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Abstract. Self-sustained dynamical phases of living matter can exhibit remark-
able similarities over a wide range of scales, from mesoscopic vortex structures
in microbial suspensions and motility assays of biopolymers to turbulent large-
scale instabilities in flocks of birds or schools of fish. Here, we argue that, in
many cases, the phenomenology of such active states can be efficiently described
in terms of fourth- and higher-order partial differential equations. Structural
transitions in these models can be interpreted as Landau-type kinematic transi-
tions in Fourier (wavenumber) space, suggesting that microscopically different
biological systems can share universal long-wavelength features. This general
idea is illustrated through numerical simulations for two classes of continuum
models for incompressible active fluids: a Swift–Hohenberg-type scalar field
theory, and a minimal vector model that extends the classical Toner–Tu theory
and appears to be a promising candidate for the quantitative description of dense
bacterial suspensions. We discuss how microscopic symmetry-breaking mech-
anisms can enter macroscopic continuum descriptions of collective microbial
motion near surfaces, and conclude by outlining future applications.
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1. Introduction

Simple and complex life forms can exhibit remarkably similar collective behaviours over a wide
range of length and time scales [1–3]. Well-known examples are flocking phenomena in swarms
of birds [4] and self-sustained turbulent phases in schools of fish [5] that share several qualitative
features with the meso-scale dynamics in bacterial suspensions [6–9] and films [10–12]. When
studying such processes from a physicist’s perspective, a main challenge consists in identifying
generic models that capture the most essential aspects of their dynamics. To this end, it is often
useful to regard biological systems that comprise a large number of elementary self-propelled
units, such as motor proteins or swimming cells in suspensions, as active ‘fluids’ [2, 3, 13, 14].
Unlike conventional liquids, which typically require external energy injection (stirring, shearing,
shaking, etc) for the formation of large-scale patterns, active fluids are driven internally as their
microscopic constituents are capable of transforming chemical into kinetic energy. The interplay
between this intrinsic pumping and nonlinear elastic stresses due to physical or biological
interactions facilitates the emergence of complex dynamical structures [1–3], whose systematic
classification poses a formidable theoretical task.

Over the past two decades, intense efforts have been made to understand the
phenomenology of microbial and other active fluids, but in spite of substantial progress it is still
not entirely clear which of their characteristics are universal or system-specific [2, 15, 16], and
which classes of dynamical equations are capable of providing adequate minimal descriptions.
In recent years, a considerable number of continuum models for active systems have been
proposed [2, 17–24], but most of them have yet to be tested against experiments [14, 25]. Many
of those theories focus on the couplings between two or more order-parameters (concentration,
solvent velocity, orientation fields, etc) and typically involve a large number of parameters,
thus making comparison with experimental data very difficult. To exploit current and future
progress in experimental imaging and tracking techniques [5, 26–29], and to understand better
the general ordering principles that govern active matter [1, 2], it will be necessary to identify
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tractable minimal models that not only capture the essential instability mechanisms but also
allow for quantitative comparison with experiments.

In this paper, we will analyse two such minimal continuum theories for active suspensions
by focusing on generic structural properties and stressing formal analogies with classical
phase transitions. Our approach is based on the hypothesis that dynamical transitions in
many internally or externally driven systems, such as microbial [6–8, 14, 28, 30] or vibrated
colloidal suspensions [31, 32], can be phenomenologically modelled as Landau-type transitions
in Fourier (wavenumber) space, which suggests that minimal hydrodynamic descriptions
of active matter can be obtained in terms of higher-than-second-order partial differential
equations (PDEs). Higher-order PDEs have been previously derived and studied for a wide
range of nonlinear structure formation phenomena [31, 33–36], including Rayleigh–Benard
convection [37], polymer and vesicle dynamics [38], quasi-crystal formation [39] and theories of
ionic liquids [40]. However, to our knowledge, models of this type have rarely been considered
in the context of microbial suspensions [41]. Therefore, one of our main objectives here is
to draw attention to the possibility that one can obtain useful, testable continuum theories of
bacterial and other active fluids, by restricting field variables to a minimal set of experimentally
accessible order-parameters but admitting fourth- and higher-order spatial derivatives. Such
theories can then be used as phenomenological models to obtain predictions for the behaviour
of active fluids under shear [42] or in different confining geometries [43], thereby providing a
conceptual basis for the interpretation of rheological measurements [44–46] and the design of
optimized microfluidic devices for the control of microbial flow [47, 48].

The basic idea is readily summarized as follows. It is well-known that the incompressible
Navier–Stokes equation is capable of describing the dissipative flow dynamics v(t, x) of a
wide range of conventional ‘passive’ fluids, regardless of their exact microscopic composition.
A main reason for this is that these systems behave similarly at long-wavelengths (small-
wavenumbers), so that the leading order viscous dissipation can be described by a term
004v in the field equations, with partial information about the microstructure being retained
in the viscosity coefficient 00 (throughout, 4 = ∇

2 denotes the Laplacian). Transforming to
Fourier-space, the dissipative term yields a simple quadratic ‘dispersion’ relation ∼ 00|k|

2,
which represents the dominant contribution in a systematic small-wavenumber expansion and
leads to damping in the absence of external stimuli. By contrast, in active fluids, viscous
dissipation competes with internal or external energy input and, in principle, one cannot
exclude that higher-order contributions of the form 00|k|

2 +02|k|
4 + · · · become relevant as

well. In fact, they will certainly be needed to ensure stability if, due to the complex interplay
of nonlinear interactions and energy input, the coefficient 00 should change its sign. In this
context, it should be noted that, in the case of active fluids, the coefficients 0n and other
transport coefficients [49–51] will depend on both the physical interaction parameters and the
motility parameters of the microscopic fluid constituents. Formally, the inclusion of higher-
order terms in the Fourier-space expansions is analogous to the well-known Landau-expansion
of order-parameter potentials and, accordingly, sign-changes in the coefficients 0n can give
rise to Landau-type kinematic phase transitions. When going back to position space, terms
|k|

