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1 Introduction

This paper presents a definition for a family of Weyl group multiple Dirichlet series
(henceforth “MDS”) of Cartan type C using a combinatorial model for crystal bases
due to Berenstein-Zelevinsky [2] and Littelmann [12]. Recall that a Weyl group
MDS is a Dirichlet series in several complex variables which (at least conjecturally)
possesses analytic continuation to a meromorphic function and satisfies functional
equations whose action on the complex space is isomorphic to the given Weyl group.
In [1], we presented a definition for such a series in terms of a basis for highest weight
representations of Sp(2r,C) – Type C Gelfand-Tsetlin patterns – and proved that
the series satisfied the conjectured analytic properties in a number of special cases.
Here we recast that definition in the language of crystal bases and find that the
resulting MDS, whose form appears as an unmotivated miracle in the language of
Gelfand-Tsetlin patterns, is more naturally defined in this new language.

The family of MDS is indexed by a positive integer r, an odd positive integer n,
and an r-tuple of non-zero algebraic integers m = (m1, . . . ,mr) from a ring described
precisely in Section 3. In [1], we further conjectured (and proved for n = 1) that
this series matches the (m1, . . . ,mr)-th Whittaker coefficient of a minimal parabolic,
metaplectic Eisenstein series on an n-fold cover of SO(2r+ 1) over a suitable choice
of global field. It is known that the definition of MDS we present fails to have the
conjectured analytic properties if n is even, reflecting the essential interplay between
n and root lengths in our definition (see, for example, Section 3.6). An alternate
definition for Weyl group MDS attached to any root system (with completely general
choice of r, n, and m) was given by Chinta and Gunnells [8], who proved they possess
analytic continuation and functional equations. Our definition of MDS for type C is
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conjecturally equal to theirs, and this has been verified in a large number of special
cases.

The remainder of the paper is outlined as follows. In Sections 2 and 3, we
recall the model for the crystal basis from [12] and basic facts about Weyl group
MDS for any root system Φ. In Section 4, we define the MDS coefficients in terms
of crystal bases, and explain their relation to our earlier definition in [1]. (It is
instructive to compare this definition with that of [7].) Section 5 demonstrates how,
for any fixed choice of data determining a single MDS of type C, one may prove that
the resulting series satisfies the conjectured functional equations. Similar techniques
would be applicable to Weyl group MDS for any root system. As demonstrated in [5],
by Bochner’s theorem in several complex variables, the existence of such functional
equations then leads to a proof of the desired meromorphic continuation to the entire
complex space Cr.

The method for proving functional equations for a given Dirichlet series relies
on reduction to the rank one case, whose analytic properties were demonstrated by
Kubota [11]. Similar techniques were employed in [5] and [6], where the definition of
the Dirichlet series was much simpler having assumed that the defining datum n is
sufficiently large. Our methods indicate that the same should be true for arbitrary
choice of n and arbitrary root system, leading to several potential applications. First,
if one is interested in mean-value estimates for coefficients appearing in a given
Weyl group MDS, this method provides the necessary analytic information to apply
standard Tauberian techniques. More generally, one may take residues of the Weyl
group MDS to obtain a further class of Dirichlet series with analytic continuation.
In computing these residues, it is often useful to first express them in terms of rank
one Kubota Dirichlet series given by our method. (For a similar example in type A,
see [4].)

We thank Daniel Bump for helpful conversations and for assistance in preparing
Figure 1, which was made using SAGE [15]. We also thank Gautam Chinta, Sol
Friedberg, and Paul Gunnells for their continued willingness to share insights. This
work was partially supported by NSF grants DMS-0502730 (Beineke), DMS-0702438
and DMS-0844185 (Brubaker).

2 Littelmann’s polytope basis for crystals

Given a semisimple algebraic group G of rank r and a simple G-module Vµ of highest
weight µ, we may associate a crystal graph Xµ to Vµ. That is, there exists a cor-
responding simple module for the quantum group Uq(Lie(G)) having the associated
crystal graph structure. Roughly speaking, the crystal graph encodes data from the
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representation Vµ, and should be regarded as a kind of “enhanced character” for the
representation; for an introduction to crystal graphs, see [10] or [9]. For now, we
merely recall that the vertices of Xµ are in bijection with a basis of weight vectors
for the highest weight representation and the r “colored” edges of Xµ correspond to
simple roots α1, . . . , αr of G. Two vertices b1, b2 are connected by a (directed) edge
from b1 to b2 of color i if the Kashiwara lowering operator fαi

takes b1 to b2. If the
vertex b has no outgoing edge of color i, we set fαi

(b) = 0.
Littelmann gives a combinatorial model for the crystal graph as follows. Fix a

reduced decomposition of the long element w0 of the Weyl group of G into simple
reflections σi:

w0 = σi1σi2 · · ·σiN .

Given an element b (i.e. vertex) of the crystal Xµ, let t1 be the maximal integer
such that b1 := f t1αi1

(b) 6= 0. Similarly, let t2 be the maximal integer such that

b2 := f t2αi2
(b1) 6= 0. Continuing in this fashion in order of the simple reflections

appearing in w0, we obtain a string of non-negative integers (t1(b), . . . , tN(b)). We
often suppress this dependence on b, and simply write (t1, . . . , tN). Note that by
well-known properties of the crystal graph, we are guaranteed that for any reduced
decomposition of the long element and an arbitrary element b of the crystal, the path
f tNαiN
· · · f t1αi1

(b) through the crystal always terminates at blow, corresponding to the

lowest weight vector of the crystal graph Xµ.
Littelmann proves that, for any fixed reduced decomposition, the set of all se-

quences (t1, . . . , tN) as we vary over all vertices of all highest weight crystals Vµ
associated to G fill out the integer lattice points of a cone in RN . The inequalities
describing the boundary of this cone depend on the choice of reduced decomposition.
For a particular “nice” subset of the set of all reduced decompositions, Littelmann
shows that the cone is defined by a rather simple set of inequalities. (A precise defi-
nition of “nice” and numerous examples may be found in [12] and we will only make
use of one such example.) For any fixed highest weight µ, the set of all sequences
(t1, . . . , tN) for the crystal Xµ are the integer lattice points of a polytope in RN . The
boundary of the polytope consists of the hyperplanes defined by the cone inequalities
independent of µ, together with additional hyperplanes dictated by the choice of µ.

