Setting

- G complex, connected, simply-connected reductive Lie group.
- $g$ Lie algebra, $b$ Cartan subalgebra; $b \cong b^{*}$
- $\lambda \in \eta^{*} \quad$ (hyperbolic, integral)
- ad $(\lambda) \quad m b \quad g=\oplus_{i \in \tau} g(i) \quad g(i)=\{x \in g: \operatorname{ad}(\lambda) x=i x\}$
- $G(0)$ (Lie algebra g(0)) acts on $g(i)$ with finitely many orbits.
- $(G(0), g(-1))$ is a pre-homogeneous vector space ; $\{\theta\} \in(0)$-orbits

$$
\begin{array}{ll}
\theta=G(0) \cdot e & A(e, \lambda)=Z_{G}(e, \lambda) / Z_{G}(e, \lambda) . \\
\rho \in \hat{A}(e, x) \quad \text { np } \quad \delta_{\rho} \quad \text { love system on } \theta .
\end{array}
$$

- Set $S=\{(\theta, \mathfrak{b}) \quad \theta \subset g(-1)\}$; then

$$
\begin{array}{cccc}
S=\{(\theta, d) \quad \sigma \log (-1)\} & \longleftrightarrow \operatorname{Inr} \operatorname{Prv} \cdot(g(-1)) \\
r=(\theta, d) & & \operatorname{Per}(r) .
\end{array}
$$

- (lusztig) $\operatorname{Per}(g(-1))$ decomposes into blocks
[Parametrization encodes info on how to determine the block. The De composition Thy. on m(1)) 1 in plays a key role.]
we focus on $\operatorname{Bloch}(h,\{0\}, \mathbb{C})$

Fact:
[moreloth] $\quad \operatorname{Bloch}(h,\{0\}, \mathbb{C}) \quad \mapsto\left\{\begin{array}{l}(\theta, \mathcal{L}) \mathcal{L} \text { of } \\ \text { "Springer Tope". }\}\end{array}\right.$
SpsinguType means: \& $\rightarrow \rho \in \hat{A}(e, \lambda)$ is the restriction
from $A(e) \rightarrow A(\ell, \lambda)$ of a rep. that occurs in the Springer Co ir es pondence.

- Affine Graded Hecke Algebras (Part 1)

Lusatia defined a finite set of A.G.H atgibras

$$
\text { * } \quad\left\{H_{1} H_{2} \cdots H_{n}\right\}
$$

(See for e.g. "Cuspidal Local systems and Graded Heck Alg. It" Lusatif and reference within. (Cznedion pawn for shat)

* Irreducible $H_{k}$-mod. are f. dim.


We focus on: Category of fid $H I_{1}$-mod with central ch. $\lambda$
See LUSztig [J.AMS, 1989]
or $\geqslant$ [canadian]

$$
g>h \quad b=b+n \quad \leftrightarrow \quad \Delta^{+}>\pi_{\text {simple }}
$$

As vector space

$$
H_{1}=\mathbb{C}[\omega] \Leftrightarrow \operatorname{Syn}\left[\zeta^{*}\right]
$$

It is generated by $\left\{t_{A_{\alpha}} \alpha \in \pi\right\} \cup\left\{\omega \in b^{b}\right\}$.
(under ours assumptions)

$$
\omega t_{\beta_{\alpha}}=t_{\beta_{\alpha}} s_{\alpha}(\omega)+\left\langle\omega, \alpha^{v}\right\rangle
$$

* The statement "with central ch." is not ob vious. Lusatia described $Z(H 1$,$) and proved that$ acts on cred bo a ch.
- The link with Pen (g(-1)).

$$
K=2 \text { than - Lusatia }
$$

Both sta $H_{i}-\bmod . \underset{\lambda}{\bmod \left(H 1_{1}\right)} \leftrightarrow\{(\theta, \delta) \quad \sigma \subset g(--)$

$$
\text { ivred } \quad 1 \quad \& \text { springentype }\}=S_{\lambda}^{H H_{1}}
$$

$\{(0, \alpha) \mid$
weill gut back to this.

The Parameter Space $S_{7}{ }_{7} H_{1}$.
As before $G$ complex, connected, simp ${ }^{2} z$ connected lie group G้ Langlants dual.

