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What'’s representation theory for? e

Adams et al.

Example. ["_sin®(t)dt =?  Zero!
Generalize: f = foen + foaa, [, fooa(t)dt = 0. Reps of {+1}. naducton
Example. Evolution of initial temp distn of hot ring
T(0,0) = A+ Bcos(md)? T(t,0) = A+ Be~®™!cos(mb).
Generalize: Fourier series of initial temp. Reps of circle group.
Example. X compact (arithmetic) locally symmetric
manifold of dim 128; dim (H*(X,C)) =?  Eight!
Same as H?® for compact globally symmetric space.
Generalize: X = N'\G/K, HP(X,C) = HZ (G, L3("'\G)). Decomp L2:
LB((M\G) = > me(NHx  (mx =dim of some aut forms)

mirrrep of G
Deduce HP(X,C) = >, mx(T) - HY (G, Hx).

General principal: group G acts on vector space V;
decompose V; study pieces separately.



Gelfand’s abstract harmonic analysis o
Topological grp G acts on X, have questions about X. Adams etz

Introduction

Step 1. Attach to X Hilbert space H (e.g. L2(X)).
Questions about X ~ questions about H.

Step 2. Find finest G-eqvt decomp H = ® Ha.
Questions about H ~~ questions about each H,,.

Each H,, is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.

Step 3. Understand G, = all irreducible unitary
representations of G: unitary dual problem.

Step 4. Answers about irr reps ~~ answers about X.

Topic for these lectures: Step 3 for Lie group G.
Mackey theory (normal subgps) ~+ case G reductive.



Calculating

What’S a Unltary dual |00k ||ke? signatures

Adams et al.

G(R) = real points of complex connected reductive alg G
Problem: find G(R), = irr unitary reps of G(R). et
Harish-Chandra: G(R), ¢ G(R) = “all” irr reps.

Unitary reps = “all” reps with  pos def |nvt form.
Example: G(R) compact = G( Vo = G(R) discrete set.

Example: G(R)
G {Xz(t) =e”" (zeC)} =~C
G(R)u = {xie (€€R)} iR
Suggests: 5(@),1 = real pts of cplx var Cf(ﬁ). Almost. ..

R

CT(@),, = reps with invt form: C@u - g(ﬁ)h - 5(@)
Approximately (Knapp): G(R) = cplx alg var, real pts
G(R),,; subset G(R), cut out by real algebraic inegs.

These lectures: algorithm computing inequalities.
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Example: SL(2,R) spherical reps Snatires

Adams et al.

G(R) = SL(2,R) acts on upper half plane H.
~ repn E(v) = {f € C*(H) | Auf = (v — 1)f}.

v € C parametrizes line bdle on circle where bdry values live.

si(2, R)

Most E(v) irr; always unique irr subrep J(v) C E(v).
Spherical reps for SL(2,R) «~» C/=+1
1

-1
Spectrum of Ay on L2(H) is (—oco, —1]. Gives unitary reps
unitary principal series «~ {E(v) | v € iR}.
«~ [const fns on H] =
J(v)isHerm. & J(v) ~ J(—7) & v e IRUR.
By continuity, signature stays positive from 0 to +1.
complementary series reps «~ {E(t) | t € (—1,1)}.



Digression about technical difficulties e rai
Adams et al.
The space E(v) = {f € C*(H) | Axf = (v —1)f} is never
a unitary representation, even for v purely imaginary.
Reason: if B = upper triangular matrices, bdry of H is e ®)
RU {o0} = RP' ~ SL(2,R)/B,

Complex number v defines character
. N X a b _ v+1
fz/- B C ) gl/ (0 a—1> - |a‘
~ equt line bdle £(v) — RP'.
~ rep of SL(2,R) on secs /(v) of L(v). Which sections?

Fw)yclrrw)c 1®w) clw) c W) .

analytic smooth square-integrable distribution hyperfunction

I ().

Helgason theorem: if Re(v) < 0, then E(v) b

Hilbert space structure only on subspace /?)(v).

