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Chapter 1

Introduction

1.1 History and Background

Over the past twenty years, my advisor, Jeffrey Hoffstein of Brown University, in collab-
oration with Daniel Bump, Solomon Friedberg, Dorian Goldfeld and others, has made a
careful study of objects we now refer to as “multiple Dirichlet series.” These are Dirichlet
series of the form

∞∑
m1=1

· · ·
∞∑

mk=1

a(m1, . . . ,mk)
ms1

1 · · ·msk
k

.

We often think of this object as a Dirichlet series in one of the variables mi whose coefficients
are Dirichlet series in several other variables. The first example of such a series was originally
investigated by C.L. Siegel in 1956 (cf. [25]). He notes that the Fourier coefficients of a
half-integral weight Eisenstein series are roughly quadratic L-functions L(s, χd) where χd
is the quadratic character associated to Q(

√
d). Upon taking the Mellin transform of the

Fourier coefficients, he obtains a series of approximate form∑
d

L(s, χd)
dw

, (1.1)

and suggests that this series should be viewed as a function of two complex variables.
Somewhat more precisely, if d0 is a square-free integer, we can associate a primitive

quadratic character of conductor d0. Then extend the definition of the L-series to all
integers d by writing d = d0d

2
1 with d0 square-free and define

L(s, χd) = L(s, χd0)P (s, d)

where the P (s, d) are Dirichlet polynomials which complete the primitive L-series in order
to preserve functional equations for L(s, χd) as s→ 1−s. These polynomials are precisely
the additional arithmetic terms in the Fourier coefficients of Siegel’s Eisenstein series and
its Mellin transform yields the appropriate definition of (1.1).

Now properly defined, the above multiple Dirichlet series takes the form

Z(s, w) =
∞∑
d=1

L(s, χd)
dw

=
∞∑
d=1

L(s, χd0)P (s, d)
dw

,

where d = d0d
2
1. This series also obeys a rather surprising additional functional equation

when the order of summation in the series is reversed: Z(s, w) = Z(w, s). Some care does

1
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need to be taken over bad primes to formulate this precisely. We can now write down two
exact functional equations for the object Z(s, w). They are

(s, w) → (1− s, w + s− 1/2) and (s, w) → (w, s)

These two transformations generate a finite group of functional equations isomorphic to
the dihedral group of order 12. Interestingly, we can take the above properties as axioms
and solve for the correction factors P (s, d). One can show that these conditions uniquely
determine the Dirichlet polynomials P (s, d). This is truly miraculous as the correction
factors seem to be satisfying so many desirable conditions at once.

Classical growth estimates for L-series give a region of absolute convergence for this
multiple Dirichlet series. Applying functional equations to Z(s, w) transforms this domain of
convergence into a new domain, which has a non-empty intersection with the original. This
provides an analytic continuation to the union of the original domain and its translates. The
resulting region of convergence has convex hull equal to the entire space C2, so by Hartog’s
theorem, we obtain a continuation to all of C2. The process of continuation described above
was first observed by Bump, Friedberg, and Hoffstein. This raises the natural question:
which multiple Dirichlet series admit such an analytic continuation to the entire complex
space?

In response to this question, generalizations of the above were done in [3] and [4].
There, the numerators are quadratic twists of L-series associated to automorphic forms
on GL(2) or GL(3). In particular, they observed that in these cases (i.e., GL(m) with
m = 1, 2, 3), the completed multiple Dirichlet series possesses a finite group of functional
equations which permit the continuation to all of C2 and this set of functional equations
uniquely determines the form of the correction factor P (s, d). However, for m ≥ 4, the
group of functional equations is infinite and the uniqueness principle is lost, corresponding
to an inability to analytically continue beyond a line of essential singularities.

These methods have a number of applications. Standard Tauberian techniques (cf. [12])
may be applied to these series to obtain information about the L-series in the numerator
at the center of the critical strip, which give distribution information about important
arithmetic quantities. Non-vanishing results for quadratic twists of L(1/2, f, χd) were also
obtained for f , an arbitrary automorphic form on GL(m) for m = 2, 3. In the cases m ≥ 4,
the prospect of continuing other multiple Dirichlet series past this line of singularities leads
to conjectures about mean values of products of L-series and in particular, would imply
the moment conjectures of Conrey, Ghosh, Keating, and Snaith (cf. [7] and [5]). Lastly,
continuation in the GL(3) case gives a new proof of the holomorphy of the symmetric square
L-function of an automorphic form on GL(3), as it is the residue of this multiple Dirichlet
series at w = 1 (up to particular zeta factors).

This doctoral thesis addresses the analytic continuation of the multiple Dirichlet series∑
d

L(s1, χd0)L(s2, χd0)P (s1, s2, d)
Ndw

(1.2)

where the sum is over a restricted set of algebraic integers d in K, a number field containing
the cubic roots of unity, and χd0 is a cubic character associated to the primitive (cube-free)
part d0 of d. (The precise statement of the result is included in the next section.) The
major obstacle to continuation is the determination of the appropriate correction factor
P (s1, s2, d). This is complicated by the fact that such a numerator has not yet been realized
as the Fourier coefficient of a metaplectic Eisenstein series, so its determination rests solely
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on an appropriately defined axiomatic approach. Moreover, these Dirichlet polynomials
don’t have a functional equation in the variables si, as in the quadratic case. The functional
equations for the cubic L-series as si → 1−si for i = 1, 2 introduce a cubic Gauss sum
(whereas, for quadratic characters, the Gauss sum was just the positive root of the associated
conductor), so the transformed object is of an essentially different form. As such, the
determination of these factors P (s1, s2, d) requires all the information able to be gleaned
from the functional equations and previously known one-variable cases. This is achieved
in the thesis and the finite group of functional equations corresponding to this multiple
Dirichlet series is exhibited. Previous attempts to determine this correction factor had
proven too unwieldy to exhibit exact functional equations; the new methods of the thesis
greatly reduce such computations.

Many of the same applications carry over to this case. Using a Tauberian theorem, we
can obtain the first known asymptotics for the second moment of cubic L-series. Previously,
these had not even been conjectured. We include a proof of these mean-value estimates at
the end of the thesis. The same correction factors with variables specialized so that s1 = s2
can also be used to complete the multiple Dirichlet series whose numerator is a GL(2)
automorphic form twisted by a cubic character. Upon taking the residue at w = 1, we
obtain the symmetric cube L-function of a GL(2) automorphic form, and a new proof of
the holomorphy of this object can be derived from the analytic continuation of the multiple
Dirichlet series [1]. The first such proof was obtained by Shahidi and Kim [16] in 1999.

1.2 Statement of Results

The main result of the thesis is the following.

Theorem 1.1. Let K = Q(
√
−3) with ring of integers OK . Given an integer d ∈ OK ,

write d = d1d
2
2d

3
3 with d1 and d2 cube-free. Let χd0 = χd1χ̄d2 denote the product of cubic

residue characters with conductor d1d2. Let ψ1 and ψ2 be primitive cubic Hecke characters
of a fixed conductor N |9. Define the function

Z1(s1, s2, w;ψ1, ψ2) =
∑
d∈OK
d≡1 (3)

L(s1, χd0ψ1)L(s2, χd0ψ1)ψ2(d)P (s1, s2; d, ψ1)
Ndw

where P (s1, s2; d, ψ1) is a certain finite, Eulerian Dirichlet polynomial in two variables s1
and s2 depending only on the indicated quantities. Then, letting Λ(s) = (2π)−sΓ(s)ζK(s),
the function

Z∗1 (s1, s2, w;ψ1, ψ2)
def
= 4(2π)−s1−s2Γ(s1)Γ(s2)Γ(w)Λ(3w + 3s1 − 2)Λ(3w + 3s2 − 2)

Λ(3s1 + 3s2 + 6w − 5)Λ(6w + 6s1 + 6s2 − 8)Z1(s1, s2, w;ψ1, ψ2)

has a meromorphic continuation to a region of C3 containing the point (1/2, 1/2, 1/2).
Moreover, the function Z1(s1, s2, w; 1, 1) is analytic in this region except for the following

18 polar planes:

s1 = 1, s1 = 0, s1 + 2s2 + 2w − 3 = 0, s1 + 2s2 + 2w − 2 = 0,
s2 = 1, s2 = 0, 2s1 + s2 + 2w − 3 = 0, 2s1 + s2 + 2w − 2 = 0,
w = 1, w = 0, 2s1 + 2s2 + 3w − 3 = 0, 2s1 + 2s2 + 3w − 4 = 0,
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w + s1 + s2 − 5/3 = 0, w + s1 + s2 − 4/3 = 0,
w + s1 − 7/6 = 0, w + s1 − 5/6 = 0,
w + s2 − 7/6 = 0, w + s2 − 5/6 = 0.

The determination of both the Dirichlet polynomial P (s1, s2; d, ψ1) and the polar planes
are intimately related to the method of analytic continuation. The characters ψ1 and ψ2 are
used to correct the theory at bad primes (namely, those dividing 9 in OK). Then ignoring a
finite number of bad primes, the reader may safely assume that these characters are trivial
upon the first reading and still retain all of the important analytic number theory content.

1.3 Outline of Methods: The Square-Free Heuristic

We will take great care in formulating this result precisely over the following chapters.
In particular, Chapter 2 contains all of the important definitions of the objects under
consideration. Here, we sketch the basic outline of the argument, postponing all of the
technical details for the main body of the work. As such, we will neglect notating all
congruence conditions in our sums and refrain from writing down Gamma factors associated
to L-series with perfect functional equations.

The method of multiple Dirichlet series is used to accomplish the continuation. Roughly,
the method uses a group of functional equations among Dirichlet series to extend the region
of absolute convergence for these series. As a first step, we need to understand the collection
of possible functional equations.

Our initial object Z1(s1, s2, w;ψ1, ψ2) inherits functional equations from the L-series in
the numerator. These functional equations behave well for primitive characters χd0 . In
particular, if we restrict our attention to square-free integers and make further simplifying
assumptions that our sums are over relatively prime integers and there are no bad primes,
then all functional equations should be as nice as possible and we should be able to get a
simplified view of the essential picture from them. We call this collection of assumptions,
and the simplified picture they provide, the “square-free heuristic.” We use this extensively
throughout the thesis to motivate our constructions. (Of course, most of the work will go
into eventually removing these assumptions.) Using the “square-free heuristic” where all
our simplifying assumptions hold, then Z1(s1, s2, w) can be manipulated as follows.∑

d

L(s1, χdψ1)L(s2, χdψ1)ψ2(d)
Ndw

=

=
∑
d

L(1− s1, χdψ1)L(1− s2, χdψ1)ψ2(d)Nd1−s1−s2G2
3(1, d)

Ndw

=
∑
d,m,n

χ̄d(m)ψ̄1(m)χ̄d(n)ψ̄1(n)ψ2(d)G2
3(1, d)

Nms1Nns2Ndw+s1+s2−1

(by Davenport-Hasse relation) =
∑
d,m,n

G6(1, d)χ̄d(mn)ψ̄1(m)ψ̄1(n)ψ2(d)
Nms1Nns2Ndw+s1+s2−1

=
∑
m,n,d

G6(m2n2, d) ψ1(m)ψ1(n)ψ2(d)
Nm1−s1Nn1−s2Ndw+s1+s2−1

def= Z6(1− s1, 1− s2, w + s1 + s2 − 1;ψ1, ψ2)
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where Gn(m, d) denotes the normalized nth order Gauss sum:

Gn(m, d) =
1√
Nd

∑
r (d)

(r
d

)
n
e
(mr
d

)
.