We now describe this geometry in the special case of Sp2r(C). We fix an enumer-
ation of simple roots chosen so that α1 is the unique long simple root and αi and
αi+1 correspond to adjacent nodes in the Dynkin diagram. This example is dealt
with explicitly in Section 6 of [12] with the following “nice decomposition” of the
long element of the associated Weyl group:

w0 = σ1(σ2σ1σ2)(. . .)(σr−1 . . . σ1 . . . σr−1)(σrσr−1 . . . σ1 . . . σr−1σr). (1)
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With N = r2, let t = (t1, t2, . . . , tN) be the string generated by traversing the
crystal graph from a given weight b to the highest weight µ as described above. An
example in rank 2 is given in Figure 1.
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Figure 1: The crystal graph for a highest weight representation Vλ of Sp(4) with λ = ε1 + 2ε2
(εi : fundamental dominant weights). The vertices of the graph have been labeled with their
corresponding sequence (t1, t2, t3, t4) obtained by traversing the graph by maximal paths in the
Kashiwara lowering operators in the respective order (f1, f2, f1, f2). This order is determined by
the decomposition of w0 = σ1σ2σ1σ2. For each vertex, t1 is centered in the bottom row, and the top
row is (t2, t3, t4) read left to right. The highlighted path demonstrates this for the vertex labeled
(1, 2, 1, 1). The picture has been drawn so that vertices that touch represent basis vectors in the
same weight space.

In order to describe the cone inequalities for Sp(2r,C) with w0 as in (1), it is
convenient to place the sequence t = (t1, t2, . . . , tN) in a triangular array. Following
Littelmann [12], construct a triangle ∆ consisting of r centered rows of boxes, with
2(r+ 1− i)− 1 entries in the row i, starting from the top. To any vector t ∈ Rr2 , let
∆(t) denote the filled triangle whose entries are the coordinates of t, with the boxes
filled from the bottom row to the top row, and from left to right. For notational
ease, we reindex the entries of ∆ using standard matrix notation; let ci,j denote the
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j-th entry in the i-th row of ∆, with i ≤ j ≤ 2r − i. Also, for convenience in the
discussion below, we will write ci,j := ci,2r−j for i ≤ j ≤ r. Thus when r = 3, we are
considering triangles of the form

c1,1 c1,2 c1,3 c1,2 c1,1

c2,2 c2,3 c2,2

c3,3

so that, for example,

t = (2, 2, 1, 1, 5, 3, 2, 2, 1) 7→ ∆(t) =

5 3 2 2 1

2 1 1

2
.

Given this notation, we may now state the cone inequalities.

Proposition 1 (Littelmann, [12], Theorem 6.1) For G = Sp(2r,C) and w0 as
in (1), the corresponding cone of all sequences t is given by the set of all triangles
∆(t) with non-negative entries {ci,j} that are weakly decreasing in rows.

Recall that for any fundamental dominant weight µ, the set of all paths t ranging
over all vertices of the crystal Xµ are the integer lattice points of a polytope Cµ in RN .
We now describe the remaining hyperplane inequalities which define this polytope.

Proposition 2 (Littelmann, [12] Corollary 6.1) Let G = Sp2r(C) and let w0 be
as in (1). Write µ = µ1ε1 + · · ·+ µrεr, with εi the fundamental weights. Then Cµ is
the convex polytope of all triangles ∆(ci,j) such that the entries in the rows are non-
negative and weakly increasing, and satisfy the following upper-bound inequalities for
all 1 ≤ i ≤ r and 1 ≤ j ≤ r − 1:

ci,j ≤ µr−j+1 + s(ci,j−1)− 2s(ci−1,j) + s(ci−1,j+1), (2)

ci,j ≤ µr−j+1 + s(ci,j−1)− 2s(ci,j) + s(ci,j+1), (3)

and ci,r ≤ µ1 + s(ci,r−1)− s(ci−1,r). (4)

In the above, we have set

s(ci,j) := ci,j +
i−1∑
k=1

(ck,j + ck,j), s(ci,j) :=
i∑

k=1

(ck,j + ck,j), s(ci,m) :=
i∑

k=1

2ck,m.
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We will call these triangular arrays “Berenstein-Zelevinsky-Littelmann patterns”
(or “BZL-patterns” for short). The set of patterns corresponding to all vertices in
a highest weight crystal Xµ will be referred to as BZL(µ).

3 Definition of the multiple Dirichlet series

In this section, we give the general shape of a Weyl group MDS, beginning with
the rank one case. In particular, we reduce the determination of the higher rank
Dirichlet series to it’s prime-power supported coefficients, which will be given in the
next section as a generating function over BZL-patterns.

3.1 Algebraic preliminaries

Given a fixed positive integer n, let F be a number field containing the 2nth roots
of unity, and let S be a finite set of places containing all ramified places over Q, all
archimedean places, and enough additional places so that the ring of S-integers OS
is a principal ideal domain. Recall that

OS = {a ∈ F | a ∈ Ov ∀v 6∈ S} ,

and can be embedded diagonally in FS =
∏

v∈S Fv. There exists a pairing

(·, ·)S : F×S × F
×
S −→ µn defined by (a, b)S =

∏
v∈S

(a, b)v,

where the (a, b)v are local Hilbert symbols associated to n and v.
To any a ∈ OS and any ideal b ∈ OS, we may associate the nth power residue

symbol
(
a
b

)
n

as follows. For prime ideals p, the expression
(
a
p

)
n

is the unique nth

root of unity satisfying the congruence(
a

p

)
n

≡ a(N(p)−1)/n (mod p).

We then extend the symbol to arbitrary ideals b by multiplicativity, with the con-
vention that the symbol is 0 whenever a and b are not relatively prime. Since OS is
a principal ideal domain by assumption, we will write(a

b

)
n

=
(a

b

)
n

for b = bOS
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and often drop the subscript n on the symbol when the power is clear from context.
Then if a, b are coprime integers in OS, we have the nth power reciprocity law

(cf. [13], Thm. 6.8.3) (a
b

)
= (b, a)S

(
b

a

)
. (5)

Lastly, for a positive integer t and a, c ∈ OS with c 6= 0, we define the Gauss sum
gt(a, c) as follows. First, choose a non-trivial additive character ψ of FS trivial on
the OS integers (cf. [3] for details). Then the nth-power Gauss sum is given by

gt(a, c) =
∑

d mod c

(
d

c

)t
n

ψ

(
ad

c

)
, (6)

where we have suppressed the dependence on n in the notation on the left.

3.2 Kubota’s rank one Dirichlet series

We now present Kubota’s Dirichlet series arising from the Fourier coefficient of an
Eisenstein series on an n-fold cover of SL(2, FS). It is the prototypical Weyl group
MDS and many of the general definitions of Section 3.4 can be understood as natural
extensions of those in the rank one case. Moreover, we will make repeated use of
the functional equation for the Kubota Dirichlet series when we demonstrate the
functional equations for higher rank MDS by reduction to rank one in Section 6.