Harish-Chandra soln: study vecs finite under cpt subgrp.



Digression about new branch of math Sanatores

Adams et al.

Often study solutions Df = 0 of diff op D.
Ex. D = AH—(VZ— 1),
E(v) =q4et {f generalized function on H | Df = 0}.

Could instead study cosolutions
E*(v) =qet {test densities on H}/{Dé}.

Spaces E(v) and E*(v) are topologically dual by [;;.

SL(2, R)

E(v) big and fat ~~ diff eqns have lots of solns; but

E*(v) small and thin ~ elts cptly supp, integrals converge.
Boundary value map E*(v) ~~ analytic secs [“(—v).
Contrast solutions <~ cosolutions very dramatic for
Cauchy-Riemann eqgns.

Solns are holomorphic fns, widely known; cosolns
don’t seem to appear much.

For Hermitian forms, prefer spaces like E*(v):
Schmid’s minimal globalization.



The moral[s] of the picture. .. Sanatores
...and a preview of more general groups. Adams et al.

Spherical unitary dual for SL(2,R) «~ C/=£1

si(2, R)

e | o
-

SL(2’ R) G(R) Will deform Herm forms
E(v),veC I(v),v e ar unitary axis iag -
E(w), veiR Iv), veia real axis az.
J() = E(v) I(v) = J(v) Deformed form pos ~~
[—1,1] polytope in aj unitary rep.

Reps appear in families, param by v in cplx vec space a*.
Pure imag params «~ L? harm analysis «~ unitary.
Each rep in family has distinguished irr piece J(v).

Difficult unitary reps < deformation in real param



Reducibility of E(v) T
Earlier used reps E(v) = (v®> — 1)-eigenspace of Ay, Adams et a.
Laplacian eigenspace on upper half plane

H ~ SL(2,R)/SO(2).
These are all reps (7, V) of SL(2,R) having
SO(2)-fixed A € V*:

sL(2, IR) again

Vo C¥(H), v f(gK) = (g 'V)).

For special v, E(v) is reducible.

{const fns} = C C {harm fns on H} = E(+1).

v ==x(2m+ 1) odd integer; J(2m+1) = 2m+ 1-diml

irr rep of SL(2,R) has SO(2) wts
2m, 2m—2, ---, —2m

including zero.

Get SO(2)-fixed A € J(2m + 1)*, so inclusion
J2m+1)— E(2m+1).

Turns out all other E(v) are irreducible.



Signatures for SL(2, R) e

Adams et al.

Recall E(v) = (v? — 1)-eigenspace of Ay.
sL(2, IR) again

Need “signature” of Herm form on this inf-diml space.

Harish-Chandra (or Fourier) idea:
use K = SO(2) break into fin-diml subspaces

E(w)em = {f € E(v) | (f?e,?nea ;2%) f— Py,
E(v) DY E(W)om, (dense subspace)
Decomp is orthoggnal for any invariant Herm form.
Signature is 4 or — foreach m. For 3 < |v| < 5

6 -4 -2 0 42 +4 +6
+ o+ -+ -+ 4+



Deforming signatures for SL(2,R)
Here’s how signatures of the reps E(v) change with v.

v =0, E(0) “C” L3(H): unitary, signature positive.
0 <v <1, E(v)irr: signature remains positive.
v =1, form finite pos on J(1) € E(1) «~ SO(2) rep 0.
v =1, form has pole, pos residue on E(1)/J(1).
1 < v < 3, across pole at v = 1, signature changes.
v = 3, Herm form finite — + — on J(3).
v = 3, Herm form has pole, neg residue on E(3)/J(3).
3 < v < 5, across pole at v = 3, signature changes. ETC.
Conclude: J(v) unitary, v € [0, 1]; nonunitary, v € [1, c0).

