LAST TIME:

I- G connected, simply-connected, reductive over C
g Lie algebra, $\quad h$ Cartan, $\quad h^{\star} \cong h$
Fix λ (Integral and hyperbolic)
ad (λ) Induces a grading $\quad g=\bigoplus_{i \in 己} g(i) \quad g(i)=\{x \in g: \operatorname{ad}(\lambda)(x)=i x\}$
Set $G(0)$ with Lie algebrag(0) and consider

$$
S_{H}=\{(\theta, d) \quad \theta \in G(0) \backslash g(-1) \quad \& \text { of Springe Type }\}
$$

RELEVANCE OF THIS SET:

Let IH_1 be the affine graded Hecke algebra.
(As vector space this is $\mathrm{C}(\mathrm{W}) \otimes \operatorname{Sym}\left(b^{\wedge^{*}}\right.$)
The generators are $\left\{t _\left\{s _a l p h a\right\}\right.$ alpha simple $\} \cup\left\{\right.$ nu in $\left.丂^{*}\right\}$
The commuting relations $\left.\nu t_{s_{\alpha}}=t_{s_{\alpha}} s_{\alpha}(\nu)-\langle\omega, \nu\rangle\right\rangle$.

- Standard and Irred

Moreover, via Kazhdan-Lusztig proof of Langlands-Deligne Conjecture (building from work by Bore)

$$
\begin{array}{ll}
S_{\text {H- }} & \text { parametrizes İrred. Iwahori-spherical rep of } \breve{G}(F) \\
& \text { with central } \operatorname{ch}(\underline{x}) .
\end{array}
$$

II- [ABY]

$$
\begin{aligned}
& \operatorname{ad}(\lambda) \quad \operatorname{mo} p(\lambda)=P=\bigoplus_{i \geqslant 0} g(i) \\
& \text { (} \lambda \text { integnol) } \sim \text { Generalized Flag } G \mathbb{P} \text {. } \\
& \lambda \quad \omega \quad J(\lambda)=\operatorname{eoup}(\pi i \lambda) \sim \underbrace{\theta^{2}}_{\substack{ \\
\text { involution } \\
\text { on } G}} \quad K=G{ }_{\lambda} \\
& S_{[A B U]}=\{(Q, D) \quad Q \in K \backslash G \mid P, P \text { LbS. }\}
\end{aligned}
$$

RELEVANCE OF. S[AbV].
The choice of $\theta_{\lambda} \quad \sim$ Block of $\bar{G}(\mathbb{R})$-sep.

QUESTIONS

A- On the Hecke Alg side, Lusztig (Cuspidal Local Systems and affine graded Hecke ALg., II)

$$
\begin{aligned}
& (\theta, \rho) \in S_{\mathbb{H}_{1}} \sim \sim \operatorname{stand} \underset{H I_{1}}{ }(\theta, \alpha) \\
& \operatorname{Stand}_{H 1_{1}}(\sigma, \alpha)=\sum_{\left(0^{\prime}, \alpha^{\prime}\right)} m_{\left(0^{\prime}, \alpha^{\prime}\right)}^{H H_{1}}(\theta, \alpha) \quad \operatorname{irred}_{1+1_{1}}\left(\theta^{\prime}, b^{\prime}\right) \\
& m_{(0, \alpha)}^{H H_{1}}(\theta, \alpha)=\sum_{i}(-1)^{i}\left[\alpha: J^{i}\left(\left.I C\left(\overline{0}, b^{\prime}\right)\right|_{\theta}\right]\right.
\end{aligned}
$$

On the `Real" side, [ABV]

$$
\begin{aligned}
& (Q, \nu) \in S_{[A B V]} \sim \sim \operatorname{Stand}_{\mathbb{R}}(Q, \nu) \\
& \operatorname{Stand}_{\mathbb{R}}(Q, \nu)=\sum_{\left(Q^{\prime}, \nu^{\prime}\right)} m_{\left(Q^{\prime}, \nu^{\prime}\right)}^{\mathbb{R}}(Q, \nu) \quad \operatorname{irred}\left(Q_{\mathbb{R}}^{\prime}, \nu^{\prime}\right) \\
& \underset{\left(Q^{\prime}, \nu^{\prime}\right)}{m^{R}(Q, \nu)}=\sum_{i}(-1)^{i}\left[\nabla: \mu^{i}\left(\left.I C\left(\bar{Q}^{\prime}, \nu^{\prime}\right)\right|_{Q}\right]\right. \text {. }
\end{aligned}
$$

ATLAS computes all these numbers.

