Kazhdan-Lusztig polynomials for signatures

Jeffrey Adams Marc van Leeuwen Peter Trapa
David Vogan Wai Ling Yee

Computational Methods in Lie Theory, April 4-5, 2009

Outline

Character formulas

Hermitian forms

Character formulas for invariant forms

Computing easy Hermitian KL polynomials

Unitarity algorithm

Categories of representations

Recall from lecture of Jeff Adams Verma modules...
$B \subset G \quad$ Borel subgp of cplx red alg gp,
W Weyl grp \leftrightarrow hwt mods, triv infl char
$M(w)$ Verma, hwt $-w \rho-\rho, \quad L(w) \quad$ irr quot
and, in a parallel way, Harish-Chandra modules...
$K \subset G \quad$ complexified maximal compact
$X \quad$ parameter set for irr (\mathfrak{g}, K)-mods
$I(x) \quad \operatorname{std}(\mathfrak{g}, K)$-mod, param $x \in X \quad J(x)$ irr quot

Character formulas

Can decompose Verma module into irreducibles

$$
M(w)=\sum_{v \leq w} m_{v, w} L(v) \quad\left(m_{v, w} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
L(w)=\sum_{v \leq w} M_{v, w} M(v) \quad\left(M_{v, w} \in \mathbb{Z}\right)
$$

Can decompose standard HC module into irreducibles

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
J(x)=\sum_{y \leq x} M_{y, x} I(y) \quad\left(M_{y, x} \in \mathbb{Z}\right)
$$

Matrices m and M upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1.

Forms and dual spaces

 V cplx vec space (or alg rep of K, or ((\mathfrak{g}, K)-mod).Hermitian dual of V

$$
V^{h}=\{\xi: V \rightarrow \mathbb{C} \text { additive } \mid \xi(z v)=\bar{z} \xi(v)\}
$$

(If V is K-rep, also require ξ is K-finite.)
Sesquilinear pairings between V and W $\operatorname{Sesq}(V, W)=\{\langle\rangle:, V \times W \rightarrow \mathbb{C}$, lin in V, conj-lin in $W\}$

$$
\operatorname{Sesq}(V, W) \simeq \operatorname{Hom}\left(V, W^{h}\right), \quad\langle v, w\rangle_{T}=(T v)(w)
$$

Cplx conj of forms is (conj linear) isom

$$
\operatorname{Sesq}(V, W) \simeq \operatorname{Sesq}(W, V)
$$

Corr (conj linear) isom is Hermitian transpose

$$
\operatorname{Hom}\left(V, W^{h}\right) \simeq \operatorname{Hom}\left(W, V^{h}\right), \quad\left(T^{h} w\right)(v)=(T v)(w)
$$

Sesq form \langle,\rangle_{T} Hermitian if

$$
\left\langle v, v^{\prime}\right\rangle_{T}={\overline{\left\langle v^{\prime}, v\right\rangle_{T}}}_{\theta} \Leftrightarrow T^{h}=T .
$$

Defining a rep on V^{h}

Want to construct

$$
\text { cplx linear }(\pi, V) \rightsquigarrow \operatorname{cplx} \text { linear }\left(\pi^{h}, V^{h}\right)
$$

using Hermitian transpose map of operators. REQUIRES twisting by conj linear aut of \mathfrak{g}.

Assume

$$
\sigma: G \rightarrow G \text { antiholom aut, } \quad \sigma(K)=K .
$$

Define (\mathfrak{g}, K)-module $\pi^{h, \sigma}$ on V^{h},

$$
\begin{array}{ll}
\pi^{h, \sigma}(X) \cdot \xi=[\pi(-\sigma(X))]^{h} \cdot \xi & \left(X \in \mathfrak{g}, \xi \in V^{h}\right) \\
\pi^{h, \sigma}(k) \cdot \xi=\left[\pi\left(\sigma(k)^{-1}\right)\right]^{h} \cdot \xi & \left(k \in K, \xi \in V^{h}\right)
\end{array}
$$