-6 -4 -2 0 +2 +4 +6 --- SO(2)reps
+ + + + + 4+ 4+ v=0
+ + + + + 4+ 4+ 0<wv<i
+ + 4+ 4+ + + o+ v=1
- - - 4+ - - = - 1<v<838
_ — — + — — — v=23
- + - 4+ 4+ -+ 3<v<5b
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From SL(2,R) to reductive G e

Adams et al.

Calculated signatures of invt Herm forms on
spherical reps of SL(2, R). Su(e, ®) agan

Seek to do “same” for real reductive group. Need. ..
List of irr reps = ctble union (cplx vec space)/(fin grp).
reps for purely imag points “c” L?(G): unitary!

Natural (orth) decomp of any irr (Herm) rep into fin-diml
subspaces ~~ define signature subspace-by-subspace.

Compute signature at v + i7 by analytic continuation in t:
tv+ir,0<t<1.

Precisely: start with pos def signature at t = 0; add
contributions of sign changes from zeros/poles of odd
orderin0 <t <1~ signature at t = 1.



Our story so far. ..

Yesterday: what’s the unitary dual of a Lie group?

Gave part of answer for SL(2,R): union of rational
polyhedra in C-vector spaces defined over Q.
Looked at how to find this SL(2,R) answer:
start with Harish-Chandra’s “tempered” unitary reps
deform parameter, keep track of sign changes where
Herm form becomes singular.
Answer for general reductive G has same shape, but
with more complicated polyhedra.

Today: introduce technology (Langlands
classification, Kazhdan-Lusztig theory of irreducible
characters) needed to calculate in general reductive
groups.

Calculating
signatures

Adams et al.

Lec. 2: Chars,
Herm forms



Calculating

Categories of representations s

Adams et al.

G cplx reductive alg > G(R) real form > K(R) max cpt.

Rep theory of G(R) modeled on Verma modules. ..
Hc Bc G maximal torus in Borel subgp,

h* < highest weight reps Char formulas
V(X) Vermaof hwt A e h*, L(\) irr quot

Put cplxification of K(R) = K C G, reductive algebraic.

(g, K)-mod: cplx rep V of g, compatible alg rep of K.

Harish-Chandra: irr (g, K)-mod «~ “arb rep of G(R).”
X parameter set for irr (g, K)-mods

I(x) std (g, K)-mod « x € X J(x) irr quot

Set X described by Langlands, Knapp-Zuckerman:
countable union (subspace of h*)/(subgroup of W).



Character formulas e rai
Can decompose Verma module into irreducibles g el
= > mual(p)  mux€EN)
or write a formal chg%e?cter for an irreducible
=Y MaV(p)  (Myx€Z)

<A Char formulas

Can decompose standard HC module into irreducibles
(x) = Z my xJ(y) (myx € N)
y<x
or write a formal character for an irreducible
X)=> My ly) (Myx€Z)
y<x

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1:

my,x = Qy,x(1)7 My,x = y,x(1) (Qy,x; Py,X € N[q])



Calculating

What are we computing? i

Adams et al.

Def of (g, K)-module V ~~

Vik=,cx M (my(u) € NU {0})

Char formulas

Harish-Chandra thm: Virr or std = my(u) < oo.
my: K — N multiplicity function of V.

3 algorithm (Hecht-Schmid pf of Blattner conj, etc.)

computing function my, any V irr. or std.

Take functions my, I std, as known.
Non-deg K-invt Hermitian form (, )y ~~

(pv,qv): K —NxN signature function of (, ).

Will compute sig fns py, qy «~ each irr Herm V.
“Compute” «~ “write as fin int comb of mult fns m;”



Calculating
signatures

Character formulas for SL(2, R
Recall (eigenspace of Ay) = E(v) < J(v). Prefer Adams et al
dual of E(v) = lev(v) — Jev(v).
Need discrete series hoyantinol(1) (=1, 2,...) char by

lL.(N)|soey=n+1, n+3, n+5---
I-(n)|so@ = —n—1, —n—3, —n—5--. ——

Discrete series reps are irr: /h0|/amiho|(n) = Jho|/antiho|(n)
Decompose principal series

/ev(2m + 1) = Je\,(2m +1 ) + Jh0|(2m +1 ) + Jamiho|(2m +1 )
Character formula
Jev(2m + 1) = /ev(2m + 1) — Ih0|(2m + 1) — amiho|(2m + 1).