Can we compute the multiplicities in the Hecke Algebra side in terms Of the multiplicities in the Real side?

B- Is it possible to relate KL polynomials to KLV-polynomials?

Last time (a) I spoke about the regular case and ended up with experimental data Involving some singular parameters.
(b) In the regular case the answer involved some iterated bundles.
(An analogous construction will play a role in what we do today.)
(I). The choice of K >>>>>>>> closed K orbit Q_0 on G/P
(II) The iterated bundle $\ggg \ggg$ Q_\{max\} a K-orbit dim $=$ Q_0 + dim (g(-1))

Other orbits in the closure of Q_max\}
Remark: The construction allows to define a map

$$
\Phi: g(-1) \rightarrow Q_{\max } \subset \in \mathbb{P} \quad \text { (normally non-sinqular inclusion). }
$$

TODAY
In the singular case, we need to handle local systems.
We ask if we can relate S_\{IH\} to S_\{[ABV]\}.
Where do the relevant $\{(\mathrm{Q}, \mathrm{L})\}$ come from?

THE ANSWER MIGHT BE IN

Lusztig, Cuspidal Local Systems and Affine Graded Hecke ALg., II
Chriss and Ginzburg, Chapter 8

PART OF THE ISSUE IS TO UNDERSTAND (mentioned last time)

$$
\underset{H_{1}}{\operatorname{stand}(\theta, \infty)}\left(\theta \underset{\left(0, \infty^{\prime}\right)}{ } \quad \sum_{H_{1}}(\theta, \infty) \quad \operatorname{irred}\left(v^{\prime}, \infty^{\prime}\right)\right.
$$

These are not easy papers. There is a lot that I do not understand.
The point is
(A) to isolate key results in this paper, imitate their work (when possible) in order to get similar results on the `Real side"

Identity \square encodes a geometric object and an $\operatorname{Algebra}(f)$ action on that object.

Is first defined " abstractly", then it is identified as a convolution algebra.
Hence, translating the result to the Real picture involves
(A_1) describing an analogous "'geometric object" in the [ABV] parameter space.
(I will indicate how we plan to do this in an example for $G=G L(n, C)$)
(A_2) defining an analogous algebra $\quad \ell^{\mathbb{R}}$ (Abstractly)
(What is $\ell^{\mathbb{R}}$? I would like to avoid answering directly this question. Instead, I would like to "get by" by trying to relate $\ell^{\mathbb{R}}$ to ℓ and just
use Lusztig's understanding of f)
(Even this `short-cut" plan requires a deep understanding of the reference.
My short comings on this point will be obvious as I speak.)
(B) A critical component in the reference is to "relate" the category of finite Dimensional modules for the convolution algebra to the category of finite Dimensional representations of IH_1.

As a vector space $I H_{-} 1=C[W] \otimes \operatorname{Sym}\left(b^{*}\right)$ with generetans $\left\{t_{s_{\alpha}}\right\} \cup\left\{\omega \in b^{*}\right\}$ + relations. simple

Where does W come from??? Roughly form the \{ G(0) orbits on $g(-1)$ \}
Lusztig parametrizes this set of orbit by a set of equivalence classes of
Good parabolics"

$$
\text { Rough }\left\{\begin{array} { l }
{ \theta \quad - \quad P _ { \sigma } = l _ { \sigma } v _ { \sigma } ; \quad l _ { i } (v _ { \theta }) = u _ { \theta } } \\
{ \overline { \theta } = \overline { G (0) \cdot (g (- 1) \wedge u _ { \sigma }) } }
\end{array} \left\{\begin{array}{l}
P_{\theta} \text { will not gravy contain } B \text { defined by } \lambda \\
\text { but will be conjugate ta parabolic } \\
\text { containing } B+\text { with the same Levi.... }
\end{array}\right.\right.
$$

I am not ready to talk about this.

IN SUMMARY:
1-I will talk about A and how we want to translate those ideas to the `Real picture"
2- I will explain what I understand about
3-I will indicate an attempt at translating the $\not \subset$ Action to the "Real" picture.