We have decided to call this new series Z6 according to the sixth order Gauss sum. Removing
the characters ψi for clarity of notation, we may write

Z6(s1, s2, w) =
∑
m,n,d

G6(m2n2, d)
Nms1Nns2Ndw

Reversing the order of summation so that the inner sum is over integers d, then for fixed
m and n, the inner sum is seen to be the (m2n2)th Fourier coefficient of a metaplectic
Eisenstein series defined on the six-fold cover of an appropriate subgroup of GL(2) (cf. [18]
or [13] for a detailed survey of metaplectic Eisenstein series). Owing to the automorphy of
the Eisenstein series, the inner sum inherits a functional equation whose properties were
detailed by Kazhdan and Patterson in [17]. Applying this in the case of sixth order series,

∑
d

G6(m, d)
dw

def= D6(w;m) = D6(1− w;m)Nm1/2−w

so we expect a functional equation for Z6 into itself of form

Z6(s1, s2, w) = Z6(s1 + 2w − 1, s2 + 2w − 1, 1− w).

Additionally, we can interchange the order of summation in the original object Z1 and
we have, under the square-free heuristic, that∑

d

L(s1, χdψ1)L(s2, χdψ1)ψ2(d)
Ndw

=
∑
d,m,n

χd(mn)ψ1(m)ψ1(n)ψ2(d)
NdwNms1Nns2

(by cubic recip.) =
∑
d,m,n

χmn(d)ψ1(m)ψ1(n)ψ2(d)
NdwNms1Nns2

(summing over d) =
∑
m,n

L(w,χmnψ2)ψ1(m)ψ1(n)
Nms1Nns2

.

From this altered form, we see that Z1(s1, s2, w;ψ1, ψ2) has an additional functional
equation as w → 1− w. Performing this, we roughly obtain

∑
m,n

L(w,χmnψ2)ψ1(m)ψ1(n)
Nms1Nns2

=
∑
m,n

L(1− w,χmnψ2)N(mn)1/2−wG3(1,mn)ψ1(m)ψ1(n)
Nms1Nns2

=
∑
m,n,d

G3(d,mn)ψ1(m)ψ1(n)ψ2(d)
Nmw+s1−1/2Nnw+s2−1/2Nd1−w

def= Z3(w + s1 − 1/2, w + s2 − 1/2, 1− w;ψ1, ψ2)

The resulting function is labeled Z3 according to the cubic Gauss sum in the numerator.
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Again dismissing the additional characters ψi for the moment, we may rewrite Z3 as

Z3(s1, s2, w) =
∑
d,m,n

G3(d,mn)
NdwNms1Nns2

(writing M = mn) =
∑
d,M

M=mn

G3(d,M)σs1−s2(M)
NdwNM s1

(more symmetrically) =
∑
d,M

M=mn

χd(M)G3(1,M)σs1−s2(M)NM (s1−s2)/2

NM (s1+s2)/2

where σk(M) is the usual divisor function
∑

n|M nk. Recall that the cubic theta function,
realized as a residue of a metaplectic Eisenstein series on the three-fold cover of GL(2) (cf.
[23]), has as its mth Fourier coefficient

τ(m) =

{
G(1,m1)m

1/2
3 if m = m1m

3
3, m1 square-free

0 otherwise.

Then substituting this back into the series Z3(s1, s2, w) using the square-free heuristic, we
obtain

Z3(s1, s2, w) =
∑
d,M

M=mn

χd(M)τ(M)σs1−s2(M)NM (s1−s2)/2

NM (s1+s2)/2

which can be regarded as the twisted Rankin-Selberg convolution of a cubic theta function
and an ordinary (non-metaplectic) Eisenstein series E(z, (s1 − s2 + 1)/2) (recalling that
the Fourier coefficients of Eisenstein series are just divisor sums). As such, we expect a
functional equation for Z3 into itself of form

Z3(s1, s2, w) = Z3(1− s1, 1− s2, w + 2s1 + 2s2 − 2)

since the convolution of two GL(2) automorphic forms is a GL(4) automorphic form so we
have the resulting shift in the w variable.

The set of these transformations just discussed can be summarized in the following
diagram:

Z1(s1, s2, w)

interchange

oo (1−s1,1−s2,w+s1+s2−1) // Z6(s1, s2, w) (s1+2w−1,s2+2w−1,1−w)
xx

Z1(s1, s2, w) oo (s1+w−1/2,s2+w−1/2,1−w) // Z3(s1, s2, w) (1−s1,1−s2,w+2s1+2s2−2)ff

These transformations are both involutions and so we may read two equalities from each
arrow of the diagram. For example, the top arrow gives both Z1(s1, s2, w) = Z6(1− s1, 1−
s2, w + s1 + s2 − 1) and Z6(s1, s2, w) = Z1(1− s1, 1− s2, w + s1 + s2 − 1).

The eventual goal is to use these functional equations to obtain an analytic continu-
ation. We can determine regions of absolute convergence for each of these objects in the
diagram using classical estimates. Then the functional equations transform these regions
of convergence for Z3 and Z6 into regions of convergence for Z1. The collection of these
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transformed regions not only have non-empty intersection, but also have a convex hull equal
to all of C3. By the convexity principle for analytic functions of several complex variables,
this is enough to show that our function Z1 (and in fact Z3 and Z6 as well) is meromorphic
over all of C3. Further, we know enough about the naturally occurring poles of each of the
objects Z1, Z3, and Z6 so that we can keep track of poles by applying these same functional
equations to the equations of the polar planes coming from each object. This is how we
arrive at the list of polar planes in the statement of the theorem.

The major obstacle to implementing the above strategy is the lack of exact functional
equations. We have relied heavily on the assumptions of the square-free heuristic in all of
the above arguments. For example, we would like our sum for Z1 to be defined over all
integers d, but the L-series transform according to the conductor of the character χ, which
must be a cube-free integer. In interchanging the order of summation above, reciprocity led
to perfect objects only after assuming that all integers were relatively prime and dismissing
necessary congruence conditions. It is the Dirichlet polynomials added to our object which
turn our rough outline of transformations into bona fide functional equations. In fact, the
coefficients of these correction polynomials are determined by requiring that such functional
equations and interchanging summation are exact. We will spend great effort in detailing
this process in the following pages. Upon completion, we will find that the exact objects
take form:

Z1(s1, s2, w;ψ1, ψ2) =
∑
d

L(s1, χd0ψ1)L(s2, χd0ψ1)ψ2(d)P (s1, s2; d, ψ1)
Ndw

where the correction factor P begins

P (s1, s2; d, ψ1) =
∏
pα||d3

[1− χd0(p)(ψ1(p)Np−s1 + ψ1(p)Np−s2) + χ2(p)ψ2
1(p)Np−s1−s2 + · · ·

· · ·+ ai,j(d0, p
α) + · · · ]

Similarly, turning to the other form of the object Z1 after interchange of summation. We
will write the product mn = mn0 mn

3
3 where mn0 denotes the cube-free part of the product.

Then

Z1(s1, s2, w;ψ1, ψ2) =
∑
m,n

L(w,χmn0
ψ2)ψ1(m)ψ1(n)Q(w;m,n, ψ2)

Nms1Nns2

where the correction factor Q begins

Q(w;m,n, ψ2) =
∏

pβ ||mn3

[1− χmn0
(p)ψ2(p)Np−w + Np2−3w + δ3(m,n)Np3−3w + · · ·

· · ·+ bk(m,n)Np−kw + · · · ]

and (writing (m,n) < (a, b) if either m < a or n < b),

δ3(m,n) =


2 if (m,n) ≥ (3, 3)
1 if (2, 3) ≤ (m,n) < (3, 3) or (3, 2) ≤ (m,n) < (3, 3)
0 otherwise

The existence of this δ3 function in the above expression already attests to the combinatorial
complexity of these correction polynomials. We give these explicit first terms to orient the
reader to our set-up. However, we will not be able to give a closed expression for their form.
Instead we resort to other methods that will be described at the end of the introduction.
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1.4 Additional Functional Equations and the Determination
of Polar Planes

Because Z1, using either order of summation, contains L-series in the numerator with
arguments s1 and s2 or w, then it has poles whenever any of these arguments take the
value 1. Now we need to determine all of the functional equations of Z1 into itself. If we
reflect these polar planes at si = 1 and w = 1 according to these transformations, then
we will determine all the poles associated to the L-series in the numerator. Recall that we
presented the diagram earlier:

Z1(s1, s2, w)

interchange

oo (1−s1,1−s2,w+s1+s2−1) // Z6(s1, s2, w) (s1+2w−1,s2+2w−1,1−w)
xx

Z1(s1, s2, w) oo (s1+w−1/2,s2+w−1/2,1−w) // Z3(s1, s2, w) (1−s1,1−s2,w+2s1+2s2−2)ff

But Z6 contains a sixth order Gauss sum in the numerator, so its cube-free part is
essentially the Dirichlet series associated to an Eisenstein series on the 6-fold cover of
GL(2). That is, the numerator took the form G(m2n2, d). Thus according to the Selberg
theory, as a sum over integers d, it has a functional equation as w → 1 − w and poles at
w = 1/2 + 1/6. Similarly, Z3 contains a cubic Gauss sum in the numerator and its cube-
free part is essentially the Mellin transform of a Rankin-Selberg convolution of a twisted
cubic theta function and a non-metaplectic Eisenstein series E(z, (s1 − s2 + 1)/2). As
mentioned previously, this object has a GL(4) functional equation as si → 1 − si so that
w → w + 2s1 + 2s2 − 2 and poles at 2si − 1/2 = 1/2 + 1/3 according to the usual Fourier
analysis which transforms the argument of the Eisenstein series. We will address these
functional equations in detail later, but for now, we’d like to just list them and show how
they lead to poles. In total, our functional equations are (up to natural zeta factors to be
discussed later and up to finite correction polynomials which do not affect convergence):

A : Z1(s1, s2, w) = Z6(1− s1, 1− s2, w + s1 + s2 − 1),
B : Z6(s1, s2, w) = Z6(s1 + 2w − 1, s2 + 2w − 1, 1− w),

C : Z1(s1, s2, w) = Z3(s1 + w − 1/2, s2 + w − 1/2, 1− w),
D : Z3(s1, s2, w) = Z3(1− s1, 1− s2, w + 2s1 + 2s2 − 2).

Each of these transformations is an involution. This implies that the total collection of func-
tional equations of Z1 into itself is described by the set of transformations {ABA,ABACDC,
ABACDCABA, . . .} and {CDC,CDCABA,CDCABACDC, . . .}. This produces the fol-
lowing list of functional equations from Z1 into Z1.

(s1, s2, w) −→ (s1 + 2s2 + 2w − 2, 2s1 + s2 + 2w − 2,−2s1 − 2s2 − 3w + 4)
(s1, s2, w) −→ (1− s1, 1− s2, 1− w)
(s1, s2, w) −→ (3− s1 − 2s2 − 2w, 3− 2s1 − s2 − 2w,−3 + 2s1 + 2s2 + 3w)

Applying this set of functional equations to the polar planes si = 1 and w = 1 (the poles
associated to Z1 in its original form with L-series in the numerator) produces the first twelve
poles in our list in theorem 1. That is, we obtain the polar planes

s1 = 1, s1 = 0, s1 + 2s2 + 2w − 3 = 0, s1 + 2s2 + 2w − 2 = 0,
s2 = 1, s2 = 0, 2s1 + s2 + 2w − 3 = 0, 2s1 + s2 + 2w − 2 = 0,
w = 1, w = 0, 2s1 + 2s2 + 3w − 3 = 0, 2s1 + 2s2 + 3w − 4 = 0,
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We can similarly generate all of the functional equations of Z6. They are given by the
sets of transformations {B,BACDCA, . . .} and {ACDCA,ACDCAB, . . .}. This yields
transformations which all take w → 1 − w. Z6 now has both the original polar plane
w = 2/3 and 1 − w = 2/3. These polar planes translate to polar planes of Z1 via the
involution A taking w → w + s1 + s2 − 1, producing the pair of planes:

w + s1 + s2 − 5/3 = 0, w + s1 + s2 − 4/3 = 0.

