non-degenerate ground state or finite
energy gap between ground-state and lowest excited energy levels.
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Figure 1. Microcanonical thermostatistics of the pendulum with Hamiltonian (2.10). (a) The integrated DoSΩ (blue) grows
monotonically while the DoS ω (red dashed) exhibits a singular peak at the critical energy Ec = mgL, indicating a change
in the phase-space topology. (b) The Gibbs entropy SG (blue) increases monotonically, whereas the Boltzmann entropy SB (red
dashed) becomes singular at Ec and decays for E > Ec. (c) TheGibbs temperature TG (blue) approaches asymptotically the caloric
equation of state of the ideal one-particle gas, whereas the Boltzmann temperature TB (red dashed) becomes negative for
E > Ec.
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Figure 2. Non-uniqueness of microcanonical temperatures for a system with non-monotonic DoS; figure adapted from [8].
(a) DoSω (red dashed) and integrated DoSΩ (blue) for the example in eqn (23) of [8]. (b) Gibbs volume entropy SG (blue) and
Boltzmann surface entropy SB (red dashed). (c) Gibbs temperature TG (blue) and Boltzmann temperature TB (red dashed). The
example illustrates that, in general, neither the Gibbs nor the Boltzmann temperature uniquely characterize the thermal state
of an isolated system because the same temperature value can correspond to different energy values.

(i) Heat does not always flow from hot to cold

The thermodynamic state of an isolated system is completely determined by the primary state
variables (E, Z). As temperature is not a primary state variable, it cannot, in general, uniquely
characterize the thermodynamic state of a microcanonical system (figure 2). This means there
exist situations where neither the Gibbs temperature TG nor the Boltzmann temperature TB can
predict the energy flow between weakly coupled systems that had different temperatures before
contact [8]. For instance, for a system with oscillatory DoS, two or more significantly different
energy values can have the same temperature, regardless of which entropy definition one adopts
(figure 2c). Therefore, the naive formulation of the second law ‘heat always flows from hot to cold’
does not hold in general. Likewise invalid are versions of the zeroth law that claim that isolated
systems with equal temperatures should not produce a net heat flow between them when brought
into thermal contact. This can again be readily seen by considering, for example, the coupling of
an ideal gas to a system with oscillatory DoS as in figure 2.

 on February 22, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A374:20150039

.........................................................

(ii) Thermodynamics applies to equilibrium systems of any size.

It takes little effort to verify that equations (2.5)–(2.7) hold exactly for standard classical
ergodic Hamiltonian systems with an arbitrary number of degrees of freedom N. Similarly,
the canonical ensemble discussed below can be applied to (sub)systems of any size. These
mathematical facts are widely appreciated by many colleagues [9,12–15,18,19,21]—in particular
those interested in understanding DNA folding [24], microscopic information storage and
erasure [25] and fluctuation phenomena [26]—and yet remain ignored by a few others [23,27].
When judged objectively, there is no doubt that the application of thermodynamic concepts
to finite systems has considerably advanced our understanding of biophysical, colloidal and
quantum processes.6 Compared with infinite-systems thermodynamics, a practical difference
is given by the fact that fluctuations generally play a (much) more important role in small
systems. The presence of fluctuations, of course, does not mean that it is forbidden to characterize
single DNA molecules thermodynamically; on the contrary, such fluctuations typically contain
important additional thermodynamic and energetic information that is usually lost in the
infinite-system limit. Therefore, it would seem wiser to focus on understanding better the
fluctuations of thermostatistical variables in finite systems, such as those of virial quantities on
the r.h.s. of equation (2.6), instead of discarding finite-system thermodynamics on purely habitual
grounds [27]. Dogmatic insistence on the thermodynamic limit N → ∞ is about as useful as
insisting on the Newtonian limit, corresponding to speed of light c → ∞, in relativity. In both
cases, things may become simpler, but one is missing out on relevant physics.

(iii) Clausius relation and Carnot efficiency

Campisi [9] showed recently that the inverse Gibbs temperature T−1
G appears naturally as the

integrating factor in the Clausius relation for virtually all practically relevant physical systems.
This corroborates the fact that the Gibbs temperature TG should be identified with the absolute
thermodynamic temperature T, unless one is willing to abandon the Clausius relation. Moreover,
the non-negativity of the Gibbs temperature directly implies that Carnot efficiencies cannot
exceed 1.