THE GEOMETRIC SPACE ON WHICH ℓ ACTS

- J nilpotent cone

$$
\tilde{N}=T^{*} B
$$

λ int hyperbolic $\sim \sigma s s .: \quad \mu^{\sigma} \equiv g(-1)$

$$
\begin{aligned}
& M=\left.G(0) \operatorname{xig}_{\substack{\text { Boo) } \\
\text { open }}} \quad\right|_{v} ^{\sim} M \\
& g(-1)
\end{aligned}
$$

restrict

springer Resolution

Let $\quad \mathbb{T}_{\tilde{\mu} \sigma} \quad \operatorname{complex}:\left.\quad \mathbb{C}_{\tilde{\mu} \sigma}\right|_{M}=\mathbb{C}_{M}[\operatorname{dim} M]$
DECOMPOSITION THEOREM

$$
\begin{aligned}
& \mu_{\psi}\left(C_{M}[\operatorname{dim} M]\right)=\oplus_{k \in v}^{P} H^{k}\left(\mu_{\gamma}\left(\mathbb{C}_{M}[\operatorname{dim} M]\right)\right)[-k] \\
&=\oplus \bar{B}^{k}[-k]=\bar{B} \\
& \text { Lusatiq's notation }
\end{aligned}
$$

$\underset{k}{(4)} H^{k}\left(\mu_{x} C_{M}[\operatorname{dim} M]\right)=\oplus \bar{B}^{k}=\bar{B}^{\prime}$ is sis Perverse.

Write $\left.\left\{. P_{_}\right\} \quad\right\}$ for the set of irreducible Perverse sheaves that occur in \bar{B} '

Given $(\lambda, \theta=G(0) \cdot y, \mathcal{L})$, form $A(y, \lambda)=Z_{G}(y, \lambda) / Z_{G}(y, \lambda)_{0}$

$$
\begin{array}{ll}
\delta_{b}^{e} & \longmapsto \in A \mid y, \lambda] . \\
H^{l}\left(i_{j}\right. & \mu_{x}\left(\mathbb{C}_{M}[\operatorname{dim} M]\right) \quad \text { local system. }
\end{array}
$$

The relevant geometric object is

$$
\begin{aligned}
& {\left[\mathscr{b}, \bigoplus_{l} H^{l}\left(i_{y}^{x} \mu_{x}\left(\mathbb{C}_{M}[\operatorname{dim} M]\right)\right]\right.} \\
= & \left.\operatorname{Hom}_{A(y, \lambda)}\left(\rho, \underset{l}{\oplus} H^{l}\left(i_{j}^{*} \mu_{*}\left(\mathbb{G}_{M} \tau \operatorname{dim} M\right]\right)\right)\right) .
\end{aligned}
$$

THE MODULE STRUCTURE

Preliminaries
X algebraic variety $\quad D^{b}(x)$ bounded derived category
O $D(x)$ the full subcategory whose dejects are complexes with constructible eohomologa sheaves.

- $[n]: D[x) \rightarrow D(x)$ shift functor

$$
\left(H^{j}(A[n])=H^{j+n}(A)\right)^{0}
$$

- $\operatorname{Hom}_{\Delta(x)}^{j}(A, B)$ as vector space is

$$
\begin{aligned}
& \operatorname{Hom}_{D(x)}(A, B[j]]=\operatorname{Hmm}_{\infty(x)}(A[1], B[1+j])=\cdots \\
& \operatorname{Hom}_{D(x)}(A, B)=\sum_{j} \operatorname{Hbm}_{\infty(x)}(A, B)
\end{aligned}
$$

(One needs to also consider $A_{G}(x) \cdots$)

The relevant Algebra:

$$
\begin{aligned}
& \text { Recall: } A, B, C \in \operatorname{D}_{G}(x) \\
& \operatorname{Hom}_{D_{G} x}(B, A) \times \operatorname{Hom}_{D_{G} x}(A, B)
\end{aligned} \rightarrow \operatorname{Hom}_{D_{B} x}(A, C)
$$

mo (we need is $\operatorname{Hom}_{D_{G}(x)}(B, B)$ is a unitol Algebra.)

$$
\begin{aligned}
& \left.A=\operatorname{Hom}_{D(g(-1))}\left(\bigoplus_{n} \bar{B}^{-n}[-n], \oplus \bar{B}^{-n} \tau-n\right]\right)=\underset{\operatorname{Hom}(g(-1))}{ }(\bar{B}, \bar{B}) \\
& B^{n}=P_{H}^{n}\left(\mu_{y}\left[C_{M}[\operatorname{dim} M]\right)\right.
\end{aligned}
$$

