Signatures of Hermitian forms and unitary representations

Jeffrey Adams Marc van Leeuwen Peter Trapa David Vogan Wai Ling Yee

Summer School on Representation Theory and Harmonic Analysis Chern Institute, Nankai University June 8-11, 2010

Calculating signatures

Adams et al.

Outline

Lecture 1: $SL(2,\mathbb{R})$

Introduction

Example: $SL(2,\mathbb{R})$

 $SL(2,\mathbb{R})$ again

Lecture 2: Character formulas and Hermitian forms

Character formulas Hermitian forms

Jantzen filtrations and invariant forms

Lecture 3: Hermitian KL polynomials

Defining Hermitian KL polynomials

Illuminating calculations in $SL(2,\mathbb{R})$

Computing easy Hermitian KL polynomials

Deforming to $\nu = 0$

Lecture 4: Unitarity algorithm

Unitarity algorithm

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{I})$ Introduction

 $SL(2,\mathbb{R})$ $SL(2,\mathbb{R})$ again

ec. 2: Ch lerm form

Char formulas Herm forms

ec 3: Herm KL

Herm KL polys $SL(2, \mathbb{R})$ once more Easy Herm KL polys

Lec 4: Unitarit

erm forms thar formulas lerm forms

Jantzen filtrations Lec 3: Herm KL

polys
Herm KL polys $SL(2,\mathbb{R})$ once more

easy Herm RL polys Deforming to u=0.ec 4: Unitarity

algorithm

Unitarity algorithm

Example. $\int_{-\pi}^{\pi} \sin^5(t) dt = ?$ Zero!

Generalize: $f = f_{\text{even}} + f_{\text{odd}}$, $\int_{-a}^{a} f_{\text{odd}}(t) dt = 0$. Reps of $\{\pm 1\}$.

Example. Evolution of initial temp distn of hot ring

$$T(0,\theta) = A + B\cos(m\theta)$$
? $T(t,\theta) = A + Be^{-c \cdot m^2 t}\cos(m\theta)$.

Generalize: Fourier series of initial temp. Reps of circle group.

Example. X compact (arithmetic) locally symmetric manifold of dim 128; dim $(H^{28}(X,\mathbb{C}))$ =? Eight!

Same as H^{28} for compact globally symmetric space.

Generalize: $X = \Gamma \backslash G/K$, $H^p(X, \mathbb{C}) = H^p_{cont}(G, L^2(\Gamma \backslash G))$. Decomp L^2 :

$$L^2(\Gamma \backslash G) = \sum_{\pi \text{ irr rep of } G} m_{\pi}(\Gamma) \mathcal{H}_{\pi} \qquad (m_{\pi} = \dim \text{ of some aut forms})$$

Deduce
$$H^p(X,\mathbb{C}) = \sum_{\pi} \frac{m_{\pi}(\Gamma)}{m_{\pi}(\Gamma)} \cdot H^p_{cont}(G,\mathcal{H}_{\pi}).$$

General principal: group G acts on vector space V; decompose V; study pieces separately.

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.

Step 1. Attach to X Hilbert space \mathcal{H} (e.g. $L^2(X)$). Questions about $X \rightsquigarrow$ questions about \mathcal{H} .

Step 2. Find finest *G*-eqvt decomp $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$. Questions about $\mathcal{H} \leadsto$ questions about each \mathcal{H}_{α} .

Each \mathcal{H}_{α} is irreducible unitary representation of G: indecomposable action of G on a Hilbert space.

Step 3. Understand $\hat{G}_u =$ all irreducible unitary representations of G: unitary dual problem.

Step 4. Answers about irr reps \rightsquigarrow answers about X.

Topic for these lectures: **Step 3** for Lie group G. Mackey theory (normal subgps) \leadsto case G reductive.

Calculating signatures

Adams et al.

Lec 1: $SL(2,\mathbb{R})$

Introduction $SL(2, \mathbb{R})$

 $SL(2, \mathbb{R})$ $SL(2, \mathbb{R})$ again

erm forms
Char formulas
Herm forms

Lec 3: Herm KL

Herm KL polys $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to $\nu=0$

Lec 4: Unitarity algorithm

What's a unitary dual look like?

 $G(\mathbb{R})$ = real points of complex connected reductive alg G

Problem: find $\widehat{G}(\mathbb{R})_{\underline{u}} = \text{irr unitary reps of } G(\mathbb{R}).$

Harish-Chandra: $\widehat{G}(\mathbb{R})_u \subset \widehat{G}(\mathbb{R}) =$ "all" irr reps.

Unitary reps = "all" reps with \widehat{pos} def invt form.

Example: $G(\mathbb{R})$ compact $\Rightarrow \widehat{G}(\mathbb{R})_u = \widehat{G}(\mathbb{R}) = \text{discrete set.}$

Example: $G(\mathbb{R}) = \mathbb{R}$;

$$\widehat{G}(\mathbb{R}) = \{ \chi_z(t) = e^{zt} \ (z \in \mathbb{C}) \} \simeq \mathbb{C}$$

$$\widehat{G}(\mathbb{R})_{ij} = \{ \chi_{i\mathcal{E}} \ (\xi \in \mathbb{R}) \} \simeq i\mathbb{R}$$

Suggests: $\widehat{G}(\mathbb{R})_u = \text{real pts of cplx var } \widehat{G}(\mathbb{R})$. Almost...

 $\widehat{G(\mathbb{R})}_h = \text{reps with invt form: } \widehat{G(\mathbb{R})}_u \subset \widehat{G(\mathbb{R})}_h \subset \widehat{G(\mathbb{R})}.$

Approximately (Knapp): $G(\mathbb{R}) = \text{cplx}$ alg var, real pts $\widehat{G(\mathbb{R})}_h$; subset $\widehat{G(\mathbb{R})}_u$ cut out by real algebraic ineqs.

These lectures: algorithm computing inequalities.

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$

Introduction $SL(2, \mathbb{R})$

 $SL(2,\mathbb{R})$ agai

Herm forms
Char formulas

Herm forms Jantzen filtrations

Lec 3: Herm KL polys

 $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to $\nu=0$

Lec 4: Unitarity algorithm

Adams et al.

Lec 1: $SL(2, \mathbb{R})$

SL(2, ℝ)

ec. 2: Cha

Herm forms
Char formulas
Herm forms

Jantzen filtrations

polys
Herm KL polys

 $SL(2,\,\mathbb{R})$ once more Easy Herm KL polys Deforming to u=0

Lec 4: Unitarity algorithm

Unitarity algorithm

 $G(\mathbb{R}) = SL(2,\mathbb{R})$ acts on upper half plane \mathbb{H} .

$$ightharpoonup$$
 repn $E(\nu) = \{ f \in C^{\infty}(\mathbb{H}) \mid \Delta_{\mathbb{H}} f = (\nu^2 - 1)f \}.$

 $\nu \in \mathbb{C}$ parametrizes line bdle on circle where bdry values live.