Let $\bar{r}$ be a p-adic field of ch 0 . $\sigma$ be the ring of integers $F=\mathbb{Q}_{p} \quad \sigma=\mathbb{r}_{p}$ $P$ ! Prime ideal, e- $\quad \underset{Q / P}{ } \quad \quad F=Q P \quad P=P \mathbb{Z}_{p}$. $\theta / P=k_{F}$ finite field. (residue filled)
Assume $\quad \underset{G}{ }$ is defined over $F$. Set $K=G(\theta)$ and $\pi: V(\theta)-G_{V}^{V}(F)$
$\tilde{I}_{F}$ I wahori-subg, the preimage of $B(F) . \quad V_{B}^{U}(F)$
Brat $\begin{aligned} & 1 \rightarrow I_{F} \rightarrow G_{2}\left|(\bar{F} \mid f) \rightarrow G_{z}\right|\left[\bar{k}_{q_{P}} \mid k_{f_{F}}\right] \rightarrow 1 \\ & J_{z} \text { dense. }\end{aligned}$
$W_{F}=$ preimage of $\mathbb{Z}$ $1 \rightarrow I_{f} \rightarrow W_{F} \rightarrow{ }_{w} \rightarrow{ }_{n} \rightarrow\|\omega\|=q^{n}$ $W_{F} \mid I_{F}=\langle\tilde{\omega}\rangle$

$$
\begin{aligned}
& \begin{array}{c}
\text { Lenglands -relique } \\
\text { eons }
\end{array} \quad \text { Admissible rep skuld be a union of packets } \\
& \text { * } P_{2} \text { coats a } \phi: W_{F} \times \operatorname{sel}(3,4) \rightarrow 6 \text { "admissible" } \\
& { }_{3}\left\{\phi \text { adm.: Packet } \phi \text { consist of } \tilde{I}_{F} \text {-spherical }\right\}
\end{aligned}
$$

$$
\begin{aligned}
& a d m \rightarrow \sigma=\phi|\tilde{\omega}\rangle S \\
& e(: j) f=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) h\binom{1}{-1} \quad u=\phi(e) \text { unipotent } \sigma u \sigma^{-0}=u^{-q}
\end{aligned}
$$

(1987) Kz2than-Lusztiq, proved the conjecture, building from Bored's ep divalence of categoric.

K.L ( $\quad(u, \sigma) \quad \rightarrow \quad$ Packet consisting of $\vec{I}_{\bar{F}}$-sph.

- $P \in \widehat{A(u, \sigma)}=\widehat{Z_{\sigma}(u, \sigma) / \sum_{G}(\omega, \sigma)_{0} \text { Cuw elements in the }}$ Pectect.

K-Theorg $(u, \sigma, p) \rightarrow \operatorname{std}(u, \sigma, p)$ has! irred. puotient.
when

$$
\begin{aligned}
& \sigma_{s s}=\sigma_{\text {ngp }} \cdot \sigma_{\text {enf }} \\
& \text { - std }(u, \sigma, p)=\operatorname{Wbm}_{A(\bar{u}, \sigma)}(P, H_{i}(\underbrace{\sigma})) \quad t_{\omega}^{\sigma} \text {-modulu}
\end{aligned}
$$

Where $B_{u}$ spaingen fiber; $B_{w}{ }^{r}$ "o-stable" part. r Springentype ondition".
(1995) Lus2tiq. $\quad \lambda \rightarrow \sigma_{\lambda}$

- Imed $\bmod \left(\Gamma_{r}\left(t_{\omega}\right) \longleftrightarrow\right.$ Imed $\bmod \left(H H_{\lambda}\right)$
$K$-theory css Intersection lohomoloqg.

$$
\begin{aligned}
& {[(u, \sigma)]} \\
& \text { ep.closses }
\end{aligned} \quad \rightarrow \quad[\lambda, ; G(0) \cdot \varepsilon=\sigma]
$$

wr Pacheto of $\vec{I}_{F}-$ sph.

In particulas ( $\sigma$ hopentalic), $\lambda$ fixed)

$$
\begin{aligned}
& \{(\sigma, d) \text { d spningutype }\} \\
& \text { Paremeter "Spece" }\left\langle\text { Adm. } \mathcal{I}_{F}\right. \text { - spherical } \\
& \left.G(F)-n_{p} .\right\}
\end{aligned}
$$

In canzdian paper, (more gral than here);

$$
\begin{aligned}
& \operatorname{std}_{H H_{1}}(\theta, \alpha)=\sum_{\sigma^{\prime}, \alpha^{\prime}}^{H H_{1}}(v, \infty) \operatorname{irred}_{H 1}\left(v^{\prime}, b^{\prime}\right)
\end{aligned}
$$

(1995) Advepzpen un Algosithm to compute $M_{0^{\prime}, \alpha}(\sigma, \alpha)$
$(2006)$ Lusztig
(2008) Ciuboteru $m$ lesed the Alg. to compute, in excmple

$$
m_{0^{\prime}, \alpha^{\prime}}(0, \alpha) . \quad\left[w_{0}+b_{1} F_{4}\right] \text {. }
$$