A subgroup Ω ⊂ F×S is said to be isotropic if (a, b)S = 1 for all a, b ∈ Ω. In
particular, Ω = OS(F×S )n is isotropic (where (F×S )n denotes the nth powers in F×S ).
Let Mt(Ω) be the space of functions Ψ : F×S −→ C that satisfy the transformation
property

Ψ(εc) = (c, ε)−tS Ψ(c) for any ε ∈ Ω, c ∈ F×S . (7)

For Ψ ∈Mt(Ω), consider the “Kubota Dirichlet series”

Dt(s,Ψ, a) =
∑

0 6=c∈Os/O×s

gt(a, c)Ψ(c)

|c|2s
. (8)

Here |c| is the order of OS/cOS, gt(a, c) is as in (6) and the term gt(a, c)Ψ(c)|c|−2s is
independent of the choice of representative c, modulo S-units. Standard estimates
for Gauss sums show that the series is convergent if R(s) > 3

4
. To state a precise

functional equation, we require the Gamma factor

Gn(s) = (2π)−2(n−1)sn2ns

n−2∏
j=1

Γ

(
2s− 1 +

j

n

)
. (9)
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In view of the multiplication formula for the Gamma function, we may also write

Gn(s) = (2π)−(n−1)(2s−1) Γ(n(2s− 1))

Γ(2s− 1)
.

Let
D∗t (s,Ψ, a) = Gm(s)[F :Q]/2ζF (2ms−m+ 1)Dt(s,Ψ, a), (10)

where m = n/ gcd(n, t), 1
2
[F : Q] is the number of archimedean places of the totally

complex field F , and ζF is the Dedekind zeta function of F .
If v ∈ Sfin, the non-archimedean places of S, let qv denote the cardinality of the

residue class field Ov/Pv, where Ov is the local ring in Fv and Pv is its prime ideal.
By an S-Dirichlet polynomial we mean a polynomial in q−sv as v runs through the
finitely many places of Sfin. If Ψ ∈Mt(Ω) and η ∈ F×S , denote

Ψ̃η(c) = (η, c)S Ψ(c−1η−1). (11)

Then we have the following result (Theorem 1 in [6]), which follows from the work
of Brubaker and Bump [3].

Theorem 1 Let Ψ ∈ Mt(Ω) and a ∈ OS. Let m = n/ gcd(n, t). Then D∗t (s,Ψ, a)
has meromorphic continuation to all s, analytic except possibly at s = 1

2
± 1

2m
, where

it may have simple poles. There exist S-Dirichlet polynomials P t
η(s) depending only

on the image of η in F×S /(F
×
S )n such that

D∗t (s,Ψ, a) = |a|1−2s
∑

η∈F×S /(F×S )n

P t
aη(s)D∗t (1− s, Ψ̃η, a). (12)

This result, based on ideas of Kubota [11], relies on the theory of Eisenstein series.
The case t = 1 is handled in [3]; the general case follows as discussed in the proof of
Proposition 5.2 of [5]. Notably, the factor |a|1−2s is independent of the value of t.

3.3 Root systems

Before proceeding to the definition of higher-rank MDS, which uses the language of
the associated root system, we first fix notation and recall a few basic results.

Let Φ be a reduced root system contained in a real vector space V of dimension r.
The dual vector space V ∨ contains a root system Φ∨ in bijection with Φ, where the
bijection switches long and short roots. If we write the dual pairing

V × V ∨ −→ R : (x, y) 7→ B(x, y), (13)
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then B(α, α∨) = 2. Moreover, the simple reflection σα : V → V corresponding to α
is given by

σα(x) = x−B(x, α∨)α.

In particular σα preserves Φ. Similarly we define σα∨ : V ∨ → V ∨ by σα∨(x) =
x−B(α, x)α∨ with σα∨(Φ∨) = Φ∨.

Without loss of generality, we may take Φ to be irreducible (i.e., there do not
exist orthogonal subspaces Φ1,Φ2 with Φ1 ∪ Φ2 = Φ). Then set 〈·, ·〉 to be the
Euclidean inner product on V and ||α|| =

√
〈α, α〉 the Euclidean norm, normalized

so that 2〈α, β〉 and ||α||2 are integral for all α, β ∈ Φ. With this notation, we may
alternately write

σα(β) = β − 2〈β, α〉
〈α, α〉

α for any α, β ∈ Φ. (14)

We partition Φ into positive roots Φ+ and negative roots Φ− and let ∆ =
{α1, . . . , αr} ⊂ Φ+ denote the subset of simple positive roots. Let εi for i = 1, . . . , r
denote the fundamental dominant weights satisfying

2〈εi, αj〉
〈αj, αj〉

= δij, δij : Kronecker delta. (15)

Any dominant weight λ is expressible as a non-negative linear combination of the εi,
and a distinguished role in the theory is played by the Weyl vector ρ, defined by

ρ =
1

2

∑
α∈Φ+

α =
r∑
i=1

εi. (16)

3.4 The form of higher rank multiple Dirichlet series

We now begin explicitly defining the multiple Dirichlet series, retaining our previous
notation. By analogy with the rank 1 definition in (7), given an isotropic subgroup Ω,
letM(Ωr) be the space of functions Ψ : (F×S )r −→ C that satisfy the transformation
property

Ψ(εc) =

(
r∏
i=1

(εi, ci)
||αi||2
S

∏
i<j

(εi, cj)
2〈αi,αj〉
S

)
Ψ(c) (17)

for all ε = (ε1, . . . , εr) ∈ Ωr and all c = (c1, . . . , cr) ∈ (F×S )r.
Given a reduced root system Φ of fixed rank r, an integer n ≥ 1, m ∈ OrS, and

Ψ ∈ M(Ωr), then we define a multiple Dirichlet series as follows. It is a function
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of r complex variables s = (s1, . . . , sr) ∈ Cr of the form

ZΨ(s; m) := ZΨ(s1, . . . , sr;m1, . . . ,mr) =
∑

c=(c1,...,cr)∈(OS/O×S )r

H(n)(c; m)Ψ(c)

|c1|2s1 · · · |cr|2sr
. (18)

The function H(n)(c; m) carries the main arithmetic content. In general it is not
a multiplicative function, but rather a “twisted multiplicative” function. That is, for
S-integer vectors c, c′ ∈ (OS/O×S )r with gcd(c1 · · · cr, c′1 · · · c′r) = 1,

H(n)(c1c
′
1, . . . , crc

′
r; m) = µ(c, c′)H(n)(c; m)H(n)(c′; m) (19)

where µ(c, c′) is an nth root of unity depending on c, c′. It is given precisely by

µ(c, c′) =
r∏
i=1

(
ci
c′i

)||αi||2

n

(
c′i
ci

)||αi||2

n

∏
i<j

(
ci
c′j

)2〈αi,αj〉

n

(
c′i
cj

)2〈αi,αj〉

n

(20)

where
( ·
·

)
n

is the nth power residue symbol defined in Section 3.1. Note that in the
special case Φ = A1, the twisted multiplicativity in (19) and (20) agrees with the
usual identity for Gauss sums appearing in the numerator for the rank one case given
in (8).