- A is a graded algebra.

$$
\begin{aligned}
& t=\overbrace{s} t_{s} \quad t_{s}=\oplus \oplus_{n, n, n} \quad \operatorname{Hom}_{\infty}\left(\hat{B}^{n}[-n], B^{n^{\prime}}\left[-n^{\prime}+n\right]\right) \\
& n-n^{\prime}+k=s \\
& \text { ts. } k_{s}{ }^{\prime} \subset t_{s+s^{\prime} ;} \quad t_{s}=0 \quad s c o
\end{aligned}
$$

$$
\begin{aligned}
& =+\operatorname{Hom}_{d(y(4))}^{0}\left[\bar{B}^{\prime}, \bar{B}^{\prime}\right) \text { S.S alg. }
\end{aligned}
$$$A \rightarrow$ oj. alg. homomorphism.

- Tho 8. 14

The category $\bmod _{x}\left(H_{1}\right)$ is epvivalent to the category of finite dim. f-modules on Which some power of "IX I^{x} bu x_{a} " acts by zero.
(As already said, I will not go over why is this so.)
THE STANRD AND IRREDUCIBLE MODULE ATTACHED TO ($\theta, \mathcal{L})$.
Let $\left\{P_{j}\right\}$ be the set of irred. Perverse sheaves that

$$
\text { occur in }{\underset{k}{\oplus}}_{P}^{H^{k}}\left(\mu_{*}\left(\mathbb{C}_{m} \tau \operatorname{dim} M\right]\right) \text {. }
$$

o Irred. Pervese sheaf

$$
\begin{aligned}
& P_{j} \\
& \text { Module }(\theta, \sigma)
\end{aligned}
$$

- Standard Module (θ, σ)

$$
\begin{aligned}
& \theta=G(0) \cdot y \quad \text { es } M\left(i y_{j} \bar{B}\right) \quad \text { (lusztiq's notation for) } \\
& \text { (f) } H_{l}^{l}\left(i_{\partial}^{\gamma} \mu_{\lambda}\left(\mathbb{C}_{m}[\operatorname{dim} M]\right)\right) \\
& \left.=\underset{l k}{\oplus} H^{l-k}\left(i_{j}^{k} B^{k}\right) \quad B^{k}=P_{H^{k}}^{k}\left(\mu_{x} C_{M} \tau \operatorname{dimin}\right)\right)
\end{aligned}
$$

, Endow $M\left(i_{j}^{x} \bar{B}\right)$ with a $\operatorname{Hom}_{\nabla_{y}}\left(i_{j}^{} \bar{B}, i_{y}{ }_{y} \bar{B}\right)$-module structure Via
(申,
$\operatorname{Hom}_{D_{0}}() \quad H^{l}()$

$$
\begin{aligned}
& \phi(\varepsilon) \\
& j^{e+j}()
\end{aligned}
$$

$*_{2} \quad i_{y}^{y} \quad t=\operatorname{Hom}_{\Delta(y(x)}(\bar{B}, \bar{B}) \rightarrow \operatorname{Hom}_{\$_{y}}\left(i_{y} \bar{B}, i_{y}^{x} \bar{B}\right)$ alg homo \sim Mig $\bar{B})$ can be regarded asaf-nodule. $*_{3}$
$A(y, \lambda)$ acts on M $\left(i^{j}, \bar{B}\right)$ (action commutes with t-action)
wa $\underset{A(y, \lambda)}{\operatorname{Hom}}\left(\rho, M\left(i_{y}^{r}, \bar{B}\right)=M(i, \bar{B})^{p} \underset{\text { (inlusatig's }}{\text { notation }}\right.$

$$
=\operatorname{Hom}_{(S, A)}\left(p, \underset{l}{\oplus} H^{l}\left(\mu_{x} C_{\pi}[\operatorname{dim} M]\right)\right.
$$

to-nodile.