Most $E(\nu)$ irr; always unique irr subrep $J(\nu) \subset E(\nu)$.

Spherical reps for $SL(2,\mathbb{R}) \leadsto \mathbb{C}/\pm 1$

Spectrum of $\Delta_{\mathbb{H}}$ on $L^2(\mathbb{H})$ is $(-\infty, -1]$. Gives unitary reps unitary principal series $\longleftrightarrow \{E(\nu) \mid \nu \in i\mathbb{R}\}.$

Trivial representations \iff [const fns on \mathbb{H}] = $J(\pm 1)$.

 $J(\nu)$ is Herm. $\Leftrightarrow J(\nu) \simeq J(-\overline{\nu}) \Leftrightarrow \nu \in i\mathbb{R} \cup \mathbb{R}$.

By continuity, signature stays positive from 0 to ± 1 .

complementary series reps \longleftrightarrow { $E(t) | t \in (-1,1)$ }.

Reason: if B = upper triangular matrices, bdry of \mathbb{H} is

$$\mathbb{R} \cup \{\infty\} = \mathbb{RP}^1 \simeq SL(2,\mathbb{R})/B,$$

Complex number ν defines character

$$\xi_{\nu} \colon \mathcal{B} \to \mathbb{C}^{\times}, \qquad \xi_{\nu} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = |a|^{\nu+1}$$

 \longrightarrow eqvt line bdle $\mathcal{L}(\nu) \to \mathbb{RP}^1$.

 \leadsto rep of $SL(2,\mathbb{R})$ on secs $I(\nu)$ of $\mathcal{L}(\nu)$. Which sections?

$$I^\omega(\nu)\subset I^\infty(\nu)\subset I^{(2)}(\nu)\subset I^{-\infty}(\nu)\subset I^{-\omega}(\nu)$$
 analytic smooth square-integrable distribution hyperfunction

Helgason theorem: if $Re(\nu) \leq 0$, then $E(\nu) \stackrel{\text{bdry val}}{\simeq} I^{-\omega}(\nu)$.

Hilbert space structure only on subspace $I^{(2)}(\nu)$.

Harish-Chandra soln: study vecs finite under cpt subgrp.

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction

 $SL(2, \mathbb{R})$ $SL(2, \mathbb{R})$ again

SL(2, IK) again

Herm forms
Char formulas

Herm forms Jantzen filtration

Lec 3: Herm Kl polys

 $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to u=0

Lec 4: Unitarity
algorithm

Often study solutions Df = 0 of diff op D.

Ex.
$$D = \Delta_{\mathbb{H}} - (\nu^2 - 1)$$
,

$$E(\nu) =_{\mathsf{def}} \{ f \text{ generalized function on } \mathbb{H} \mid \mathsf{D} f = 0 \}.$$

Could instead study cosolutions

$$E^*(\nu) =_{\mathsf{def}} \{ \mathsf{test} \; \mathsf{densities} \; \mathsf{on} \; \mathbb{H} \} / \{ D\delta \}.$$

Spaces $E(\nu)$ and $E^*(\nu)$ are topologically dual by $\int_{\mathbb{H}}$.

 $E(\nu)$ big and fat \rightsquigarrow diff eqns have lots of solns; but

 $E^*(\nu)$ small and thin \leadsto elts cptly supp, integrals converge.

Boundary value map $E^*(\nu) \rightsquigarrow$ analytic secs $I^{\omega}(-\nu)$.

Contrast solutions cosolutions very dramatic for Cauchy-Riemann egns.

Solns are holomorphic fns, widely known; cosolns don't seem to appear much.

For Hermitian forms, prefer spaces like $E^*(\nu)$: Schmid's minimal globalization.

... and a preview of more general groups.

Spherical unitary dual for
$$SL(2,\mathbb{R}) \leftrightsquigarrow \mathbb{C}/\pm 1$$
 $-i \infty$ $i \infty$

 $\begin{array}{ll} SL(2,\mathbb{R}) & G(\mathbb{R}) \\ E(\nu),\nu\in\mathbb{C} & I(\nu),\nu\in\mathfrak{a}_\mathbb{C}^* \\ E(\nu),\,\nu\in i\mathbb{R} & I(\nu),\,\nu\in i\mathfrak{a}_\mathbb{R}^* \\ J(\nu)\hookrightarrow E(\nu) & I(\nu)\twoheadrightarrow J(\nu) \\ [-1,1] & \text{polytope in }\mathfrak{a}_\mathbb{R}^* \end{array}$

Will deform Herm forms unitary axis $i\mathfrak{a}_{\mathbb{R}}^* \leadsto$ real axis $\mathfrak{a}_{\mathbb{R}}^*$.

Deformed form pos ↔ unitary rep.

Reps appear in families, param by ν in cplx vec space \mathfrak{a}^* .

Pure imag params $\longleftrightarrow L^2$ harm analysis \longleftrightarrow unitary.

Each rep in family has distinguished irr piece $J(\nu)$.

Difficult unitary reps ↔ deformation in real param

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction

 $SL(2,\mathbb{R})$ $SL(2,\mathbb{R})$ again

SL(2, ℝ) ag

ec. 2: Griars, lerm forms

Herm forms Jantzen filtratio

Lec 3: Herm KL polys

Herm KL polys $SL(2,\mathbb{R})$ once mor Easy Herm KL polys Deforming to $\nu=$

Lec 4: Unitarity algorithm

$$\mathbb{H} \simeq \mathit{SL}(2,\mathbb{R})/\mathit{SO}(2).$$

These are all reps (π, V) of $SL(2, \mathbb{R})$ having SO(2)-fixed $\lambda \in V^*$:

$$V \to C^{\infty}(\mathbb{H}), \qquad v \mapsto f_v(gK) = \lambda(\pi(g^{-1}v)).$$

For special ν , $E(\nu)$ is reducible.

 $\{\text{const fns}\} = \mathbb{C} \subset \{\text{harm fns on } \mathbb{H}\} = \textit{\textbf{E}}(\pm 1).$

 $\nu=\pm(2m+1)$ odd integer; J(2m+1)=2m+1-diml irr rep of $SL(2,\mathbb{R})$ has SO(2) wts

$$2m, 2m-2, \cdots, -2m$$

including zero.

Get SO(2)-fixed $\lambda \in J(2m+1)^*$, so inclusion

$$J(2m+1) \hookrightarrow E(2m+1)$$
.

Turns out all other $E(\nu)$ are irreducible.

Adams et al.

Introduction $SL(2,\mathbb{R})$ $SL(2,\mathbb{R})$ again

c. 2: Chars, rm forms ar formulas rm forms

Lec 3: Herm KL
polys
Herm KL polys
SL(2, R) once more

Lec 4: Unitarity algorithm

SL(2, R) again

Recall $E(\nu) = (\nu^2 - 1)$ -eigenspace of $\Delta_{\mathbb{H}}$.