4, |k|
6, . . . will transform into higher-order spatial derivatives 4

2,43, . . . . The inclusion of
such terms4 makes the theory successively more non-local. The physical origins of effectively

4 The restriction to functions of |k| is dictated by isotropy; in principle, one could also study odd and fractional
powers of |k| but this would go beyond the scope of the present paper.
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non-local interactions can be manifold [52–54], ranging from global packing constraints to
hydrodynamic and chemical interactions in biological systems. In microbial suspensions, such
non-localities may arise naturally from active stresses that are generated by the swimming
strokes of the organisms and transported through the fluid. It seems plausible that non-local
stress contributions are also present in passive fluids, even though they are not dynamically
relevant in this case since friction is dominated by the Laplacian viscosity term. By contrast, for
active systems, recent studies of bacterial suspensions [14, 55] have shown that a model with
a negative coefficient 00 captures experimental observation like energy spectra and correlation
functions in a quantitative manner. In order to be mathematically consistent, such models need
to include higher-order derivative terms that provide the damping necessary to avoid unphysical
short-wavelength singularities.

From the preceding considerations, it seems plausible that a systematic characterization
of active fluids in terms of their asymptotic small-wavenumber expansions can help to
distinguish specific from universal properties, thereby providing a basis for more systematic
classification schemes similar to those for thermodynamic equilibrium phases in classical
fluids or spin systems. Moreover, this analogy-driven approach promises analytically tractable
models of active suspensions that are considerably simpler than many of the currently studied
(potentially more accurate) multi-component theories [19–21], and will hopefully enable
quantitative comparisons with experiments in the near future. Hence, the main goal of the
present paper is to provide a coherent conceptual framework for the application [14, 55]
of higher-order structure formation theories to active fluids. Specifically, we will focus on
theoretical aspects of fourth-order continuum models, starting with the simplest case, which
is given by a Swift–Hohenberg-type scalar or pseudo-scalar field theory [33, 37]. This model is
used to illustrate how microscopic symmetry-breaking mechanisms [56] can enter macroscopic
continuum descriptions of microbial motion near surfaces. As an example, we demonstrate how
these ideas can help to understand the hexagonal sperm-vortex patterns in the experiments
of Riedel et al [30], which to our knowledge have not yet been explained in terms of a
simple continuum theory. Subsequently, we will generalize to non-scalar order-parameters by
considering a minimal vector theory for incompressible active suspensions. The resulting flow
model extends the seminal Toner–Tu theory [15, 18] and, as two very recent experimental
studies [14, 55] have shown, it is a promising candidate for the quantitative description of
highly concentrated bacterial fluids. Here, we focus on investigating previously unexplored
properties of such vector theories, aiming to identify universal characteristics of their flow
spectra. Throughout, we use results from two-dimensional (2D) continuum simulations to
illustrate selected dynamical properties of the different models in more detail.

2. (Pseudo) scalar order-parameter theory

The minimal model considered in this section belongs to the class of generalized
Swift–Hohenberg theories [31, 37]. Our motivation for prepending a brief discussion of this
well-known model here is two-fold: it is helpful to recall some of its basic properties before
considering the generalization to vectorial order-parameters. This model is also useful for
illustrating how microscopic symmetry-breaking mechanisms [56] can be incorporated into
macroscopic descriptions of experimentally relevant microbial systems [30], as discussed in
section 2.4 below.
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2.1. Model equations

We consider the simplest isotropic fourth-order model for a non-conserved scalar or pseudo-
scalar order-parameter ψ(t, x), given by

∂tψ = F(ψ)+ γ01ψ − γ21
2ψ, (1)

where ∂t = ∂/∂t denotes the time derivative, and 4 = ∇
2 is the d-dimensional Laplacian. The

force F is derived from a Landau-potential U (ψ)

F = −
∂U

∂ψ
, U (ψ)=

a

2
ψ2 +

b

3
ψ3 +

c

4
ψ4, (2)

where c > 0 to ensure stability. We will assume throughout that the system is confined to a finite
spatial domain �⊂ Rd of volume

|�| =

∫
�

dd x, (3)

adopting periodic boundary conditions in simulations. The derivative terms on the
rhs of equation (1) can also be obtained by variational methods from a suitably defined
energy functional (see appendix (A.1)). In the context of active suspensions, ψ could, for
example, quantify local energy fluctuations, local alignment, phase differences, or vorticity.
In this case, the transport coefficients (a, b, c, γ1, γ2) in equations (1) and (2) will contain
passive contributions due to steric or other physical interactions as well as active motility-
related contributions. In general, it is very challenging to derive the exact functional dependence
between macroscopic transport coefficients and microscopic interaction and motility parameters
for active non-equilibrium systems, although considerable progress has been made in recent
years [49–51, 57]. With regard to practical applications, however, it is often sufficient to
view transport coefficients as purely phenomenological parameters that can be determined
by matching the solutions of continuum models, such as the one defined by equations (1)
and (2), to experimental data [14, 55]. This is analogous to treating the viscosity in the classical
Navier–Stokes equations as a phenomenological fit parameter. The actual predictive strength of
a continuum model lies in the fact that, once the parameter values have been determined for
given a set-up, the theory can be used to obtain predictions for how the system should behave
in different geometries or under changes of the boundary conditions (externally imposed shear,
etc). In some cases, it may also be possible to deduce qualitative parameter dependences from
physical or biological considerations. For instance, if ψ describes vorticity or local angular
momentum in an isolated active fluid, say a bacterial suspension, then transitions from a > 0 to
a < 0 or γ0 > 0 to γ0 < 0, which both lead to non-zero flow patterns, must be connected to the
microscopic self-swimming speed v0 of the bacteria. Assuming a linear relation, this suggests
that, to leading order, a0 = δ−αv0 where δ > 0 is a passive damping contribution and αv0 > 0
the active part, and similarly for γ0. It may be worthwhile to stress at this point that higher-
than-second-order spatial derivatives can also be present in passive systems, but their effects
on the dynamics will usually be small as long as γ0 > 0. If, however, physical or biological
mechanisms can cause γ0 to become negative, then higher-order damping terms, such as the
γ2-term in equation (1), cannot be neglected any longer as they are essential for ensuring stability
at large wavenumbers.