Lastly, Z3 functional equations into itself are given by the sets {C,CDABAD, . . .} and
{DABAD,DABADC, . . .} and all take si → 1 − si. Then the polar planes are given by
si = 2/3 and 1 − si = 2/3 and translated to Z1 by the involution C taking si → 1 − si.
This produces the final four planes in our original list in Theorem 1. That is, we obtain the
polar planes:

w + s1 − 7/6 = 0, w + s1 − 5/6 = 0,
w + s2 − 7/6 = 0, w + s2 − 5/6 = 0.

1.5 Mean-Value Estimates for Cubic L-Series

We want to determine the second moment of cubic L-series at the center of the critical strip.
To do this, we can set s1 = s2 = 1/2 and then determine the number of polar planes of
Z1(s1, s2, w; 1, 1) which contain a point of form (1/2, 1/2, w). The values of w which occur
from these distinct planes will determine the asymptotic behavior of the second moment
according to standard Tauberian techniques. Revisiting the list of polar planes listed in
Theorem 1, the planes s1 = 0, s1 = 1, s2 = 0, and s2 = 1 are the only planes which do not
include such a point (1/2, 1/2, w). This leaves 14 remaining planes and one can check that
they have w values

{1, 3/4 (2 times), 2/3 (4 times), 1/3 (4 times), 1/4 (2 times), 0}

Values of w which occur more than once indicate the possibility of a non-simple pole at
(1/2, 1/2, w). According to a Tauberian theorem (i.e., the method of contour integration
using an appropriate smoothing function), this can increase the associated growth term at
XRe(w) by a factor of log(x)k−1 where k is the multiplicity of the polar contribution at w.
Hence, using a sieving argument similar to that of Diaconu, Goldfeld, and Hoffstein in [7],
one can obtain estimates of the following form:

Theorem 1.2. For d corresponding to primitive cubic character χd0,∑
|d|≤X

(L(1/2, χd0))
2P (1/2, 1/2, d)e−Nd/X = c1X + c2X

3/4 + c3X
2/3F (logX) +O(X1/2+ε)

where c1, c2, and c3 are explicit constants, with c1 and c2 non-zero and F is a polynomial
with deg(F ) ≤ 3.

Note that while the value (1/2, 1/2, 3/4) occurs with multiplicity two in the above list
of planes containing poles at (1/2, 1/2, w), the residue at w = 3/4 of our object does
not contain a singularity, so the pole is in fact simple. We also remark that since the
continuation of our initial object was proved for any characters ψi, not just the trivial ones,
we may recompute the poles of the initial object and transform them according to functional
equations to form a different collection of polar planes. Then repeating the above procedure
produces asymptotics for L(1/2, χdψ)2 for some fixed character ψ.
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1.6 Outline of Method for Determining the Correction Fac-
tor

As discussed earlier, we begin by determining all the natural functional equations of our
initial object,

Z1(s1, s2, w) =
∑
d

L(s1, χd0)L(s2, χd0)P (s1, s2, d)
Ndw

=
∑
m,n

L(w,χmn0
)Q(w,m, n)

Nms1Nns2
, (1.3)

Note that the original object comes in two forms according to the order in which summation
is performed and inherits natural functional equations from the L-series which occur in the
numerator of each. Note that there are even series arising from transforming just one of the
L-series according to the functional equation in either s1 or s2. The resulting series will be
given the names

Z4(s1, s2, w) def= Z1(1− s1, s2, w + s1 − 1/2)

and
Z5(s1, s2, w) def= Z1(s1, 1− s2, w + s2 − 1/2),

respectively. They have similar square-free heuristics which lead to additional functional
equations. We have refrained from mentioning them up to this point because their functional
equations are not essential to the continuation.

While the picture we outlined earlier works beautifully under the assumptions of the
square-free heuristic, it is unclear how we might go about solving for correction factors
P and Q to make these functional equations exact for series summed over all integers.
However, the series Z3 and Z6 obtained using the square-free heuristic and defined by

Z3(s1, s2, w) =
∑
m,n,d

sq. free

G3(d,mn)
Nms1Nns2Ndw

and Z6(s1, s2, w) =
∑
m,n,d

sq. free

G6(m2n2, d)
Nms1Nns2Ndw

have very natural generalizations to sums over all integers (taking the sums to be unre-
stricted over integers). This presents a tantalizingly simple and elegant possible solution.
We can begin with the series Z6 summed over all integers and determine the correction
factor P (s1, s2, d) according to the transformation

Z1(s1, s2, w) = Z6(1− s1, 1− s2, w + s1 + s2 − 1).

Note that such a definition immediately gets us half of the functional equations we need since
we automatically get the additional functional equation for Z6 into itself. Moreover, such
an approach can be shown to work in the slightly simpler case of a two variable Dirichlet
series whose numerator consists of a single cubic Dirichlet L-series. Unfortunately, the
correction factor determined by this definition does not behave well under interchange;
the polynomial Q(w;m,n) it determines does not satisfy the required properties so that it
inherits additional functional equations.

However, we can make more modest gains by reducing from the three-variable situation
to series containing two variables by taking limits as variables go to infinity. In Chapter 3,
we use these two-variable series to solve for a certain subset of coefficients of the correction
factors P and Q. Chapter 4 contains a detailed discussion of the restrictions forced on P
and Q by the interchange equality (1.3).
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In Chapter 5, we show that a natural definition exists for the series Z4(s1, s2, w) exists
by building up from two-variable series. The definition we arrive at is similar enough to the
square-free heuristics to guarantee the predicted additional functional equation of Z4 into
itself and also defines the correction factor P (s1, s2, d) via the involution Z1(s1, s2, w) =
Z4(1 − s1, s2, w + s1 − 1/2) with the appropriate properties to guarantee a well-behaved
interchange for Z1.

In Chapter 6, we show how this definition begets the additional anticipated functional
equations for Z4 and Z6, and an asymmetric functional equation for Z3 . The first, as
we just mentioned, is almost automatic while the latter two will take considerable work.
We then determine regions of absolute convergence for these series and finish the analytic
continuation by mapping these regions according to our functional equations.

We conclude in Chapter 7 by describing one way in which we can apply this result
to mean-value estimates using a Tauberian theorem by methods sketched earlier in the
introduction.



Chapter 2

Algebraic Preliminaries and
Definitions

2.1 Cubic Reciprocity and Gauss Sums

We begin by recalling some basic constructions of algebraic number theory which provide
the appropriate setting to define cubic characters. Let K = Q(

√
−3) with ring of integers

OK = Z[ω] where ω = −1+
√

3
2 is a primitive cubic root of unity. Recall that if a is an ideal

of OK relatively prime to (3), then there is a unique generator a ≡ 1 (3) such that a can
be decomposed as a product of “primary” primes (i.e. primes congruent to 1 mod 3).

Given any integer r and primary prime p in OK , let
(
r
p

)
3

denote the cubic residue
symbol in OK .

Theorem 2.1 (Cubic Reciprocity). If p1 and p2 are primary in OK with Np1,Np2 6= 3,
and Np1 6= Np2, then (

p2

p1

)
3

def
= χp1(p2) = χp2(p1)

def
=
(
p1

p2

)
3

This result can be extended multiplicatively to all pairs of integers r, d such that r, d ≡
1 (3). One can further check that 3 = −ω2(1− ω)2 and OK has a group of units O×K with
six elements {±1,±ω,±ω2}. By definition, we have χp(1) = χp(−1) = 1 since (−1)3 = −1.
Hence, the following result completely determines the character χd for d ≡ 1 (3).

Theorem 2.2 (Supplement to Cubic Reciprocity). Suppose that p is a primary prime.
Then

χp(ω) =


1 if Np ≡ 1 (9)
ω if Np ≡ 4 (9)
ω2 if Np ≡ 7 (9)

χp(1− ω) = ωm where m =

{
p−1
3 if p ∈ Q
a−1
3 if p = a+ bω

For a proof of these results, we refer the reader to section 9.3 of Ireland and Rosen’s
book [15]. Note that their discussion defines a primary prime to be congruent to 2 mod 3
for historical reasons. Their Proposition 9.3.5 shows that our definition is equivalent.

12
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Definition 2.1. For m, d integers in OK with (d, 3) = 1, define the cubic Gauss sum
g(m, d) by

g(m, d) =
∑
r (d)

(r
d

)
3
e
(mr
d

)
where, for z ∈ C, e(z) = exp(2πi(z + z̄)) denotes the usual additive character.

Gauss sums will play an important role in the following chapters. As our essential
method is the interchanging of the order of summation, we will often decompose and re-
compose such sums. In particular, we will make extensive use of the following proposition.

Proposition 2.3. Given integers m and d in OK , the cubic Gauss sum g(m, d) possesses
the following properties.

• g(m1m2, d) =
(m1

d

)
3
g(m2, d) if (m1,m2) = 1.

• g(m, d1d2) =
(
d2

d1

)
3

(
d1

d2

)
3

g(m, d1)g(m, d2) if (d1, d2) = 1.

• For any α, β ≥ 0,

g(pα, pβ) =



φ(pβ) if α ≥ β, β ≡ 0 (3)
−Npβ−1 if α = β − 1, β ≡ 0 (3)
Npβ−1g(1, p) if α = β − 1, β ≡ 1 (3)
Npβ−1g(1, p) if α = β − 1, β ≡ 2 (3)
0 otherwise,

where g(1, p) = g(χ̄p), the usual cubic Gauss sum with character χ̄p

Proof. The first is immediate. The second follows from a Chinese Remainder Theorem
argument. The third, also elementary, can be determined by a slight generalization of the
discussion in Chapter 2 of Davenport [6].

We will find it convenient to work with a slightly adjusted Gauss sum from the one
defined above.

Definition 2.2. The normalized cubic Gauss sum G(m, d) is defined by

G(m, d) =
1√
Nd

g(m, d)

so that, in particular, |G(1, p)| = 1.

Note that Proposition 3 allows us to take any Gauss sum g(m, d) and compute its value
up to a unit G(1, d0) = G(χd0). The distribution of these values was originally wrongly
conjectured by Kummer and has a long history (see the “Notes” section of Chapter 9
in [15]). A precise expression for G(χd0) is now known (cf. [21]), though it will not be
important for us here.

Throughout the following chapters, an unindexed Gauss sum will contain a cubic char-
acter, though we will sometimes write g3(m, d) or G3(m, d) to emphasize this. We will also
have occasion to study the sixth-order Gauss sum g6(m, d), which is similarly defined as

g6(m, d) =
∑
r (d)

(r
d

)
6
e
(mr
d

)
with

(r
d

)
6

def=
(r
d

)
3

(r
d

)
2
.
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The Hasse-Davenport Relates these Gauss sums of various residue characters of different
order.

Proposition 2.4 (Special Case of the Davenport-Hasse Relation). Given an integer
d ≡ 1 (3), let G3(1, d) and G6(1, d) denote cubic and sixth-order normalized Gauss sums,
respectively. Then

G6(1, d) = χ
(3)
d (2)2G3(1, d)2

where χ(3)
d denotes the cubic residue symbol with modulus d.