Need "signature" of Herm form on this inf-diml space.

Harish-Chandra (or Fourier) idea: use K = SO(2) break into fin-diml subspaces

$$E(\nu)_{2m} = \{ f \in E(\nu) \mid \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot f = e^{2im\theta} f \}.$$

$$E(\nu) \supset \sum_m E(\nu)_{2m},$$
 (dense subspace)

Decomp is orthogonal for any invariant Herm form.

Signature is + or - for each m. For $3 < |\nu| < 5$

$$\nu = 0$$
, $E(0)$ " \subset " $L^2(\mathbb{H})$: unitary, signature positive.

$$0 < \nu < 1$$
, $E(\nu)$ irr: signature remains positive.

$$\nu = 1$$
, form finite pos on $J(1) \subset E(1) \iff SO(2)$ rep 0.

$$\nu = 1$$
, form has pole, pos residue on $E(1)/J(1)$.

$$1 < \nu < 3$$
, across pole at $\nu = 1$, signature changes.

$$\nu = 3$$
, Herm form finite $-+-$ on $J(3)$.

$$\nu = 3$$
, Herm form has pole, neg residue on $E(3)/J(3)$.

$$3 < \nu < 5$$
, across pole at $\nu = 3$, signature changes. ETC.

Conclude:
$$J(\nu)$$
 unitary, $\nu \in [0, 1]$; nonunitary, $\nu \in [1, \infty)$.

$$\cdots$$
 -6 -4 -2 0 +2 +4 +6 \cdots $SO(2)$ reps \cdots + + + + + + + + \cdots $\nu = 0$

$$\cdots$$
 + + + + + + \cdots 0 < ν < 1

$$\cdots$$
 + + + + + + \cdots $\nu = 1$

$$\cdots$$
 - - + - - - \cdots 1 < ν < 3 \cdots - - + - - - \cdots ν = 3

$$\cdots$$
 + + - + - + \cdots $3 < \nu < 5$

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction $SL(2, \mathbb{R})$ $SL(2, \mathbb{R})$ again

_ec. 2: Chars Herm forms

Herm forms Jantzen filtrations

POOLYS

Herm KL polys $SL(2, \mathbb{R})$ once more

Easy Herm KL polys

Lec 4: Unitarity algorithm

 $SL(2, \mathbb{R})$ again

Calculated signatures of invt Herm forms on spherical reps of $SL(2,\mathbb{R})$.

Seek to do "same" for real reductive group. Need...

List of irr reps = ctble union (cplx vec space)/(fin grp).

reps for purely imag points " \subset " $L^2(G)$: unitary!

Natural (orth) decomp of any irr (Herm) rep into fin-diml subspaces → define signature subspace-by-subspace.

Compute signature at $\nu + i\tau$ by analytic continuation in t: $t\nu + i\tau$, 0 < t < 1.

Precisely: start with pos def signature at t = 0; add contributions of sign changes from zeros/poles of odd order in $0 < t < 1 \rightsquigarrow signature$ at t = 1.

Lec. 2: Chars. Herm forms

Yesterday: what's the unitary dual of a Lie group? Gave part of answer for $SL(2,\mathbb{R})$: union of rational

polyhedra in C-vector spaces defined over Q. Looked at how to find this $SL(2,\mathbb{R})$ answer:

start with Harish-Chandra's "tempered" unitary reps deform parameter, keep track of sign changes where Herm form becomes singular.

Answer for general reductive G has same shape, but with more complicated polyhedra.

Today: introduce technology (Langlands classification, Kazhdan-Lusztig theory of irreducible characters) needed to calculate in general reductive groups.

```
ec 1: SL(2, \mathbb{R})
```

Herm form:

Char formulas

Jantzen fil

Lec 3: Herm Kl polys

Herm KL polys $SL(2, \mathbb{R})$ once more Easy Herm KL polys

Lec 4: Unitarity algorithm

Unitarity algorithm

G cplx reductive alg $\supset G(\mathbb{R})$ real form $\supset K(\mathbb{R})$ max cpt.

Rep theory of $G(\mathbb{R})$ modeled on Verma modules. . .

 $H \subset B \subset G$ maximal torus in Borel subgp, $\mathfrak{h}^* \leftrightarrow \text{highest weight reps}$

 $V(\lambda)$ Verma of hwt $\lambda \in \mathfrak{h}^*$, $L(\lambda)$ irr quot

Put cplxification of $K(\mathbb{R})=K\subset G$, reductive algebraic.

 (\mathfrak{g}, K) -mod: cplx rep V of \mathfrak{g} , compatible alg rep of K.

Harish-Chandra: irr (\mathfrak{g}, K) -mod \iff "arb rep of $G(\mathbb{R})$."

X parameter set for irr (\mathfrak{g}, K) -mods

I(x) std (\mathfrak{g}, K) -mod $\leftrightarrow x \in X$ J(x) irr quot

Set X described by Langlands, Knapp-Zuckerman: countable union (subspace of \mathfrak{h}^*)/(subgroup of W).

Can decompose Verma module into irreducibles

$$V(\lambda) = \sum_{\mu \leq \lambda} m_{\mu,\lambda} L(\mu) \qquad m_{\mu,\lambda} \in \mathbb{N}$$

or write a formal character for an irreducible

$$L(\lambda) = \sum_{\mu \leq \lambda} M_{\mu,\lambda} V(\mu) \qquad (M_{\mu,\lambda} \in \mathbb{Z})$$

Can decompose standard HC module into irreducibles

$$I(x) = \sum_{y \le x} m_{y,x} J(y) \qquad (m_{y,x} \in \mathbb{N})$$

or write a formal character for an irreducible

$$J(x) = \sum_{y < x} M_{y,x} I(y) \qquad (M_{y,x} \in \mathbb{Z})$$

Matrices *m* and *M* upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1:

$$m_{y,x} = Q_{y,x}(1), \quad M_{y,x} = P_{y,x}(1) \quad (Q_{y,x}, P_{y,x} \in \mathbb{N}[q]).$$

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$

Lec. 2: Cha

Char formulas

Jantzen filtrations

polys Herm KL polys

 $\mathit{SL}(2,\,\mathbb{R})$ once more Easy Herm KL polys Deforming to u=0

Lec 4: Unitarity algorithm

Unitarity algorithm

Char formulas

Def of (\mathfrak{g}, K) -module $V \rightsquigarrow$ $(m_V(\mu) \in \mathbb{N} \cup \{\infty\})$

 $V|_K = \sum_{\mu \in \widehat{K}} m_V(\mu) \mu$

Harish-Chandra thm: V irr or std $\Rightarrow m_V(\mu) < \infty$. $m_V : \widehat{K} \to \mathbb{N}$ multiplicity function of V.

∃ algorithm (Hecht-Schmid pf of Blattner conj., etc.) computing function m_V , any V irr. or std.