(iv) Thermodynamic potentials can be ‘non-local’

It is sometimes argued that the Gibbs entropy cannot be the ‘correct’ thermodynamic entropy as it
is based on the integrated phase-space volume Ω , which is a ‘non-local’ quantity that arises from
a summation over states in an extended energy range. This argument might appear superficially
appealing but it is ill-founded for (at least) two reasons. First, the microcanonical averages
appearing in equations (2.5) and (2.6) are computed purely locally on the energy surface in
phase space. Yet, the Stokes theorem implies that they can be related to the enclosed phase-space
volume [11] and, hence, entropy should be a non-local volume-related quantity. Second, if we
insisted on purely local potentials everywhere in physics then we would have to stop using force
potentials in mechanics, which are in essence ‘non-local’ integrals over local forces experienced
by particles. At this point, however, it is helpful to recall why such non-local potentials are
introduced in mechanics in the first place: they allow us to define an important conserved
quantity, energy. Just as the energy is invariant under infinitesimal time translations, the integrated
phase-space volume Ω is invariant under infinitesimal adiabatic parameter translations [6,7,15].
Hence, it should not be surprising but rather be expected that thermodynamic potentials may be
non-local in energy space.

6Most of the experimental applications involve the canonical ensemble, as DNA molecules [24] or colloids [25,26] are
typically held in a liquid bath that acts as a canonical thermostat. However, if one accepts the applicability of canonical
thermostatistics to finite systems, then there exist no mathematical or logical or physical reasons that forbid the application
of microcanonical statistics to finite systems, because equations (2.5)–(2.7) hold for systems of any size. Of course, the
thermostatistical characterization of small systems should not just be limited to the mean values appearing in equations (2.5)
and (2.6) but should also include a careful fluctuation analysis of the underlying stochastic observables.
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(v) Ising models are bad benchmarks

When using specific theoretical models to illustrate alleged pros and cons of certain entropy
definitions, then it is advisable to verify first that these models respect superordinate
experimentally established knowledge. Specifically, while the observed stability of matter implies
the existence of lower energy bounds on Hamiltonians, there exists no evidence to date for strict
upper energy bounds. This means that E → −E is not a fundamental symmetry of physics and,
hence, one should not impose such energy-reflection symmetry on thermodynamic quantities. For
the same reason, it is not advisable to base arguments exclusively on Ising-type models, which
are ad hoc truncations of more fundamental Hamiltonians that are not bounded from above, if one
wants to evaluate the conceptual validity of a certain thermostatistical framework.

(vi) Ensemble (in)equivalence

Although SG, SB and other entropy candidates [8] often yield practically indistinguishable
predictions for the thermodynamic properties of large normal systems [1], such as quasi-ideal
gases with macroscopic particle numbers, they can produce substantially different predictions for
finite mesoscopic systems, for ad hoc truncated Hamiltonians with upper energy bounds or even
for macroscopic gravitational systems [28]. This implies (see discussion in §3) that, in general,
microcanonical and canonical descriptions are not equivalent, which is not surprising as they
refer to different physical conditions (complete isolation versus coupling to an infinite bath).

3. Temperature in the canonical ensemble
The canonical Boltzmann factor e−βH, where T = (kBβ)−1 is commonly identified with the bath
temperature, has become one of the most frequently employed statistical tools in physics.
It is therefore conceptually important and practically useful to understand potential validity
limits, which arise from assumptions and approximations made during the derivation from the
underlying MCE.

(a) Boltzmann factor and temperature
We briefly summarize the key assumptions underlying the derivation of the Boltzmann
factor by considering a system of interest S which is coupled to another system B that
acts as a heat bath. The starting point of the derivation is the microcanonical density
operator ρT (ξ |ET , Z) = δ[ET − HT (ξ , Z)]/ωT (ET , Z) of the total system T = S + B. The first key
assumption en route to the Boltzmann factor is weak coupling, which means that one neglects
system–bath interaction contributions to the total energy and Hamiltonian, by writing ET = ES +
EB and HT = HS + HB. Because the total energy ET is fixed, the probability weight P(ES |ET , Z)
to find the fluctuating energy value ES of the subsystem S is given by [1,8,29]

P(ES |ET , Z) = ωS (ES )ωB(ET − ES )
ωT (ET )

. (3.1)

Here, ωS (ES ) denotes the DoS of the subsystem energy value ES , while ωB(EB) is the DoS of the
bath at energy EB = ET − ES , and ωT (ET ) the total DoS at the total energy ET . Equation (3.1) can
be equivalently rewritten as