Traditionally use

$$
\sigma_{0}=\text { real form with complexified maximal compact } K .
$$

We need also

$$
\sigma_{c}=\text { compact real form of } G \text { preserving } K
$$

Invariant Hermitian forms

$V=(\mathfrak{g}, K)$-module, σ antihol aut of G preserving K. A σ-invariant sesq form on V is sesq pairing \langle,$\rangle on V$ with

$$
\begin{aligned}
& \langle X \cdot v, w\rangle=\langle v,-\sigma(X) \cdot w\rangle, \quad\langle k \cdot v, w\rangle=\left\langle v,-\sigma\left(k^{-1}\right) \cdot w\right\rangle \\
& (X \in \mathfrak{g}, k \in K, v, w \in V) .
\end{aligned}
$$

Proposition

A σ-invt sesq form on V is the same thing as an intertwining operator T from V to $V^{h, \sigma}$:

$$
\langle v, w\rangle_{T}=(T v)(w) .
$$

Form is Hermitian iff $T^{h}=T$.
Assume V is irreducible. Then invt sesq form exists iff $V \simeq V^{h, \sigma}$. $A \sigma$-invt Herm form is unique up to real scalar; non-deg whenever nonzero.

Invariant forms on standard reps

Recall multiplicity formula

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

for standard $(\mathfrak{g}), K)$-mod $I(x)$.
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr $J(x)$ deformation Jantzen filt $I_{n}(x)$ on std, nondeg forms \langle,\rangle_{n} on I_{n} / I_{n+1}.
Details (proved by Beilinson-Bernstein):

$$
\begin{gathered}
I(x)=I_{0} \supset I_{1} \supset I_{2} \supset \cdots, \quad I_{0} / I_{1}=J(x) \\
I_{n} / I_{n+1} \text { completely reducible } \\
{\left[J(y): I_{n} / I_{n+1}\right]=\text { coeff of } q^{(\ell(x)-\ell(y)-n) / 2} \text { in KL poly } Q_{y, x}}
\end{gathered}
$$

Hence $\langle,\rangle_{I(x)}=\sum_{n}\langle,\rangle_{n}$, nondeg form on $\operatorname{gr} I(x)$.
Restricts to original form on irr $J(x)$.

virtual Hermitian forms

$\mathbb{Z}=$ Groth group of vec spaces.
These are mults of irr reps in virtual reps.

$$
\mathbb{Z}[X]=\text { Groth grp of fin Igth reps. }
$$

For invariant forms...
$\mathbb{W}=\mathbb{Z} \oplus \mathbb{Z}=$ Groth grp of fin diml forms.
Ring structure

$$
(p, q)\left(p^{\prime}, q^{\prime}\right)=\left(p p^{\prime}+q q^{\prime}, p q^{\prime}+q^{\prime} p\right) .
$$

Mult of irr-with-forms in virtual-with-forms is in \mathbb{W} :
$\mathbb{W}[X] \approx$ Groth grp of fin Igth reps with invt forms.
Two problems: invt form \langle,\rangle_{J} may not exist for irr J; and \langle,\rangle_{J} may not be preferable to $-\langle,\rangle_{J}$.

Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form $\langle,\rangle_{J(x)}$ on each irr admitting one; recall Jantzen form \langle,\rangle_{n} on $I(x)_{n} / I(x)_{n+1}$. MODULO problem of irrs with no invt form, write

$$
\left(I_{n} / I_{n-1},\langle,\rangle_{n}\right)=\sum_{y \leq x} w_{y, x}(n)\left(J(y),\langle,\rangle_{J(y)}\right)
$$

coeffs $w(n)=(p(n), q(n)) \in \mathbb{W}$; summand means

$$
p(n)\left(J(y),\langle,\rangle_{J(y)}\right) \oplus q(n)\left(J(y),-\langle,\rangle_{J(y)}\right)
$$

Define Hermitian KL polynomials

$$
Q_{y, x}^{\sigma}=\sum_{n} w_{y, x}(n) q^{(I(x)-I(y)-n) / 2} \in \mathbb{W}[q]
$$

Eval in \mathbb{W} at $q=1 \leftrightarrow$ form $\langle,\rangle_{I(x)}$ on std.
Reduction to $\mathbb{Z}[q]$ by $\mathbb{W} \rightarrow \mathbb{Z} \leftrightarrow \mathrm{KL}$ poly $Q_{x, y}$.