Proof. We refer the reader to p. 61 of Lang’s book [20] for a proof in full generality. To
obtain the above, we use an alternate formulation given in [8]. The relation we need is given
in the paper by (∗∗) with their τ(χ) and τ(ψ) defined in our notation by G3(1, d) with cubic
residue character χ(3)

d and G2(1, d) with quadratic residue character χ(2)
d .

2.2 Defining Cubic Triple Dirichlet Series

We can now state the definitions of the basic multiple Dirichlet series to be studied in
the subsequent chapters. Because the objects we consider are simultaneously packaging
so much information, we will make several approximations to our ultimate Dirichlet series
before offering a precise definition.

Definition 2.3. Let d ≡ 1 (3) be an integer in OK such that (d, 6) = 1. Writing d = d1d
2
2d

3
3

with d1d
2
2 cube-free, we can associate to d the primitive character χd1χ̄d2

def
= χd0. Further,

define the cubic L-series associated to d by

L6(s, χd0) =
∑

m≡1 (3)
(m,6)=1

χd0(m)
Nms

=
∏

p primary
p-6

[
1− χd0(p)Np

−s]−1
.

As we have seen in the last section, cubic reciprocity is properly formulated for pairs
of integers m, d with m and d composed of primary primes. Then we can apply cubic
reciprocity to characters occurring in the following restricted sum over integers:

Z(s1, s2, w) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0)L6(s2, χd0)
Ndw

We will refer to this and all other similar series as “multiple” Dirichlet series owing to their
dependence on several complex variables. All such Dirichlet series in this thesis should be
summed over integers subject to the above three conditions, though for notational clarity
we may sometimes omit several of the conditions. The condition that (d, 3) = 1 is clear from
cubic reciprocity. The condition that (d, 2) = 1 results from considerations associated to
the Davenport-Hasse relation. These will be alluded to in the next section and considered
formally in Chapter 6.

While reciprocity works well on such a series, we pay a price for the restricted sums
when trying to write down the functional equation for the imprimitive L-series L6(s, χd0).
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That is, we must reinsert missing Euler factors to obtain a perfect functional equation. Let
L∗(s, χ) = (2π)−sΓ(s)L(s, χ) where Γ(s) denotes the usual Gamma function. Then we have

L∗6(s, χd0) = L∗(s, χd0)(1− χd0(1− ω)3−s)(1− χd0(−2)4−s)
= L∗(1− s, χ̄d0)G(1, d1)G(1, d2) ·

· (1− χd0(1− ω)3−s)(1− χd0(−2)4−s)(d1d2)1/2−s

= L∗6(1− s, χ̄d0)G(1, d1)G(1, d2)(1− χd0(1− ω)3−s)(1− χd0(−2)4−s) ·
· (1− χ̄d0(1− ω)3−(1−s))−1(1− χd0(−2)4−(1−s))−1(d1d2)1/2−s

where χd0(1−ω) is defined according to the supplement to the law of cubic reciprocity. The
above can also be re-expressed in the form

L∗6(s, χd0)(1− χd0(1− ω)3−s)−1(1− χd0(−2)4−s) = L∗6(1− s, χ̄d0)G(1, d1)G(1, d2) ·
· (1− χ̄d0(1− ω)3−(1−s))−1(1− χd0(−2)4−(1−s))−1(d1d2)1/2−s

But

(1− χd0(1− ω)3−s)−1 = 1 + χd0(1− ω)3−s + χ2
d0(1− ω)3−2s + χ3

d0(1− ω)3−3s + · · ·

=
1

1− 3−3s

[
1 + χd0(1− ω)3−s + χ2

d0(1− ω)3−2s
]

since χ3
d0

(1−ω) = 1. We can do a similar rewriting for the Euler factor (1−χd0(−2)4−s)−1.
This suggests that the natural objects to begin with are finite linear combinations of L-series
with Euler factor at 3 removed together with cubic characters as above.

Let

ψ1−ω(d) def=
(

1− ω

d0

)
= χd0(1− ω), ψ−2(d)

def=
(
−2
d0

)
= χd0(−2)

According to the supplement to cubic reciprocity, ψ1−ω can be extended to a cubic character
in (OK/9)×. We will write Ψ′ to denote the finite group of characters generated by the
following set

Ψ′ = 〈ψ1−ω, ψ−2〉.

Then given ψ ∈ Ψ′, we want to study the adjusted multiple Dirichlet series

Z ′(s1, s2, w) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0)L6(s2, χd0)ψ(d)
Ndw

Using this new notation, we may write the functional equation for each of the L-series in
the numerator as

L∗6(s, χd0) =
∑
ψ∈Ψ′

c(s, ψ)L∗6(1− s, χ̄d0)G(1, d1)G(1, d2)ψ(d)(d1d2)1/2−s

(1− 3−3(1−s))−1(1− 4−3(1−s))−1

where the c(s, ψ) are constants depending on the indicated quantities with c(s, ψ) << 1
on compact sets. We now make use of the reciprocity we have so carefully preserved for
Z ′(s1, s2, w). Assume, for the following calculation, that our sums are taken over a collection
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of relatively prime, square-free integers so that reciprocity works perfectly for all pairs of
integers. Then

Z ′(s1, s2, w) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L3(s1, χd)L3(s2, χd)ψ(d)
Ndw

=
∑

d,m,n∈OK
d,m,n≡1 (3)
(dmn,6)=1

χd(mn)ψ(d)
NdwNms1Nns2

=
∑

d,m,n∈OK
d,m,n≡1 (3)
(dmn,6)=1

χmn(d)ψ(d)
NdwNms1Nns2

using cubic reciprocity

=
∑

m,n∈OK
m,n≡1 (3)
(mn,6)=1

L3(w,χmnψ)
Nms1Nns2

Now that we have interchanged the order of summation, we see that Z ′(s1, s2, w) should
possess a functional equation as w 7→ 1−w. Just as we saw with the functional equation in
si, we will need to add characters from Ψ′. Moreover, to make the preceding set of equalities
true over all integers, we add certain finite Dirichlet polynomials (or “correction factors” as
we will often call them) to our series. The nature of these Dirichlet polynomials will occupy
most of the discussion in what remains, so we postpone a rigorous explanation until the
next chapter.

With these considerations, our first fundamental multiple Dirichlet series is defined as
follows.

Definition 2.4. Let ψ1 and ψ2 be cubic characters with fixed conductor N . Then a cubic
triple Dirichlet series Z1(s1, s2, w) is a series of the form

Z1(s1, s2, w) =
∑
d∈OK
d≡1 (3)
(d,N)=1

L3(s1, χdψ1)L3(s2, χdψ1)ψ2(d)P (s1, s2; d)
Ndw

=
∑

m,n∈OK
m,n≡1 (3)
(mn,N)=1

L3(w,χmnψ2)ψ1(m)ψ1(n)Q(w;m,n)
Nms1Nns2

for finite Dirichlet polynomials P and Q depending on the indicated variables and parame-
ters, resp., as well as the choice of ψi.

2.3 Fourier Coefficients of Metaplectic Eisenstein Series

We have one final object to define. As presented in the introduction and revisited in the
next chapter more formally, the functional equations si 7→ 1− si lead to Dirichlet series of
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essential form∑
m,n,d

G(minj , d)
Nms1Nns2Ndw

=
∑
m,n

1
Nms1Nns2

∑
d

G(minj , d)
Ndw

for i, j ∈ {1, 2}. (2.1)

The inner sum is realized as the Fourier coefficient (of index minj) of a metaplectic Eisen-
stein series (cf. [13]). The important consequence for us is that the above multiple Dirichlet
series, as the Fourier coefficient of an automorphic form, inherits an additional functional
equation as w 7→ 1−w. This has been studied in [23] and [17]. According to the law of cubic
reciprocity, this twisted Eisenstein series is properly defined on the triple cover of Γ(3), the
principal congruence subgroup of SL2(Z) consisting of matrices congruent to the identity
matrix mod 3. The complex upper half-plane H modulo the usual action of Γ(3) by linear
fractional transformations can be regarded as a compact Riemann surface after adding a
finite number of points called “cusps” (to evoke the singular behavior of the surface there).
Each cusp has an associated Eisenstein series and the collection of series are essentially
translates of each other by fractional linear transformations. Functional equations for these
Eisenstein series permute the associated cusps and this behavior is similarly reflected in
their Fourier coefficients. (For a careful presentation, see [18].)

For our purposes, we only need to use the resulting form of the functional equation for
the inner sum of (2.1) to a set of translates of similar series. This functional equation from
[23] is translated to our situation in Section 2 of [11] and will be discussed precisely in our
Chapter 5. Borrowing the notation of [11], the translated Fourier coefficients now take the
following form.

Definition 2.5.

D(w, µminj)
def
= ζK(3w − 1/2)

∑
d∈OK
d≡1 (3)
(d,6)=1

G(µminj , d)
Ndw

where µ = µ(ψ) = ωa(1−ω)b according to the parametrized list of primitive cubic characters
whose conductor is divisible by (1− ω) given by

ψ(d) =
(
ωa(1− ω)b

d

)
= χ̄d(ωa(1− ω)b) with a ∈ {0, 1, 2} and b ∈ {0, 3, 4}

The fact that these characters ψ, listed for certain a and b, give a complete list follows from
a simple exercise using [15]. The zeta function in the above definition has been introduced
to cancel poles of the Dirichlet series. At times we will add a subscript to D(w, µminj) to
emphasize the associated functional equations from Z1(s1, s2, w); this will be clear from the
context.

In addition, functional equations performed simultaneously in s1 and s2, together with
the Davenport-Hasse relation, lead to Dirichlet series of the following similar form.

Definition 2.6.

D6(w, νm2n2)
def
= ζK(6w − 2)

∑
d∈OK
d≡1 (3)
(d,6)=1

G(νm2n2, d)
Ndw
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where ν = ν(ψ) = ωa(1 − ω)b(−2)c according to the parametrized list of primitive cubic
characters whose conductor divides by 18 given by

ψ(d) =
(
ωa(1− ω)b(−2)c

d

)
= χ̄d(ωa(1− ω)b(−2)c) with a, c ∈ {0, 1, 2} and b ∈ {0, 3, 4}

Finally, we need to add these additional characters to the generating set of our finite
group of characters Ψ′.

Definition 2.7.

Ψ = Ψ′ ∪ {ψ | µ(ψ) = ωa(1− ω)b, a ∈ {0, 1, 2}, b ∈ {0, 3, 4}} ∪
{ψ | ν(ψ) = ωa(1− ω)b(−2)c, a, c ∈ {0, 1, 2}, b ∈ {0, 3, 4}}

It is this set Ψ that we take to be our finite set of characters from which we choose ψ1

and ψ2 in our definition of Z1(s1, s2, w). As we will see in later chapters, this will guarantee
that linear combinations of such series taken over all possible choices of characters will be
mapped by functional equations to other linear combinations taken over all such choices.



Chapter 3

Taking Limits of Dirichlet Series

3.1 A Näıve Conjecture

Our eventual goal is an analytic continuation for the multiple Dirichlet series Z1(s1, s2, w)
which comes in two guises according to the order in which the summation is performed.
For cubic characters ψ1, ψ1, ψ2 as defined in the previous chapter, the two forms are

Z1(s1, s2, w;ψ1, ψ1, ψ2) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0ψ1)L6(s2, χd0ψ1)ψ2(d)P (s1, s2, d)
Ndw

(3.1)

=
∑

m,n∈OK
m,n≡1 (3)
(mn,6)=1

L6(w,χmn0
ψ2)ψ1(m)ψ1(n)Q(w,m, n)

Nms1Nns2
(3.2)

where d = d1d
2
2d

3
3 with χd0 = χd1χ̄d2 , mn = mn1mn

2
2mn

3
3 with χmn0

= χmn1
χ̄mn2

, and
P (s1, s2, d) and Q(w,m, n) are finite Eulerian Dirichlet polynomials. The dependence of the
correction factors on the choice of the ψi has been suppressed in the notation. Heuristically,
the ψi may be completely ignored as they have been introduced in order to adjust the
reciprocity characters χ at bad primes and provide no additional difficulty in the method
we will introduce.