A SUBTLE POINT

- Both $\left.\quad M i_{i}^{*} \bar{B}\right)=\underset{l}{(\rightarrow)} H^{l}\left(i_{j}^{\gamma} \mu_{\psi}\left(\mathbb{C}_{M}[\operatorname{dimh}]\right)\right.$ and t are graded

$$
\begin{aligned}
& M\left(i_{j}^{t} \bar{D}\right)=\oplus M_{S}\left(i_{j}^{t} \bar{B}\right) \quad t=\left(\bigoplus_{s^{\prime}} t_{S^{\prime}}\right. \\
& M_{S}\left(i_{j}^{t} \bar{B}\right)=\left(P_{n} H^{s}\left(i_{j}^{k}-B^{n}\right)\right. \\
& \prime^{\prime} s^{\prime}=\underset{n, n^{1}, k}{(H 0 m} \operatorname{Hom}_{\infty(x)}\left(\bar{B}^{-n}[-n], B^{n^{\prime}}\left[-n^{\prime}+n\right]\right) \\
& n^{\prime}=n+k-s \\
& t_{s} \text {. } M_{S}\left(i_{j}^{t} \bar{D}\right) \subset M_{\delta+\delta^{\prime}}\left(i_{j}^{t} \bar{B}\right) \text {. }
\end{aligned}
$$

ns

$$
\begin{gathered}
\text { gr }\left(M\left(i_{y}^{r} \bar{B}\right)\right) \quad \text { becomes a fo-nodule } \\
\text { (i.e } \begin{array}{c}
\left(+f_{s}\right. \\
s>0
\end{array} \quad \text { act by zero). }
\end{gathered}
$$

The formula for $\operatorname{stand}(\theta, \alpha)$ in terms of $\operatorname{irred}(\theta, \alpha)$ (in the c_{0} nothendiech group of food t nodule) is obtained by studying $\left(\operatorname{epr}\left(M_{i}^{\gamma} \bar{B}\right), t_{0}\right)$.

The statement is (Proposition 10.5)

In the Grothendieck group $\left(\operatorname{gr}\left(M(i, \bar{B}) \equiv M^{\prime}\left(i_{\gamma}^{*} \bar{O}\right)\right)\right.$.
Formals

$$
\begin{aligned}
& \text { ** } \underset{l}{+} H^{l}\left(i_{\gamma}^{*} P_{j}\right) \\
& \otimes \mathbb{R}_{j}=\oplus \mathcal{H}^{l}\left(i_{\gamma}^{\gamma} P_{j}\right) \otimes \operatorname{Vbm}_{\infty(x)}^{0}\left(\rho_{j}, \bar{B}^{\prime}\right) \\
& =\underset{l}{\text { (1) }} \operatorname{H}^{l}\left(i_{\gamma}^{*}\left[\sum_{j} P_{j} \otimes \underset{\infty(x)}{\operatorname{Hom}_{\infty}}\left(P_{j}, \bar{B}^{-1}\right)\right]\right)=\oplus_{l}^{+} H^{l}\left(i_{j}^{t} B^{-1}\right)
\end{aligned}
$$

Che point is that a f_{0}-nodule (*) $\cong \operatorname{gr}\left(M\left(i_{j}^{\prime} \bar{B}\right)\right)$
As the to and $A(y, \lambda)$ actions commute

$$
\begin{aligned}
& \operatorname{gor}\left(M\left(i_{j}^{r} \bar{B}\right)\right)^{\rho}=\oplus \oplus_{j}\left[\left(\underset{L}{+} H^{\ell}\left(i_{j}^{r} \Gamma_{j}\right)\right]^{\rho} \otimes \mathbb{R}_{j}\right. \\
& \text { as } f f_{3}-\text { roivile. }
\end{aligned}
$$

nob mut. P_{j} in $g_{2}\left(M\left(i_{j}^{1} \bar{D}\right)^{P}\right)$ is

$$
\left.\operatorname{dim}\left(H_{l}^{P} \quad H_{i}^{\prime} P_{j}\right)^{P}\right)
$$

Finish by using that in the Gothen diech foup

$$
M\left(i_{0}^{r} \bar{B}\right)^{\rho}=\operatorname{pr}\left(M\left(i_{g}^{t} \bar{n}\right)^{\rho}\right) \cdots \cdot
$$

HOW DO WE EXPECT TO ANSWER QUESTION A?
EXAMPLE:

$$
\begin{aligned}
& G=\tilde{G}=G L(n, \mathbb{C}) \\
& \Lambda=[a_{1} \cdots \underbrace{}_{t_{1}} a_{1} \underbrace{a_{2}-a_{2}}_{t_{2}} \cdots \underbrace{a_{n} \cdots a_{n}}_{t_{n}}]
\end{aligned}
$$