Hermitian KL polynomials: characters

Matrix $Q_{y, x}^{\sigma}$ is upper tri, 1s on diag: INVERTIBLE.

$$
P_{x, y}^{\sigma} \stackrel{\text { def }}{=}(-1)^{I(x)-l(y)}((x, y) \text { entry of inverse }) \in \mathbb{W}[q]
$$

Char formulas for invt forms

Definition of $Q_{x, y}$ says

$$
\left(\operatorname{gr} I(x),\langle,\rangle_{I(x)}\right)=\sum_{y \leq x} Q_{x, y}(1)\left(J(y),\langle,\rangle_{J(y)}\right)
$$

inverting this gives

$$
\left(J(x),\langle,\rangle_{J(x)}\right)=\sum_{y \leq x}(-1)^{I(x)-I(y)} P_{x, y}^{\sigma}(1)\left(\operatorname{gr} I(y),\langle,\rangle_{I(y)}\right)
$$

Next question: how do you compute $P_{x, y}^{\sigma}$?

Herm KL polys for σ_{c}

KL polys for signatures
$\sigma_{c}=\mathrm{cplx}$ conj for cpt form of $G, \sigma_{c}(K)=K$.
Plan: study σ_{C}-invt forms, relate to σ_{0}-invt forms.

Proposition

Suppose $J(x)$ irr (\mathfrak{g}, K)-module, real infl char. Then $J(x)$ has σ_{c}-invt Herm form $\langle,\rangle_{J_{(x)}}^{c}$, characterized by
$\langle,\rangle_{J(x)}^{c}$ is pos def on the lowest K-types of $J(x)$.
Proposition \Longrightarrow Herm KL polys $Q_{x, y}^{\sigma_{c}}, P_{x, y}^{\sigma_{c}}$ well-def.
These have coeffs in $\mathbb{W}=\mathbb{Z} \oplus s \mathbb{Z}$; here $s=(0,1)$ か m one-diml neg def form.
Conjecture: $Q_{x, y}^{\sigma c}(q)=Q_{x, y}(q s), \quad P_{x, y}^{\sigma_{c}^{c}}(q)=P_{x, y}(q s)$.
Equiv: if $J(y)$ appears at level n of Jantzen filt of $I(x)$, then Jantzen form is $(-1)^{(l(x)-l(y)-n) / 2}$ times $\langle,\rangle_{J(y)}$.

Deforming to $\nu=0$

Now have a computable (conjectural) formula

$$
\left(J(x),\langle,\rangle_{J(x)}^{c}\right)=\sum_{y \leq x}(-1)^{I(x)-I(y)} P_{x, y}(s)\left(\operatorname{gr} I(y),\langle,\rangle_{l(y)}^{c}\right)
$$

for σ^{c}-invt forms in terms of forms on stds, same inf char.
Std rep $I=I(\nu)$ deps on cont param ν. Put $I(t)=I(t \nu), t \geq 0$.
If std rep $I=I(\nu)$ admits σ-invt Herm form \langle,\rangle_{I} (on assoc graded for Jantzen filt), so does $I(t)$ (all $t \geq 0)$.
$($ Signature for $I(t))=($ signature on $I(t+\epsilon))$, all $\epsilon \geq 0$ suff small.
Sig on $I(t)$ differs from $I(t-\epsilon)$ on odd levels of Jantzen filt:

$$
\langle,\rangle_{\operatorname{gr} /(t-\epsilon)}=\langle,\rangle_{\operatorname{gr} /(t)}+(s-1) \sum_{m}\langle,\rangle_{\|(t)_{2 m+1} / /(t)_{2 m}} .
$$

Each summand after first on right is known comb of stds, all with cont param strictly smaller than $t \nu$. ITERATE...

$$
\langle,\rangle_{J}^{c}=\sum_{r^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \prime^{\prime}}\langle,\rangle_{l^{\prime}(0)}^{c} \quad\left(v_{J, l^{\prime}} \in \mathbb{W}\right)
$$

From σ_{c} to σ_{0}

Cplx conjs σ_{C} (compact form) and σ_{0} (our real form) differ by Cartan involution $\theta: \sigma_{0}=\theta \circ \sigma_{c}$.
$\operatorname{Irr}(\mathfrak{g}, K)$-mod $J \rightsquigarrow J^{\theta}$ (same space, rep twisted by θ).