For completeness, one should also note that in the case of a conserved order-parameter field
% the field equations would either have to take the current-form ∂t% = −∇ · J(%) or, alternatively,
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one could implement conservation laws globally by means of Lagrange multipliers [38]. For
example, for a dynamics similar to that of equation (1) and a simple global ‘mass’ constraint

M =

∫
�

dd x % = const,

the Lagrange-multiplier approach yields the non-local equations of motions

∂t% = F(%)+ γ01%− γ21
2%− λ1,

λ1 =
1

|�|

∫
�

dd x
[
F(%)+ γ01%− γ21

2%
]
.

In the remainder of this section, however, we shall focus on the local dynamics defined by
equations (1) and (2), since this well-known example will be a useful reference point for the
discussion of the vector model in section 3.

2.2. Linear stability

The fixed points of equation (1) are determined by the zeros of the force F(ψ), corresponding
to the minima of the potential U , yielding ψ0 = 0 and

ψ± = −
b

2c
±

√
b2

4c2
−

a

c
if b2 > 4ac. (4)

Linearization of equation (1) near ψ0 for small perturbations ψ = ε0 exp(−σ0t − i k · x) gives

σ0(k)= a + γ0|k|
2 + γ2|k|

4. (5)

Similarly, one finds for ψ = ψ± + ε± exp(−σ±t − ik · x)

σ±(k)= −(2a + bψ±)+ γ0|k|
2 + γ2|k|

4. (6)

The unusual sign-convention in the exponential of the perturbation ansatz was so chosen as to
emphasize the formal similarity of equations (5) and (6) with the quartic Landau potential (2),
i.e. modes with σ < 0 are unstable.

From equations (5) and (6), we see immediately that γ2 > 0 is required to ensure small-
wavelength stability of the theory and, furthermore, that non-trivial dynamics can be expected if
a and/or γ0 take negative values. In particular, all three fixed points can become simultaneously
unstable if γ0 < 0. The analogy with classical Landau-transitions is evident if we compare (5)
and (6) with the order-parameter potential U in equation (2) for the symmetric case b = 0:
changing the sign of γ0 induces a dynamical transition (in Fourier space), which is formally
similar to the standard ‘configurational’ second-order transition [2] in the vicinity of a = 0.

2.3. Numerical results in two dimension (2D)

We briefly illustrate the γ0-induced changes in the dynamics of the (pseudo-)scalar field ψ(t, x)
through 2D numerical results. The discussion in this part merely serves as a reminder before
considering symmetry-breaking in section 2.4.
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Table 1. The right column shows the rescaled dimensionless parameters used
in the simulations of the (pseudo)scalar model from equations (1) and (2).
The unit time is defined by the damping time-scale tu = L4/γ2, where L is the
length of the 2D simulation box, and the order-parameter is measured in units
of ψu = 1/

√
tuc.

Model parameter Rescaled dimensionless parameter

a atu
b bψutu
c 1
γ0 γ0tuL−2

γ2 1

2.3.1. Algorithm. To simulate equations (1) and (2) in two space dimensions, we implemented
a pseudospectral algorithm with periodic boundary conditions as commonly used in
computational fluid dynamics [58]. The model equations are projected onto a Fourier space
basis, and the remaining ordinary differential equations are solved numerically by an operator
splitting method that computes the linear operator exactly [59]. The nonlinear terms were
evaluated by applying the ‘2/3-rule’ to suppress aliasing errors [60]. We simulated the model
dynamics on 2D cubic grids with sizes ranging from 64 × 64 to 256 × 256 lattice points. The
solver was written in Matlab, and its numerical stability was verified for a wide range of
parameters and space–time discretizations. Rescaled dimensionless variables and parameters
as adopted in the simulations are summarized in table 1. The rescaled time steps were typically
of the order of1t = 10−1. All simulations were initiated with isotropic, randomly chosen order-
parameter values.

2.3.2. Structural transitions. Results from the numerical simulations for the order-parameter
field ψ(t, x) and two qualitatively different potentials U (ψ) are summarized in figure 1. In
these simulation, the parameter γ0 was varied between successive runs while keeping all other
parameters fixed. To quantify changes in the quasi-stationary dynamics of ψ as a function of
γ0, we measured the space-time averaged standard deviation σ 2

ψ = 〈ψ2
〉 − 〈ψ〉

2 (figures 1(a)
and (d)). Regions with σ 2

ψ = 0 correspond to disordered structureless stationary states, whereas
σ 2
ψ > 0 indicates the emergence of stationary or quasi-stationary dynamical structures. Singular

points in the curve σ 2(γ0) signal qualitative changes in the order-parameter dynamics.
In the case of a mono-stable potential (a > 0), the quantifier σ 2

ψ undergoes a series of
continuous transitions as γ0 is lowered to negative values, see figure 1(a). Each of those
transitions corresponds to an increase in the number of ‘stripes’ that are found to persist for
long periods of time in the simulations (figures 1(b) and (c)). By contrast, in the case of bi-stable
potentials (a < 0), the onset of pattern formation carries the signature of a first-order transition
reflected by a sudden jump in σ 2