P(ES |ET , Z) = ωS (ES )
εωT (ET )

exp

[
SB

B (ET − ES )
kB

]
, (3.2)

where SB
B (EB) = SB

B (ET − ES ) denotes the Boltzmann entropy of the bath. As the next step in the
standard derivation [1,29], one expands the Boltzmann entropy in the exponent around some
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conveniently chosen value ĒB, typically taken to be the expectation value EB of the bath energy,7

keeping terms up to linear order:

SB
B (ET − ES ) = SB

B (ĒB) + 1

TB
B (ĒB)

(ET − ES − ĒB) + · · · , (3.3)

where TB
B = (∂SB

B /∂EB)−1 is the Boltzmann temperature of the bath. Note that equation (3.3) is
essentially an expansion in the energy fluctuations of the bath δEB = EB − ĒB = (ET − ES ) − ĒB.
Inserting expansion (3.3) into equation (3.2) gives

P(ES |ET , Z) = ωS (ES )
εωT (ET )

exp

[
SB

B (ĒB)
kB

+ (ET − ĒB) − ES

kBTB
B (ĒB)

+ · · ·
]

. (3.4)

Assuming all higher-order terms can be neglected,8 one obtains the standard result

P(ES |ET , Z) = ωS (ES )
ZC

exp

[
− ES

kBTB
B (ĒB)

]
, (3.5)

where all remaining ES -independent terms have been absorbed into the normalizing constant ZC,
which is the canonical partition function.

Thus, the temperature entering the celebrated Boltzmann factor exp(−βES ) is the Boltzmann
temperature TB

B of the bath. One may therefore be tempted to assume that TB
B can be identified with

the thermodynamic temperature of the total system. However, this is logically incorrect because
TB

B (ĒB) is in general not equal [8] to the total system Boltzmann temperature TT
B (ET ) or Gibbs

temperature TT
G (ET ), with the latter being the actual thermodynamic temperature. Of course,

when the bath is macroscopically large and normal (e.g. ideal gas-like) from a thermostatistical
viewpoint, then the effective temperature TB

B practically coincides with the Gibbs temperature
of the total system T , as well as with the average9 Gibbs temperatures [8] of the bath B and
the system S. By contrast, when considering finite thermostats (i.e. a bath with a finite number
of microstates), then the exponential Boltzmann has to be replaced by a generalized Boltzmann
factor, which may assume the form of a Tsallis–Renyi escort distribution [30].

(b) Beyond weak coupling
Having surveyed the notion of temperature in the canonical ensemble, we still address another
subtlety that concerns the heat capacities of nano-systems. When studying the thermodynamic
properties of nano-scale devices, one naturally encounters the question whether the weak
coupling approximation remains justified. Indeed, for a typical nano-system in contact with a
heat bath, the coupling energy is usually of the order of the average system energy. Therefore,
coupling terms in the Hamiltonian can no longer be neglected. This issue was investigated in
detail in [31–33], which focused on the question how the canonical heat capacity is affected
when nano-subsystems are strongly coupled to a large normal bath. These studies showed that
the reduced canonical weight (or reduced density operator in quantum mechanics) of a strongly
coupled small system is no longer of the Boltzmann form, when expressed in terms of the bare
subsystem energy ES or corresponding Hamilton operator HS . Instead, the canonical weight now
features a renormalized subsystem Hamiltonian that depends explicitly on both effective bath

7Replacing the expansion point ĒB by the mode is not recommendable, as this procedure becomes ambiguous or even
ill-defined when the DoS ωB(EB) of the bath is oscillating or monotonically increasing.
8The approximate formulae (3.4) and (3.5) neglect all higher-order contributions in the Taylor expansion of SB

B . For example,

the coefficient in front of the quadratic term is proportional to ∂2SB
B /∂2EB = −1/(TB

2CB
B ), where CB

B = ∂EB/∂TB is the
canonical specific heat of the bath. For this term to vanish individually, CB

B has to be sufficiently large. Roughly speaking, one
can expect that the second-order as well as higher-order expansion terms become negligible if the Boltzmann temperature TB

B
changes only slowly when the bath energy is varied. This typically requires a large bath.
9Since system S and bath B can permanently exchange energy, subject to the constraint ET = ES + EB = const., their
temperatures have to be defined as statistical averages with respect to the microcanonical density operator of the total
system T (see Sec. III.D in [8]).
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temperature TB and coupling strength. Moreover, as a main consequence, the canonical specific
heat of the subsystem is not guaranteed to be positive and can, in fact, attain negative values even
for TB > 0 [31–33]. The thermodynamic entropy10 of such a strongly coupled quantum system,
obtained from its canonical partition function via the free energy, assumes a form that is close (but
not exactly equal) to the quantum conditional entropy, and can become negative for TB > 0 [33].
This does not affect, however, the validity of the third law as stated above, which holds true for
TB → 0 even when a small quantum subsystem is strongly coupled to a heat bath; see fig. 3 in [33]
for an example.