Assume $\quad a_{i+1}-a_{i}=1 \quad a_{i} \in \mathbb{N}$.
Define

$$
\begin{aligned}
P(\Omega)=G(0) V_{\Lambda}=G\left(t_{1}\right) \times & \cdots \times G\left(t_{n}\right) \times V_{\Lambda} \\
& U(\text { upper triangular }) \\
& \underbrace{0-}_{i c} \cdots \cdots \underbrace{-\cdots}_{i c} i_{1} \ldots
\end{aligned}
$$

Fix closed $K=G l(p)_{x} G(q)$-orbit on $G \mid p(\lambda)$

$$
Q_{0}=\pi_{d}\left({\underset{t}{1}}_{+\cdots+\cdots+r+\cdots}^{\tilde{t}_{2}+\cdots}+\cdots\right)
$$

where $\pi_{\lambda}: G|B \rightarrow G| P(\Lambda)$

Definition: Let $\left\{P_{j} j=1 \ldots k-1\right\}$
be the set of Parabolic subg.:

$$
\begin{aligned}
& \because P_{j}=L_{j} U_{j}>P(\Lambda) \\
& \therefore L_{j} \cap P(\Omega)=G(0) \exp \left(n_{i}\right) \quad n_{i} \lg (1)
\end{aligned}
$$

${ }_{3}$ minimal with properties i: 2 .

Imitating Gelfand-McPherson define:

$$
P=P(\Omega)
$$

- RS is smooth of $\operatorname{dimension}=\operatorname{din} g(-1)+\operatorname{dim} Q_{0}$
- $Z: \operatorname{RS} \longrightarrow G I P$

$$
\left[k, y_{1}, y_{2}, \cdot y_{n-1}\right] \longrightarrow k y_{1} \cdot J_{2} \quad y_{n-1} \cdot p(n)
$$

isabel defined projective map.

- An argument similar to the one in Dec 9 lecture

$$
G(R S)=\bar{Q}_{\max } \quad \operatorname{dim} Q_{\max }=\operatorname{dim} R S
$$

- Take $\Phi_{R_{s}}[$ dim $D S]$ and imitate Lusztig's.argument.

$$
\begin{aligned}
\bar{\sigma}_{x}\left(\sigma_{R S}[\operatorname{dimRS}]\right) & =\oplus_{k}^{P} H^{h}\left(\sigma_{x}\left(C_{R S}[\operatorname{dim} R S J)\right)[-k]\right. \\
& =\bigoplus_{R} \bar{B}_{R}^{k}[-k]=\bar{B}_{R} .
\end{aligned}
$$

Set $B_{\mathbb{R}}^{\prime}=\bigoplus_{k} \bar{B}_{\mathbb{R}}^{n}$ is Perverse.
1~0 Irreducible that

$$
\begin{aligned}
& \operatorname{occur} C\left\{I c\left(\bar{Q}_{j}, \nu_{j}\right):\right. \\
&\left.\bar{Q}_{j} \subset \bar{Q}_{\max }\right\}
\end{aligned}
$$

If $(\mathbb{Q}=K . z, \nu)$, arguing $2 s$ Lusatia does

$$
\begin{array}{r}
\text { TV: } \underset{l}{\oplus} H^{l}\left(i_{z}^{*}\left(\sigma_{x}\left(\mathbb{Q}_{R_{s}}[\operatorname{dimRs}]\right)\right)\right] \text { is } 2 \\
\mu^{\mathbb{R}}=\underset{\infty \in \mid p}{ }\left(\operatorname{Hom}_{\mathbb{R}}, \bar{B}_{R}\right) \text {-nodule. }
\end{array}
$$

What is $f^{\mathbb{R}} ? ?$

Recall:

$$
\begin{aligned}
& \text { \{*\} } \rightarrow \quad g(-1) \\
& L_{i}-\square \quad L_{i} \cap P(\lambda)=G(0) \operatorname{eap}\left(n_{i}\right) \\
& g(-1) \simeq \bar{n}_{1}+\bar{n}_{2}+\cdot+\bar{n}_{k} \text {; } \\
& y \in\left(y_{1} y_{2} \quad y_{k}\right)
\end{aligned}
$$