Proposition

J admits σ-invt Herm form if and only if $\mathrm{J}^{\theta} \simeq J$. If $T_{0}: J \xrightarrow{\sim} \boldsymbol{J}^{\theta}$, and $T_{0}^{2}=\mathrm{Id}$, then

$$
\langle v, w\rangle_{J}^{0}=\left\langle v, T_{0} w\right\rangle_{J}^{c} .
$$

$T: J \xrightarrow{\sim} J^{\theta} \Rightarrow T^{2}=z \in \mathbb{C} \Rightarrow T_{0}=z^{-1 / 2} T \rightsquigarrow \sigma$-invt Herm form.
To convert formulas for σ_{c} invt forms \rightsquigarrow formulas for σ_{0}-invt forms need intertwining ops $T_{J}: J \xrightarrow{\sim} J^{\theta}$, consistent with decomp of std reps.

Equal rank case

rk $K=\operatorname{rk} G \Rightarrow$ Cartan inv inner: $\exists \tau \in K, \operatorname{Ad}(\tau)=\theta$.
$\theta^{2}=1 \Rightarrow \tau^{2}=\zeta \in Z(G) \cap K$.
Study reps π with $\pi(\zeta)=z$. Fix sq root $z^{1 / 2}$.
If ζ acts by z on V, and $\langle,\rangle_{V}^{\mathcal{C}}$ is σ_{c}-invt form, then
$\langle v, w\rangle_{V}^{0} \xlongequal{\text { def }}\left\langle v, z^{-1 / 2} \tau \cdot w\right\rangle_{V}^{c}$ is σ_{0}-invt form.

$$
\langle,\rangle_{J}^{c}=\sum_{I^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \prime^{\prime}}\langle,\rangle_{l^{\prime}(0)}^{c} \quad\left(v_{J, I^{\prime}} \in \mathbb{W}\right)
$$

translates to

$$
\langle,\rangle_{J}^{0}=\sum_{l^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \prime^{\prime}}\langle,\rangle_{\nu^{\prime}(0)}^{0} \quad\left(v_{J, \prime^{\prime}} \in \mathbb{W}\right) .
$$

I^{\prime} has LKT $\mu^{\prime} \Rightarrow\langle,\rangle_{\prime^{\prime}(0)}^{0}$ definite, $\operatorname{sign} z^{-1 / 2} \mu\left(I^{\prime}\right)(t)$.
\langle,\rangle_{J}^{0} pos def \Leftrightarrow each summand on right pos def.
Computability of $v_{J, \prime \prime}$ needs conj about $P_{x, y}^{\sigma_{c}}$.

General case

Fix "dist inv" δ_{0} of G in inner class of θ
Define extended group $G^{\Gamma}=G \rtimes\left\{1, \delta_{0}\right\}$.
Can arrange $\theta=\operatorname{Ad}\left(\tau \delta_{0}\right)$, some $\tau \in K$.
Define $K^{\ulcorner }=\operatorname{Cent}_{G\ulcorner }\left(\tau \delta_{0}\right)=K \rtimes\left\{1, \delta_{0}\right\}$.
Study $\left(\mathfrak{g}, K^{\Gamma}\right)$-mods $\leadsto(\mathfrak{g}, K)$-mods V with
$D_{0}: V \xrightarrow{\sim} V^{\delta_{0}}, D_{0}^{2}=\mathrm{Id}$.
Beilinson-Bernstein localization: $\left(\mathfrak{g}, K^{\Gamma}\right)$-mods $\rightarrow m$ action of δ_{0} on K-eqvt perverse sheaves on G / B.
Should be computable by mild extension of Kazhdan-Lusztig ideas. Not done yet!
Now translate σ_{C}-invt forms to σ_{0} invt forms

$$
\langle v, w\rangle_{V}^{0} \stackrel{\text { def }}{=}\left\langle v, z^{-1 / 2} \tau \delta_{0} \cdot w\right\rangle_{V}^{c}
$$

on $\left(\mathfrak{g}, K^{\Gamma}\right)$-mods as in equal rank case.