(c) Thermodynamic versus information entropy
We conclude our discussion of the canonical ensemble with brief remarks on thermodynamic
and information-theoretic entropies. The exponential Boltzmann distribution (3.5) is directly
linked to the entropy SC = −kBT r(ρ ln ρ), as already noted by Gibbs [3], who discussed SC
exclusively in the context of the canonical ensemble. Nowadays, SC is commonly referred
to as the canonical Gibbs–Shannon entropy in classical statistical mechanics and as the von
Neumann entropy in quantum statistics. It is well known that the canonical distribution (3.5)
can be obtained by maximizing SC under the assumption that the mean energy ĒS is given.
However, such a purely formal ‘derivation’ conceals the underlying physical assumptions that
determine the range of validity of the Boltzmann distribution (3.5). Also, entropy maximization
arguments often leave the impression that there is a direct one-to-one correspondence between
thermodynamics and information theory, which is somewhat misleading for a number of reasons.
First, there exist many different information measures [34] and the Shannon entropy is just
one of them—although an admittedly very nice one. Second, the Shannon entropy can be
used to quantify the information content of arbitrary probability measures that, in most cases,
have no relation to the thermodynamic equilibrium distributions. Third, the most fundamental
equilibrium ensemble, the MCE, has a thermodynamic entropy that does not belong to the
class of Shannon entropies. Therefore, some reservation seems in order when attempts are
made to identify information-theoretic measures generically with thermodynamic entropies and
vice versa. A similar note of caution applies when one tries to relate information-theoretic
inequalities to thermodynamic inequalities that arise in the context of the second law or from
thermodynamic stability considerations [29]. Potential analogies between thermodynamics and
information theory are interesting and deserve to be explored in great detail, but they should not
necessarily be raised to the level of postulates, when they have been shown to be incomplete and
may obscure physical insight.

4. Open questions
The above discussion implicitly assumed that all derivatives exist and are well behaved. This
is typically the case for classical Hamiltonian systems with the exception of critical points [17],
as also encountered in the pendulum example above [21]. For quantum systems, the problem is
generally more subtle since quantum-mechanical energy spectra can be partially or completely
discrete, and are typically very sensitive to small perturbations that can break symmetry-
related degeneracies. Similar effects occur in classical approximations to quantum systems, as
for example the classical Ising model. Whenever one faces a completely or partially discrete
spectrum {Ei}, the corresponding DoS ω(E, Z) becomes formally singular and essentially reduces
to a collection of δ-functions at those discrete energy values, ω(E) = ∑

i giδ(E − Ei), where gi is the
degeneracy of the energy value Ei. In this case, the construction of a differentiable DoS requires
some sort of smoothing procedure. This issue is closely related to the so-called ‘Weyl problem’
of finding asymptotic approximations for the eigenvalue distributions of Hermitian operators in

10For non-weakly coupled systems, correlations between bath and system cannot be neglected and, therefore, the
thermodynamic entropy of such subsystems is no longer given by the classical Gibbs–Shannon entropy or the quantum-
mechanical von Neumann entropy.
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finite domains, by applying some suitable averaging procedure to obtain a continuous DoS [35].
For canonical systems, one typically uses such a smoothed DoS of the underlying energy spectrum
at high ambient temperatures.

When the spectrum exhibits a discrete range, then one can define the integrated DoS Ω(E, Z),
which enters the microcanonical Gibbs entropy SG, in at least two different ways. The most
commonly used method simply integrates the discrete DoS ω(E, Z) over E, which results in a
step function Ω̃ that gives rise to singular thermodynamic derivatives. This approach seems
unsatisfactory mathematically, for one simply integrates over the ‘forbidden’ part11 of the
spectrum while completely ignoring structural information encoded in the amplitude values gi
of ω in the interpolation regions (Ei, Ei+1). A potentially better method [8] is based on analytic
interpolation of the discrete level counting function Ω(En) = ∑

Ej≤En
dimHj, where Hj is the

eigenspace of Ej. Although the most natural interpolations appear obvious when Ω(En) can be
written as Ω(En) = f (n) for some known function f (see examples in [8]), there remain open
questions as to how to treat rigorously cases where no such closed-form representation is
known.12

