
LAST TIME:

I- G connected, simply-connected, reductive over C

      Lie algebra,            Cartan

Fix          (Integral and hyperbolic)

         Induces a grading

Set                    with Lie algebra       and consider 

RELEVANCE OF THIS SET:

Let IH_1 be the affine graded Hecke algebra.

(As vector space this is C(W)     Sym(.   ^*)       
The generators are {t_{s_alpha} alpha simple}   { nu in      }
The commuting relations

        Standard and Irred
                                                   

        Moreover, via Kazhdan-Lusztig proof of Langlands-Deligne Conjecture
(building from work by Borel)

                                                       parametrizes Irred. Iwahori-spherical rep of

                                                       with central ch.  

II- [ABV]
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RELEVANCE OF. 

                                             QUESTIONS

A-  On the Hecke Alg side, Lusztig (Cuspidal Local Systems and affine graded Hecke ALg., II)

On the `Real’’ side, [ABV]

ATLAS computes all these numbers.

Can we compute the multiplicities in the Hecke Algebra side in terms
Of the multiplicities in the Real side?

B- Is it possible to relate KL polynomials to KLV-polynomials?

Last time  (a) I spoke about the regular case and ended up with experimental data
Involving some singular parameters.
                (b) In the regular case the answer involved some iterated bundles
(An analogous construction will play a role in what we do today.)

               (I). The choice of K >>>>>>>> closed K orbit Q_0 on G/P
               (II) The iterated bundle >>>>>>> Q_{max} a K-orbit dim = Q_0 + dim(g(-1))
                Other orbits in the closure of Q_max}
Remark: The construction allows to define a map 
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TODAY

In the singular case, we need to handle local systems.
We ask if we can relate S_{IH} to S_{[ABV]}.

 Where do the relevant {(Q, L)} come from?

THE ANSWER MIGHT BE IN 

Lusztig, Cuspidal Local Systems and Affine Graded Hecke ALg., II
 
Chriss and Ginzburg, Chapter 8

PART OF THE ISSUE IS TO UNDERSTAND  (mentioned last time)

🟦

These are not easy papers. There is a lot that I do not understand.

The point is 

(A) to isolate key results in this paper, imitate their work (when possible)
  in order to get similar results on the `Real side’’

Identity 🟦  encodes a geometric object  and an Algebra       action on that object.

           Is first defined “ abstractly’’, then it is identified as a convolution algebra.

Hence, translating the result to the Real picture involves

(A_1) describing an analogous ‘’geometric object’’ in the [ABV] parameter space.

( I will indicate how we plan to do this in an example for G = GL(n, C))

(A_2) defining an analogous algebra            (Abstractly)

(What is                 I would like to avoid answering directly this question.

Instead, I would like to “get by’’ by trying to relate                         and just

use  Lusztig’s understanding of       )

(Even this `short-cut’’ plan requires a deep  understanding of the reference.
My short comings on this point will be obvious as I speak.)
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(B) A critical component in the reference is to ‘’relate’’  the category of finite
Dimensional modules for the convolution algebra to the category of finite
Dimensional representations of IH_1.

As a vector space IH_1 = C[W] 

 Where does W come from???  Roughly form the { G(0) orbits on g(-1) }

Lusztig parametrizes this set of orbit by a set of equivalence classes of
`Good parabolics’’   

I am not ready to talk about this.

IN SUMMARY:

1- I will talk about A and how we want to translate those ideas to the `Real picture’’

2- I will explain what I understand about 🟦

3- I will indicate an attempt at translating the         Action to the ‘’Real’’ picture.
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THE GEOMETRIC SPACE ON WHICH          ACTS

 

                

DECOMPOSITION THEOREM

🔴

Write {. P_j    } for the set of irreducible Pervese sheaves that occur in B’

🟠
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The relevant geometric object is

THE MODULE STRUCTURE

Preliminaries 
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The relevant Algebra:

🔵

🟡
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(As already said, I will not go over why is this so.)

THE STANRD AND IRREDUCIBLE MODULE ATTACHED TO 

Thn 8.14

The category mod Al is equivalent to

the category of finite dim A modules on

Which some power of I Rux acts by zero

0,8
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A SUBTLE POINT
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DECOMPOSITION OF STANDARD MODULES IN TERMS OF IRREDUCIBLE MODULES

The statement is (Proposition 10.5)
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HOW DO WE EXPECT TO ANSWER QUESTION A?

EXAMPLE: G É GL In G
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🔺

                                                              😳

Imitating Gelfand McPherson define

RS KYyP xpPa xp xpPn P D Pla
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CAN WE RELATE THE HECKE ALGEBRA WORLD TO THE REAL WORLD?🛠 🪜 🪚

🟢

              

🔸
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In the GL(n,C) case all local systems are trivial. As G(0) is a subgroup of K:

🔷

CAN WE MATCH THE MODULE STRUCTURES? 🤔  🧐

The right hand side of 🔷  is a                                              module via

 gr(right hand side of 🔷 ) is a.                                                        module

On the `Real side’’ of 🔷  we act via 

gr( Real side) is a. 

🟢  Base Change (using the normally non-singular inclusion 
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HOW TO IDENTIFY THE RELEVANT ORBITS? (Combinatorial aspect of the problem)

EXAMPLE: GLI12,0 D 4443333 22111

GLO GL3 x GL Y x GL 2 XGL13
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A DIFFICULT EXAMPLE
Using Jeff’s Example F_4 file (available on his web-page)

😁  Up to this point KL coincide.

😵💫 😵💫
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