Kazhdan-Lusztig matrix

Py lv(2m+1) ha(2m+1)  lantiha(2m+ 1)
lv(2m+ 1) 1 -1 -1
Ih°|(2m +1 ) 0 1 0

/antihol(zm +1 ) 0 0 1



Forms and dual spaces Sanatores
V cplx vec space (or alg rep of K, or (g, K)-module...) Adams et al.

Hermitian dual of V
VI = {¢: V — C additive | £(zv) = Z&(v)}

(If Vis K-rep, also require ¢ is K-finite.)

Sesquilinear pairings between V and W
Sesq(V, W) ={(,): Vx W — C,linearin V, conj-linin W}

Sesq(V, W) ~ Hom(V, W"), (v,w)r = (Tv)(w).

Herm forms

Cplx conj of forms defines (conjugate linear) isomorphism
Sesq(V, W) ~ Sesq(W, V).
Corresponding (conj linear) isom is Hermitian transpose
Hom(V, W") ~ Hom(W, V"), (T"w)(v) = (Tv)(w).

Sesq form (, )t on one space V is Hermitian if
vV)r=V Ve T =T



Defining Herm dual repn(s) Savatres

Adams et al.

Suppose Vis a (g, K)-module. Write 7 for repn map.
Recall Hermitian dual of V
VI = {¢: V — C additive | £(zv) = Z&(v)}
Want to construct functor
cplx linear rep (m, V) ~ cplx linear rep (z, V)
using Hermitian transpose map of operators.

Herm forms

REQUIRES twist by conjugate linear automorphism of g.
Assume o: G — G antiholom aut, o(K) = K.
Define (g, K)-module 7™ on V",

(X)) €= [n(—o(X))"-¢  (Xeg e V).

(k) -E=[r(o(k) "€ (ke K, Ee V).
Classically og «~ G(R). We use also o «~~ compact form of G

Different o ~~ different Hermitian dual rep .

Big idea: choose ¢ to make calculations easy.
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Invariant Hermitian forms e

Adams et al.

V = (g, K)-module, ¢ antihol aut of G preserving K.
A o-invt sesq form on V is sesq pairing (,) such that

(X-v,w) = (v,—o(X)-w), (k-v,w)=(v,o(k™") - w)
. (XegikeK;v,weV). Horm forms
Proposition
o-invt sesq formon V «~ (g,K)-map T: V — VMo
(v,w)r = (Tv)(w).

Form is Hermitian iff T" = T.

Assume V is irreducible.

V ~ VM o Jinvt sesq form < 3 invt Herm form

A o-invt Herm form on V is unique up to real scalar.

T — T" e real form of cplx line Hom, x(V, V).



Invariant forms on standard reps e rai

Adams et al.

Recall multiplicity formula
I(x)=>"myJ(y)  (myx€eN)

y<x

for standard (g, K)-mod /(x).

Want parallel formulas for o-invt Hermitian forms.

Need forms on standard modules.

Form on irr J(x) 222400,  jantzen filt /%(x) on std,

nondeg forms (, )% on /K //k+1,

Details (proved by Beilinson-Bernstein):

IX)=LP>M">P>-.  P/I"=J(x)
I¥/I*+1 completely reducible
[J(y): I*/1"""] = coeff of q“X)=“W)=M)/2in KL poly Qy x

Jantzen filtrations

Hence () %5~ ()%, nondeg form on gr /(x).
Restricts to original form on irr J(x).
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What’S a Jantzen flltratlon? signatures

Adams et al.

V cplx, {, ); R-analytic fam of Herm forms, generically
nondeg.