ψ (figure 1(d)). However, while such singularities in σ 2
ψ share

some formal similarities with macroscopic phase transitions, one could also argue that they
merely signal a change in the typical number of excitable modes in the system. In fact, by
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Figure 1. Numerical illustration of structural transitions in the order-parameter
ψ for (a)–(c) mono-stable and (d)–(f) bi-stable potentials. (a), (d) Symbols show
the results of simulations for the first two γ0-induced transitions, and lines are
linear interpolations. Quasi-stationary space–time averages 〈 · 〉 were computed
over 3000 successive simulation time-steps (1t = 0.1) after an initial relaxation
period of 200 characteristic time units tu = L4/γ2. (b), (c) Snapshots of the order-
parameter field ψ at t = 500, scaled by the maximum value ψm, for a mono-
stable potential U (ψ) and homogeneous random initial conditions. After the first
transition two stripes appear, and the number of stripes increases with the number
of transitions. (e), (f) Snapshots of the order-parameter at t = 500 for a bi-stable
potential. For γ0 � −(2π)2γ2/L2, increasingly more complex quasi-stationary
structures arise; see [31, 61] for similar patterns in excited granular media and
chemical reaction systems.
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viewing such elementary excitations as ‘quasi-particles’, the structural transitions in figures 1(a)
and (d) appear to be more closely related to finite-systems singular points [62–64].

An estimate of the critical absolute value γ0 for the first ‘disorder-structure’ transition can
be obtained by dimensional analysis, or by equating the last two terms in equations (5) or (6),
yielding γ c

0 ≈ −(2π)2γ2/L2. For γ0 � γ c
0 , increasingly more complex quasi-stationary patterns

may arise (figures 1(c) and (d)). Structures similar to those in figure 1 have been observed and
widely studied [35] in granular media [31] and chemical systems [61]. In the next section, we
shall demonstrate that certain aspects of collective microbial motion can be described within the
same class of fourth-order PDEs.

2.4. Symmetry breaking

With regard to microbial suspensions, the minimal model (1) is useful for illustrating how
microscopic symmetry-breaking mechanisms that affect the motion of individual organisms or
cells [56, 65–67] can be implemented into macroscopic field equations. To demonstrate this, we
interpret ψ as a vorticity-like 2D pseudo-scalar field that quantifies local angular momentum
in a dense microbial suspension, assumed to be confined to a thin quasi-2D layer of fluid. If
the confinement mechanism is top-bottom symmetric, as for example in a thin free-standing
bacterial film [10], then one would expect that vortices of either handedness are equally likely.
In this case, equation (1) must be invariant under ψ → −ψ , implying that U (ψ)= U (−ψ)
and, therefore, b = 0 in equation (2). Intuitively, the transformation ψ → −ψ corresponds to
a reflection of the observer position at the midplane of the film (watching the 2D layer from
above versus watching it from below).

The situation can be rather different, however, if we consider the dynamics of
microorganisms close to a liquid–solid interface, such as the motion of bacteria or sperms
cells in the vicinity of a glass slide (figure 2). In this case, it is known that the trajectory of
a swimming cell can exhibit a preferred handedness [56, 65–67]. For example, the bacteria
Escherichia coli [56] and Caulobacter [65] have been observed to swim in circles when confined
near to a solid surface. More precisely, due to an intrinsic chirality in their swimming apparatus,
these organisms move on circular orbits in clockwise (anticlockwise) direction when viewed
from inside the bulk fluid (glass surface). Qualitatively similar behaviour has also been reported
for sea urchin sperm swimming close to solid surfaces [68].

Hence, for various types of swimming microorganisms, the presence of the near-by no-slip
boundary breaks the reflection symmetry, ψ 6→ −ψ . The simplest way of accounting for this
in a macroscopic continuum model is to adapt the potential U (ψ) by permitting values b 6= 0
in equation (2). The result of a simulation with b > 0 is shown in figure 2(a). In contrast to
the symmetric case b = 0 (compare figure 1(c)), an asymmetric potential favours the formation
of stable hexagonal patterns (figure 2(a))—such self-assembled hexagonal vortex lattices have
indeed been observed experimentally by Riedel et al [30] for highly concentrated spermatozoa
of sea urchins (Strongylocentrotus droebachiensis) near a glass surface (figure 2(b)). Finally,
to illustrate how the mean local angular momentum changes with asymmetry, we also show
in figure 2(c) the average value 〈ψ〉 as function of parameter b.5

5 Note that although equation (1) can serve as a heuristic model for vortex formation it is not a conservation law,
implying that angular momentum must be exchanged with a background medium and/or with the boundary.
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Figure 2. Effect of symmetry breaking. (a) Stationary hexagonal lattice
of the pseudo-scalar angular momentum order-parameter ψ , scaled by the
maximum value ψm, as obtained in simulations of equations (1) and (2)
with b > 0, corresponding to a broken reflection symmetry ψ 6→ −ψ . Blue
regions correspond to clockwise motions. (b) Hexagonal vortex lattice formed
spermatozoa of sea urchins (S. droebachiensis) near a glass surface; from [30]
adapted and reprinted with permission from AAAS. At high densities, the
spermatozoa assemble into vortices that rotate in clockwise direction (inset)
when viewed from the bulk fluid. (c) Mean local angular momentum 〈ψ〉 as a
function of the asymmetry parameter b. Arrows indicate the transitions between
striped and hexagonal states. Red filled circle corresponds to the hexagonal state
shown in (a).