[He omputed kL - poly no mials]

Furthen referencei Vogan, Loczl Langlands buj., section4

$$
\text { Barbasds-Moy, Inv. Math } 18 \text { (1989) }
$$

The other side of the story.
Keep the assumptions introduced above. (Following [ABV])

- $\operatorname{ad}(\lambda) \sim p(\lambda)=p=\bigoplus_{i \geqslant 0} \quad g(i)$
$\lambda$ inteqnel.
- $\quad f(\lambda)=\exp (\pi i \lambda)$

$$
e(\lambda)=\exp (2 \pi i \lambda) \quad G(\lambda)=z_{G}(e(\lambda))=G \quad(\lambda \text { inteq nel) })
$$

$$
f(x) \sim \theta_{j(\lambda)} \text { on } G(\lambda) \quad G(\lambda)^{\theta(\lambda)}=K(\lambda)
$$

- Sut $\{(Q, X) \quad Q \in K(\lambda) / G / P(\lambda) ; x$ locol systm on $Q\}=\mu$
- $K(\lambda)$ aro block $V(\mathbb{R})$
standerd and iosed mod. on block $\circ \circ(\mathbb{Q}) \leftrightarrow \mu$.
- If $r=(Q, \nabla) \quad \gamma^{\prime}=\left(Q^{\prime}, \nu^{\prime}\right)$; in the Grotbendich growp

$$
\begin{array}{ll}
\text { stand }(r)=\sum_{r^{\prime}} m_{r^{\prime}, r}^{\mathbb{R}} \quad \text { ioria }\left[r^{\prime}\right) \\
m_{r^{\prime}, r}^{\mathbb{R}}=\sum_{i}(-1)^{i} \quad\left[8: H^{i}\left(\left.I C\left(\overline{Q^{\prime}}, p^{\prime}\right)\right|_{Q}\right] .\right.
\end{array}
$$

atlas computes mrir.

The Questions: (with Peter)
(A) Isthere a canonical injection

$$
\begin{aligned}
& \begin{array}{c}
\{\eta=(\theta, b) \quad \theta \subset g(-1) ; \mathcal{L} \text { Springer type }\} \quad H 1 \text {-side Parameter } \\
\text { space } \\
\frac{1}{} 4
\end{array} \\
& \{\gamma(Q, \nu) \quad Q \in K \backslash G / P, \nu \text { local syst. }\} \text { [ABV] Parameter } \begin{array}{r}
\text { Space }
\end{array} \\
& \text { us } m^{H_{1}}\left(\eta, \eta^{\prime}\right) \text { can be computed } \\
& \text { in terms of (maybe various) } m^{\mathbb{R}}\left(r, r^{\prime}\right) \\
& r \text { c Image of 4? }
\end{aligned}
$$

More ambitious
(B) Can we compute KL. polynomials in the

$$
\begin{aligned}
& \text { HI, -side in terms of KLV-polynomials? } \\
& \text { (we need to match shifts in definition of } \\
& \text { fred. perverse sheaves.) }
\end{aligned}
$$

Remarks.
1- [ABV] (Chniss-Ginzburg) follows
Beilinson-Berstein-Deliqne to define Cred. Perverse Shoves. (If $2 c x d=\operatorname{dim} 2$,
a local system $D$ on 2 is placed at degree
-d.) This is also what lusztig does in the
"Canadian"-paper. This does not seem to be the shift he uses in Adu.95. (These changes do not effect (A))
2. When using normal slice arguments, we need to be careful with shifts.
3. The KLV poly. of [ABU] differ from those in [Lusatig-Vogan] bo a shift.

The simplest case : $\quad G=G=G L(n, \mathbb{L}) ; \quad \Lambda=\rho$

$$
K=G L\left(\left[\frac{n}{2}\right], \mathbb{C}\right) \times G L\left(\left[\frac{n}{2}\right], \mathbb{C}\right)
$$