As outlined in the introduction, we will obtain the analytic continuation for Z1(s1, s2, w)
by proving the existence of enough functional equations between Z1 and other Dirichlet
series in three variables whose analytic behavior is known to us. We want to show that
Dirichlet polynomials can be introduced as weighting factors in the series Z1 in order to make
our conjectural functional equations exact. The Dirichlet polynomials are natural choice
for two reasons. First, they are the simplest possible fix to our problem; the finiteness
condition implies that they do not influence the convergence of the series and the Euler
product preserves the multiplicativity of the numerator of Z1 in both incarnations. But
more importantly, simpler two variable series which are similar to (3.1) arise naturally as
the Fourier coefficients of metaplectic Eisenstein series (cf. [13]).

In Sections 1.3 and 1.6, we noted that there should be natural functional equations from
the series Z1(s1, s2, w) to other Dirichlet series using the functional equations of the L-series
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in the numerator. Under the square-free heuristic, we found that

Z1(s1 + w − 1/2, s2 + w − 1/2, 1− w) def= Z3(s1, s2, w)
sq. free

=
∑
m,n,d

χmn(d)G(1,mn)
Nms1Nns2Ndw

, (3.3)

Z1(1− s1, s2, w + s1 − 1/2) def= Z4(s1, s2, w)
sq. free

=
∑
m,n,d

G(mn2, d)
Nms1Nns2Ndw

, (3.4)

Z1(s1, 1− s2, w + s2 − 1/2) def= Z5(s1, s2, w)
sq. free

=
∑
m,n,d

G(m2n, d)
Nms1Nns2Ndw

, (3.5)

Z1(1− s1, 1− s2, w + s1 + s2 − 1) def= Z6(s1, s2, w)
sq. free

=
∑
m,n,d

G6(m2n2, d)
Nms1Nns2Ndw

. (3.6)

As we noted before, each of these series on the right-hand side have natural generaliza-
tions to series taken over all integers m,n, d which suggest additional functional equations
of all four Dirichlet series Z3, Z4, Z5, and Z6 into themselves. Moreover, (3.3), (3.6), and
the pair of equations (3.4) and (3.5) are symmetric in s1 and s2. This strongly suggests
that the correction factor P (s1, s2, d) should be symmetric in s1 and s2 and the correction
factor Q(w,m, n) should be symmetric in m and n. Further, the existence of perfect ob-
jects under the assumption that integers are square-free suggests that the correction factor
P (s1, s2, d) = 1 when d is square-free and Q(w,m, n) = 1 when mn is square-free. Because
we intend to eventually show that correction factors with such desirable properties exist,
we need to keep a running total of these assumptions.

Assumption 1. The Dirichlet polynomials P (s1, s2, d;ψ1, ψ1) and Q(w,m, n;ψ2) should
satisfy the following properties:

• They are finite, Eulerian Dirichlet polynomials depending only on the indicated quan-
tities.

• P (s1, s2, d) = P (s2, s1, d) and Q(w,m, n) = Q(w, n,m).

• P (s1, s2, d) = 1 if d is square-free.

• Q(w,m, n) = 1 if mn is square-free.

• They can be chosen so that the interchange equality (3.1)=(3.2) is satisfied.

• They can be chosen so that Z3, Z4, Z5 and Z6, defined according to (3.3)-(3.6), satisfy
additional functional equations into themselves.

The obvious question arises: how can we find such correction factors? The square-free
heuristics in (3.4)-(3.6) above offer a tantalizing possibility. Unlike the Dirichlet series Z1,
the series Z4, Z5 and Z6 restricted to square-free integers have natural generalizations as
sums over all integers–simply take the sums to be over all integers. We might näıvely
conjecture that we could begin with such a definition of either Z4, Z5, or Z6 as the initial
object (with sums over all integers) and define Z1(s1, s2, w) (and hence implicitly define
P (s1, s2, d) as well) according to the associated involution.
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This idea has merit. For example, taking the definition of Z4(s1, s2, w) to be

Z4(s1, s2, w) def=
∑

m,n,d∈OK
m,n,d≡1 (3)
(mnd,6)=1

G(mn2, d)ψ̄1(m)ψ1(n)ψ2(d)
Nms1Nns2Ndw

(3.7)

is consistent with the initial definition Z4(s1, s2, w) = Z1(1− s1, s2, w + s1 − 1/2). Indeed,
transforming the Dirichlet series Z4 in (3.7) by

(s1, s2, w) 7→ (1− s1, s2, w + s1 − 1/2)

and interchanging the order of summation does result in a series summed over d whose
numerator is a product of the correct L-series multiplied by a finite, Eulerian Dirichlet
polynomial. Moreover, for double Dirichlet series (i.e. two-variable series) with one Dirichlet
L-series in the numerator, one can show that similarly completing a series suggested by the
square-free heuristic does lead to the right definition for the Dirichlet polynomials.

Before getting too excited, we immediately note that Z4 and Z5 are not symmetric in
s1 and s2, so they fail to meet one of the desired properties of Assumption 1 above. A more
careful inspection of Z6 shows that it fails to provide an adequate definition of Q(w,m, n)
upon interchange. (Such a Q is not trivial at square-free mn.) Moreover, Z4 and Z6 lead
to different definitions of a correction factor P (s1, s2, d), and hence, an inconsistent set of
functional equations. However, the simple fact that these series, upon interchanging the
order of summation and transforming, do produce L-series multiplied by additional factors
is an indication that we are close to the correct interpretation of this picture.

3.2 A First Step

In this section, we take a first step toward a more refined conjecture. While it was too
ambitious to try to infer the form of an ideal three-variable object from the restricted sum
over square-free integers, we can make more modest claims upon careful study of the form
of these Dirichlet polynomials.

Having assumed that P (s1, s2, d) and Q(w,m, n) are Eulerian Dirichlet polynomials, we
may write

P (s1, s2, d) =
∏
pα||d3

∑
i,j

ai,j(d0, p
α)Np−is1−js2 =

∑
e1e2|d∞3

ae1,e2(d0, d3)Ne−s11 Ne−s22

where d = d0d
3
3 with d0 cube-free. Similarly,

Q(w,m, n) =
∏

pβ ||M3

∑
l

bl(m,n, pβ)Np−lw =
∑
f |M∞

3

bf (m,n,M3)Nf−w

where mn = M0M
3
3 with M0 square-free.

From this assumption, we see that if we take the limit of Z1(s1, s2, w) (written as a sum
over d) as Re(s2) →∞ (which is valid since our sum is absolutely convergent for all values
of s1, s2 with Re(si) ≥ 1), we can obtain a simpler object which we understand. That is,∑

d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0ψ1)L6(s2, χd0ψ1)ψ2(d)P (s1, s2, d)
Ndw

=



22

=
∑

d,m,n∈OK
d,m,n≡1 (3)

χd0(m)ψ1(m)χd0(n)ψ1(n)ψ2(d)P (s1, s2, d)
Nms1Nns2Ndw

so in the limit as Re(s2) → ∞, the only non-zero terms are those associated to n = 1.
Hence, we have

lim
Re(s2)→∞

Z1(s1, s2, w) =
∑

d,m∈OK
d,m≡1 (3)
(m,6)=1

χd0(m)ψ1(m)ψ2(d)P (s1,∞, d)
Nms1Ndw

where P (s1,∞, d) is defined according to the Euler product form of P . That is,

P (s1,∞, d) def= lim
Re(s2)→∞

∏
pα||d3

∑
i,j

ai,j(d0, p
α)Np−is1−js2 =

∏
pα||d3

∑
i

ai,0(d0, p
α)Np−is1

Performing a similar limit calculation for Z1 as a sum over m and n gives:

lim
Re(s2)→∞

Z1(s1, s2, w) =
∑

m,d∈OK
m,d≡1 (3)
(d,6)=1

χm0(d)ψ1(m)ψ2(d)Q(w,m, 1)
Nms1Ndw

This limit reduces the interchange equality to∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0ψ1)ψ2(d)P (s1,∞, d)
Ndw

=
∑

m∈OK
m≡1 (3)
(m,6)=1

L6(w,χm0ψ2)ψ1(m)Q(w,m, 1)
Nms1

.

This is precisely the form of the one-variable interchange equality; the Dirichlet polynomials
P (s1,∞, d) and Q(w,m, 1) are serving the same roles as the one-variable correction factors
to complete double Dirichlet series with cubic characters. However, we know from the one-
variable cubic case that there is a unique pair of correction factors P and Q which satisfy the
desired properties of assumption 1. If Pd0,d3(s) denotes the one-variable correction factor,
then P (s1,∞, d) = Pd0,d3(s) and Q(w,m, 1) = Pm0,m3(w) where it can be shown that

Pd0,d3(s) =
∏
p|d3

[
1− χd0(p)ψ1(p)Np−s

]
(3.8)

(This was done in general for nth order twists of Hecke L-series by Friedberg, Hoffstein,
and Lieman in [11]. There they write that the Dirichlet correction factor has form

Pd0,d3(s) =
∑

r1r2r3=d3

µ(r3)χd0(r3)ψ1(r3)

Nrs3Nr
ns−(n−1)
1

.

To translate into our case, set n = 3 and remove the zeta factor ζ(3w + 3s− 2) from their
original Dirichlet series Z(s, w) defined with one cubic L-series in the numerator. The result
is (3.8).)
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The form of these Dirichlet polynomials in one variable imply the form for our correction
coefficients ai,j(d0, p

α) of the two-variable P (s1, s2, d) when j = 0.

ai,0(d0, p
α) =


1 if i = 0, α ≥ 0
−χd0(p)ψ1(p) if i = 1, α > 0
0 otherwise

(3.9)

for any value of d where d = d1d
2
2d

3
3 and ordp(d3) = α. Similarly, this implies the form of

correction coefficients bl(m,n, pβ) of Q(w,m, n) when n = 1.

bl(m,n, pβ) =


1 if l = 0, β ≥ 0
−χd0(p)ψ2(p) if l = 1, β ≥ 1
0 otherwise

(3.10)

for any value of m where m = m1m
2
2m

3
3 and ordp(m3) = β.

We can repeat our limiting argument by taking the limit of Z1 as Re(s1) →∞. However,
our object is completely symmetric in s1 and s2, so this process gives identical information
to the above for the coefficients a0,j(d0, p

α) of P and bi(1, n) of Q.

3.3 Taking Variables to Infinity

In the previous section, we determined information about the Dirichlet polynomials P and
Q by taking limits of the original series Z1(s1, s2, w). This reduced Z1 to a simpler object
in two complex variables which was much easier to study. Here we repeat this idea with a
subtle twist. First, we apply a transformation of variables as predicted in (3.3)-(3.6). Then
we take limits of variables to infinity to determine new information about the polynomials
P and Q and their coefficients. It is not immediately clear why the resulting object from
this process should be something familiar. This will be further explained in what follows.

3.3.1 A Careful Transformation of Z1(s1, s2, w)

We begin with a change of variables suggested by (3.4).