Take functions m_l , l std, as known.

Non-deg K-invt Hermitian form $\langle , \rangle_V \rightsquigarrow$

 $(p_V, q_V): \widehat{K} \to \mathbb{N} \times \mathbb{N}$ signature function of \langle , \rangle_V . Will compute sig fns $p_V, q_V \iff$ each irr Herm V. "Compute" \leftrightarrow "write as fin int comb of mult fns m_i "

dual of
$$E(\nu) = I_{ev}(\nu) \rightarrow J_{ev}(\nu)$$
.

Need discrete series $I_{hol/antihol}(n)$ (n = 1, 2, ...) char by

$$I_{+}(n)|_{SO(2)} = n+1, \ n+3, \ n+5\cdots$$

 $I_{-}(n)|_{SO(2)} = -n-1, \ -n-3, \ -n-5\cdots$

Discrete series reps are irr: $I_{hol/antihol}(n) = J_{hol/antihol}(n)$ Decompose principal series

$$I_{\text{ev}}(2m+1) = J_{\text{ev}}(2m+1) + J_{\text{hol}}(2m+1) + J_{\text{antihol}}(2m+1).$$

Character formula

$$J_{\text{ev}}(2m+1) = I_{\text{ev}}(2m+1) - I_{\text{hol}}(2m+1) - I_{\text{antihol}}(2m+1).$$

Kazhdan-Lusztig matrix

$P_{x,y}$	$I_{\rm ev}(2m+1)$	$I_{hol}(2m+1)$	$I_{\text{antihol}}(2m+1)$
$I_{\rm ev}(2m+1)$	1	-1	-1
$I_{hol}(2m+1)$	0	1	0
$I_{\text{antihol}}(2m+1)$	0	0	1

Calculating signatures

Adams et al.

Char formulas

V cplx vec space (or alg rep of K, or (g, K)-module...)

Hermitian dual of V

$$V^h = \{ \xi : V \to \mathbb{C} \text{ additive } | \ \xi(zv) = \overline{z}\xi(v) \}$$

(If V is K-rep, also require ξ is K-finite.)

Sesquilinear pairings between V and W

Sesq $(V, W) = \{\langle, \rangle : V \times W \to \mathbb{C}, \text{ linear in } V, \text{ conj-lin in } W\}$

$$\mathsf{Sesq}(V,W) \simeq \mathsf{Hom}(V,W^h), \quad \langle v,w \rangle_T = (Tv)(w).$$

Cplx conj of forms defines (conjugate linear) isomorphism $Sesa(V, W) \simeq Sesa(W, V)$.

Corresponding (conj linear) isom is Hermitian transpose $\operatorname{Hom}(V, W^h) \simeq \operatorname{Hom}(W, V^h), \quad (T^h w)(v) = (Tv)(w).$

Sesq form \langle , \rangle_T on one space V is Hermitian if $\langle \mathbf{v}, \mathbf{v}' \rangle_{T} = \overline{\langle \mathbf{v}', \mathbf{v} \rangle_{T}} \Leftrightarrow T^{h} = T.$

Recall Hermitian dual of V

$$V^h = \{ \xi : V \to \mathbb{C} \text{ additive } | \ \xi(zv) = \overline{z}\xi(v) \}$$

Want to construct functor

cplx linear rep
$$(\pi, V) \rightsquigarrow \text{cplx linear rep } (\pi^h, V^h)$$

using Hermitian transpose map of operators.

REQUIRES twist by conjugate linear automorphism of g.

Assume $\sigma \colon G \to G$ antiholom aut, $\sigma(K) = K$.

Define (\mathfrak{g}, K) -module $\pi^{h,\sigma}$ on V^h ,

$$\pi^{h,\sigma}(X)\cdot \xi = [\pi(-\sigma(X))]^h\cdot \xi \qquad (X\in\mathfrak{g},\xi\in V^h).$$

$$\pi^{h,\sigma}(k)\cdot\xi=[\pi(\sigma(k)^{-1})]^h\cdot\xi\qquad (k\in\mathcal{K},\xi\in\mathcal{V}^h).$$

Classically $\sigma_0 \iff G(\mathbb{R})$. We use also $\sigma_c \iff$ compact form of G

Different $\sigma \rightsquigarrow$ different Hermitian dual rep $\pi^{h.\sigma}$.

Big idea: choose σ to make calculations easy.

Adams et al.

Lec 1: SL(2,Introduction $SL(2, \mathbb{R})$

ec. 2: Charserm forms

Char formulas
Herm forms

Lec 3: Herm KI

Herm KL polys $SL(2, \mathbb{R})$ once more Easy Herm KL polys Deforming to $\nu = 0$

Lec 4: Unitarity algorithm

 $V = (\mathfrak{g}, K)$ -module, σ antihol aut of G preserving K.

A σ -invt sesq form on V is sesq pairing \langle , \rangle such that

$$\langle X \cdot v, w \rangle = \langle v, -\sigma(X) \cdot w \rangle, \quad \langle k \cdot v, w \rangle = \langle v, \sigma(k^{-1}) \cdot w \rangle$$

$$(X \in \mathfrak{g}; k \in K; v, w \in V).$$

Proposition

 σ -invt sesq form on $V \longleftrightarrow (\mathfrak{g}, K)$ -map $T: V \to V^{h,\sigma}$: $\langle v, w \rangle_T = (Tv)(w).$

Form is Hermitian iff $T^h = T$.

Assume V is irreducible.

 $V \simeq V^{h,\sigma} \Leftrightarrow \exists \text{ invt sesq form} \Leftrightarrow \exists \text{ invt Herm form}$ A σ -invt Herm form on V is unique up to real scalar.

 $T \to T^h \iff$ real form of cplx line $\operatorname{Hom}_{\mathfrak{a},K}(V,V^{h,\sigma})$.

Recall multiplicity formula

$$I(x) = \sum_{y \leq x} m_{y,x} J(y) \qquad (m_{y,x} \in \mathbb{N})$$

for standard (\mathfrak{g}, K) -mod I(x).

Want parallel formulas for σ -invt Hermitian forms. Need forms on standard modules.

Form on irr $J(x) \xrightarrow{\text{deformation}} \text{Jantzen filt } I^k(x) \text{ on std,}$ nondeg forms \langle , \rangle^k on I^k/I^{k+1} .

Details (proved by Beilinson-Bernstein):

$$I(x) = I^0 \supset I^1 \supset I^2 \supset \cdots, \qquad I^0/I^1 = J(x)$$

 I^k/I^{k+1} completely reducible

$$[J(y)\colon I^k/I^{k+1}]= {
m coeff} \ {
m of} \ q^{(\ell(x)-\ell(y)-k)/2} \ {
m in} \ {
m KL} \ {
m poly} \ {\it Q}_{y,x}$$

Hence $\langle , \rangle_{I(x)} \stackrel{\text{def}}{=} \sum_{k} \langle , \rangle^{k}$, nondeg form on gr I(x).