T dir qunal Carton

$\{T$ - orbits on $g(-1)\}$ awn $\left\{\left\{-\alpha_{j}\right\} \alpha_{j} \in \pi\right\}$
\# $\{$ T-orbits on $g(-1)\}=2^{\text {rankle }}$.
Each $\left\{\alpha_{j}\right\} \in \pi$ us $P_{j} \supset B$ parabolic sub group.
Define $\quad K_{B}^{X} P_{1} \times{ }_{B} \times{ }_{B} P_{2} \cdots P_{m 1} / B$ the quotient of $K_{\times} P_{1} \times F_{2} \times \ldots P_{n 1}$ bo the action
$\left(b_{1}, b_{i} \quad b_{n}\right)\left(k, x_{1}, x_{2} \quad x_{m-1}\right)=\left(k b_{1}, b_{1}^{-1} x_{1} b_{2}, b_{2}^{-1} x_{2} b_{2} \ldots\right)$

$$
\begin{array}{lll}
\cdot \beta_{B}: k_{k} P_{1} k_{B} \cdots k_{k} P_{n-1} / D & \rightarrow & G / B \\
{\left[k_{1} x_{1}, \cdots, x_{k}\right]} & \rightarrow & k x_{1} x_{2} k_{n-1} \cdot B
\end{array}
$$

(well defined independent of representation)

$$
s_{j} \circ Q=\text { ! dense in } \pi_{j}^{-1}\left(\pi_{j}(Q)\right) \pi_{d_{j}}: G 1 B \rightarrow G / P_{j}
$$

$$
\cdot\left(s_{1}(t+t+1)=(11+-t-\mu)\right) ; s_{c^{+}}(i 1 t-t)=(1+1-\sim)
$$

$$
\leadsto \quad \operatorname{dim} \bar{Q}_{\max }=\operatorname{dim}\left(k_{x_{\beta}} p_{1} x \ldots\right)
$$

$$
=\operatorname{dim} \theta_{0}+\operatorname{dim} g(-1) .
$$

$$
\text { - } R S=k_{\beta}^{x} P_{1}^{x} \quad \cdots x_{\beta} P_{n-1} I_{B} \quad \text { is a } \quad \text {, Sinfularitio of } \bar{Q}_{m a_{x}} \text {. }
$$

$$
\begin{aligned}
& =s_{m-1} 0 \lambda_{n-2} \text { us, } Q_{0} \text { where }
\end{aligned}
$$

- RS has $2^{\text {rinhs }}$ cells.
$I \subseteq \pi$

$$
- \text { all }_{I}=\left\{\left[k x_{1}^{\prime} \ldots x_{n-1}\right]: \quad \text { } \quad \begin{array}{l}
\left.x_{j}=1 \neq I\right\}
\end{array}\right.
$$

Herce we have $2 n$ injective map.

- rbit closure inclusion

$$
\stackrel{i}{v}
$$

inclusion of setot simple rooto
$1 \longrightarrow$
respects orbit closuer inclusion

- Comments

$$
\text { we obtrin } C . T^{\alpha} i_{j} \text { map. }
$$

$$
\left(\operatorname{sip} E_{i j}=I+E_{i j} \quad \operatorname{esp} E_{21} \quad \operatorname{lop} E_{32}=I+E_{21}+E_{z_{2}}\right)
$$

One cocld lese insterd of $K X_{B} P_{1} x_{P} \cdots x_{D} P_{n 1} J_{B}$,

$$
K \underset{n}{x} P_{n 1}{\underset{i n}{n}} P_{n-2} \quad i_{n} P_{1} / B .
$$

$*$

$$
\begin{aligned}
\operatorname{dim}\left(x \cdot \exp x_{-i_{i}} \cdots \exp x_{2_{i_{k}}} \cdot b\right) & =\operatorname{dim} \theta_{0}+t=\operatorname{dim} \theta_{0}+\operatorname{din} \theta_{i_{1}-i_{k}} \\
& =\operatorname{dim}(\bar{n} n k)+\operatorname{dim} \sigma_{i_{1} \ldots i_{t}} .
\end{aligned}
$$

* Techmicel comment: bis $\theta$-steble

$$
\begin{aligned}
& \text { If g}=\operatorname{lec} s \text { is Certen decomposition } \\
& \bar{N}=\bar{N} \cap K \operatorname{esp}(\bar{n} \cap \Delta)
\end{aligned}
$$



$$
\begin{aligned}
& \text { ordened } i_{1} \mathrm{ci}_{2} \ldots \\
& =K \overline{\left(I+\Sigma x_{\alpha_{i}}\right) \cdot b}
\end{aligned}
$$

$$
\begin{aligned}
& 2^{\text {rank } g ~} T \text {-onbits } \rightarrow k \backslash 61 B \\
& \nrightarrow \quad \text { Qo } \quad \text { Q } \rightarrow+\text { - cloded orbit } \\
& I \quad \backsim \quad \text { — } \quad \text { ( cell } \ddagger) \quad \pi \\
& \pi \quad(-\infty \quad Q \quad m=x .
\end{aligned}
$$

$$
\begin{aligned}
& K \cdot \operatorname{escp}\left(X_{-2 i_{1}}\right) \cdots \operatorname{eop}\left(X_{-j_{i}}\right) \cdot b=K \operatorname{esp}(s)_{i_{1}-i_{t}} \cdot b=\bar{Q}_{i_{1} \ldots i_{t}} \\
& \text { where } A \operatorname{esep}\left(2 s_{i_{1},-i_{k}}\right)=\left(\theta z_{i_{1} i_{1} i_{t}}\right)^{-1} z_{i_{1} \ldots i_{t}} \text {. }
\end{aligned}
$$