Z1(s1, s2, w) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0ψ1)L6(s2, χd0ψ1)ψ2(d)P (s1, s2, d)
Ndw

, so

Z1(1−s1, s2, w+s1−1/2) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(1− s1, χd0ψ1)L6(s2, χd0ψ1)ψ2(d)P (1− s1, s2, d)
Ndw+s1−1/2

=
∑
d∈OK
d≡1 (3)
(d,6)=1

L(1− s1, χd0ψ1)L(s2, χd0ψ1)ψ2(d)P (1− s1, s2, d)
Ndw+s1−1/2

·
[
1− χd0(1− ω)ψ1(1− ω)3−(1−s1)

]
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=
∑
d∈OK
d≡1 (3)
(d,6)=1

L(s1, χ̄d0ψ̄1)L(s2, χd0ψ1)ψ2(d)G(χd1)G(χ̄d2)G(ψ1)ψ̄1(d2)(Nd1d2)s1−1/2

Ndw+s1−1/2

· P (1− s1, s2, d)
[
1− χd0(1− ω)ψ1(1− ω)3−(1−s1)

]

=
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χ̄d0ψ̄1)L6(s2, χd0ψ1)ψ2(d)G(χd1)G(χ̄d2)G(ψ1)ψ̄1(d2)(Nd1d2)s1−1/2

Ndw+s1−1/2

· P (1− s1, s2, d)
[
1− χd0(1− ω)ψ1(1− ω)3−(1−s1)

]
·
[
1− χ̄d0(1− ω)ψ̄1(1− ω)3−s1

]−1

=
∑
d∈OK
d≡1 (3)
(d,6)=1

χ̄d0(mn
2)ψ̄1(m)ψ1(n)ψ2(d)G(χd1)G(χ̄d2)G(ψ1)ψ̄1(d2)P (1− s1, s2, d)

Nms1Nns2Ndw(Nd2d3
3)s1−1/2

·
[
1− χd0(1− ω)ψ1(1− ω)3−(1−s1)

]
·
[
1− χ̄d0(1− ω)ψ̄1(1− ω)3−s1

]−1

Since our characters are cubic, we can rewrite the final Euler factor above as[
1− χ̄d0(1− ω)ψ̄1(1− ω)3−s1

]−1 =

=
[
1 + χ̄d0(1− ω)ψ̄1(1− ω)3−s1 + χd0(1− ω)ψ1(1− ω)3−2s1

] [
1− 3−3s1

]−1

so we have shown that[
1− 3−3s1

]
Z1(1− s1, s2, w + s1 − 1/2) = G(ψ1)

[
1− χd0(1− ω)ψ1(1− ω)3−(1−s1)

]
[
1 + χ̄d0(1− ω)ψ̄1(1− ω)3−s1 + χd0(1− ω)ψ1(1− ω)3−2s1

]
Z4(s1, s2, w)

where

Z4(s1, s2, w) =
∑
d∈OK
d≡1 (3)
(d,6)=1

χ̄d0(mn
2)ψ̄1(m)ψ1(n)ψ2(d)G(χd1)G(χ̄d2)ψ̄1(d2)P (1− s1, s2, d)

Nms1Nns2Ndw(Nd2d3
3)s1−1/2

.

Now for primes p - d2, let d3 = p3αd′3 with (p, d′3) = 1 as usual. Then we have correction
terms of form

P (p)(s1, s2, d) =
[
1 + a

(α)
1,0 Np−s1 + · · ·+ a

(α)
3α−1,3αNp−(3α−1)s1−3αs2 + a

(α)
3α,3αNp−3αs1−3αs2

]
So

P (1− s1, s2, d) =
∏
pα||d3

[
1 + a

(α)
1,0 Nps1−1 + · · ·+ a

(α)
3α−1,3αNp−3α+1+(3α−1)s1−3αs2+

a
(α)
3α,3αNp−3α+3αs1−3αs2

]
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Incorporating the N(d3
3)
s1−1/2 from the above denominator into the correction factor, we

have:

P (1− s1, s2, d) =
∏
pα||d3

Np3α/2−3αs1 [1 + · · · ]

=
∏
pα||d3

[
a

(α)
3α,0Np

−3α/2 + a
(α)
3α−1,0Np

−3α/2+1−s1 + · · ·

· · ·+ a
(α)
0,3αNp3α/2−3αs1−3αs2

]
For primes p|d2, again letting d3 = p3αd′3 with (p, d′3) = 1, we have

P (p)(s1, s2, d) =
[
1 + a

(α)
1,0 Np−s1 + · · ·+ a

(α)
3α,3α+1Np

−3αs1−(3α+1)s2+

a
(α)
3α+1,3α+1Np

−(3α+1)s1−(3α+1)s2
]

So

P (1− s1, s2, d) =
∏
pα||d3
p|d2

[
1 + a

(α)
1,0 Nps1−1 + · · ·

· · ·+ a
(α)
3α,3α+1Np

−3α+3αs1−(3α+1)s2 + a
(α)
3α+1,3α+1Np

−(3α+1)+(3α+1)s1−(3α+1)s2
]

Incorporating the (Nd2d
3
3)
s1−1/2 from the above denominator into the correction factor, we

have:

P (1− s1, s2, d) =
∏
pα||d3
p|d2

Np3α/2+1/2−(3α+1)s1 [1 + · · · ]

=
∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + a
(α)
3α,0Np

−3α/2+1/2−s1 + · · ·

· · ·+ a
(α)
0,3α+1Np

3α/2+1/2−(3α+1)s1−(3α+1)s2
]

Rewriting Z4(s1, s2, w) to include this altered form of the correction factor, we have

∑
d,m,n∈OK
d,m,n≡1 (3)
(dmn,6)=1

χ̄d0(mn
2)ψ̄1(m)ψ1(n)ψ2(d)G(χd1)G(χ̄d2)ψ̄1(d2)

∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·
]

Nms1Nns2Ndw
·

·
∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + a
(α)
3α,0Np

−3α/2+1/2−s1 + · · ·
]

(3.11)
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3.3.2 The Limit as <(s2) →∞

If we take the limit of the above series as <(s2) → ∞, then the only non-zero terms are
those with n = 1 and no contribution to terms with exponent s2 from the correction factor.
Hence, we are left with Z4(s1,∞, w) =

∑
d,m∈OK
d,m≡1 (3)
(m,6)=1

χ̄d0(m)ψ̄1(m)ψ2(d)G(χd1)G(χ̄d2)ψ̄1(d2)
Nms1Ndw

∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2+ · · ·

· · ·+ a
(α)
0,0 Np3α/2−3αs1

] ∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + · · ·+ a
(α)
0,0 Np3α/2+1/2−3αs1

]
(3.12)

Note that the result (3.12) above is the same series as Z1(1−s1,∞, w+s1−1/2), the series
which results by first taking the limit as <(s2) → ∞ of Z1(s1, s2, w) and then performing
the translation. But, as we noted before,

Z1(s1,∞, w) =
∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0ψ1)ψ2(d)P (s1,∞, d)
Ndw

is just a double Dirichlet series for which we know that, under transformation (s1, w) 7→
(1− s1, w + s1 − 1/2),

Z1(1− s1,∞, w + s1 − 1/2) =
∑

d,m∈OK
d,m≡1 (3)
(m,6)=1

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

.

This functional equation is established in [11]. In brief, it exists because the two-variable
multiple Dirichlet series Z1(1−s1,∞, w+s1−1/2) is the double Dirichlet series which occurs
naturally as the Fourier coefficient of a metaplectic Eisenstein series on the three-fold cover
of GL(2).

Thus we may determine the correction coefficients a(α)
i,0 (d0, p) of P (s1, s2, d) found in

(3.12) via the following known equality

∑
d,m∈OK
d,m≡1 (3)
(m,6)=1

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

=

∑
d,m∈OK
d,m≡1 (3)
(m,6)=1

χ̄d0(m)G(χd1)G(χ̄d2)ψ̄1(d2)ψ̄1(m)ψ2(d)
Nms1Ndw

∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·

· · ·+ a
(α)
0,0 Np3α/2−3αs1

]
·
∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + · · ·+ a
(α)
0,0 Np3α/2+1/2−3αs1

]
(3.13)

To solve for the unknown coefficients, we must decompose the series on the left-hand side
of (3.13) in terms of primes dividing d.
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Proposition 3.1. Decomposing the Gauss sum according to primes dividing d = d1d
2
2d

3
3,

we obtain∑
d,m∈OK
d,m≡1 (3)
(m,6)=1

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

=
∑
d∈OK
d≡1 (3)
(d,6)=1

ψ2(d)G(1, d1)G(1, d2)L(s1, χ̄d0ψ̄1)ψ̄1(d2)
Ndw

·
∏
pα||d3
p-d0

(
Np3α/2−3αs1 − χd0(p)ψ1(p)Np3α/2−1−(3α−1)s1

)
∏
pα||d3
p|d1

Np3α/2−3αs1
∏
pα||d3
p|d2

Np3α/2+1/2−(3α+1)s1

Then, in conjunction with the above equality, we have

Corollary 3.2. Let a(α)
i,j (d0, p) be the coefficient of Np−is1−js2 in the pth Euler factor of the

Dirichlet polynomial P (s1, s2, d) depending on the indicated variables. Then

a
(α)
i,0 (d0, p) = a

(α)
0,i (d0, p) =


1 if i = 0, α ≥ 0
−χd0(p)ψ1(p) if i = 1, α > 0
0 otherwise

Proof of Corollary: Simply equating
∑

d,m
G(m,d)ψ̄1(m)ψ2(d)

Nms1Ndw with Z4(s1,∞, w) and can-
celling common factors at any fixed d, we have that∏

pα||d3
p-d0

(
Np3α/2−3αs1 − χd0(p)ψ1(p)Np3α/2−1−(3α−1)s1

) ∏
pα||d3
p|d1

Np3α/2−3αs1 =

∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·+ a
(α)
0,0 Np3α/2−3αs1

]

and∏
pα||d3
p|d2

Np3α/2+1/2−(3α+1)s1 =
∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + · · ·+ a
(α)
0,0 Np3α/2+1/2−(3α+1)s1

]
.

Equating terms on both sides gives the result for ai,0. By symmetry, we know the same
must be true for a0,i.

The reader will note that this is precisely the information determined by the limiting
process in the previous section. While it seems redundant to reprove this now, in the fol-
lowing chapters, we will need the fact that the decomposition of a Gauss sum results in the
determination of correction coefficients. Moreover, it will serve to motivate the assumptions
we will make over the rest of this chapter.

Proof of Proposition: We do this by case method. Suppose that p - d0. Write d = p3αd′

with (p, d′) = 1 and m = pγm′ with (m′, p) = 1. Then

G(m, d) = G(pγm′, p3αd′) =
g(pγm′, p3αd′)√

Np3αNd′
=
g(pγm′, d′)√

Nd′
g(pγm′, p3α)√

Np3α
=
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= χ̄d′(pγ)
g(m′, d′)√

Nd′
g(pγ , p3α)√

Np3α
= χ̄d0(p

γ)G(m′, d′)
g(pγ , p3α)√

Np3α

So we may write

∑
d,m

G(m, d)ψ2(d)ψ̄1(m′)
Nms1Ndw

=
∑
m′,d

d=p3αd′

G(m′, d′)ψ2(d)ψ̄1(m)
(Nm′)s1Ndw

∑
γ≥0

χ̄d0(p
γ)ψ̄1(pγ)

Npγs1
g(pγ , p3α)√

Np3α


But we know that

g(pγ , p3α) =


φ(p3α), if γ ≥ 3α
−Np3α−1, if γ = 3α− 1, α > 0
0, otherwise.