V= Vot) > V'(t) = Rad((,)r), J(t)= V(t)/V'(t)
(P°(1), ¢°(t)) = signature of (, ) on J(t).
Question: how does (p°(t), g°(t)) change with t? Lt
First answer: locally constant on open set V'(t) = 0.
Refine answer. .. define form on V' (t)

(vow)'(B)=lim 1 <vwss Ve(t) = Rad((,)' (1)

s—t S —
(p' (1), q' (1)) = signature of (,)'(t).
Continuing gives Jantzen filtration
V=V(t)o V() D VE(t)--- D V™ (1) =0
From t — e to t + ¢, signature changes on odd levels:
pt+e) =p(t—e)+ > [P (1) + g (1)].



Calculating

Example of Jantzen filtrations e

Adams et al.

Example: V = C; non-triv family of Herm forms «~»
non-zero real-analytic f(t) = (1, 1).

1 J {0} f(t)#0
vin= {c, f(t) = 0.
Form (,)'(t) = 0 (on zero vec space) if f(t) # 0.
A, 1(t) = (1) if f(t) =0. sanizen latons
General formula is

[ {0}, f™M(t) +£0, some m < k
VE(t) = {@ 0=f(t)=F(t)=--- = f=(1).

VE(t)/ VEF(t) # 0 < fK(t) first nonzero deriv of f.
Then signature of (,)<(t) «~ sgn ().
Formula p(t + €) = p(t — €) + S[p2 1 (1) — g2 11 ()] says

analytic functions change sign at zeros of odd order.



Calculating

Where We are signatures

Adams et al.

Have classification of irr reps.

Parameter x € X ~- std rep /(x) ~- irr quotient J(x)
Character formula J(x) = >, My xI(y)

Integers M, , are computable (Kazhdan-Lusztig).

Choice of complex conjugation o ~~ Hermitian dual
operation J — J™? on irr reps and (therefore)
X — o(x) on parameter x € X.

Jantzen filtrations

Action of o on X is “real structure” whose fixed pts are the
Herm reps.

If J(x) has invt Herm form, Jantzen filtration of /(x)
~~ invt Herm form on gr /(x)

Tomorrow: introduce Herm KL polys relating
signatures on irrs and stds.



Where we were e

Adams et al.

Classification of irr reps (of G(R) real reductive).
Param x € X ~- std rep I(x) ~ irr quotient J(x)
Character formula J(x) = 3_, <, My xI(y).

Integers M, x are computable (Kazhdan-Lusztig). Lo 5 o KL

Choice of complex conjugation o ~~ Hermitian dual polys
operation J — J™7 on irr reps and (therefore)
X — o(x) on parameter x € X.

If J(x) has invt Herm form, Jantzen filtration of /(x)
~ invt Herm form on gr /(x)

Today: introduce Herm KL polys relating signatures
on irrs and stds.



Virtual Hermitian forms e

Adams et al.

7. = Groth group of vec spaces.
Integers are mults of irr reps in virtual reps. Hence
Groth grp of fin Igth reps ~ Z[ X],
Vie Y ex m(J(x) - x;
coeffs are mults of irrs as composition factors.
For invariant forms. ..

W = Z & sZ = Groth grp of fin diml forms. MR
s «~ one-diml space with negative Herm form.

Ring structure (tensoring forms) is Z[s]/(s? — 1):
(P, q)(P',q') = (PP' +qd',pq’ + d'p).
Mult of irr-with-forms in virtual-with-forms is in W:

W[X] ~ Groth grp of fin Igth reps with invt forms.

Two problems: invt form (, ), may not exist for irr J;
and (, )y may not be preferable to —(, ).



Hermitian KL polynomials: multiplicities e rai
Adams et al.

