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Categories of representations

Recall from lecture of Jeff Adams Verma modules. . .

B ⊂ G Borel subgp of cplx red alg gp,

W Weyl grp↔ hwt mods, triv infl char

M(w) Verma, hwt −wρ− ρ, L(w) irr quot

and, in a parallel way, Harish-Chandra modules. . .

K ⊂ G complexified maximal compact

X parameter set for irr (g,K )-mods

I(x) std (g,K )-mod, param x ∈ X J(x) irr quot
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Character formulas

Can decompose Verma module into irreducibles

M(w) =
∑
v≤w

mv ,w L(v) (mv ,w ∈ N)

or write a formal character for an irreducible

L(w) =
∑
v≤w

Mv ,w M(v) (Mv ,w ∈ Z)

Can decompose standard HC module into irreducibles

I(x) =
∑
y≤x

my,xJ(y) (my,x ∈ N)

or write a formal character for an irreducible

J(x) =
∑
y≤x

My,x I(y) (My,x ∈ Z)

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1.
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Forms and dual spaces
V cplx vec space (or alg rep of K , or (g,K )-mod).

Hermitian dual of V
V h = {ξ : V → C additive | ξ(zv) = zξ(v)}

(If V is K -rep, also require ξ is K -finite.)

Sesquilinear pairings between V and W
Sesq(V ,W ) = {〈, 〉 : V ×W → C, lin in V , conj-lin in W}

Sesq(V ,W ) ' Hom(V ,W h), 〈v ,w〉T = (Tv)(w).

Cplx conj of forms is (conj linear) isom
Sesq(V ,W ) ' Sesq(W ,V ).

Corr (conj linear) isom is Hermitian transpose

Hom(V ,W h) ' Hom(W ,V h), (T hw)(v) = (Tv)(w).

Sesq form 〈, 〉T Hermitian if
〈v , v ′〉T = 〈v ′, v〉T ⇔ T h = T .
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Defining a rep on V h

Suppose V is a (g,K )-module. Write π for repn map.
Want to construct

cplx linear (π,V ) cplx linear (πh,V h)

using Hermitian transpose map of operators. REQUIRES
twisting by conj linear aut of g.

Assume
σ : G→ G antiholom aut, σ(K ) = K .

Define (g,K )-module πh,σ on V h,
πh,σ(X ) · ξ = [π(−σ(X ))]h · ξ (X ∈ g, ξ ∈ V h).

πh,σ(k) · ξ = [π(σ(k)−1)]h · ξ (k ∈ K , ξ ∈ V h).

Traditionally use

σ0 = real form with complexified maximal compact K .

We need also

σc = compact real form of G preserving K .
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Invariant Hermitian forms

V = (g,K )-module, σ antihol aut of G preserving K .
A σ-invariant sesq form on V is sesq pairing 〈, 〉 on V with

〈X ·v ,w〉 = 〈v ,−σ(X ) ·w〉, 〈k ·v ,w〉 = 〈v ,−σ(k−1) ·w〉

(X ∈ g, k ∈ K , v ,w ∈ V ).

Proposition

A σ-invt sesq form on V is the same thing as an
intertwining operator T from V to V h,σ:

〈v ,w〉T = (Tv)(w).

Form is Hermitian iff T h = T .
Assume V is irreducible. Then invt sesq form exists
iff V ' V h,σ. A σ-invt Herm form is unique up to real
scalar; non-deg whenever nonzero.
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Invariant forms on standard reps

Recall multiplicity formula
I(x) =

∑
y≤x

my ,xJ(y) (my ,x ∈ N)

for standard (g),K )-mod I(x).
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr J(x)

−→
deformation Jantzen filt In(x) on std,

nondeg forms 〈, 〉n on In/In+1.
Details (proved by Beilinson-Bernstein):

I(x) = I0 ⊃ I1 ⊃ I2 ⊃ · · · , I0/I1 = J(x)

In/In+1 completely reducible

[J(y) : In/In+1] = coeff of q(`(x)−`(y)−n)/2 in KL poly Qy,x

Hence 〈, 〉I(x) =
∑

n〈, 〉n, nondeg form on gr I(x).
Restricts to original form on irr J(x).
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virtual Hermitian forms

Z = Groth group of vec spaces.

These are mults of irr reps in virtual reps.
Z[X ] = Groth grp of fin lgth reps.

For invariant forms. . .
W = Z⊕ Z = Groth grp of fin diml forms.

Ring structure
(p,q)(p′,q′) = (pp′ + qq′,pq′ + q′p).

Mult of irr-with-forms in virtual-with-forms is in W:

W[X ] ≈ Groth grp of fin lgth reps with invt forms.

Two problems: invt form 〈, 〉J may not exist for irr J;
and 〈, 〉J may not be preferable to −〈, 〉J .
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Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form 〈, 〉J(x) on each irr admitting
one; recall Jantzen form 〈, 〉n on I(x)n/I(x)n+1.
MODULO problem of irrs with no invt form, write

(In/In−1, 〈, 〉n) =
∑
y≤x

wy ,x(n)(J(y), 〈, 〉J(y)),

coeffs w(n) = (p(n),q(n)) ∈W; summand means

p(n)(J(y), 〈, 〉J(y))⊕ q(n)(J(y),−〈, 〉J(y))

Define Hermitian KL polynomials

Qσ
y ,x =

∑
n

wy ,x(n)q(l(x)−l(y)−n)/2 ∈W[q]

Eval in W at q = 1↔ form 〈, 〉I(x) on std.
Reduction to Z[q] by W→ Z↔ KL poly Qx ,y .
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Hermitian KL polynomials: characters

Matrix Qσ
y ,x is upper tri, 1s on diag: INVERTIBLE.