In particular, if α = 0 (i.e. p - d), then g(pγ , p3α) = 1 and so∑
γ≥0

χ̄d0(p
γ)ψ̄1(pγ)

Npγs1
g(pγ , p3α)√

Np3α
=
∑
γ≥0

χ̄d0(p
γ)ψ̄1(pγ)

Npγs1
= L(p)(s1, χ̄d0ψ̄1),

the pth Euler factor of the L-series. Then substituting this information and removing all
such prime factors p such that p - d0, our initial series reduces to

∑
m′,d
d=d′d33

G(m′, d′)ψ2(d)ψ̄1(m′)
(Nm′)s1Ndw

∏
p-d

L(p)(s1, χ̄d0ψ̄1)
∏
pα||d3
p-d0

∑
γ≥3α

χ̄d0(p
γ)ψ̄1(pγ)

Npγs1
φ(p3α)√

Np3α
−

Np3α−1√
Np3α

χ̄d0(p
(3α−1))ψ̄1(p(3α−1))
Np(3α−1)s1)

)
Examining the Euler factors in the latter product more closely, we see that∑

γ≥3α

χ̄d0(p
γ)ψ̄1(pγ)

Npγs1
φ(p3α)√

Np3α
− Np3α−1√

Np3α

χ̄d0(p
(3α−1))ψ̄1(p(3α−1))
Np(3α−1)s1)

=

=
φ(p3α)√

Np3α
Np−3αs1L(p)(s1, χ̄d0ψ̄1)−

Np3α−1√
Np3α

χd0(p)ψ1(p)
Np(3α−1)s1)

.

Factoring the pth Euler factor of the L-series from each of the terms, we have

L(p)(s1, χ̄d0ψ̄1)

(
φ(p3α)√

Np3α
Np−3αs1 − Np3α−1√

Np3α

χd0(p)ψ1(p)
Np(3α−1)s1)

(1− χ̄d0(p)ψ̄1(p)Np−s1)

)
=

= L(p)(s1, χ̄d0ψ1)
(
Np3α/2−3αs1 − χd0(p)ψ̄1(p)Np3α/2−1−(3α−1)s1

)
Rewriting the above, we now have∑

d,m∈OK
d,m≡1 (3)
(dm,6)=1

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

=
∑
m′,d
d′|d

m′,d′|d∞0

G(m′, d′)ψ̄1(m′)ψ2(d)
(Nm′)s1Ndw

∏
p-d

L(p)(s1, χ̄d0ψ̄1)

∏
pα||d3
p-d0

L(p)(s1, χ̄d0ψ̄1) ·
(
Np3α/2−3αs1 − χd0(p)ψ1(p)Np3α/2−1−(3α−1)s1

)
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This completes the treatment of the case p - d0. We are now left to consider the remaining
sum ∑

m,d=d0d33
d3,m|d∞0

G(m, d)ψ1(m)ψ2(d)
Nms1Ndw

.

Now suppose that p|d1. Then, similar to the previous case, we may write d′′ = p3α+1d′ with
(d′, p) = 1 and m = pγm′ with (m′, p) = 1. In this case,

G(m, d) = G(pγm′, p3α+1d′) =
g(pγm′, p3α+1d′)√

Np3α+1Nd′

=
g(pγm′, p3α+1)√

Np3α+1

g(pγm′, d′)√
Nd′

χ̄d′(p3α+1)χ̄p(d′)

But g(pγ , p3α+1) = 0 unless γ = 3α. Hence we may write

g(pγm′, p3α+1d′)√
Np3α+1Nd′

=
g(p3αm′, p3α+1d′)√

Np3α+1Nd′
=

Np3α√
Np3α

G(m′, pd′)

Removing all such prime factors p such that p|d1, we have∑
m,d=d0d33
d3,m|d∞0

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

=
∑
m,d
d1,d′|d
m|d∞2

G(m, d1d
′)ψ̄1(m)ψ2(d)

Nms1Ndw
∏
pα||d3
p|d1

Np3α/2−3αs1

This completes the case where p|d1. Finally, we remove the primes p|d2 from the remaining
sum. Write d′ = p3α+2d′′ with (d′′, p) = 1 and m = pγm′ with (m′, p) = 1. Then

G(m, d1d
′) = G(pγm′, p3α+2d1d

′′) =
g(pγm′, p3α+2d1d

′′)√
Np3α+2Nd1Nd′′

= 0

unless γ = 3α+ 1. In this case,

g(pγm′, p3α+2d1d
′′)√

Np3α+2Nd1Nd′′
=
g(p3α+1m′, p3α+2d1d

′′)√
Np3α+2Nd1Nd′′

=
Np3α√
Np3α

g(pm′, p2d1d
′′)√

Np2Nd1Nd′′

Then removing all such primes p such that p|d2 (so that we’ve exhausted all possible divisors
of m) we have∑

m,d
d1d′|d
m|d∞2

G(m, d1d
′)ψ̄1(m)ψ2(d)

Nms1Ndw
=

∑
d=d1d22d

3
3

g(d2, d1d
2
2)ψ̄1(d2)ψ2(d)

Ndw
√

Nd1d2
2

∏
pα||d3
p|d2

Np3α/2−(3α+1)s1 =

=
∑
d

g(1, d1)g(1, d2)Nd2ψ̄1(d2)ψ2(d)
Ndw

√
Nd1d2

2

∏
pα||d3
p|d2

Np3α/2−(3α+1)s1

=
∑
d

G(1, d1)G(1, d2)ψ̄1(d2)ψ2(d)
Ndw

∏
pα||d3
p|d2

Np3α/2+1/2−(3α+1)s1
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This completes the case p|d2 and we can now reconstruct the initial object.

∑
d,m

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

=
∑
d

G(1, d1)G(1, d2)ψ̄1(d2)ψ2(d)
Ndw

∏
p-d

L(p)(s1, χ̄d0ψ̄1)

∏
pα||d3
p-d0

L(p)(s1, χ̄d0ψ̄1)
(
Np3α/2−3αs1

−χd0(p)Np3α/2−1−(3α−1)s1
) ∏
pα||d3
p|d1

Np3α/2−3αs1
∏
pα||d3
p|d2

Np3α/2+1/2−(3α+1)s1

Noting that, for primes p dividing d0, the pth Euler factor of L(s1, χ̄d0ψ̄1) is trivial, this
completes the proof of the theorem.

3.3.3 The Limit as <(s1) →∞

Recall that from (3.11), we had an expression for Z1(1−s1, s2, w+s1−1/2) = Z4(s1, s2, w) =

∑
d,m,n∈OK
d,m,n≡1 (3)

χ̄d0(mn
2)ψ̄1(m)ψ1(n)ψ2(d)G(χd1)G(χ̄d2)ψ̄1(d2)

∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·
]

Nms1Nns2Ndw
·

·
∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + a
(α)
3α,0Np

−3α/2+1/2−s1 + · · ·
]

If, instead, we take the limit of this series as the real part of the transformed variable
<(s1) →∞, then we are left with

∑
n,d∈OK
n,d≡1 (3)
(d,6)=1

χ̄d0(n
2)ψ1(n)ψ2(d)ψ̄1(d2)G(1, d1)G(1, d2)

Nns2Ndw
∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·

+a(α)
3α,3αNp−3α/2−3αs2

] ∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + · · ·+ a
(α)
3α+1,3αNp−3α/2+1/2−3αs2

]

Note that for square-free d with (n, d) = 1, after stripping away all of the characters ψi,

this reduces to
∑

(n,d)=1
d sq. free

G(n2, d)
Nns2Ndw

. Based on the results of the previous section, we might

hope to determine the above unknown correction coefficients using the equality∑
n,d∈OK
n,d≡1 (3)
(d,6)=1

G(n2, d)ψ1(n)ψ2(d)
Nns2Ndw

= Z4(∞, s2, w) =
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=
∑
n,d

χ̄d0(n
2)ψ1(n)ψ2(d)ψ̄1(d2)G(1, d1)G(1, d2)

Nns2Ndw
∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·

· · ·+ a
(α)
3α,3αNp−3α/2−3αs2

] ∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + · · ·+ a
(α)
3α+1,3αNp−3α/2+1/2−3αs2

]
(3.14)

where the left-hand side is now the complete sum over all integers n, d ≡ 1 (3)
(d, 6) = 1. While there is no one-variable situation to confirm this, we will adopt this
assumption in order to determine the above correction coefficients and attempt to find a
complete description of the a(α)

i,j which is consistent with this hypothesis and also satisfies
the other proposed axioms.

Proposition 3.3. Decomposing the Gauss sum according to primes dividing d, we obtain

∑
n,d∈OK
n,d≡1 (3)
(nd,6)=1

G(n2, d)ψ1(n)ψ2(d)
Nns2Ndw

=
∑
d

d=d1d22d
3
3

G(1, d1)G(1, d2)L(s2, χd0ψ1)ψ2(d)ψ̄1(d2)
N(d1d2)w

∏
p-d0
pα||d3
α even

φ(p3α)
Np3α/2+3αs2/2+3αw

·
∏
p-d0
pα||d3
α odd

(
χ̄d0(p)ψ̄1(p)Np3α/2−(3α+1)s2/2−3αw−

χd0(p)ψ1(p)Np3α/2−1−(3α−1)s2/2−3αw
)
·
∏
p|d1
pα||d3
α even

Np3α/2−3αs2/2−3αw

∏
p|d2
pα||d3
α odd

Np(3α+1)/2−(3α+1)s2/2−(3α+1)w (3.15)

Before performing this analysis, we note the resulting implications on the correction
coefficients.

Corollary 3.4. Keeping the same notation as before and supposing that∑
n,d∈OK
n,d≡1 (3)
(nd,6)=1

G(n2, d)ψ1(n)ψ2(d)
Nns2Ndw

= Z4(∞, s2, w) = lim
<(s1)→∞

Z4(s1, s2, w)

we have the following determination of correction coefficients. If α is even, then if p - d0,

a
(α)
3α,i(d0, p) =


Np3α − Np3α−1, if p - d0, i = 3α/2
0 if p - d0, i 6= 3α/2
Np3α if p|d1, i = 3α/2,
0 if p|d1, i 6= 3α/2.
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If α even and p|d2, a
(α)
3α+1,i(d0, p) = 0 for all i. If α is odd, then

a
(α)
3α,i(d0, p) =


χ̄d0(p)ψ̄1(p)Np3α if p - d2, i = (3α+ 1)/2
−χd0(p)ψ1(p)Np3α−1 if p - d2, i = (3α− 1)/2
0 if p - d2, i 6= (3α+ 1)/2, (3α− 1)/2

If α is odd and p|d2,

a
(α)
3α+1,i(d0, p) =

{
Np3α+1 if p|d2, i = (3α+ 1)/2
0 if p|d2, i 6= (3α+ 1)/2.

Proof of Corollary. This follows immediately by directly comparing the two sides of
the equality using the result of the proposition and the careful transformation in Equation
(3.14).

Proof of Proposition. We proceed as before, doing this case by case according to the
divisibility of d by each prime p. First, suppose p - d0. Write d = p3αd′ with (d′, p) = 1 and
n = pγn′ with (n′, p) = 1. Then

∑
n,d

G(n2, d)ψ1(n)ψ2(d)
Nns2Ndw

=
∑
n′,d′

(n′d′,p)=1

G((n′)2, d′)ψ1(n′)ψ2(d)
(Nn′)s2Ndw

∑
α≥0

∑
γ≥0

g(p2γ , p3α)χ̄d0(p
2γ)ψ1(pγ)

Np3α/2+γs2+3αw

since

G(n2, d) =
g(p2γ(n′)2, p3αd′)√

Np3αNd′
=

g(p2γ(n′)2, d′)√
Nd′

g(p2γ(n′)2, p3α)√
Np3α

= χ̄d0(p
2γ)G((n′)2, d′)

g(p2γ , p3α)√
Np3α

.