Restricts to original form on irr J(x).

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction $SL(2, \mathbb{R})$

ec. 2: Chars, erm forms har formulas

Jantzen filtrations

polys
Herm KL polys $SL(2,\mathbb{R})$ once more
Easy Herm KL polys

Lec 4: Unitarity algorithm

$$V = V^0(t) \supset V^1(t) = \operatorname{Rad}(\langle, \rangle_t), \quad J(t) = V^0(t)/V^1(t)$$

 $(p^0(t), q^0(t)) = \operatorname{signature of} \langle, \rangle_t \operatorname{on} J(t).$

Question: how does $(p^0(t), q^0(t))$ change with t?

First answer: locally constant on open set $V^1(t) = 0$.

Refine answer...define form on $V^1(t)$

$$\langle v, w \rangle^1(t) = \lim_{s \to t} \frac{1}{s - t} \langle v, w \rangle_s, \qquad V_2(t) = \operatorname{Rad}(\langle, \rangle^1(t))$$

 $(p^1(t), q^1(t)) = \operatorname{signature of} \langle, \rangle^1(t).$

Continuing gives Jantzen filtration

$$V = V^{0}(t) \supset V^{1}(t) \supset V^{2}(t) \cdots \supset V^{m+1}(t) = 0$$

From $t - \epsilon$ to $t + \epsilon$, signature changes on odd levels:

$$p(t+\epsilon)=p(t-\epsilon)+\sum[p^{2k+1}(t)+q^{2k+1}(t)].$$

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction $SL(2, \mathbb{R})$

ec. 2: Chars lerm forms

Herm forms

Lec 3: Herm K

polys
Herm KL polys $SL(2, \mathbb{R})$ once more
Easy Herm KL polys

Lec 4: Unitarity

Example of Jantzen filtrations

Example: $V = \mathbb{C}$; non-triv family of Herm forms \longleftrightarrow non-zero real-analytic $f(t) = \langle 1, 1 \rangle_t$.

$$V^{1}(t) = \begin{cases} \{0\}, & f(t) \neq 0 \\ \mathbb{C}, & f(t) = 0. \end{cases}$$

Form $\langle , \rangle^1(t) = 0$ (on zero vec space) if $f(t) \neq 0$.

$$(1,1)^1(t) = f'(t)$$
 if $f(t) = 0$.

General formula is

$$V^k(t) = \begin{cases} \{0\}, & f^{(m)}(t) \neq 0, \text{ some } m < k \\ \mathbb{C} & 0 = f(t) = f'(t) = \dots = f^{(k-1)}(t). \end{cases}$$

 $V^k(t)/V^{k+1}(t) \neq 0 \Leftrightarrow f^{(k)(t)}$ first nonzero deriv of f.

Then signature of $\langle , \rangle^k(t) \longleftrightarrow \operatorname{sgn} f^{(k)}(t)$.

Formula
$$p(t + \epsilon) = p(t - \epsilon) + \sum [p^{2k+1}(t) - q^{2k+1}(t)]$$
 says

analytic functions change sign at zeros of odd order.

Calculating signatures

Adams et al.

Lec 1: SL(2)Introduction $SL(2, \mathbb{R})$

> ec. 2: Chars lerm forms

Herm forms

Jantzen filtrations

polys
Herm KL polys $SL(2,\mathbb{R})$ once more
Easy Herm KL polys

Lec 4: Unitarity algorithm

Have classification of irr reps.

Parameter $x \in X \leadsto \text{std rep } I(x) \leadsto \text{irr quotient } J(x)$

Character formula $J(x) = \sum_{y < x} M_{y,x} I(y)$

Integers $M_{V,X}$ are computable (Kazhdan-Lusztig).

Choice of complex conjugation $\sigma \rightsquigarrow$ Hermitian dual operation $J \mapsto J^{h,\sigma}$ on irr reps and (therefore) $x \mapsto \sigma(x)$ on parameter $x \in X$.

Action of σ on X is "real structure" whose fixed pts are the Herm reps.

If J(x) has invt Herm form, Jantzen filtration of I(x) \rightarrow invt Herm form on gr I(x)

Tomorrow: introduce Herm KL polys relating signatures on irrs and stds.

Lec 3: Herm KI

polys

Classification of irr reps (of $G(\mathbb{R})$ real reductive).

Param $x \in X \leadsto \text{std rep } I(x) \leadsto \text{irr quotient } J(x)$

Character formula $J(x) = \sum_{v < x} M_{y,x} I(y)$.

Integers $M_{v,x}$ are computable (Kazhdan-Lusztig).

Choice of complex conjugation $\sigma \rightsquigarrow$ Hermitian dual operation $J \mapsto J^{h,\sigma}$ on irr reps and (therefore) $x \mapsto \sigma(x)$ on parameter $x \in X$.

If J(x) has invt Herm form, Jantzen filtration of I(x) \rightarrow invt Herm form on gr I(x)

Today: introduce Herm KL polys relating signatures on irrs and stds.

Herm KL polys

 $\mathbb{Z} =$ Groth group of vec spaces.

Integers are mults of irr reps in virtual reps. Hence Groth grp of fin lgth reps $\simeq \mathbb{Z}[X]$,

$$V \mapsto \sum_{x \in X} m_V(J(x)) \cdot x;$$

coeffs are mults of irrs as composition factors.

For invariant forms...

 $\mathbb{W} = \mathbb{Z} \oplus s\mathbb{Z} = \text{Groth grp of fin diml forms.}$ $s \leftrightarrow$ one-diml space with negative Herm form. Ring structure (tensoring forms) is $\mathbb{Z}[s]/(s^2-1)$:

$$(p,q)(p',q') = (pp'+qq',pq'+q'p).$$

Mult of irr-with-forms in virtual-with-forms is in \mathbb{W} :

 $\mathbb{W}[X] \approx \text{Groth grp of fin lgth reps with invt forms.}$

Two problems: invt form \langle , \rangle_J may not exist for irr J; and \langle , \rangle_J may not be preferable to $-\langle , \rangle_J$.

Hermitian KL polynomials: multiplicities

Fix σ -invt Hermitian form $\langle , \rangle_{J(x)}$ on each irr having one; recall Jantzen form \langle , \rangle^n on $I(x)^n/I(x)^{n+1}$. MODULO problem of irrs with no invt form, write

$$(I(x)^n/I(x)^{n+1},\langle,\rangle^n)=\sum_{y\leq x}w_{y,x}(n)(J(y),\langle,\rangle_{J(y)}),$$

coeffs
$$w(n)=(p(n),q(n))\in \mathbb{W};$$
 summand means $p(n)(J(y),\langle,\rangle_{J(y)})\oplus q(n)(J(y),-\langle,\rangle_{J(y)})$

Define Hermitian KL polynomials

$$Q_{y,x}^{\sigma}=\sum_{n}w_{y,x}(n)q^{(l(x)-l(y)-n)/2}\in \mathbb{W}[q]$$

Eval in \mathbb{W} at $q = 1 \leftrightarrow \text{form } \langle, \rangle_{I(X)}$ on gr(std).