Pσ
x ,y

def
= (−1)l(x)−l(y)((x , y) entry of inverse) ∈W[q].

Definition of Qx ,y says
(gr I(x), 〈, 〉I(x)) =

∑
y≤x

Qx ,y (1)(J(y), 〈, 〉J(y));

inverting this gives

(J(x), 〈, 〉J(x)) =
∑
y≤x

(−1)l(x)−l(y)Pσ
x ,y (1)(gr I(y), 〈, 〉I(y))

Next question: how do you compute Pσ
x ,y?
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Herm KL polys for σc

σc = cplx conj for cpt form of G, σc(K ) = K .
Plan: study σc-invt forms, relate to σ0-invt forms.

Proposition
Suppose J(x) irr (g,K )-module, real infl char. Then J(x)
has σc-invt Herm form 〈, 〉cJ(x), characterized by

〈, 〉cJ(x) is pos def on the lowest K-types of J(x).

Proposition =⇒ Herm KL polys Qσc
x ,y , Pσc

x ,y well-def.
These have coeffs in W = Z⊕ sZ;
here s = (0,1)! one-diml neg def form.

Conjecture: Qσc
x ,y (q) = Qx ,y (qs), Pσc

x ,y (q) = Px ,y (qs).

Equiv: if J(y) appears at level n of Jantzen filt of I(x), then
Jantzen form is (−1)(l(x)−l(y)−n)/2 times 〈, 〉J(y).
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Deforming to ν = 0
Now have a computable (conjectural) formula

(J(x), 〈, 〉cJ(x)) =
∑
y≤x

(−1)l(x)−l(y)Px,y (s)(gr I(y), 〈, 〉cI(y))

for σc-invt forms in terms of forms on stds, same inf char.

Std rep I = I(ν) deps on cont param ν. Put I(t) = I(tν), t ≥ 0.

If std rep I = I(ν) admits σ-invt Herm form 〈, 〉I (on assoc graded
for Jantzen filt), so does I(t) (all t ≥ 0).

(Signature for I(t)) = (signature on I(t + ε)), all ε ≥ 0 suff small.

Sig on I(t) differs from I(t − ε) on odd levels of Jantzen filt:

〈, 〉gr I(t−ε) = 〈, 〉gr I(t) + (s − 1)
X

m

〈, 〉I(t)2m+1/I(t)2m .

Each summand after first on right is known comb of stds,
all with cont param strictly smaller than tν. ITERATE. . .

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).
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From σc to σ0

Cplx conjs σc (compact form) and σ0 (our real form)
differ by Cartan involution θ: σ0 = θ ◦ σc .
Irr (g,K )-mod J  Jθ (same space, rep twisted by θ).

Proposition
J admits σ-invt Herm form if and only if Jθ ' J. If
T0 : J ∼→ Jθ, and T 2

0 = Id, then

〈v ,w〉0J = 〈v ,T0w〉cJ .

T : J ∼→ Jθ ⇒ T 2 = z ∈ C⇒ T0 = z−1/2T  σ-invt Herm form.

To convert formulas for σc invt forms formulas for
σ0-invt forms need intertwining ops TJ : J ∼→ Jθ,
consistent with decomp of std reps.
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Equal rank case

rk K = rk G⇒ Cartan inv inner: ∃τ ∈ K , Ad(τ) = θ.
θ2 = 1⇒ τ 2 = ζ ∈ Z (G) ∩ K .

Study reps π with π(ζ) = z. Fix sq root z1/2.

If ζ acts by z on V , and 〈, 〉cV is σc-invt form, then
〈v ,w〉0V

def
= 〈v , z−1/2τ · w〉cV is σ0-invt form.

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

translates to

〈, 〉0J =
∑

I′(0) std at ν′ = 0

vJ,I′〈, 〉0I′(0) (vJ,I′ ∈W).

I′ has LKT µ′ ⇒ 〈, 〉0I′(0) definite, sign z−1/2µ(I′)(t).

〈, 〉0J pos def⇔ each summand on right pos def.
Computability of vJ,I′ needs conj about Pσc

x ,y .
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General case

Fix “dist inv” δ0 of G in inner class of θ
Define extended group GΓ = G o {1, δ0}.
Can arrange θ = Ad(τδ0), some τ ∈ K .
Define K Γ = CentGΓ(τδ0) = K o {1, δ0}.
Study (g,K Γ)-mods! (g,K )-mods V with
D0 : V ∼→ V δ0 , D2

0 = Id.
Beilinson-Bernstein localization: (g,K Γ)-mods! action of δ0 on
K -eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig
ideas. Not done yet!

Now translate σc-invt forms to σ0 invt forms

〈v ,w〉0V
def
= 〈v , z−1/2τδ0 · w〉cV

on (g,K Γ)-mods as in equal rank case.
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