Fix o-invt Hermitian form (, ) ) on each irr having
one; recall Jantzen form (,)" on I(x)"/I(x)"*1.
MODULO problem of irrs with no invt form, write

(10x)"/1(x)", = wyx(n) (u)s

y<x

Herm KL polys

coeffs w(n) = (p(n), q(n)) € W; summand means

p(MJY), ()uy) @ alm (), =( uy))

Define Hermitian KL polynomials
Z Wy (I(X) I(y)—n)/ E W[q]

Evalin Wat g =1 «~ form (, ) x) on gr(std).
Reduction to Z[q] by W — Z «~ KL poly Qy .



Hermitian KL polynomials: characters Savatres

Adams et al.

Matrix Qy . is upper tri, 1s on diag: INVERTIBLE.
Py, % (—1)/(0=10)((x, y) entry of inverse) € W]g].

Definition of Q |, says

(grl I(X Z Qx Y > (y))

y<x Herm KL polys

inverting this gives

(O (u) = D (=1 OOPE L (1)(gri(y), () iy)

y<x

Next question: how do you compute Py ,? Stay
tuned. ..



Calculating

Encouraging example: SL(2, R) i

Adams et al.
G(R) = SL(2,R), K = SO(2)

Easy case: sph princ series k(1) — Jev(1) = triv rep,
hovantinol(1) first discrete series reps.

Put pos def gg-invt form on each irr Jey(1), Jhovantinol(1)-

Jantzen filtration of /(1) is

lev(1) O dhoi(1) @ Jantinat(1) > 0, P/ = Jeu(1). S1(2, R) once more
B.(1) A1) B
Previous calculation of signature
-6 -4 -2 0 42 +4 46 --- SO(2)reps
+ + + + + 4+ 4+ - v=1

shows Jantzen form on /},(1) (lim from above) negative.

So KL polys Q9 1yantinolt).evty = S- Not too bad.....



Calculating

Less encouraging SL(2,R) example EEE

Adams et al.

G(R) = SL(2,R), K = SO(2)

Sph princ series /ev(3) - Jev(3) = 3-dim|, /hol/antihol(s)
discrete series reps.

Put pos def form on Jhopantinol(1); form on Jey(3) pos on
SO(2)-invt.

Jantzen filtration of ky(3) is

Iev(s) D) Jhol(s) S Jantihol(s) > 0, IO/I1 = Jev(s)- S, L) aremar
—— ~~
£.(3) £.(3) k(3)
Previous calculation of signature
-6 -4 -2 0 42 44 46 --- SO(2)reps
— — — + — — — - v=23

shows that Jantzen form on /},(3) is positive

So KL polys Qps)/antinol(3).evz) = 1+ Starts to sounds
complicated. ..



Calculating

Discouraging SL(2,R) example Saneturos

Adams et al.

G(R) = SL(2,R), K = SO(2)

Nonsph princ series lhgq(2) — Joga(2) = 2-diml,
hovantinol(2) discrete series reps.

Put pos def form on Jhoiantinol (2); form on Jey(3) pos on +1
SO(2)-type, neg on —1 SO(2)-type.

Jantzen filtration of /ly4q(2) is

Iev(2) D) Jhol(2) S2) Jantihol(2) >0 ) IO/I1 = Jev(2)- sL(2, ) once more
—— ~~
B.(2) 1(2) £(2)
Calculation of signature gives
-5 -3 -1 +1 +3 45 ... SO(2)reps
— — — + + + c. v=2

Jantzen form on [},(2) is neg on antihol, pos on hol

So KL polys Q%°

o0
antihol(2),00d2) = 1+ Ghol(2),0dd(2) = S-

Sounds impossible. ..



oc-invariant forms for SL(2, R)

oc = antihol aut of G ~~ compact real form.
For SL(2), oo(g) = 'g'; fixed points SU(2).
Finite-diml reps have pos def o¢-invt forms.

Calculating
signatures

Adams et al.

oc-invt forms on disc ser hoyantinol(M) alternate in sign

choose pos on +(m + 1), then neg on +(m + 3), etc.

oc-invt forms on sph princ series lg, (v):
—2 0 +2 +4 146

—6

I+ 4+

Jantzen form always positive on LKT of /'.