Define:

$$
\begin{aligned}
\Phi: g(-1) & \longrightarrow G \mid P(\lambda) \\
y=\left(y_{1}-\cdots y_{n}\right) & \longrightarrow \exp \left(y_{1}\right) \operatorname{lsup}\left(y_{2}\right) \cdots \exp \left(y_{k}\right) \cdot P(A) \\
\tilde{\Phi}: G_{T}(0) \times(g(-1)) & \longrightarrow K_{D(0)} x_{P_{n}} P_{1} x_{p} P_{2} x_{p} \cdots x_{p} P_{h} / P \\
{\left[g_{0}, y\right] } & \longmapsto\left[1, \operatorname{nod}\left(z_{0}\right) y_{1}, \cdots A_{0}\left(g_{0}\right) y_{n}\right]
\end{aligned}
$$

Prop. Φ is a normally non-singular inclusion

$$
\text { of codimension }=\operatorname{dim}(\bar{v}(\lambda) \wedge k)
$$

(Argument similar to Dec. 9 notes).

- Tubular neighborhood $\approx \bar{v}(n) \cap k \times \Phi(g(-1))$
un s Base change holds

$$
\begin{aligned}
& f_{0} \quad \neq \quad \|^{p R K} \quad \phi^{*}\left(\delta_{x}\left(\mathbb{C}_{R S}[\operatorname{dimRS})\right)=\mu_{x}\left(C_{m}[\operatorname{dim} H]\right)\right. \\
& g(-1) \xrightarrow{ \pm} \stackrel{Q_{\max }}{\phi^{*}\left(P_{H}^{k}\left(\sigma_{x} \sigma_{R S}[\operatorname{dim} 2 s)\right)(\operatorname{din} \overline{0} x) \cong\right.} \\
& P_{H} H^{n}\left(\mu_{*}\left(c_{\mu}[\operatorname{dim} H]\right) .\right.
\end{aligned}
$$

$$
\phi^{\forall}\left(i_{\not(s)}^{x} \sigma_{x} C_{R S}[\operatorname{dim} R s]\right)=i_{y}^{\gamma} \mu_{y}\left(C_{m}[\operatorname{dim} H]\right) .
$$

In the $\mathrm{GL}\left(\mathrm{n}_{\mathrm{a}}, \mathrm{C}\right)$ case all local systems are trivial. As $\mathrm{G}(0)$ is a subgroup of K :

CAN WE MATCH THE MODULE STRUCTURES?

$$
i_{j}^{r}: A \rightarrow \operatorname{Nom}_{D_{j}}\left(i_{j}^{r} \oplus B^{-h}[-k), i_{j}^{r} \Theta B^{-b^{\prime}}\left[-n^{(}\right]\right) \text {. }
$$

$\operatorname{gr}($ right hand side of $\gamma)$ is a. $\mu_{0}=\operatorname{Hom}_{\dot{\delta}(\lg (4)}^{0}(\oplus \mathbb{B}^{-n}, \underbrace{\oplus \oplus^{-k}}_{\text {Perverse. }})$ module

$\operatorname{gr}($ Real side $)$ is a. $\quad f_{0}^{\mathbb{R}}=\operatorname{Hom}_{\infty}^{0}\left(\sigma / \mathbb{P} \quad(\not)_{\mathbb{B}}^{h}, \bar{B}_{\mathbb{R}}^{h^{\prime}}\right)$.

Base Change (using the normally non-singular inclusion :

$$
\begin{aligned}
& \Phi: g(-1) \rightarrow \bar{Q}_{\max } \subset G(P(\lambda) \\
& \text { of codimension }=\operatorname{dim} R S-\operatorname{dim} M \\
& =\operatorname{dim} \bar{U}(\lambda) n k=c \\
& \begin{aligned}
\Phi^{*} \bar{B}_{\mathbb{R}}^{k}[-c]= & \text { B }^{-k} \\
& \int_{\text {Heck }}^{\text {side. }} \\
& \text { Perverse. }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{B}_{n}^{n} \quad C L C
\end{aligned}
$$

$$
\begin{aligned}
& \text { As } \quad \phi_{1} \Phi^{j} k-k \quad \stackrel{?}{i} \quad t_{0} \rightarrow k_{0}^{\mathbb{R}} \\
& \text { (homo of } \\
& \text { alflbras? } \\
& \text { an iso? }
\end{aligned}
$$

- Similar questions when treeing to relate t $t^{\mathbb{R}} \ldots .$.

Does $\Phi^{\not *}$ intertwines the $t^{\mathbb{R}}$ and f-actions?