Reduction to $\mathbb{Z}[q]$ by $\mathbb{W} \to \mathbb{Z} \iff \mathsf{KL}$ poly $Q_{\mathsf{V},\mathsf{X}}$.

Calculating signatures

Adams et al.

Herm KL polys

Hermitian KL polynomials: characters

Matrix $Q_{V,X}^{\sigma}$ is upper tri, 1s on diag: INVERTIBLE.

$$P_{x,y}^{\sigma} \stackrel{\mathsf{def}}{=} (-1)^{l(x)-l(y)}((x,y) \; \mathsf{entry \; of \; inverse}) \in \mathbb{W}[q].$$

Definition of $Q_{x,y}^{\sigma}$ says

$$(\operatorname{gr} I(x), \langle, \rangle_{I(x)}) = \sum_{y \leq x} Q_{x,y}^{\sigma}(1)(J(y), \langle, \rangle_{J(y)});$$

inverting this gives

$$(J(x),\langle,\rangle_{J(x)}) = \sum_{y \leq x} (-1)^{I(x)-I(y)} P_{x,y}^{\sigma}(1) (\operatorname{gr} I(y),\langle,\rangle_{I(y)})$$

Next question: how do you compute $P_{x,y}^{\sigma}$? Stay tuned...

Calculating signatures

Adams et al.

ec 1: SL(2, 1)ntroduction $SL(2, \mathbb{R})$

ec. 2: Chars, erm forms

Herm forms

Jantzen filtrations

Lec 3: Herm KL polys

Herm KL polys $SL(2, \mathbb{R})$ once mo

Easy Herm KL polys
Deforming to u = 0

algorithm
Unitarity algorithm

$$G(\mathbb{R}) = SL(2,\mathbb{R}), K = SO(2)$$

Easy case: sph princ series $I_{ev}(1) \rightarrow J_{ev}(1) = \text{triv rep}$, $I_{hol/antihol}(1)$ first discrete series reps.

Put pos def σ_0 -invt form on each irr $J_{ev}(1)$, $J_{hol/antihol}(1)$.

Jantzen filtration of $I_{ev}(1)$ is

$$\underbrace{I_{\text{ev}}(1)}_{I_{\text{ev}}^0(1)} \supset \underbrace{J_{\text{hol}}(1) \oplus J_{\text{antihol}}(1)}_{I_{\text{ev}}^1(1)} \supset \underbrace{0}_{I_{\text{ev}}^2(1)}, \qquad I^0/I^1 = J_{\text{ev}}(1).$$

Previous calculation of signature

$$\cdots$$
 -6 -4 -2 0 +2 +4 +6 \cdots SO(2) reps \cdots + + + + + + + + \cdots $\nu = 1$

shows Jantzen form on $I_{ev}^1(1)$ (lim from *above*) negative.

So KL polys $Q_{\text{hol}(1)/\text{antihol}(1),\text{ev}(1)}^{\sigma_0} = s$. Not too bad...

Calculating signatures

Adams et al.

ec 1: $SL(2, \mathbb{R})$ introduction $SL(2, \mathbb{R})$

.ec. 2: Chars lerm forms

Herm forms

Jantzen filtrations

polys
Herm KL polys
SL(2, R) once more

Easy Herm KL polys Deforming to u=0

algorithm

$$\textit{G}(\mathbb{R}) = \textit{SL}(2,\mathbb{R}),\, \textit{K} = \textit{SO}(2)$$

Sph princ series $I_{ev}(3) \twoheadrightarrow J_{ev}(3) = 3$ -diml, $I_{hol/antihol}(3)$ discrete series reps.

Put pos def form on $J_{\text{hol/antihol}}(1)$; form on $J_{\text{ev}}(3)$ pos on SO(2)-invt.

Jantzen filtration of $I_{ev}(3)$ is

$$\underbrace{I_{\text{ev}}(3)}_{I_{\text{ev}}^0(3)} \supset \underbrace{J_{\text{hol}}(3) \oplus J_{\text{antihol}}(3)}_{I_{\text{ev}}^1(3)} \supset \underbrace{0}_{I_{\text{ev}}^2(3)}, \qquad I^0/I^1 = J_{\text{ev}}(3).$$

Previous calculation of signature

$$\cdots$$
 -6 -4 -2 0 +2 +4 +6 \cdots $SO(2)$ reps \cdots - - + - - - \cdots $\nu = 3$

shows that Jantzen form on $I_{ev}^1(3)$ is positive

So KL polys $Q_{\text{hol(3)/antihol(3),ev(3)}}^{\sigma_0}=$ 1. Starts to sounds complicated. . .

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{F})$ Introduction $SL(2, \mathbb{R})$

erm forms
thar formulas

Lec 3: Herm KL polys

 $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to u=0

Lec 4: Unitarity algorithm

Unitarity algorithm

 $SL(2, \mathbb{R})$ once more

 $G(\mathbb{R}) = SL(2,\mathbb{R}), K = SO(2)$

Nonsph princ series $I_{odd}(2) \rightarrow J_{odd}(2) = 2$ -diml, $I_{\text{hol/antihol}}(2)$ discrete series reps.

Put pos def form on $J_{hol/antihol}(2)$; form on $J_{ev}(3)$ pos on +1SO(2)-type, neg on -1 SO(2)-type.

Jantzen filtration of $I_{odd}(2)$ is

$$\underbrace{\textit{I}_{\text{ev}}(2)}_{\textit{I}_{\text{ev}}^0(2)} \supset \underbrace{\textit{J}_{\text{hol}}(2) \oplus \textit{J}_{\text{antihol}}(2)}_{\textit{I}_{\text{ev}}^1(2)} \supset \underbrace{0}_{\textit{I}_{\text{ev}}^2(2)}, \qquad \textit{I}^0/\textit{I}^1 = \textit{J}_{\text{ev}}(2).$$

Calculation of signature gives

...
$$-5$$
 -3 -1 $+1$ $+3$ $+5$... $SO(2)$ reps ... $+$ $+$ $+$... $\nu = 2$

Jantzen form on $l_{ev}^1(2)$ is neg on antihol, pos on hol

So KL polys $Q_{\text{antihol(2),odd(2)}}^{\sigma_0} = 1$, $Q_{\text{hol(2),odd(2)}}^{\sigma_0} = s$.

Sounds impossible...

Calculating

ec. 2: Chars, erm forms

Herm forms
Jantzen filtrations

polys
Herm KL polys
SI(2, R) once more

 $\mathit{SL}(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to $\nu=0$

Lec 4: Unitarit

Unitarity algorith

 σ_c = antihol aut of $G \longleftrightarrow$ compact real form.