The transformation property of functions in M(Ωr) in (17) above is, in part,
motivated by the identity

H(n)(εc; m)Ψ(εc) = H(n)(c; m)Ψ(c) for all ε ∈ OrS, c,m ∈ (F×S )r.

This can be verified using the nth power reciprocity law from Section 3.1.
The function H(n)(c; m) also exhibits a twisted multiplicativity in m. Given any

m,m′, c ∈ OrS with gcd(m′1 · · ·m′r, c1 · · · cr) = 1, we let

H(n)(c;m1m
′
1, . . . ,mrm

′
r) =

r∏
i=1

(
m′i
ci

)−||αi||2

n

H(n)(c; m). (21)

The definitions in (19) and (21) imply that it is enough to specify the coefficients
H(n)(pk1 , . . . , pkr ; pl1 , · · · , plr) for any fixed prime p with li = ordp(mi) in order to
completely determine H(n)(c; m) for any pair of S-integer vectors m and c. These
prime-power coefficients are described in terms of data from highest-weight repre-
sentations associated to (l1, · · · , lr) and will be given precisely in Section 4.
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3.5 Weyl group actions

In order to precisely state a functional equation for the Weyl group multiple Dirichlet
series defined in (18), we require an action of the Weyl group W of Φ on the complex
parameters (s1, . . . , sr). This arises from the linear action of W , realized as the group
generated by the simple reflections σα∨ , on V ∨. From the perspective of Dirichlet
series, it is more natural to consider this action shifted by ρ∨, half the sum of the
positive co-roots. Then each w ∈ W induces a transformation V ∨C = V ∨ ⊗ C → V ∨C
(still denoted by w) if we require that

B(wα,w(s)− 1

2
ρ∨) = B(α, s− 1

2
ρ∨).

We introduce coordinates on V ∨C using simple roots ∆ = {α1, . . . , αr} as follows.
Define an isomorphism V ∨C → Cr by

s 7→ (s1, s2, . . . , sr) si = B(αi, s). (22)

This action allows us to identify V ∨C with Cr, and so the complex variables si that
appear in the definition of the multiple Dirichlet series may be regarded as coordi-
nates in either space. It is convenient to describe this action more explicitly in terms
of the si and it suffices to consider simple reflections which generate W . Using the
action of the simple reflection σαi

on the root system Φ given in (14) in conjunction
with (22) above gives the following:

Proposition 3 The action of σαi
on s = (s1, . . . , sr) defined implicitly in (22) is

given by

sj 7→ sj −
2〈αj, αi〉
〈αi, αi〉

(
si −

1

2

)
j = 1, . . . , r. (23)

In particular, σαi
: si 7→ 1− si. For convenience, we will write σi for σαi

.

3.6 Normalizing factors and functional equations

The multiple Dirichlet series must also be normalized using Gamma and zeta factors
in order to state precise functional equations. Let

n(α) =
n

gcd(n, ||α||2)
, α ∈ Φ+.

For example, if Φ = Cr and we normalize short roots to have length 1, this implies
that n(α) = n unless α is a long root and n even (in which case n(α) = n/2). By
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analogy with the zeta factor appearing in (10), for any α ∈ Φ+, let

ζα(s) = ζ

(
1 + 2n(α)B(α, s− 1

2
ρ∨)

)
where ζ is the Dedekind zeta function attached to the number field F . Further,
for Gn(s) as in (9), we may define

Gα(s) = Gn(α)

(
1

2
+B(α, s− 1

2
ρ∨)

)
. (24)

Then for any m ∈ OrS, the normalized multiple Dirichlet series is given by

Z∗Ψ(s; m) =

[ ∏
α∈Φ+

Gα(s)ζα(s)

]
ZΨ(s,m). (25)

For any fixed n, m and root system Φ, we seek to exhibit a definition for
H(n)(c; m) (or equivalently, given twisted multiplicativity, a definition of H at prime-
power coefficients) such that Z∗Ψ(s; m) satisfies functional equations of the form:

Z∗Ψ(s; m) = |mi|1−2siZ∗σiΨ
(σis; m) (26)

for all simple reflections σi ∈ W . Here, σis is as in (23) and the function σiΨ, which
essentially keeps track of the rather complicated scattering matrix in this functional
equation, is defined as in (37) of [6]. As noted in Section 7 of [6], given functional
equations of this type, one can obtain analytic continuation to a meromorphic func-
tion of Cr with an explicit description of polar hyperplanes.

4 Definition of the prime-power coefficients

In this section, we use crystal graphs to give a definition for the p-power coefficients
H(n)(pk; pl) in a multiple Dirichlet series for the root system Cr with n odd. More
precisely, the p-power coeffcients will be given as weighted sums over the BZL-
patterns defined in Section 2 that have weight corresponding to k. Given a fixed
r-tuple of integers l = (l1, . . . , lr), let

λ =
r∑
i=1

liεi, (27)
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where εi are fundamental dominant weights. The contributions to H(n)(pk; pl) are
parametrized by basis vectors of the highest weight representation with highest
weight λ + ρ, where ρ is the Weyl vector for Cr defined in (16). We use the set of
BZL-patterns BZL(λ+ ρ) as our combinatorial model for these basis vectors.

The contributions to each H(n)(pk; pl) come from a single weight space corre-
sponding to k = (k1, . . . , kr) in the highest weight representation λ+ρ corresponding
to l. Given a BZL-pattern ∆ = ∆(ci,j), define the vector

k(∆) = (k1(∆), k2(∆), . . . , kr(∆))

with

k1(∆) =
r∑
i=1

ci,r, and kj(∆) =

r+1−j∑
i=1

(ci,r+1−j + ci,r+1−j), for 1 < j ≤ r. (28)

We define

H(n)(pk; pl) = H(n)(pk1 , . . . , pkr ; pl1 , . . . , plr) =
∑

∆∈BZL(λ+ρ)
k(∆)=(k1,...,kr)

G(∆) (29)

where G(∆) is a weighting function to be defined presently.
To this end, we will apply certain decoration rules to the BZL-patterns. These

decorations will consist of boxes and circles around the individual entries of the
pattern, applied according to the following rules:

1. The entry ci,j is circled if ci,j = ci,j+1. We understand the entries outside the
triangular array to be zeroes, so the right-most entry in a row will be circled if
it equals 0.

2. The entry ci,j is boxed if equality holds in the upper-bound inequality of Propo-
sition 2 having ci,j as the lone term on the left-hand side.