By Has dorft. Campbell

$$
\begin{aligned}
A=\operatorname{esep}\left(2\left[x-2 i_{1}++x_{-\alpha i_{l}}\right)+\right. & \left.\sum u_{1} u_{i_{1}-i_{j}}^{k}\right) \\
& u_{i_{1}-i_{1}}^{k} \in g(-(2 h+1)) \subset s .
\end{aligned}
$$


why?
(a) $\operatorname{dim}\left(\bar{N} \cap k,\left[T \exp \left(s_{i},-i_{1}\right) b\right)\right]=$

$$
\operatorname{dim}(\bar{N} \cap k)+\operatorname{dim}\left[T \cdot \operatorname{espp}\left(A_{i}, \ldots i_{e}\right) \cdot b\right]
$$

(b) Since $T$ is connected and preserves

$$
\begin{aligned}
& \text { etch } g(-(2 k+1)) \quad \operatorname{dim}\left(T \cdot \exp \left(s_{i}, \ldots, i_{t}\right) \geqslant \operatorname{din}\left(v_{i,-\xi_{k}}\right)\right. \\
& \operatorname{dim}\left[\bar{N} \cap k_{0}\right)+\operatorname{dim}_{m}\left(\sigma_{i_{1},-i_{k}}\right) \leq \operatorname{dim} \bar{N} \cap K \quad\left[T \exp \left(s_{i_{1}}, i_{k}\right) . b\right] \leq \lim _{k} Q_{i_{1}, i_{1}} \\
& \operatorname{din} \bar{N} \cap k+\operatorname{dim}\left(0_{i_{1}, \ldots, i}\right)
\end{aligned}
$$

[We can also prove this statement by using the explicit description $\quad g(-1) \leftrightarrow 6113$ $N \rightarrow \Sigma+N \cdot F_{\text {based fog }} \rightarrow$ in C.T.
C.T do no use RS. Their map correspond to clooting
 more thin 2 pages]

Claim I:
Let $\phi: \quad g(-1) \quad G / B$

$$
\sum \lambda_{i} x_{-\alpha_{i}} \longmapsto \operatorname{lop}\left(\lambda_{1} x_{-\alpha_{1}}\right) \cdots \operatorname{esp}\left(\lambda_{n-1} x_{-\alpha_{n-1}}\right) \cdot b
$$

Then, $\tilde{\Phi}: \bar{B} \cap K_{T}^{x} g(-1) \quad \longrightarrow \quad \bar{N} \cap k \cdot \phi(g(-1)$
$[b, z] \quad b . \Phi(z)$ is en csomosplise of v.

Sketch: $41 . g(-1) \cong \prod_{i} \exp \left(\lambda_{i} X_{-z_{i}}\right)$ (inanyorden)
[Linear Alg. gps., Bonol Prop. 14.4]
(2) $\bar{N} n K \times g(-1) \longleftarrow \sigma l B$
$(n, z) \quad n \quad \phi(z) \cdot b$ is an open embedding.
mus (1) $\phi$ is a no rmally non-singulad inclusion of codimension $\operatorname{dim}(\bar{n} \cap \mid 2)$; ie there is a neighborhood $v$ of $\Phi(g(1))$ and a retraction $v \rightarrow \Phi(g(-1))$ busty bomeo to a prof.
(2) $m^{H \prime}\left(\sigma, \sigma^{\prime}\right)=m^{\mathbb{R}}\left(Q_{\sigma,} Q_{\sigma}^{\prime}\right)$
where $Q_{\theta}$ is the $K$-orbit that corres ponds to $\theta$.
How? One wry: Use ([ABV), Prop. $7.14(l))$ applied to $\bar{B} \wedge K_{T} g(-1)$.
(3) $\Phi(g(u))$ is a normal slice to the closed orbit $Q_{0}$ :
$\left(\Phi(g(-1)),\left\{\Phi\left(g(-1) \cap Q_{j}: \theta_{j} \subset \bar{Q}_{m}\right)\right\}\right)$ is
[so las stratified space) to $\left(g(-1),\left\{\theta_{i}\right\}\right)$.
 Sheaves are defined with compatible shiftol
Ingral
(4) What about $P_{Q_{\theta i}, Q_{\theta_{j}} \text { ?. }}$
(Bialynichi-Birula?)
Weeds care...