For SL(2), $\sigma_c(g) = {}^t\overline{g}^{-1}$; fixed points SU(2).

Finite-diml reps have pos def σ_c -invt forms.

 σ_c -invt forms on disc ser $I_{\text{hol/antihol}}(m)$ alternate in sign choose pos on $\pm (m+1)$, then neg on $\pm (m+3)$, etc. σ_c -invt forms on sph princ series $I_{\text{ev}}(\nu)$:

Jantzen form always positive on LKT of I^1 .

Interesting Herm KL polys $Q_{xy}^{\sigma_c}$ always = 1 (for this $SL(2,\mathbb{R})$ example).

Easy Herm KL polys

 $\sigma_c = \text{cplx conj for cpt form of } G, \sigma_c(K) = K.$

Plan: study σ_c -invt forms, relate to σ_0 -invt forms.

Proposition

Suppose J(x) irr (\mathfrak{g}, K) -module, real infl char. Then J(x) has σ_c -invt Herm form $\langle , \rangle_{J(x)}^c$, characterized by

 $\langle , \rangle_{J(x)}^c$ is pos def on the lowest K-types of J(x).

Proposition \Longrightarrow Herm KL polys $Q_{x,v}^{\sigma_c}$, $P_{x,v}^{\sigma_c}$ well-def.

Coeffs in $\mathbb{W} = \mathbb{Z} \oplus s\mathbb{Z}$; $s = (0, 1) \longleftrightarrow$ one-diml neg def form.

Fact: $Q_{x,y}^{\sigma_c}(q) = s^{\frac{\ell_o(x)-\ell_o(y)}{2}} Q_{x,y}(qs), \quad P_{x,y}^{\sigma_c}(q) = s^{\frac{\ell_o(x)-\ell_o(y)}{2}} P_{x,y}(qs).$ Equiv: if J(y) occurs at level k of Jantzen filt of I(x), then Jantzen form is $(-1)^{(I(x)-I(y)-k)/2}$ times $\langle , \rangle_{J(y)}$.

 \dots except for a small complicating sign from ℓ_0 ...

Easy Herm KL polys

Fact without $\ell_0 \leftrightarrow KL$ polys $\leftrightarrow integral$ roots.

Fact without $\ell_0 \Rightarrow$ Jantzen-Zuckerman translation across non-integral root walls preserves signatures of (σ_c -invariant) Hermitian forms.

It ain't necessarily so.

 $SL(2,\mathbb{R})$: translating spherical principal series from (real non-integral positive) ν to (negative) $\nu-2m$ changes sign of form iff $\nu \in (0,1) + 2\mathbb{Z}$.

Orientation number $\ell_0(x)$ is

- 1. # pairs $(\alpha, -\theta(\alpha))$ cplx nonint, pos on x; PLUS
- 2. # real β s.t. $\langle x, \beta^{\vee} \rangle \in (0, 1) + \epsilon(\beta, x) + 2\mathbb{N}$.
- $\epsilon(\beta, x) = 0$ spherical, 1 non-spherical.

$$(J(x),\langle,\rangle_{J(x)}^c) = \sum_{y \leq x} (-1)^{I(x)-I(y)} s^{\frac{\ell_O(x)-\ell_O(y)}{2}} P_{x,y}(s) (\operatorname{gr} I(y),\langle,\rangle_{I(y)}^c)$$

for σ^c -invt forms in terms of forms on stds at same inf char.

Polys $P_{x,y}$ are KL polys, computed by atlas software.

Difficulty: forms on $\operatorname{gr} I(\nu)$ change with continuous parameter ν .

$$\begin{split} Z =_{\mathsf{def}} \{z \in X \mid \text{ continuous parameter } \nu(z) = 0\} \\ = \{z \in X \mid \mathit{I}(z) \text{ tempered, real infl char} \} \end{split}$$

Z is countable, discrete; prefer to write $\langle,\rangle_{J(x)}^c$ using $\langle,\rangle_{I(z)}^c$.

Method: consider
$$I(t) = I(t\nu), t \ge 0$$
. Deform $t = 1 \rightsquigarrow t = 0$.

Plan: keep track of signature changes, so rewrite each signature

$$\langle,\rangle_{I(y)}^c = \sum_{z \in Z} b_{y,z} \langle,\rangle_{I(z)}^c \qquad (b_{y,z} \in \mathbb{W}).$$

Combining these two formulas will give

$$\langle,\rangle_{J(x)}^{c} = \sum_{z \in Z} v_{x,z} \langle,\rangle_{I(z)}^{c} \qquad (v_{x,z} \in \mathbb{W}).$$

Coeffs all computable, and signatures on right also computable.

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction $SL(2, \mathbb{R})$

> ec. 2: Chars, erm forms har formulas

Lec 3: Herm Kl bolys Herm KL polys SL(2, R) once more

Deforming to $\nu = 0$ Lec 4: Unitarity algorithm
Unitarity algorithm

 σ_c = antihol aut of $G \longleftrightarrow$ compact real form.

For SL(2), $\sigma_c(g) = {}^t\overline{g}^{-1}$; fixed points SU(2).

 σ_c -invt forms on gr $I_{ev}(\nu)$ (level one in red):

Deduce formulas σ_c -invariant signatures

$$I(\nu) = \begin{cases} I(0) & 0 \le \nu < 1\\ I(0) + (1 - s) \left[I_{\text{hol}}(1) + I_{\text{anti}}(1)\right] & 1 \le \nu < 3\\ I(0) + (1 - s) \left[I_{\text{hol}}(1) + I_{\text{anti}}(1) + I_{\text{hol}}(3) + I_{\text{anti}}(3)\right] & 3 \le \nu < 5 \end{cases}$$
Some for general $C_{\text{total rank}}$ for and rank $C_{\text{total rank}}$ with some transfer

Same for general G: for std rep $I(\nu)$ with cont param ν , and t > 0, formula for signature of σ_c -invt form

$$\operatorname{gr} I(t\nu) = \operatorname{gr} I((t-\epsilon)\nu) + (1-s)$$
 (odd levels of Jantzen filt of $I(t)$).

Calculating signatures

Adams et al.

Deforming to u=0

X = parameters for irr reps $\supset Z =$ parameters with continuous part zero.

Suppose irr J(x) admits invt Hermitian form $\langle,\rangle_{J(x)}^{\sigma}$.