We illustrate these rules in the following rank 3 example. Let (l1, l2, l3) = (0, 1, 1).
Then there are 9 upper bound inequalities for the polytope Cλ+ρ. We state them for
the five top row elements c1,j, leaving the rest to the reader:

c1,1 ≤ 2, c1,2 ≤ 2 + c1,1 c1,3 ≤ 1 + c1,2

c1,2 ≤ 2 + c1,1 − 2c1,2 + c1,3, c1,1 ≤ 2− 2c1,1 + c1,2 + c1,2.

We may now decorate any pattern occurring in BZL(λ + ρ). For example, the
following BZL-pattern (with decorations) occurs in this set:

13



5 3 2m2 1

2 1m1

2
. (30)

To each entry ci,j in a decorated ∆(c), we associate the complex-valued function

γ(ci,j) =



qci,j if ci,j is circled (but not boxed),

g1(pci,j−1, pci,j ) if ci,j is boxed (but not circled), and j 6= r,

g2(pci,j−1, pci,j ) if ci,j is boxed (but not circled), and j = r,

φ(pci,j ) if ci,j is neither boxed nor circled,

0 if ci,j is both boxed and circled,

(31)

where gt(p
α, pβ) is an nth-power Gauss sum as in (6), φ(pa) denotes Euler’s totient

function for OS/paOS, and q = |OS/pOS|. Then at last, we may define the weighting
function appearing in (29) by

G(∆) =
∏

1≤i≤r,
i≤j≤2r−1

γ(ci,j). (32)

For instance, in (30), we find that

γ(c1,1) = g1(p4, p5), γ(c1,3) = q2, and γ(c1,2) = φ(p2).

Computing the remaining γ(ci,j)’s for ∆ in (30), we have

G(∆) = {g1(p4, p5)g1(p2, p3)q2φ(p2)φ(p)} · {φ(p2)qφ(p)} · φ(p2).

Note that the definition implies that some BZL-patterns ∆ will have G(∆) = 0.
For instance, in rank 2 with l1 = 3 and l2 = 4, the decorated pattern

∆ = 5j 5 5l
3

occurs, and has G(∆) = 0.
The definition of G(∆) in (32) completes the definition of the prime-power co-

efficients H(n)(pk; pl) in (29). According to the twisted multiplicativity given in
Section 3.4, this completely determines the coefficients of the multiple Dirichlet se-
ries ZΨ(s; m) defined in (18).
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5 Equality of the GT and BZL descriptions

In Section 3 of [1], we gave an alternate definition for the p-power coefficients using
Gelfand-Tsetlin patterns (henceforth “GT -patterns”) as our combinatorial model for
the highest weight representation. In this section, we will demonstrate that the two
definitions for p-power coefficients H(n)(pk; pl) in terms of GT -patterns and BZL-
patterns are indeed the same.

A GT -pattern P associated to Sp(2r,C) has the form

P =

a0,1 a0,2 · · · a0,r

b1,1 b1,2 · · · b1,r−1 b1,r

a1,2 · · · a1,r

. . . . . .
...

ar−1,r

br,r

(33)

where the ai,j, bi,j are non-negative integers and the rows of the pattern interleave.
That is, for all ai,j, bi,j in the pattern P above,

min(ai−1,j, ai,j) ≥ bi,j ≥ max(ai−1,j+1, ai,j+1)

and
min(bi+1,j−1, bi,j−1) ≥ ai,j ≥ max(bi+1,j, bi,j).

A careful summary of patterns of this type arising from branching rules for classical
groups can be found in [14] building on the work of [16].

Let λ+ ρ = (l1 + 1)ε1 + · · ·+ (lr + 1)εr and set

(Lr, · · · , L1) := (l1 + l2 + · · ·+ lr + r, . . . , l1 + l2 + 2, l1 + 1). (34)

Then the set of all GT -patterns with top row (a0,1, . . . , a0,r) = (Lr, . . . , L1) forms a
basis for the highest weight representation with highest weight λ + ρ. We refer to
this set of patterns as GT (λ+ ρ).

Proposition 4 (Littelmann, [12] Corollary 6.2) The following equations induce
a bijection of sets ϕ between GT (λ+ ρ) and BZL(λ+ ρ):

ci,j =

j∑
m=1

(ai−1,m − bi,m) , for i ≤ j ≤ r,

and ci,j = ci,r +

r−j∑
m=1

(ai,r+1−m − bi,r+1−m) , for i < j ≤ r − 1.

(35)
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Remark 1 The map given in Corollary 2 of Section 6 in [12] is actually the inverse
of the map defined by (35). (Note that there are several typographical errors in the
presentation of the map in [12].) In that same section, Littelmann gives an example
illustrating this correspondence, in the case of rank 3. This example is given below,
with the corrected first entry in the second row.

9 5 1
6 5 0

5 3
5 2

3
1

←→

7 7 4 3 3

2 1 0

2

Using the bijection of the previous proposition, we may now compare the two
definitions for prime-power coefficients of the multiple Dirichlet series.

Proposition 5 Given a fundamental dominant weight λ, let GGT be the function
defined on Gelfand-Tsetlin patterns P in GT (λ+ ρ) in Definition 3 of [1]. Let G(∆)
be the function defined on BZL patterns in (32). Then, with ϕ the bijection of
Proposition 4,

GGT ((P )) = G(ϕ(P )).

Proof It suffices to check that the cases defining the function on GT -patterns match
those for BZL-patterns. Indeed, one must check that “maximal” and “minimal”
entries in GT -patterns correspond to boxing and circling, respectively, in BZL-
patterns. This is a simple consequence of the bijection in Proposition 4, and we
leave the case analysis to the reader. �

6 Functional equations by reduction to rank one

In this section, we provide evidence toward global functional equations for the multi-
ple Dirichlet series ZΨ(s; m) through a series of computations in a particular rank 2
example. We will demonstrate that these multiple Dirichlet series are, in some sense,
built from combinations of rank 1 Kubota Dirichlet series and thus inherit their func-
tional equations. Similar techniques to those presented here would apply for arbitrary
rank.

Recall from (23) that, in rank 2, we expect functional equations corresponding
to the simple reflections

σ1 : (s1, s2) 7→ (1− s1, s1 + s2− 1/2) and σ2 : (s1, s2) 7→ (s1 + 2s2− 1, 1− s2), (36)
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which generate a group acting on (s1, s2) ∈ C2 isomorphic to the Weyl group of C2,
the dihedral group of order 8.