We have $\pi$ :RS $\rightarrow \bar{Q}_{\max }$ and $Q_{\text {oj }} \subset \bar{Q}_{\max }$. in matching we essentially pass $N_{Q_{0 j}}$ in $\pi^{-1}\left(N_{Q-i}\right)$ the calls I described do not always stratify $\pi^{-1}\left(\tilde{N}_{\theta_{0 i}}\right)$. (Ithinh ok here $s_{2} \ldots s_{2}$ norepested (...ts)...

$$
\begin{aligned}
& G=\underline{G}=G L(4, \mathbb{C}) \\
& \lambda=\left[\begin{array}{llll}
4 & 3 & 2 & 1
\end{array}\right] \\
& \text { (EX ample 1) } \\
& K(\lambda)=G L(2, \mathbb{C}) \times G L(2, \mathbb{C}) \\
& f(\lambda)=\exp (\pi i \lambda) \\
& \left(t_{-}^{t}\right) \\
& T \text { ding. torus } \\
& \{\text { orbits on } g(-1)\} \rightarrow\{\text { set }\}-2 i\} \text { di simple\} } \\
& l=3 \\
& \left\{\mathrm{sl}_{3}\right. \\
& 2 \text { notintle were }
\end{aligned}
$$

$$
\begin{aligned}
& \sum A_{2} \quad Q s_{1} \\
& \text { Oft t + - \#つ。 } \\
& l=0 \\
& \text { All KLU poly nomials } \quad P_{a^{\prime}, R}=\left\{\begin{array}{l}
0 \\
8
\end{array} \quad a^{\prime} c \bar{a}\right. \text {. es thy dlacle }
\end{aligned}
$$



$$
\begin{aligned}
& K_{B} P_{1} x_{B} P_{2}{\underset{B}{i}}^{B_{3}} / B \quad \sim \quad \text { another set of orbits } \\
& \text { these also seficfo } \\
& \begin{array}{r}
P_{e^{\prime} a}= \begin{cases}0 \\
\text { r when } \\
\text { they should. }\end{cases}
\end{array}
\end{aligned}
$$

What about other classical groups？

Ex ample 2.

$$
\begin{aligned}
& \dot{G}_{\tau}=\operatorname{So}(7, c) \\
& 0-0 \neq 0 \\
& \alpha \quad \beta \quad \gamma
\end{aligned}
$$

dual group

$$
S_{p}(6, \mathbb{C})-
$$

where the crometic $P$ ． live．

$$
G(0)=T .
$$

orbits $\sim$ \｛set of simple soto\} ~

How to match orbits ing $(a) \quad K$ orbits on $\delta p(G, \varepsilon) / B$ ? (was intent 2 ce)
Choice 1:

orbit closure inclusion

\& 16



$$
\begin{aligned}
& P_{30,0}=P_{30,101}=P_{30,17}=P_{30,16}=P_{30,12}=P_{30,8}=P_{30,10}=1 \\
& P_{17,0}=P_{17,10}=P_{17,8}=1 \\
& P_{101,0}=P_{19,12}=P_{19,10}=1 \quad 0 \text { at other onbito } \ldots
\end{aligned}
$$

The relevant resolution of $\quad Q_{428} \quad k_{x_{B}} P_{\alpha} x_{B} P_{\beta} x_{B} P_{r} / B$.

What if we use $K x_{B} \nabla_{\gamma} x_{B} P_{\beta}{\underset{B}{x}}^{x} P_{\alpha} / B$ ?
$N$ eos page
$2^{\text {nd }}$ choice

$$
\begin{gathered}
1+212-1\{\alpha \beta r\} \quad R_{4 \varphi} 34 \\
i_{A_{r}}
\end{gathered}
$$

\#16 $\{\alpha \gamma\} 1122331+1 \mid 2-2\{\alpha \beta \# 17+12 \mid 12-\{p \gamma\} \# 23$
月12 $2 r\}+-111+$
 $11+1-22\{\alpha\} \# 8+11 \mid 22-\{\beta\} \# 10$


$$
+++!+-\quad \# 0 \beta \beta
$$

$\begin{array}{ll}\text { KLU poly: } & P_{Q^{\prime}, Q}= \begin{cases}0 & a^{\prime} q \\ 1 & a^{\prime}\end{cases} \\ \text { corresponds } & k_{B} P_{r} x_{\beta} P_{p} \times P_{r} / 13\end{array}$
t more than one solution.... I