—4

L+t

++

+ 4t

+ 4+ ++++

4+ +

L+ ++

+ +

I+ 4+

SO(2) reps

v = 0 SL(2, IR) once more
O<rv<i

v=1
1<rv<3

vr=3
3<vr<b

v=>5

Interesting Herm KL polys Qj; always = 1 (for this
SL(2,R) example).



Herm KL polys for o, Savatres
Adams et al.
oc = cplx conj for cpt form of G, o¢(K) = K.
Plan: study oc-invt forms, relate to og-invt forms.
Proposition

Suppose J(x) irr (g, K)-module, real infl char. Then J(x) has
oc-invt Herm form (,) 3(X), characterized by

(:)9(x) is pos def on the lowest K-types of J(x).
Proposition — Herm KL polys Q75,, PYS, well-def. oo Hom KL pobs
Coeffs in W = Z @ sZ; s =(0,1) «~ one-diml neg def form.
Fact: Q75(q) = s 7" Quy(gs),  PI5(q) = s 2" Py, (gs).

Equiv: if J(y) occurs at level k of Jantzen filt of /(x), then
Jantzen form is (—1)UX)=/=0/2 times (,) 4.

.. except for a small complicating sign from 4,. ..



Calculating

Ol’lentathn number signatures

Adams et al.

Fact without ¢, «~ KL polys «~ integral roots.

Fact without ¢, = Jantzen-Zuckerman translation
across non-integral root walls preserves signatures
of (oc-invariant) Hermitian forms.

It ain’t necessarily so.

SL(2,R): translating spherical principal series from (real
non-integral positive) v to (negative) v — 2m changes sign Easy Horm KL polys
of formiff v € (0, 1) + 27Z.

Orientation number {,(X) is
1. # pairs («, —60(«)) cplx nonint, pos on x; PLUS
2. #real fs.t (x,8Y) € (0,1) + ¢(3, x) + 2N.

(8, x) = 0 spherical, 1 non-spherical.



Deformingto v =0
Have computable formula (proof not yet written down)

Lo(y)

(JX): ()500) = 5y ex(— 122 B, () (ar i(y), (,)y)
for o¢-invt forms in terms of forms on stds at same inf char.

Polys Py,, are KL polys, computed by at1as software.

Difficulty: forms on gr /(v) change with continuous parameter v.
Z =4t {Zz € X | continuous parameter v(z) = 0}
= {z € X | I(z) tempered, real infl char}

Z is countable, discrete; prefer to write (, ), using (, )j.)-
Method: consider /(t) = I(tv), t > 0. Deformt =1~ t = 0.

Plan: keep track of signature changes, so rewrite each signature

<’ >;:(J’) = Zzezby Z< > (2) (by,z S W)
Combining these two formulas will give

(0 = Xzez Vxz(; )iz) (Vx,z € W).
Coeffs all computable, and signatures on right also computable.

Calculating
signatures

Adams et al.

Deformingto v = 0



Deforming to v = 0 for SL(2, R)

oc = antihol aut of G «~~ compact real form.
For SL(2), o5(g) = 'g'; fixed points SU(2).
oc-invt forms on gr le, (v) (level one in red):

-6 —4
- o+
+ -
+ —
- o+
-+

Deduce formulas oc-invariant signatures

1(0)
I(v) = 4 100) + (1 — ) [hoi(1) + fanti(1)]

-2

+ 4+

0
+
+
+
+

—+

e

Calculating
signatures

Adams et al.

SO(2) reps
o0<v<i
v=1
1<rv<3
r=3
3<v<b

Deformingto v = 0

0<rv<i1
1<v<3

I(O) + (1 - S) [Iho|(1) + lanti(1) + Ihol(3) + lanti(s)] 3<v<5
Same for general G: for std rep /(v) with cont param v,

and t > 0, formula for signature of o.-invt form

grl(tv) = grI((t—e€)v)+ (1 — s)(odd levels of Jantzen filt of /(t)).



What happened in the last three episodes

X = parameters for irr reps O Z = parameters with
continuous part zero.