With notations as before, let n = 3, and m = (p2, p1) for some fixed OS prime p.
Then we will illustrate how our definition of the coefficients H(3)(c; p2, p) leads to a
multiple Dirichlet series ZΨ(s; p2, p) satisfying the functional equations

ZΨ(s1, s2; p2, p)→ |p2|1−2s1Zσ1Ψ(1− s1, s1 + s2 − 1/2; p2, p) (37)

and
ZΨ(s1, s2; p2, p)→ |p|1−2s2Zσ2Ψ(s1 + 2s2 − 1, 1− s2; p2, p) (38)

corresponding to the above simple reflections according to (26).
Our strategy is quite simple. To demonstrate the functional equation correspond-

ing to σ1, write

ZΨ(s1, s2; p2, p) =
∑

c2∈OS/O×S

|c2|−2s2
∑

c1∈OS/O×S

H(3)(c1, c2; p2, p)Ψ(c)

|c1|2s1
(39)

and attempt to realize the inner sum, for any fixed c2, in terms of rank 1 Kubota
Dirichlet series whose one-variable functional equations are all compatible with the
global functional equation in (37). Similar methods apply for the other simple re-
flection. One difficulty with this approach is that our definitions for H(n)(c; m) up
to this point have been “local” – that is, we have only provided explicit definitions
for the prime power supported coefficients. Of course, our requirement that the
H(n)(c; m) satisfy twisted multiplicativity then uniquely defines the coefficients for
any r-tuple of integers c, but there are many complications in attempting to patch
together the prime-power supported pieces to reconstruct a global series.

This strategy was precisely carried out in [5] and [6] for any root system Φ
provided n is sufficiently large. Such values of n are referred to as stable (see [6] for
the precise statement). Indeed, global objects were reconstructed from the prime-
power supported contributions by meticulously checking that all Hilbert symbols
and nth power residue symbols combine neatly into Kubota Dirichlet series with
the required twisted multiplicativity. Our purpose here is not to get bogged down
in these complications, but rather to show how global functional equations can be
anticipated simply by considering the prime-power supported coefficients. According
to [6], the example with m = (p2, p) will have a simple description only if n ≥ 7,
hence when n = 3, the results of [6] do not apply. Nevertheless, as we will explain,
our method of reduction to the rank 1 case is still viable.
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6.1 Analysis of H(3)(c1, c2; p
2, p) with prime-power support

The nature of H(3)(c1, c2; p2, p) with c1, c2 powers of a fixed prime depends critically
on whether that prime is p, the fixed prime occurring in m = (p2, p), or a distinct
prime ` 6= p. The prime-power supported coefficients H(3)(`k1 , `k2 ; p2, p) at primes
` 6= p have identical support (k1, k2) for any such prime ` (as the support depends
only on ord`(m1) and ord`(m2)) and a uniform description as products of Gauss
sums in terms of `. The (k1, k2) coordinates of this support are depicted in Figure 2
– the result of the affine linear transformation of the weights in the corresponding
highest weight representation ρ. The vertex in the bottom left corner is placed at
(k1, k2) = (0, 0). At each of the vertices in the interior, the number shown indicates
the number of BZL-patterns associated with that vertex, that is, the multiplicity
in the associated weight space. These counts include both singular and non-singular
patterns, though singular patterns give no contribution to the multiple Dirichlet
series for any n. Support on the boundary is indicated by black dots, each with a
unique corresponding BZL-pattern.

�
�

�
�
�
�

�
�

�
�

�
�

k1

k2

t t t
tttt

t 2

2 2

2

Figure 2: Support (k1, k2) for H(3)(`k1 , `k2 ; p2, p) (with indicated multiplicities of contributing
BZL patterns ∆ having k(∆) = (k1, k2)).

For n = 3 each of the 8 patterns ∆ (4 singular, 4 non-singular) in the interior
of the polygon of support have G(∆) = 0, so the only non-zero contributions come
from the 8 boundary vertices. Note that these are just the “stable” vertices, which
have G(∆) non-zero for all n.

The coefficients H(3)(pk1 , pk2 ; p2, p1) are much more interesting. Recall these co-
efficients are parametrized by BZL-patterns with the coordinates of λ+ ρ given by
(L2, L1) = (5, 3), as in (34). The supporting vertices (k1, k2) for the p-part are shown
below in Figure 3. On the support’s boundary, stable vertices are indicated by filled
circles and unstable vertices are indicated by open circles, all with multiplicity one.

Again, the choice of n = 3 will make G(∆) = 0 for many of the patterns ∆
occurring at these support vertices. Roughly speaking, the non-zero support for
any fixed n forms an n × n regular lattice beginning at the origin. However, this
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Figure 3: Support (k1, k2) for H(3)(pk1 , pk2 ; p2, p) (with indicated multiplicities of contributing
BZL patterns ∆).

lattice becomes somewhat distorted by the boundary of the polygon, particularly the
location of the stable vertices. In fact, our choice of (L2, L1) = (5, 3) in this example
is so small that this phenomenon is essentially obscured.

6.2 Three specific examples

Returning to the discussion of functional equations, we will first demonstrate a func-
tional equation corresponding to the simple reflection σ1 taking s1 7→ 1− s1. Recall
our strategy is to show that for any choice of c2, we may write the inner sum in (39)
in terms of Kubota Dirichlet series. For example, let c2 = p8. By twisted multi-
plicativity, we see that H(3)(c1, p

8; p2, p) will be 0 unless ord`(c1) ≤ 1 for all primes
` 6= p (as evident from Figure 2, since we seek `-power terms with support k2 = 0).
More interestingly, using Figure 3, we see that p-power terms with k2 = 8 must have
3 ≤ ordp(c1) ≤ 8. Let’s examine the p-power coefficients more closely.

6.2.1 The functional equation σ1 with k2 = 8

As seen in Figure 3, H(3)(pk1 , pk2 ; p2, p) with k2 = 8 has support at 6 lattice points
(k1, 8) with a total of 16 BZL-patterns. Having chosen n = 3 (so that all Gauss
sums appearing are formed with a cubic residue symbol), one checks that only five
of these 16 BZL-patterns have non-zero Gauss sum products associated to them.
These are listed in the table below.
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∆ k(∆) G(∆) G(∆) for n = 3

8 3 0

0

mm (3, 8) g2(p2, p3) g1(p7, p8) −|p|2g1(p7, p8)

6 5 2

0m (5, 8) g1(p1, p2) g2(p4, p5) g1(p7, p6) |p|6φ(p6)

8 3 0

3

m
(6, 8) g2(p2, p3) g1(p7, p8) g2(p4, p3) −|p|2g1(p7, p8)φ(p3)

6 5 2

1
(6, 8) g1(p1, p2) g2(p4, p5) g1(p7, p6) g2(1, p) |p|6φ(p6)g2(1, p)

8 3 0

5

m
(8, 8) g2(p2, p3) g1(p7, p8) g2(p4, p5) −|p|2g1(p7, p8)g2(p4, p5)

We have computed the final column in the table from the third column, using
the following three elementary properties of nth-order Gauss sums at prime powers,
which can be proved easily from the definition in (6):

1. If a ≥ b, then gt(p
a, pb) =

{
φ(pb) n|tb,
0 n - tb.