Example 3: $\quad G=\delta_{p \text { in }}(4,4) \quad$ (All relevant bar spit. are trivial)
Possible matches of orbits: respect orbit closure inclusion


$$
\begin{aligned}
& \left\{\alpha_{1} \alpha_{2} \alpha_{3}\right\}\left\{\begin{array}{l}
s_{1} \times 28=s_{2} \times 42=61 \\
s_{2} \times 32=51 \\
s_{2} \times 32
\end{array}\right. \\
& \left\{\alpha_{1} \alpha_{2} \alpha_{4}\right\}\left\{\begin{array}{l}
s_{1} \times 34=s_{4} \times 42=57 \\
s_{2} \times 30=47
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\left\{\alpha_{1} \alpha_{3}\right. & \alpha_{4}
\end{array}\right\} \begin{array}{l}
s_{4} \times 30=s_{3} \times 34=53 \\
s_{2} \times 28=49
\end{array} \\
& \left\{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}\right\} \quad \underset{\text { either }}{\sim} \alpha \quad 65 ; 66 ; 74 ; 70
\end{aligned}
$$

A ll possible KLU C respecting
do the job, i.e $P_{a^{\prime} a}= \begin{cases}0 & Q^{\prime} \not \subset \bar{a} \\ 1 & a^{\prime} \subset \bar{a}\end{cases}$ orbit relations)
lno " $i_{2}$ " in root $a_{i}$ )

Remark: , Lus 2 tig's work assumes G s.c.
(I). If $\begin{aligned} & \lambda \text { regulor } \\ & c_{i} \text { s.c }\end{aligned} \quad$ wo $\quad P_{a, a}=\left\{\begin{array}{l}0 \\ r \\ 1\end{array}\right.$ c|R| splet
(II) Assume $G=G^{V}=\operatorname{so}(8, \mathbb{C})$

$$
G_{F}(\mathbb{R})=\operatorname{So}(4,4)
$$

$\lambda$ regular
Attrch 0 -orbit wos $k . b a_{0}$
all simple rooto $=i_{1}$

$$
(t-t-0-t-t)
$$

If we assign to

- $\left\{\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4}\right\}$ ine $s_{3}=s_{2} \cdot s_{1} \circ s_{4} O_{0}=Q * 37$ [web intenfzal

$$
\begin{aligned}
& \text { su \#0 } \# \# 6 ; s_{1} \# 6=16 \quad s_{2} \# 16=\# 25 \\
& \operatorname{supp}(\operatorname{Rep} 18) \\
& s_{3}+25=\operatorname{supp}_{37} 43\left[c^{+} i_{2} c^{-} c^{+}\right] \\
& P_{43,0}=2+9 \\
& \text { - If }\left\{\alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \sim s_{3}=\underbrace{\sim_{2} \mathcal{S u p p}_{0}\left(R_{e p} 20\right)}_{P_{34}=18=s_{2}}=\psi 2 q=\operatorname{supp}(34) \\
& P_{34,0}=2 .
\end{aligned}
$$

First list of examples with singular $\lambda$
Ex1: $G L(3, \mathbb{C}) \quad \lambda=\left[\begin{array}{llll}11 & 0 & 0\end{array}\right]$

$$
\begin{array}{cccc}
0 & -0 & -\alpha_{1} \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{0}
\end{array}
$$

$$
G(0)=G l(3,0) \times G l(2, \mathbb{C})
$$

$G(v)-0$ bits

$$
0 \rightarrow \pi_{c_{1 p}}(t+t-1) Q_{0}
$$



Ex.2: $\quad G=S_{p}(4, \mathbb{C}) \quad l=(1,1) \quad \int_{\varepsilon_{1}-\varepsilon_{2}}^{0} \varepsilon_{2} \quad$ (webintafoce isused)

$$
P=P_{\alpha}
$$

Dan's computations

|  | 0 | 2 | $3_{t}$ | $3_{s}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | $q^{2}$ |
| 2 | 0 | 1 | 1 | 0 |
| $3_{t}$ | 0 | 0 | 1 | 0 |
| $3 s$ | 0 | 0 | 0 | 1 |

O~D $\quad \pi_{P_{\alpha}}(t+\cdots)=\Pi_{P_{d}}(\# 2)$

$$
\begin{aligned}
& 2 \operatorname{mn} \quad \pi p_{2}(1+-1)=\pi_{p_{2}}(\$ 7) \\
& 3 \sim \pi p_{p_{2}}(1221)=\pi p_{2}(+10)
\end{aligned}
$$