3. Vector model for an incompressible active fluid

We now generalize the preceding considerations to identify a minimal vector-field model for
dense microbial suspensions. Previously developed continuum theories [2, 17–20, 22–24] of
microbial fluids typically distinguish solvent concentration, bacterial density, solvent velocity,
bacterial velocity, and various orientational order-parameter fields (polarization, Q-tensors,
etc). Aiming to identify a minimal hydrodynamic model, we construct a simplified higher-
order theory by focusing exclusively on the dynamics of the mean bacterial6 velocity field
v(t, x) and restricting ourselves to the incompressible limit. By construction, the resulting
v-only theory, which is essentially a minimal Swift–Hohenberg-type [37] extension of the
Toner–Tu model [17, 18], may not be applicable to swarming or flocking regimes, where
density fluctuations are dominant, but it can provide a useful basis for quantitative comparisons
with experiments and simulations on highly concentrated active suspensions [14, 55]. Another
assumption implicit to the vector model below is that the energy input, required to maintain
non-zero velocity patterns, is quasi-stationary. Relaxation of this assumption would imply the
need for additional energy balance equations that account for spatial and temporal variations
in the conversion of chemical into kinetic energy of motion. In other words, the v-only
theory formulated below only applies to situations where concentrations of nutrients, oxygen,
etc in a microbial suspension are approximately constant during the observation period.

6 Whilst the joint momentum of a bacteria–solvent mixture [13] is conserved, the dynamics of the active (bacterial)
component alone, as considered here, does not satisfy such a conservation law.

New Journal of Physics 15 (2013) 045016 (http://www.njp.org/)

http://www.njp.org/


11

In practice, v can be determined applying suitable coarse-graining procedures (PIV algorithms,
local averaging, etc) to discrete experimental or numerical velocity data [14, 69].

3.1. Model equations

Postulating incompressibility, which is a good approximation for very dense suspensions [14],7

∇ · v = ∂ivi = 0, (7)

we assume that the dynamics of v is governed by the generalized Navier–Stokes equation

(∂t + v · ∇)v = −∇ p − (A + C |v|
2)v + ∇ · E. (8)

The pressure p(t, x) is the Lagrange multiplier for the incompressibility constraint. Similar to
the scalar case, equation (2) above, the (A,C)-terms in equation (8) represent a quartic Landau
velocity potential [2, 17, 18]

U (v)=
A

2
|v|

2 +
C

4
|v|

4. (9)

Physically, the inclusion of a polar ordering potential accounts for the fact that microorganisms
typically exhibit head–tail asymmetries that may favour polar alignment, as manifested in the
‘bionematic’ jets that form in bacterial suspensions [8, 70]. For A > 0 and C > 0, the potential
is mono-stable and the fluid is damped towards a disordered state with v = 0. By contrast, for
A < 0, equation (9) describes a d-dimensional mexican-hat (sombrero) potential with fixed-
points |v| =

√
−A/C corresponding to global polar order. However, the fact that polar ordering

appears only locally but not globally in suspensions of swimming bacteria [7, 8, 70] suggests
that other instability mechanisms must be at work [23]. To capture this mathematically, one must
either introduce additional order parameters [2, 17, 18] or destabilize the theory by identifying
a suitable phenomenological ansatz for the effective stresses [37].

Adopting the latter approach, we postulate that the components of the symmetric and
traceless rate-of-strain E tensor are given by

Ei j = 00(∂iv j + ∂ jvi)−024 (∂iv j + ∂ jvi)+ S qi j , (10)

where

qi j = viv j −
δi j

d
|v|

2 (11)

is a d × d-dimensional mean-field approximation to the Q-tensor, representing active nematic
stresses [23, 49] due to swimming (δi j is the Kronecker tensor). Although the S-term does
not affect the linear stability of the model, general hydrodynamic arguments [22] imply that
S < 0 for pusher-swimmers like E. coli [71] or Bacillus subtilis, whereas S > 0 for puller-
type microswimmers such as Chlamydomonas algae [72]. The 00-term in (10) is dictated by
the requirement that the model contains the Navier–Stokes equations as a limit case, and the
02-damping term is motivated by generic stability considerations, as recent experiments
[14, 55] suggest that 00 can become negative in dense bacterial suspensions. Inserting
equations (10) and (11) into equation (8), and defining

λ0 = 1 − S, λ1 = −S/d, (12)

7 We adopt a summation convention for equal indices throughout.
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we obtain

(∂t + λ0v · ∇)v = −∇ p + λ1∇v2
− (A + C |v|

2)v +004v −024
2v. (13)

The standard Navier–Stokes equations for a passive fluid are recovered for S = A = C = 02 = 0
and 00 > 0. A variational formulation of the combined field equations (7) and (13) is given in
appendix A.2.

For 00 > 0 and 02 = 0, equation (13) reduces to an incompressible version of the classical
Toner–Tu model [2, 17, 18]. It is, however, the combination of the two 0-terms with
the non-variational convective derivative that turns out to be crucial for the formation of
self-sustained quasi-chaotic flow patterns. The linear 0-terms are reminiscent of the higher-
order spatial derivatives in the classical Swift–Hohenberg theory [37], see equations (1)
and (13) with 00 < 0 and 02 > 0 yields a simple—if not the simplest—generic continuum
description of turbulent meso-scale instabilities observed in dense bacterial suspensions [14].
More generally, equation (13) can provide a satisfactory phenomenological model whenever
interaction terms in more complex field theories, that lead to instabilities in the v-field, can be
effectively approximated by a fourth-order Taylor expansion in Fourier space. This is likely
to be the case for a wide range of active systems. Phrased differently, the last two terms
in equation (13) may be regarded as the Fourier-space analogue of the Toner–Tu driving
terms, which correspond to a series expansion in terms of the order-parameter. Hence, similar
to the higher-order gradient terms in the scalar theory from equation (1), the (00, 02)-terms
in equation (13) describe intermediate-range interactions, and their role in Fourier-space is
similar to that of the Landau potential in velocity space.