2. For any integers a and t, gt(p
a−1, pa) = |p|a−1gat(1, p).

3. For any integer t, gt(1, p) gn−t(1, p) = |p|.

For notational convenience, let the inner sum in (39) be denoted

F (s1; c2) =
∑

c1∈OS/O×S

H(3)(c1, c2; p2, p)Ψ(c)

|c1|2s1
. (40)
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Fix c2 = p8 and let

F (p)(s1; p8) =
∑
k1

H(3)(pk1 , p8; p2, p)Ψ(pk1 , p8)

|p|2k1s1
. (41)

From the table above, this sum is supported at k1 = 3, 5, 6 and 8, so that F (p)(s1; p8)
equals

−|p|2 g1(p7, p8)Ψ(p3, p8)

|p|6s1

[
1 +

g2(p4, p3)

|p|6s1
Ψ(p6, p8)

Ψ(p3, p8)
+
g2(p4, p5)

|p|10s1

Ψ(p8, p8)

Ψ(p3, p8)

]
+
|p|6φ(p6)Ψ(p5, p8)

p10s1

[
1 +

g2(1, p)

|p|2s1
· Ψ(p6, p8)

Ψ(p5, p8)

]
(42)

Ignoring complications from the Ψ function, both bracketed sums may be expressed
as the p-part of a Kubota Dirichlet series in s1. Indeed, letting D(p)

2 denote the
prime-power supported coefficients of the Kubota Dirichlet series D2 in (8), then

D(p)
2 (s1,Ψ

′, p4) =

[
1 +

g2(p4, p3)

|p|6s1
Ψ(p6, p8)

Ψ(p3, p8)
+
g2(p4, p5)

|p|10s1

Ψ(p8, p8)

Ψ(p3, p8)

]
for some appropriately defined Ψ′ ∈M2(Ω), as D(p)

2 (s1,Ψ
′, p4) contains g2(p4, pk1) in

the numerator, which is non-zero only if k1 = 0, 3 or 5 when n = 3. Similarly,

D(p)
2 (s1,Ψ

′′, 1) =

[
1 +

g2(1, p)

|p|2s1
· Ψ(p6, p8)

Ψ(p5, p8)

]
for an appropriately defined Ψ′′ ∈M2(Ω). Thus, according to (42), we may express
F (p)(s1) as the sum of p-parts of Kubota Dirichlet series multiplied by Dirichlet
monomials. The reader interested in checking all details regarding the Ψ function
should refer to Section 5 of [5]; our notation for the one-variable Ψ′ or Ψ′′ in M2(Ω)
derived from Ψ(c1, c2) is called Ψc1,c2 in Lemma 5.3 of [5].

In order to reconstruct the global object F (s1; c2) with c2 = p8, we now turn to
the analysis at primes ` 6= p. Since ord`(c2) = 0, then we can reconstruct F (s1; p8)
from the twisted multiplicativity in (19) and (21) together with knowledge of terms
of the form H(3)(`k1 , 1; p2, p). Then define

F (`)(s1; 1) =
∑
k1

H(3)(`k1 , 1; p2, p)Ψ(`k1 , p8)

|`|2k1s1
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for all primes ` 6= p. Using twisted multiplicativity in (21),

F (`)(s1; 1) =
∑
k1

(
p2

`k1

)−2

3

(p
1

)−1

3

H(3)(`k1 , 1; 1, 1)Ψ(`k1 , p8)

|`|2k1s1

= Ψ(1, p8) +

(
p2

`

)−2

3

H(3)(`1, 1; 1, 1)Ψ(`1, p8)|`|−2s1

= Ψ(1, p8)

[
1 +

(
p2

`

)−2

3

g2(1, `)

|`|2s1
Ψ(`1, p8)

Ψ(1, p8)

]
.

To summarize, we have found that

F (p)(s1; p8) =
−|p|2 g1(p7, p8)Ψ(p3, p8)

|p|6s1
D(p)

2 (s1,Ψ
′, p4)+

|p|6φ(p6)Ψ(p5, p8)

|p|10s1
D(p)

2 (s1,Ψ
′′, 1)

and

F (`)(s1; 1) = Ψ(1, p8)

[
1 +

(
p2

`

)−2

3

g2(1, `)

|`|2s1
Ψ(`1, p8)

Ψ(1, p8)

]
, for all primes ` 6= p.

Now using twisted multiplicativity, we can reconstruct F (s1; p8). We claim that

F (s1; p8) =
−|p|2 g1(p7, p8)Ψ(p3, p8)

|p|6s1
D2(s1,Ψ

′, p4) +
|p|6φ(p6)Ψ(p5, p8)

|p|10s1
D2(s1,Ψ

′′, 1).

This may be directly verified up to Hilbert symbols (i.e. ignoring Hilbert symbols
in the power reciprocity law in (5)) by using twisted multiplicativity to reconstruct
H(c1, p

8; p2, p) from F (p)(s1; p8) and F (`)(s1; 1). But to give a full accounting with
Hilbert symbols one needs to verify that the “left-over” Hilbert symbols from re-
peated applications of reciprocity are precisely those required for the definitions of
Ψ′ and Ψ′′ (again referring to Lemma 5.3 of [5]).

We now return to our general strategy of demonstrating the functional equation
σ1 as in (36). The function ZΨ(s1, s2; p2, p) as in (39) with fixed c2 = p8 yields
F (s1; p8) as above. We must verify that this portion of ZΨ(s1, s2; p2, p) is consistent
with the desired global functional equation

ZΨ(s1, s2; p2, p)→ |p2|1−2s1Zσ1Ψ(1− s1, s1 + s2 − 1/2; p2, p)
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presented at the outset of this section. By Theorem 1,

D2(s1,Ψ
′, p4)→ |p4|1−2s1D2(1− s1,Ψ

′, p2)

and |p|−6s1−16s2 → |p|2−10s1−16s2 under σ1. Similarly, D2(s1,Ψ
′′, 1)→ D2(1−s1,Ψ

′′, p2)
and |p|−10s1−16s2 → |p|−2−6s1−16s2 under σ1. Taken together, these calculations imply
that

F (s1; p8)

|p8|2s2
→ |p2|1−2s1

F (1− s1; p8)

|p8|2(s1+s2−1/2)
,

which is consistent with the global functional equation for ZΨ above.
Throughout the above analysis, we chose to restrict to the case where c2 = p8 to

limit the complexity of the calculation. However, identical methods could be used
to determine the global object for arbitrary choice of c2 depending on the order of p
dividing c2, and hence verify the global functional equation for σ1 in full generality.