\# 10 Supp (Rups 10, 11)
webintentice ~ $P_{10,2}=P_{107}=P_{10,10}=1$

$$
\begin{aligned}
& P_{11,2}=7 ; \quad P_{11,7}=P_{11,10}=0 \\
& P_{7,2}=1
\end{aligned}
$$

Ex 3.

$$
\dot{G}=G_{2}
$$

- $\equiv 0$
$\lambda=$ middle element of $\mathrm{sl}_{2}$ $G_{2}\left(z_{1}\right)$

Dan's computations

|  | 0 | 2 | 3 | $4_{s}$ | $4_{t}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | $7+1$ | 1 | 7 |
| 2 | 0 | 1 | 1 | 1 | 0 |
| 3 | 0 | 0 | 1 | 1 | 1 |
| $4 s$ | 0 | 0 | 0 | 1 | 0 |
| $4 t$ | 0 | 0 | 0 | 0 | 1 |

$$
\begin{aligned}
& 4 \text { dim orbit admits } \\
& \text { a third bal spoten } \\
& \text { couspidels that } \\
& \text { don not ontribution } \\
& \text { to this block. }
\end{aligned}
$$

Web interface

How do we compute?

Comments on Notation:
In this exposition, in describing the relevant parameter space I lase the notation $\{(a, d)$ Q $\subset G \mid P(\lambda) \ldots\}$. Usually ones writes $G^{\prime} \mid \dot{p}(\lambda)$. I made the change to simplify notation (all the action is on the parameter space side.J In this slid I will use trad ditional notation. Lie groups are denoted by H. H́ langtends dual Brief Cammento on the computations. C David addressed related issues ina previous ATLAS meeting.?

Assume $d_{0}$ is intequal do minant but singular.

$$
\begin{aligned}
& \text { do } \operatorname{man} \quad \stackrel{V}{P}=U \cup U \quad e \quad{ }_{U}^{u} \\
& e^{v}=\left\{\alpha \sim:\left\langle\lambda_{0}, \alpha\right\rangle=0\right\}
\end{aligned}
$$

Dual side

$$
\begin{aligned}
& \text { Girted } \left.\tilde{\bar{\delta}}_{0}\right\} \quad \text { Bloch }\left(\operatorname{Lil}_{0}(t), K_{H}\right) \\
& 4 \\
& \text { \{ioond } \operatorname{Black} \text { (Lie }(H), K_{H} \text { ) } \\
& z(J) \text { contains }{ }^{\circ} \text { regular } \\
& \text { none of the } \\
& \text { simple roots in } b\}
\end{aligned}
$$

$\langle\check{y}: \quad 己(\breve{y})>$ all simple roots
in $\left.e^{\prime}\right\rangle$.
Subcategory (Bloch (Lie $(\tilde{H}), \check{K}_{H} \mid$ )
$=K_{H}$-equivariont at-rod H. ${ }^{\text {V }}$ 。


How do we compute?

(2) Normal slice $\left.\begin{array}{l}\text { el } \\ \text { Normally non-sinqular } \\ \text { in elusion }\end{array}\right\}$ arguments ms

| If you wont |  |  |
| :--- | :--- | :--- |
| $\theta$ | $\longmapsto$ | $Q$ |
| of $(-1)$ |  | $G / p$. |

Seek Rep.
$(0, D)$
length $Q=\operatorname{din} \theta$.
(3) Check your work by asking ATLAS to compute KLU-pol.

A couple of examples when $G=F \_4$
Dan takes $\alpha_{1}=[1,-1,-1,-1] ; \alpha_{2}=[0,0,0,2] ; \alpha_{3}=[0,0,-1,-1]$

$$
\alpha_{u}=[0,1,-1,0] \quad 0_{2}-0 \Rightarrow 0-\alpha_{2} 0
$$

(1)

$$
\lambda=[2,2,0,0]
$$

$$
\begin{gathered}
\underset{\text { middle element }}{\text { triple }}
\end{gathered} \quad \tilde{A}_{2}
$$

Here $\quad\left\langle\lambda_{1} \alpha_{1}\right\rangle=\left\langle\Lambda_{1} \alpha_{2}\right\rangle=\left\langle\Lambda_{1} \alpha_{3}\right\rangle=0$.
(wel-intufoce)
In the block $F_{4}\left(B_{4}\right) \mid F_{4}(\pi)$
0 as $42(2,228) \quad l=0$
7 an $13(13,133) \quad l=2$
8 no $\# 14(14,41) \quad l=8$
reproduces Dan's table
[you will find no such match if goo bod in the top bode].