HOW TO IDENTIFY THE RELEVANT ORBITS? (Combinatorial aspect of the problem) EXAMPLE:

$$
\begin{aligned}
& G L(12, \mathbb{C}) \quad \lambda=[444333322111] \\
& G(0)=G(3) \times G L(4) \times G L(2) \times G L(3) \\
& K=G L(5) \times G L[7)
\end{aligned}
$$

$$
\text { Qu ans } t+t \ldots \ldots t+\cdots
$$

$$
g(-1) \simeq \operatorname{Ham}\left(v_{1} v_{2}\right)+\operatorname{Ham}\left(v_{2}, v_{3}\right)+\operatorname{Hom}\left(v_{3}, v_{4}\right) \quad v_{1} v_{2} v_{3} v_{4}
$$

$$
\operatorname{dim} g(-1)=12+3+6=26
$$

$$
\begin{aligned}
& P_{1}=L_{1} v_{1} \\
& P_{2}=L_{2} v_{2} \\
& P_{3}=L_{3} v_{3}
\end{aligned}
$$

$$
\begin{aligned}
& L_{1} \simeq G l(3) \times G L(4) \\
& L_{2} \simeq G L(4) \times G L(2) \\
& L_{3} \simeq G L(2) \times G L(3) \\
& \bar{Q}_{\max }=?
\end{aligned}
$$

$$
P(\Omega) \subset Z,
$$

$$
P(\Lambda) \subset P_{2}
$$

$$
P(\jmath) \subset P_{3}
$$

Step 1
(Base cate Dec 9) P_{1}

$$
+t+\cdots-\cdots
$$

$$
w_{1}=\left(s_{3} s_{2} s_{1} s_{4} s_{5} s_{6}\right)\left(s_{3} s_{2} s_{4} s_{5}\right)\left(s_{3} s_{4}\right)
$$

$$
\ell\left(\omega_{1}\right)=12
$$

$$
w_{1}^{-1}, Q_{0}=123 \sim 321+t \ldots
$$

Yama mold length 12
Step 2
P_{2}

$$
\begin{aligned}
& \cdots \underset{\partial 7}{-+t} \\
& w_{2}=\left(s_{7} s_{8} \quad s_{6} s_{5} s_{4}\right) \quad\left(s_{7} s_{6} s_{5}\right)
\end{aligned}
$$

$$
l\left(w_{2}\right)=8
$$

$$
w_{2}^{1} \cdot w_{1}^{1} \cdot Q_{0}=1234+4321 \cdots \quad \text { leal th }=8+12=20
$$

step 3 P_{3}

Same
mannll
(t) Builds from a Base case 1 ! simple non Compact).
(2) $\Lambda=\begin{aligned} & a_{1}-a_{1} \\ & a_{2}\end{aligned} a_{2} \cdot a_{2} \cdots 〕$ Assumes $a_{i-} a_{i-1}+1$.

A DIFFICULT EXAMPLE

Using Jeff's Example F_4 file (available on his web-page)

F_{4}	$\lambda=(3111)$	$0 \sim \neq 0$
Den "s notation.	α	β
	$\alpha=\left[\begin{array}{llll}1 & -1 & -1 & -1\end{array}\right] \quad \beta=\left[\begin{array}{llll}0 & 0 & 0 & 2\end{array}\right]$	
	$\gamma=\left[\begin{array}{llll}0 & 0 & 1 & -1\end{array}\right] \quad \delta=\left[\begin{array}{llll}0 & 1 & -1 & 0\end{array}\right]$	

$$
\operatorname{dim} g(2)=12
$$

$$
\gamma=\left[\begin{array}{llll}
0 & 0 & 1 & -1
\end{array}\right] \quad \delta=\left[\begin{array}{llll}
0 & 1 & -1 & 0
\end{array}\right]
$$

(A) Up to this point KL coincide.
$10 a t$
No $\{K L V$ poly. $(Q, V)\}$ matches \quad Dan's Computations.

$$
P_{10 \partial t, 0}^{\operatorname{Dan}}=P_{385,0}^{=}
$$

$\left.11 t \quad \# 287(213,46) \tau c^{-} c^{t} c^{-} c^{-}\right]:(11$ admits only one
11 s

$12(22)$	$\# 298(219,34)$	$\left[c^{-} c^{t} r_{2} c^{-}\right]$	V
$12(31)$	$\# 299(219,35)$		
$12(211)$	$\# 296(213,32)$	V	

(2 (4) $\quad P_{\mid 2,4-}(q)=P_{297,-}(q)-P_{298,-}(q)$