Std
$$I(x) woheadrightarrow J(x) woheadrightarrow Jantzen filt $I(x) = I^0 \supset I^1 \supset I^2 \supset \cdots$;$$

$$\longrightarrow$$
 nondeg form $\langle,\rangle_I^{k,\sigma}$ on I^k/I^{k+1} , $I^0/I^1=J$, $\langle,\rangle_I^{0,\sigma}=\langle,\rangle_J^{\sigma}$

 \rightsquigarrow nondeg form $\langle,\rangle_I^{\sigma}$ on gr *I*.

ightharpoonup Herm KL polys $Q_{x,y}^{\sigma},\,P_{x,y}^{\sigma}$ (coeffs in $\mathbb{W}=\mathbb{Z}\oplus s\mathbb{Z}$)

In terms of these polys, can

- 1. write (signature of) $\langle , \rangle_{I(x)}^{\sigma}$ using $\langle , \rangle_{J(y)}^{\sigma}$;
- 2. invert formula to write $\langle , \rangle_{J(x)}^{\sigma}$ using $\langle , \rangle_{I(y)}$;
- 3. $\nu \rightsquigarrow 0 \rightsquigarrow \text{write } \langle,\rangle_{J(x)}^{\sigma} \text{ using } \langle,\rangle_{I(z)} \ (z \in Z)$;

For σ_c -invariant forms, computed everything explicitly.

For this choice, Herm KL polys \approx ordinary KL polys.

Last step to unitarity: relating $\langle , \rangle^{\sigma_c} \longleftrightarrow \langle , \rangle^{\sigma_0}$

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction $SL(2, \mathbb{R})$

> ec. 2: Chars, erm forms

Herm forms Jantzen filtrations

Polys
Herm KL polys
SL(2, R) once more
Easy Herm KL polys

Lec 4: Unitarity algorithm

Jantzen filtrations

polys
Herm KL polys

 $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to u=0

Lec 4: Unitarity algorithm

Unitarity algorithm

Cplx conjs σ_c (compact form) and σ_0 (our real form) differ by Cartan involution θ : $\sigma_0 = \theta \circ \sigma_c$.

Irr (\mathfrak{g}, K) -mod $J \rightsquigarrow J^{\theta}$ (same space, rep twisted by θ).

Proposition

J admits σ_0 -invt Herm form if and only if $J^{\theta} \simeq J$. If $T_0: J \xrightarrow{\sim} J^{\theta}$, and $T_0^2 = \operatorname{Id}$, then

$$\langle v, w \rangle_J^0 = \langle v, T_0 w \rangle_J^c.$$

 $T\colon J\stackrel{\sim}{ o} J^{ heta}\Rightarrow T^2=z\in\mathbb{C}\Rightarrow T_0=z^{-1/2}T\leadsto \sigma\text{-invt Herm form}.$

To convert formulas for σ_c invt forms \leadsto formulas for σ_0 -invt forms need intertwining ops $T_J \colon J \stackrel{\sim}{\to} J^\theta$, consistent with decomp of std reps.

Lec. 2: Chars
Herm forms
Char formulas

Jantzen filtrations

Lec 3: Herm KL polys

 $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to $\nu=0$

Lec 4: Unitarity algorithm

Unitarity algorithm

rk $K = \text{rk } G \Rightarrow \text{Cartan inv inner: } \exists \tau \in K, \text{Ad}(\tau) = \theta.$ $\theta^2 = 1 \Rightarrow \tau^2 = \zeta \in Z(G) \cap K.$

Study reps π with $\pi(\zeta) = c$. Fix square root $c^{1/2}$.

If ζ acts by c on V, and \langle , \rangle_V^c is σ_c -invt form, then $\langle v, w \rangle_V^0 \stackrel{\text{def}}{=} \langle v, c^{-1/2} \tau \cdot w \rangle_V^c$ is σ_0 -invt form.

$$\langle , \rangle_{J(x)}^{c} = \sum_{z \in \mathbb{Z}} v_{x,z} \langle , \rangle_{I(z)}^{c} \qquad (v_{x,z} \in \mathbb{W}).$$

translates to

$$\langle , \rangle_{J(x)}^0 = \sum_{z \in Z} v_{x,z} \langle , \rangle_{I(z)}^0 \qquad (v_{x,z} \in \mathbb{W}).$$

I(z) has LKT $\mu(z) \Rightarrow \langle, \rangle_{I(z)}^0$ definite, sign $c^{-1/2}\mu(\tau)$. J(x) unitary \Leftrightarrow summands are definite of same sign

 $D_0: V \stackrel{\sim}{\to} V^{\delta_0}, D_0^2 = \mathrm{Id}.$

ideas. Not done yet!

K-eqvt perverse sheaves on G/B.

Unitarity algorithm

Now translate σ_c -invt forms to σ_0 invt forms

Fix "distinguished involution" δ_0 of *G* inner to θ Define extended group $G^{\Gamma} = G \times \{1, \delta_0\}.$ Can arrange $\theta = Ad(\tau \delta_0)$, some $\tau \in K$. Define $K^{\Gamma} = \text{Cent}_{G^{\Gamma}}(\tau \delta_0) = K \times \{1, \delta_0\}.$ Study $(\mathfrak{g}, K^{\Gamma})$ -mods \longleftrightarrow (\mathfrak{g}, K) -mods V with

$$\langle \mathbf{v}, \mathbf{w} \rangle_{V}^{0} \stackrel{\text{def}}{=} \langle \mathbf{v}, \mathbf{c}^{-1/2} \tau \delta_{0} \cdot \mathbf{w} \rangle_{V}^{c}$$

Beilinson-Bernstein localization: $(\mathfrak{g}, K^{\Gamma})$ -mods \longleftrightarrow action of δ_0 on

Should be computable by mild extension of Kazhdan-Lusztig

on $(\mathfrak{g}, K^{\Gamma})$ -mods as in equal rank case.

Example of $G_2(\mathbb{R})$

Real parameters for spherical unitary reps of $G_2(\mathbb{R})$

- Unitary rep from L²(G)
- Arthur rep from 6-dim nilp
- Arthur rep from 8-dim nilp
- Arthur rep from 10-dim nilp
- Trivial rep

Calculating signatures

Adams et al.

Lec 1: $SL(2, \mathbb{R})$ Introduction

 $SL(2,\mathbb{R})$ again

Herm forms
Char formulas

Jantzen filtrations

Lec 3: Herm KL polys

 $SL(2,\mathbb{R})$ once more Easy Herm KL polys Deforming to $\nu=0$

Lec 4: Unitarit_! algorithm

Possible unitarity algorithm

Hope to get from these ideas a computer program; enter

- real reductive Lie group $G(\mathbb{R})$
- general representation π

and ask whether π is unitary.

Program would say either

- \blacktriangleright π has no invariant Hermitian form, or
- \blacktriangleright π has invt Herm form, indef on reps μ_1 , μ_2 of K, or
- \blacktriangleright π is unitary, or
- ► I'm sorry Dave, I'm afraid I can't do that.

Answers to finitely many such questions \leadsto complete description of unitary dual of $G(\mathbb{R})$.

This would be a good thing.

Calculating signatures

Adams et al.

Lec 1: SL(2, 1)Introduction $SL(2, \mathbb{R})$

lerm forms
Char formulas

Lec 3: Herm KL

Herm KL polys $SL(2,\mathbb{R})$ once more Easy Herm KL polys

Lec 4: Unitarity algorithm