5. Conclusion
Gibbsian thermodynamics [3,6,7] works consistently for finite and infinite systems, because
the underlying mathematical and statistical foundations, most importantly Liouville’s theorem,
merely rely on generic conservation laws that arise from the Hamiltonian structure of the
microscopic dynamics. Working with infinite systems is generally easier as this limit often (but
not always) forgives a certain laxness in defining entropy and thermostatistical observables,
because various different definitions may show the same asymptotic behaviour when the particle
number N is allowed to go to ∞. As mentioned before, this is quite analogous to the fact that
the Newtonian limit c → ∞ is generally easier to handle than a full relativistic treatment at
finite speed of light c, which of course does not mean that Newtonian dynamics is more correct
than relativity. Just as relativity compels us to think more carefully about how to formulate
fundamental physical laws, the thermostatistical analysis of finite systems forces us to pay more
rigorous attention to mathematical and physical consistency criteria [8] in thermodynamics.
This profound insight can be attributed to Gibbs, who wrote on page 179 of his fundamental
treatise [3]: ‘It would seem that in general averages are the most important, and that they lend
themselves better to analytical transformations. This consideration would give preference to the
system of variables in which log V [= SG in our notation] is the analogue of entropy. Moreover, if
we make φ [= SB in our notation] the analogue of entropy, we are embarrassed by the necessity
of making numerous exceptions for systems of one or two degrees of freedoms.’ Gibbs was,
of course, well aware that statistical fluctuations become important in finite systems and that,
therefore, the exact thermodynamic mean value relations (2.5) and (2.6) have to be complemented
by detailed fluctuation analysis, as nowadays the norm in DNA and colloid experiments [24–26].

In this contribution, we have surveyed the notion of thermodynamic temperature in the
microcanonical and the canonical ensemble. For isolated microcanonical systems, the Gibbs
volume entropy fulfils exactly the standard laws of thermodynamics as well as equipartition
for a wide range of systems, including all classical standard Hamiltonian systems regardless
of their size. For finite systems, fluctuation analysis provides important physical information
beyond the mean values that define standard thermodynamic state variables. The microcanonical
Gibbs formalism agrees with the Clausius relation [9], implies strictly non-negative temperatures
and, hence, ensures Carnot efficiencies ≤ 1. By contrast, the Boltzmann entropy, which can yield
‘negative absolute temperatures’, is not a consistent thermodynamic entropy if one adopts the
standard laws of thermodynamics, as summarized in equations (2.5)–(2.7). It is therefore not

11The union of intervals (Ei, Ei+1).

12Another practical, but not quite as elegant, approach is to replace derivatives with finite differences, which in essence
corresponds to linear and higher-order polynomial interpolations.
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obvious to us why one should favour an entropy that can violate Planck’s law (2.7) over one
that fulfils it rigorously.

Notwithstanding, the Boltzmann temperature plays an important role as an effective bath
temperature in the canonical ensemble, describing a subsystem that is in weak contact with a
quasi-infinite environment. If the bath behaves normally (e.g. ideal gas-like), then the Boltzmann
temperature practically coincides with the Gibbs temperature. Subtle differences arise, however,
for systems that are non-weakly coupled to an environment, as typically the case for nano-scale
devices. In the presence of strong coupling, the specific heat of the device can become negative
[31,32] even though the total system consisting of device and bath is thermodynamically stable.
This feature is in stark contrast to the weak coupling case, where the canonical specific heat of the
subsystem is strictly positive.

Last and least, some authors [23,27,36] have recently criticised the microcanonical Gibbs
formalism [3,5] by limiting their discussion to infinite systems and advocating modified versions
of the thermodynamic laws, tailored to favour their own preferred entropy definitions. If one
accepts such reasoning, then one must also be willing to replace the exact equations (2.5)–(2.7)
with inexact approximations—which seems a steep price to pay. The exactness of equations (2.5)–
(2.7) is not a consequence of specific postulates but follows from basic differential and integral
calculus (the ‘proofs’ are trivial and take only a few lines [8]). Hence, even if one dislikes the
Gibbs formalism as developed in [3,5–7], one should at least acknowledge the correctness of
the mathematically rigorous results (2.5)–(2.7). Moreover, instead of focusing on the discussion
of abstract postulates [27], it may also be useful to remind ourselves that the purpose of
any thermodynamic theory should be the prediction of physically measurable quantities, such
as pressure, magnetization, etc., which correspond to operationally well-defined statistical
averages. The last equality in equation (2.6) demands that thermodynamic and statistical (kinetic)
definitions of pressure and other observables are compatible for systems of arbitrary size.
This essential compatibility criterion is exactly satisfied for the Gibbs entropy but not for
Boltzmann-type entropies.
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