Remark 2 With respect to the s1 functional equation, it turns out to be quite simple
to figure out which BZL-patterns contribute to a particular Kubota Dirichlet series
appearing in F (s1; pk2). All such BZL-patterns have identical top rows but differ in
the bottom row entry. This entry increases as we increase k1, as can be verified in
our earlier table with k2 = 8. However, as we will see in the next section, functional
equations in s2 and the respective Kubota Dirichlet series used in asserting them
obey no such simple pattern.

6.2.2 The functional equation σ2 with k1 = 3

We now repeat the methods of the previous section to demonstrate a functional
equation under σ2. As we will show, it is significantly more difficult to organize the
local contributions into linear combinations of Kubota Dirichlet series in terms of
s2. Once this is accomplished, the analysis proceeds along the lines of the previous
section, so we omit further details.

Let c1 = p3 be fixed. Mimicking our notation from the previous section, we now
set

F (s2; p3) =
∑
k2

H(3)(p3, c2; p2, p)Ψ(p3, c2)

|c2|2s2
. (43)

As in the previous section, the bulk of the difficulty lies in analyzing

F (p)(s2; p3) =
∑
k2

H(3)(p3, pk2 ; p2, p)Ψ(p3, pk2)

|p|2k2s2
.
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Again referring to Figure 3, coefficients H(3)(pk1 , pk2 ; p2, p) with k1 = 3 involve
9 different vertices and a total of 30 BZL-patterns, only six of which give nonzero
contributions in the case when n = 3. In the table below, we list only those BZL-
patterns yielding nonzero Gauss sums. The final column has again been computed
from the third column, using the elementary properties of nth-order Gauss sums
mentioned in the previous subsection.

∆ (k1, k2) = k(∆) G(∆) G(∆) for n = 3

000

3

mmm
(3, 0) g2(p2, p3) −|p|2

2 0 0

3

mm
(3, 2) g1(p, p2) g2(p4, p3) |p|g2(1, p)φ(p3)

3 3 2

0

m m (3, 5) p3 g1(p, p2) g1(p4, p3) |p|4g2(1, p)φ(p3)

4 3 2

0m (3, 6) g1(p, p2) g1(p3, p4) g2(p4, p3) |p|5φ(p3)

6 3 0

0

mm (3, 6) g1(p7, p6) g2(p2, p3) −|p|2φ(p6)

8 3 0

0

mm (3, 8) g1(p7, p8) g2(p2, p3) −g2(1, p)|p|9
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According to the above table, we have

F (p)(s2; p3) = −|p|2Ψ(p3, 1) +
|p|g2(1, p)φ(p3)Ψ(p3, p2)

|p|4s2
+
|p|4g2(1, p)φ(p3)Ψ(p3, p5)

|p|10s2

+
|p|5φ(p3)Ψ(p3, p6)

|p|12s2
− |p|

2φ(p6)Ψ(p3, p6)

|p|12s2
− g2(1, p)|p|9Ψ(p3, p8)

|p|16s2
.

(44)

By adding and subtracting certain necessary terms at vertices (3, 3) and (3, 5), and
using the fact that g1(1, p)g2(1, p) = |p| when n = 3, we find that F (p)(s2; p3) equals

− |p|2Ψ(p3, 1)

[
1 +

φ(p3)

|p|6s2
Ψ(p3, p3)

Ψ(p3, 1)
+
φ(p6)

|p|12s2

Ψ(p3, p6)

Ψ(p3, 1)
+
g2(1, p)|p|7

|p|16s2

Ψ(p3, p8)

Ψ(p3, 1)

]
+
g2(1, p)|p|φ(p3)Ψ(p3, p2)

|p|4s2

[
1 +

φ(p3)

|p|6s2
Ψ(p3, p5)

Ψ(p3, p2)
+
g1(1, p)p3

|p|8s2
Ψ(p3, p6)

Ψ(p3, p2)

]
+
|p|2φ(p3)Ψ(p3, p3)

|p|6s2

[
1 +
|p|g2(1, p)

|p|4s2
Ψ(p3, p5)

Ψ(p3, p3)

]
.

(45)

After analyzing the terms in the bracketed sums, ignoring complications from the
function Ψ as before, we have

F (p)(s2; p3) = −|p|2Ψ(p3, 1)D(p)
1 (s2,Ψ

′, p7)+
g2(1, p)|p|φ(p3)Ψ(p3, p2)

|p|4s2
D(p)

1 (s2,Ψ
′′, p3)

+
|p|2φ(p3)Ψ(p3, p3)

|p|6s2
D(p)

1 (s2,Ψ
′′′, p). (46)

Arguing similarly to the previous section, one can use these local contributions to
reconstruct the global Dirichlet series via twisted multiplicativity. The resulting
objects satisfy the global functional equation for σ2 as in (36).

6.2.3 The functional equation σ2 with k1 = 6

As a final example, the set of all H(3)(pk1 , pk2 ; p2, p) with k1 = 6 involves 7 support
vertices and 18 BZL-patterns. In the case n = 3, however, only four of the BZL-
patterns have non-zero Gauss sum products associated to them. These are listed in
the table below.
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∆ k(∆) G(∆) G(∆) for n = 3

6 3 0

3

m
(6, 6) g1(p7, p6) g2(p2, p3) g2(p2, p3) |p|4 φ(p6)

4 3 2

3
(6, 6) g1(p1, p2) g1(p3, p4) g2(p2, p3) g2(p4, p3) −|p|7 φ(p3)

8 3 0

3

m
(6, 8) g1(p7, p8) g2(p2, p3) g2(p4, p3) −|p|9g2(1, p)φ(p3)

6 5 2

1
(6, 8) g1(p1, p2) g1(p7, p6) g2(1, p) g2(p4, p5) |p|11g2(1, p)φ(p6)

Upon first inspection, it is unclear how to package the Gauss sum products neatly
into p-parts of Kubota Dirichlet series, as in the previous examples. However, the
two nonzero terms at (6, 6) cancel each other out when n = 3, as do the two nonzero
terms at (6, 8). This seems like a very complicated way to write 0, but we remind
the reader that the definition in terms of Gauss sums is “uniform” in n, in the sense
that only the order of the multiplicative character in the Gauss sum changes. For
other n, the p-part H(n)(pk1 , pk2 ; p2, p) with k1 = 6 will have the same 18 products
of Gauss sums, four of which are as shown in the third column of the table above.
However, the evaluations as in the last column of the table depend on the choice of
n and result in a different organization as Kubota Dirichlet series.
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