Suppose irr J(x) admits invt Hermitian form (, )7, .
Std /(x) — J(x) ~ Jantzenfilt I(x) =P >/ > P>
~ nondeg form (, )7 on 1K/ IKt1, 10/ = g, ()%7 = ()9
~»nondeg form (, )7 on gr /.

~~ Herm KL polys Q¥ ,, P¢ , (coeffs in W = Z @ sZ)

In terms of these polys, can

1. write (signature of) (,){,, using (,)J,);
2. invert formula to write (, >J(X) using (, ) i(y);
3. v~ 0~ write ()5, using (,)yz) (Z € Z2) ;

For oc-invariant forms, computed everything explicitly.
For this choice, Herm KL polys = ordinary KL polys.
Last step to unitarity: relating (, )¢ «w (,)?°

Calculating
signatures

Adams et al.

Lec 4: Unitarity
algorithm



Calculating

FrOm O-C tO O-O signatures

Adams et al.

Cplx conjs o¢ (compact form) and oq (our real form)
differ by Cartan involution #: o9 = 6 o 0.

Irr (g, K)-mod J ~~ J? (same space, rep twisted by 6).
Proposition

J admits oq-invt Herm form if and only if J° ~ J. If
To: J = J% and T2 = Id, then

0 c
(v,w)y = (v, Tow).
T3S =T?=2cC= Ty=2z"2T ~~ g-invt Herm form. T

To convert formulas for o invt forms ~» formulas for
oo-invt forms need intertwining ops T,: J = J?,
consistent with decomp of std reps.



Equal rank case

rk K = rk G = Cartan inv inner: 37 € K, Ad(7) = 6.

P=1=>r2=¢cZ(G)NnK.
Study reps = with 7(¢) = c. Fix square root ¢'/2,

If ¢ acts by con V, and (,){ is oc-invt form, then

(v,w)y o (V ¢ 21 . w)$ is op-invt form.
J(x Z Vx,z( (vx,z € W).
zeZ
translates to
J(X Z VX Z (Vx7z S W)
zeZ

I(z) has LKT u(z) = (.)},, definite, sign ¢~ '/2u(7).

J(x) unitary < summands are definite of same sign

Calculating
signatures

Adams et al.

Unitarity algorithm



Calculating

General case Signatres

Adams et al.

Fix “distinguished involution” §y of G inner to ¢
Define extended group G" = G x {1, ).

Can arrange 6 = Ad(7dp), some 7 € K.

Define KT = Centgr(769) = K x {1,460}

Study (g, K")-mods «~ (g, K)-mods V with

Dy: V5 Voo, Dg = |d.

Beilinson-Bernstein localization: (g, K" )-mods «~ action of &, on
K-eqvt perverse sheaves on G/B.

Should be computable by mild extension of Kazhdan-Lusztig
ideas. Not done yet! Unitaity lgorin

Now translate oc-invt forms to o invt forms

o def

<Va W>V = <V7 C_1/2

T(So- W>f/

on (g, K")-mods as in equal rank case.



Example of Go(R)

Real parameters for spherical unitary reps of Gz(R)

* Unitary rep from L?(G)

¢ Arthur rep from 6-dim nilp
* Arthur rep from 8-dim nilp
¢ Arthur rep from 10-dim nilp
e Trivial rep °

Calculating
signatures

Adams et al.

Jantzen filtrations

Unitarity algorithm



Calculating

Possible unitarity algorithm s

Adams et al.

Hope to get from these ideas a computer program; enter
» real reductive Lie group G(R)
» general representation 7
and ask whether 7 is unitary.
Program would say either
» 7 has no invariant Hermitian form, or
7 has invt Herm form, indef on reps p4, up of K, or
7 is unitary, or
I’'m sorry Dave, I'm afraid | can’t do that.
Answers to finitely many such questions ~~ Uity ot
complete description of unitary dual of G(R).

This would be a good thing.

v vy
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