3.2. Linear stability analysis

To support the qualitative statements in the preceding paragraph, we now perform a stability
analysis for the 2D case relevant to the simulations discussed below, assuming 00 < 0 and
C > 0, 02 > 0.

The fixed points of equations (7) and (13) are given by the extrema of the quartic velocity
potential U (v). For arbitrary values of A, equations (7) and (13) have a fixed point that
corresponds to a disordered isotropic state (v, p)= (0, p0) where p0 is a constant pressure.
For A < 0, an additional class of fixed points arises, corresponding to a manifold of globally
ordered polar states (v, p)= (v0, p0), where v0 is constant vector with arbitrary orientation and
fixed swimming speed |v0| =

√
−A/C =: v0.

Linearizing equations (7) and (13) for small velocity and pressure perturbations around the
isotropic state, v = ε and p = p0 + η with |η| � |p0|, and considering perturbations of the form

(η, ε)= (η̂, ε̂) exp(−σ0t − i k · x), (14)

we find

0 = k · ε̂, (15)

σ0ε̂ = −i η̂k + (A +00|k|
2 +02|k|

4)ε̂. (16)

Multiplying the second equation by k and using the incompressibility condition implies that
η̂ = 0 and, therefore,

σ0(k)= A +00|k|
2 +02|k|

4. (17)
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Assuming 00 < 0 and 02 > 0, and provided that 4A < |00|
2/02, we find an unstable band of

modes with σ0(k) < 0 for k2
−
< |k|

2 < k2
+, where

k2
±

=
|00|

02

(
1

2
±

√
1

4
−

A02

|00|
2

)
. (18)

For A < 0 the isotropic state is generally unstable with respect to long-wavelength (i.e. small-
|k|) perturbations.

We next perform a similar analysis for the polar state (v0, p0), which is energetically
preferred for A < 0 and corresponds to all active particles swimming in the same direction
(‘global order’). In this case, when considering small deviations

v = v0 + ε, p = p0 + η, (19)

it is useful to distinguish perturbations perpendicular and parallel to v0, by writing ε = ε|| + ε⊥
where v0 · ε⊥ = 0 and v0 · ε|| = v0ε||. Without loss of generality, we may choose v0 to point along
the x-axis, v0 = v0ex . Adopting this convention, we have ε|| = (ε||, 0) and ε⊥ = (0, ε⊥), and to
leading order

|v|
2
' v2

0 + 2v0ε||. (20)

Linearization for exponential perturbations of the form

(η, ε||, ε⊥)= (η̂, ε̂||, ε̂⊥) exp(−σ t − i k · x) (21)

yields

0 = k · ε̂, (22)

σ ε̂ = −i(η̂− 2v0λ1ε̂||)k − Mε̂, (23)

where

M =

(
2A 0
0 0

)
− (00|k|

2 +02|k|
4
− i λ0kxv0)I (24)

with I = (δi j) denoting the identity matrix. Multiplying equation (23) with ik, and using the
incompressibility condition (22), gives

η̂ = 2v0λ1ε|| + i
k · (Mε̂)

|k|2
. (25)

Inserting this into equation (23) and defining M⊥ =Π(k)M, where

5i j(k)= δi j −
ki k j

|k|2
(26)

is the orthogonal projector of k, we obtain

σ ε̂ = −M⊥ ε̂. (27)

The eigenvalue spectrum of the matrix M⊥ is given by

σ(k) ∈

{
0,

(
00|k|

2 +02|k|
4
− 2A

k2
x

|k|2

)
− i λ0v0kx

}
. (28)

The zero eigenvalues correspond to the Goldstone modes. The non-zero eigenvalues have
eigenvectors (−ky, kx), implying that, for 00 < 0, there will be a range of exponentially growing
modes in the direction perpendicular to k.
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Table 2. The right column shows the rescaled dimensionless parameters used
in the simulations of the vector model from equation (13). The unit time is
defined by the damping time-scale tu = L4/02, where L is the length of the 2D
simulation box, and the order-parameter is measured in units of vu = 1/

√
tuC .

Model parameter Rescaled dimensionless parameter

A Atu
C 1
00 00 tuL−2

02 1
S S

Equations (17) and (28) predict that, when A < 0 and 00 < 0, isotropic and polar
fixed points become simultaneously unstable, thereby signalling the existence of spatially
inhomogeneous dynamic attractors. More generally, within the class of standard PDEs, the
two 0-terms in equation (13) appear to provide the simplest ‘linear way’ of obtaining a
v-only theory that exhibits non-trivial stationary dynamics. In principle, one could also try to
model instabilities by combining odd or fractional powers of |k| in equations (17) and (28);
this would be analogous to replacing the quartic Landau potential by a more general function
of |v|. However, when considering eigenvalue spectra based on odd or non-integer powers of
|k|, the underlying dynamical equations in position space would become fractional PDEs. Such
fractional models could potentially be useful for describing active suspensions with long-range
or other types of more complex interactions, but their analysis goes far beyond the scope of this
paper.

3.3. Numerical results in 2D

We simulated the vector model, defined by equations (7) and (13), in two space-dimensions
using an algorithm similar to that described in section 2.3. The primary difference compared
with the simulations for the scalar model is an additional pressure correction subroutine
that ensures the incompressibility of the flow (see [14] for details). Table 2 summarizes
characteristic units and rescaled parameters as adopted in the computations. All simulations
were initiated with random initial conditions, and the typical time discretization was 1t = 0.1
(in characteristic time units tu).

3.3.1. Kinematic transitions. We first study how a decrease of the ‘viscosity’ parameter 00

affects the stationary dynamics for mono-stable and mexican-hat (polar-ordering) potentials. To
this end, simulations were performed with fixed potential functions at three different values
of the pusher/puller parameter S, while varying 00 between successive runs. Changes in
the quasi-stationary dynamics are quantified by measuring the space–time averaged variance
σ 2

v = 〈v2
〉 − 〈v〉

2, shown in figure 3. Similar to the scalar model, the first transition from an
isotropic state with v ≡ 0 to a non-trivial stationary dynamics with σ 2

v > 0 is found to occur at
00 ≈ −(2π)202/L2.

To illustrate kinematic changes in the flow dynamics in more detail, we show quasi-
stationary snapshots from simulations with a mexican-hat potential for different values (00, S)
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Figure 3. First few kinematic transitions in the quasi-stationary dynamics of the
vector model for (a) mono-stable and (b) mexican-hat potentials at different
values of S. Transitions are indicated by sudden changes of order-parameter
variance σ 2

v = 〈v2
〉 − 〈v〉

2. The space–time averages 〈 · 〉 were measured from
3000 successive snapshots (1t = 0.1) after an initial relaxation period of 200
time units tu.

in figure 4. In the special case S = 1, corresponding to a vanishing convective derivative
in equation (13), stationary cubic vortex lattices form, with an increasing number of vortices as
00 is decreased (figures 4(a) and (b)). By contrast, for S 6= 1, nonlinear convective effects cause
distortions in the vortex lattices. As a consequence, the dynamical system no longer approaches
a time-independent stationary state but instead exhibits a complex non-equilibrium dynamics
(figures 4(c) and (d)). For pushers (S < 0), the resulting turbulent flow patterns look remarkably
similar to those observed in dense suspensions of B. subtilis [7, 8, 14, 55, 70].8

3.3.2. Flow spectra. To resolve the structure of the flow fields obtained from equations (7)
and (13), we calculated the energy spectrum E(k), formally defined by

〈v2
〉 = 2

∫
∞

0
E(k) dk, (29)

where k = |k|. By virtue of the Wiener–Khinchine theorem [73], E(k) can be estimated by
Fourier-transformation of the equal-time two-point velocity correlation function, yielding in d
dimensions

Ed(k)∼ kd−1

∫
dd R e−ik·R

〈v(t, r) · v(t, r + R)〉. (30)

Traditionally, spectral flow analysis has been an important tool in the investigation of classical
turbulence phenomena [73]. Flow spectra for our numerical data are summarized in figure 5. The
critical case S = 1 provides a useful reference point, since in this case the stationary dynamics
becomes static, as illustrated in figures 4(a) and (b) for the sombrero potential. Accordingly, the
spectra for S = 1 exhibit a sharp peak that reflects the typical vortex size in the stationary state

8 For completeness, we note that one can obtain hexagonal vortex structures (similar to those in figure 2(a)) also
from the vector model by adding a reflection-symmetry-breaking vorticity-dependent term on the rhs of equation
(13), with the vorticity being defined by ω = ∇ ∧ v.
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Figure 4. Simulation snapshots (t = 400) of streamlines and vorticity (scaled by
the maximum value ωm) for the sombrero (polar-ordering) potential and random
initial conditions. (a), (b) Stationary vortex lattices obtained in the special case
S = 1, corresponding to a vanishing convective derivative in equation (13).
(c), (d) Strong convection (|S| � 1) leads to the formation of dynamic patterns.

(see green curves in figures 5(a) and (b)). In the case of the mono-stable potential, changing
the pusher/puller parameter to values S 6= 1 affects the asymptotic slopes of the spectrum
but leaves the position of the maximum practically constant (figure 5(a)). By contrast, for the
polar-ordering potential, both slope and position of the maximum change as S is decreased or
increased from unity (figure 5(b)). The large-|S| pusher-spectra for the mexican-hat potential
agree well with those measured in dense quasi-2D B. subtilis [14] suspensions.

3.3.3. Bionematic jets. To illustrate qualitatively how the velocity potentials affect the
stationary dynamics—and, hence, the spectral flow properties—we present in figure 6 snapshots
from computations with an intermediate-size simulation volume and 00 � −(2π)202/L2. For
the mono-stable potential, we observe fairly homogeneous vortex structures (figures 6(a) and
(b)) in agreement with the relatively sharp spectral peaks in figure 5(a). By contrast, in the case
of the mexican-hat potential (figures 6(c) and (d)), extended jet-like regions form that look very
similar to the ‘zooming bionematic’ phases in dense B. subtilis suspensions [7, 8, 70].

3.3.4. Nonlinear limit and ‘universality’. Interestingly, our numerical results suggest that the
spectra approach universal functional forms in the nonlinear limit |λ0| = |S − 1| � 1, even
though the exact asymptotic behaviour depends on the type of the potential. Moreover, for
pushers with λ0 � 1, the spectra obtained from equation (13) agree well with those measured
for dense quasi-2D B. subtilis suspensions [14], and a very similar small-k scaling was also
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Figure 5. Flow energy spectra in arbitrary units for (a) mono-stable and (b)
mexican-hat potentials and different values of S. Spectra are scaled to have
the same maximal value. In the strongly nonlinear regime, corresponding to
|S| � 1, the spectra of both pullers (S > 0) and pushers (S < 0) seem to approach
‘universal’ limit functions, the exact shape of which depends on the type
of the potential. Simulation parameters: grid size 256 × 256, 00 = −1 in all
simulations.

observed in 2D particle simulations of self-propelled rods [14]. These observations hint at some
‘universality’ in the spectral properties of dense active particle systems. Future investigations of
this question will require larger simulations as well as systematic experimental investigations
of larger systems, which allow to extract asymptotic scaling laws and other spectral details
with higher accuracy. Generally, in the strongly nonlinear regime |λ0| = |1 − S| � 1, the vector
model predicts phenomenologically similar behaviour for both pullers (S > 0) and pushers
(S < 0), see figure 6. However, while values of λ0 � 1 appear to have been realized in dense
suspensions of pusher-type B. subtilis bacteria [8, 14, 70], it seems unclear at present whether
puller (e.g. algal) suspensions with S � 1 can be achieved in experiments.

4. Conclusions and future challenges

Identifying ‘universal’ features of active fluids is one of the key challenges en route to a more
systematic physical classification of biological matter. Here, we have argued that, in many cases,
phenomenological aspects of dynamical non-equilibrium phases can be naturally described by
minimal models that focus on a limited number of experimentally accessible order-parameters
and are based on higher-than-second-order spatial derivatives. If true, this would imply that a
variety of active fluids with different microscopic constituents can exhibit very similar long-
wavelength behaviour. More generally, adopting the view that kinematic transitions in living
fluids reflect qualitative changes in small-wavenumber expansions, and thus may be interpreted
as Landau-type transitions in Fourier space, can help to catalogue non-equilibrium systems
according to their asymptotic behaviour at long wavelengths, similar to the classification of
phase transitions in equilibrium thermodynamics.

Simplified continuum descriptions of active fluids remain practically relevant because
many of the recently proposed multi-order-parameter theories feature a large number of
unknown transport coefficients and, therefore, cannot be tested in detail with present data.
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Figure 6. Snapshots of stationary flow and vorticity patterns, scaled by the
maximum value ωm, for (a), (b) mono-stable and (c), (d) mexican-hat potentials.
The pusher flow field in (c) agrees qualitatively with experimentally observed
flow fields for dense B. subtilis [7, 8, 14, 70] suspensions.

While our above analysis has focused on the most basic scalar and vector models, the
approach can be easily extended to higher tensorial order-parameter fields (e.g., Q-tensor
descriptions [74] of active nematics). To test whether microscopically different active fluids
do indeed share universal hydrodynamic long-wavelength characteristics will require combined
analytical, numerical and experimental efforts. First attempts to apply the above ideas to very
dense bacterial suspensions give promising results [14, 55] but further quantitative studies
will be needed to decide whether fourth and higher-order PDEs are capable of providing a
sufficiently accurate phenomenological description of experimentally observed active phases.
To expedite quantitative comparisons with experiments, it would be desirable to develop
alternative computation schemes that will allow for faster simulations of higher-order PDE
models. Promising candidates could be suitably adapted lattice-Boltzmann algorithms [21] that
implement negative ‘viscosities’ [75].

Finally, the theoretical analysis of higher-order PDEs poses a number of future
mathematical challenges, one of which being their derivation from underlying microscopic,
multi-component or kinetic models through systematic projection methods [76]. The good
agreement of the vector model with experimentally measured flow structures in quasi-2D
B. subtilis suspensions [14, 55] suggests that derivations of active continuum theories from
microscopic models, which typically involve gradient expansions, should go beyond the most
frequently considered second-order approximations. Another interesting question relates to
the formulation of consistent boundary conditions at interfaces. This problem, which was
circumvented in our simulations by considering toroidal domains, is also encountered in other
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higher-order structure formation and transport theories [31, 35, 40]. To identify physically
reasonable boundary conditions for active fluids at solid interfaces is not only relevant from a
mathematical perspective but also from the experimental point of view, as it will directly affect
predictions for effective shear viscosities [77] and other measurable quantities. In particular,
future simulations of the vector model in confined geometries can help to interpret rheological
measurements in microbial suspensions [42, 45, 46], and they also promise insights into the
effects [43] of surface structures and microfluidic channel design on active fluids.
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Appendix. Functional representation

This appendix aims to summarize functional representations of the field equations for both the
scalar model and the vector model. To this end, consider a functional F that depends on some
real-valued fields φk(x1, . . . , xd), k = 1, . . . , N , and their first and second derivatives, and can
be written as

F[φ] =

∫
dd x F(φk, ∂iφk, ∂i jφk), (A.1)

where φ = (φk) and ∂i = ∂/∂xi , ∂i j = ∂2/∂xi∂x j . Assuming F(ηk, ξik, ζi jk) is a quadratic
polynomial in ξik and ζi jk , the functional derivative of F with respect to φk is given by

δF
δφk

=
∂F

∂φk
− ∂i

∂F

∂(∂iφk)
+ ∂i j

∂F

∂(∂i jφk)
, (A.2)

with a summation convention for identical indices i, j = 1, . . . , d .

A.1. Swift–Hohenberg model

Using equation (A.2) with φ = φ1 = ψ , the (pseudo-)scalar Swift–Hohenberg equation (1)

∂tψ = γ04ψ − γ24
2ψ −

∂U

∂ψ
(A.3)

can be written in the well-known form

∂tψ = −
δF
δψ
, (A.4)

where

F[ψ] =

∫
dd x

[
1

2
γ0(∇ψ) · (∇ψ)+

1

2
γ2(4ψ)(4ψ)+ U (ψ)

]
. (A.5)
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A.2. Vector model

In component form, the vector model dynamics defined by equations (7) and (13) reads

0 = ∂ivi , (A.6)

(∂t + λ0vi∂i)vk = −∂k p + λ1∂k(v jv j)+00∂i ivk −02(∂i i)
2vk −

∂U

∂vk
. (A.7)

Using equation (A.2) with φ = (p, v), these field equations can be written as

0 = −
δF
δp
, (∂t + λ0vi∂i) vk = −

δF
δvk

, (A.8)

where

F[p, v] =

∫
dd x

[
p(∂ivi)− 2λ1(vkvi∂ivk)+

1

2
00(∂ivk)(∂ivk)+

1

2
02(∂i ivk)(∂ j jvk)+ U (v)

]
.

(A.9)

As evident from the representation (A.8), apart from the convective derivative, which can be
rescaled by active hydrodynamic stresses via λ0, see equation (10), the vector model dynamics
can be understood in terms of an optimization of the effective ‘free-energy’ functional (A.9).
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