We can evaluate the Gauss sum g(p2γ , p3α) according to the following case analysis.

g(p2γ , p3α) =


φ(p3α) if 2γ ≥ 3α,
−Np3α−1 if 2γ = 3α− 1,
0 otherwise.

Then if α is even, we have∑
γ≥0

g(p2γ , p3α)χ̄d0(p
2γ)ψ1(pγ)

Np3α/2+γs2+3αw
=

∑
γ≥3α/2

φ(p3α)χ̄d0(p
2γ)ψ1(pγ)

Np3α/2+γs2+3αw

= L(p)(s2, χd0ψ1)
φ(p3α)

Np3α/2+3αs2/2+3αw
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If α is odd, we have
∑
γ≥0

g(p2γ , p3α)χ̄d0(p
2γ)ψ1(pγ)

Np3α/2+γs2+3αw
=

= −χd0(p)ψ1(p)Np3α/2−1−(3α−1)s2/2−3αw +
∑

γ≥(3α+1)/2

φ(p3α)χ̄d0(p
2γ)ψ1(pγ)

Np3α/2+γs2+3αw

= −χd0(p)ψ1(p)Np3α/2−1−(3α−1)s2/2−3αw + L(p)(s2, χd0ψ1)
φ(p3α)χ̄d0(p)ψ̄1(p)

Np3α/2+(3α+1)s2/2+3αw

= L(p)(s2, χd0ψ1)
[
χ̄d0(p)ψ̄1(p)Np3α/2−(3α+1)s2/2−3αw−

χd0(p)ψ1(p)Np3α/2−1−(3α−1)s2/2−3αw
]

Piecing this back together, we have completed the analysis of the case p - d0. Suppose
instead that p|d1. Then we may write d = p3α+1d′ with (d′, p) = 1 and n = pγn′ with
(n′, p) = 1. In this case,

G(n2, d) =
g(p2γ(n′)2, p3α+1d′)√

p3α+1d′
= 0 unless 2γ = 3α

This requires α to be even. In this case,

g(p3α(n′)2, p3α+1d′)√
Np3α+1Nd′

=
Np3α/2g((n′)2, pd′)√

NpNd′
= Np3α/2G((n′)2, pd′).

Lastly, if p|d2, then we may write d = p3α+2d′ with (d′, p) = 1 and n = pγn′ with (n′, p) = 1.
In this case,

G(n2, d) =
g(p2γ(n′)2, p3α+2d′)√

Np3α+2Nd′
= 0 unless 2γ = 3α+ 1

This requires α to be odd. In this case,

g(p3α+1(n′)2, p3α+2d′)√
Np3α+2Nd′

=
Np(3α+1)/2g((n′)2, d′)g((n′)2, p)√

NpNd′

= Np(3α+1)/2G((n′)2, d′)G((n′)2, p).

By removing all of the primes p from d such that p - d0, then primes from d which divide
d1 and lastly, p such that p|d2, we have∑

n,d

G(n2, d)ψ1(n)ψ2(d)
Nns2Ndw

=
∑
d

d=d1d22d
3
3

G(1, d1)G(1, d2)L(s2, χd0ψ1)ψ2(d)ψ̄1(d2)
(d1d2)w

∏
p-d0
pα||d3
α even

φ(p3α)
Np3α/2+3αs2/2+3αw

·
∏
p-d0
pα||d3
α odd

(
χ̄d0(p)ψ1(p)Np3α/2−(3α+1)s2/2−3αw−

χd0(p)ψ1(p)Np3α/2−1−(3α−1)s2/2−3αw
)
·
∏
p|d1
pα||d3
α even

Np3α/2−3αs2/2−3αw

∏
p|d2
pα||d3
α odd

Np(3α+1)/2−(3α+1)s2/2−(3α+1)w (3.16)
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Comparing this with the assertion in the proposition, this completes the proof.

3.4 Additional Limiting Methods: A Rankin-Selberg Argu-
ment

We have determined all of the information about correction coefficients from limits of vari-
ables in

Z4(s1, s2, w) = Z1(1− s1, s2, w + s1 − 1/2).

Of course, we could similarly have transformed Z1(s1, s2, w) using the L-series in the variable
s2. We have named the resulting object Z5(s1, s2, w) = Z1(s1, 1 − s2, w + s2 − 1/2). But
the result is just the same as Z4(s1, s2, w) with the variables s1 and s2 interchanged. Since
we already know that the correction coefficients must be symmetric in s1 and s2, this gives
no new information about the coefficients.

On the other hand, we might begin with Z1(s1, s2, w) and transform both arguments
of the L-series, s1 and s2, according to the natural functional equations. What happens
when we take limits of variables in the resulting object Z6(s1, s2, w) = Z1(1− s1, 1− s2, w+
s1 + s2 − 1) and compare with the Dirichlet series suggested by square-free heuristics? Do
we obtain new information about the correction coefficients? As we will demonstrate, the
answer is no.

Recall that in the opening section of this chapter, we found that considering only the
restricted sum over square-free integers, we have

Z1(1− s1, 1− s2, w + s1 + s2 − 1) =
∑

d sq. free

L(1− s1, χd)L(1− s2, χd)
dw+s1+s2−1

=

∑
d sq. free

L(s1, χ̄d)L(s2, χ̄d)G(1, d)2

Ndw
=

∑
m,n,d

sq. free

G6(m2n2, d)
Nms1Nns2Ndw

= Z6(s1, s2, w)

Then, at least for square-free integers, we have

lim
<(s1)→∞

Z6(s1, s2, w) def= Z6(∞, s2, w) =
∑
m,n,d

sq. free

G6(n2, d)
Nns2Ndw

Taking this to be true for all integers, we can solve for correction coefficients using the
equality

lim
<(s1)→∞

Z1(1− s1, 1− s2, w + s1 + s2 − 1) =
∑
n,d

G6(n2, d)
Nns2Ndw

.

We could decompose the Dirichlet series on the right according to primes dividing d as we
did for a similar comparison of

lim
<(s1)→∞

Z1(1− s1, s2, w + s1 − 1/2) =
∑
n,d

G3(n2, d)
Nns2Ndw

and show by direct examination that the resulting correction coefficients from the two
equalities are the same. However, we offer an alternate approach here using a Rankin-
Selberg unfolding argument. The result is posed for Dirichlet series without additional
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twists by ψi in order to preserve the clarity of the method, but can easily be extended to
series with such additional characters added.

Proposition 3.5. The following Dirichlet series are equal:∑
m,d∈OK
m,d≡1(3)

G6(m2, d)
NmsNdw

=
∑

m,d∈OK
m,d≡1 (3)

G3(m2, d)
NmsNdw

Proof. We first recall several definitions. The metaplectic Eisenstein series on the n-fold
cover of GL(2) has Fourier series

E(n)(z, s) = y2s +
ζ(2ns− n)

ζ(2ns− n+ 1)
y2−2s + y

∑
m6=0

Am(s)Nms−1/2K2s−1(4π |m| y) exp(mx)

where K is a Bessel function and

Am(s) =
∑
d

gn(m, d)
(Nd)2s

.

More generally, one can define an Eisenstein series on a cover of an appropriately restricted
congruence subgroup Γ of SL(2,OK) whereK is a number field containing nth roots of unity.
For example, our series above with cubic Gauss sum is built out of Fourier coefficients of
Eisenstein series on Γ(3), the principle congruence subgroup of level 3. It consists of 2× 2
matrices in SL(2,OK) congruent to the identity matrix mod 3. Then the Fourier coefficient
is precisely a sum over integers d ≡ 1 (3)
(d, 6) = 1. For a detailed account of these Eisenstein series, we refer the reader to Kubota’s
book [18]. We further define the higher degree theta functions as a residue, Θ(n)(z) =
Res2s=1+ 1

n
E(n)(z, s). So for n = 2, the Fourier expansion has form

Θ(2)(z) = y1/2 +
∑
m6=0

τ2(m)
(Nm)1/2

W (|m| y) exp(mx)

where W (y) = yK1/2(4πy) = y
√

1
8ye

−4πy and

τ2(m) =

{
(Nm2)1/2 if m = m2

2,
0 otherwise.

This is carefully written in [13]. Again, we should take the theta function to be on Γ(3)
in order to appropriately restrict the sum over m to integers congruent to 1 mod 3. From
these definitions, we see that, in particular,

L(w,E(n)(z, s)) =
∑

m∈OK
m≡1 (3)
(m,6)=1

A
(n)
m (s)Nms−1/2

Nmw
and L(w,Θ(n)(z)) =

∑
m∈OK
m≡1 (3)
(m,6)=1

τn(m)
Nmw

so that the L-series of the Rankin-Selberg convolution of a cubic Eisenstein series and a
quadratic theta function has form

L(w,E(3)(z, s)×Θ(2)(z)) =
∑

m∈OK
m≡1 (3)
(m,6)=1

τ2(m)A(3)
m (s)Nms−1/2

Nmw
=
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=
∑

m∈OK
m≡1 (3)
(m,6)=1

A
(3)
m2(s)

Nm2w−2s+1/2
=

∑
m,d∈OK
m,d≡1 (3)
(d,6)=1

G3(m2, d)
Nd2s−1/2Nm2w−2s+1/2

Rankin-Selberg convolutions for GL(2) automorphic forms are discussed carefully in Section
1.6 of [2]. Notice that, up to a change in variables, we have realized one of the series in the
statement of our proposition via convolution. Recall that we produce such an L-series by
taking the Mellin transform ∫ ∞

0

∫ 1

0
Θ(2)(z)E(3)(z, s)y2wdµ

where dµ =
dxdy

y3
. Substituting the form of the Fourier transforms yields

∫ ∞

0

∫ 1

0

∑
m,m′

τ2(m)A(3)
m′ (s)(Nm

′)s−1/2

(Nm)1/2(Nm′)1/2
exp((m−m′)x)y2wWθ(|m| y)WE(

∣∣m′∣∣ y)dxdy
y3

.

Integrating over x, we obtain∫ ∞

0

∑
m

τ2(m)A(3)
m (s)(Nm)s−1/2√

(Nm)
2 y2wWθ(|m| y)WE(|m| y)dy

y3
.

Now letting y = |m|−1 y′, we have

∑
m

τ2(m)A(3)
m (s)(Nm)s−1/2

Nmw

∫ ∞

0
y2w−2Wθ(y)WE(y)

dy

y
.

We often refer to the sum and integral as the arithmetic and infinite pieces, respectively,
where the arithmetic piece is used in the L-series of the convolution. This is the arithmetic
representation of the convolution we used in the L-series above.

Using the usual Rankin-Selberg technique of unfolding and refolding the integral, we
obtain an alternate representation of our original integral∫ ∞

0

∫ 1

0
Θ(2)(z)E(3)(z, s)y2w dxdy

y3
=

∫
Γ∞\H

Θ(2)(z)E(3)(z, s)y2w dxdy

y3

where Γ∞ denotes the subgroup of Γ stabilizing the cusp at ∞ which consists of all integer
translations and H is the upper-half plane. Now unfolding this integral, the above can be
written as∑
γ∈Γ∞\Γ

∫∫
γ(D)

Θ(2)(z)E(3)(z, s)y2w dxdy

y3
=
∫∫
D

∑
γ∈Γ∞\Γ

Θ(2)(γz)E(3)(γz, s)=(γ(z))2w
dxdy

y3

where D is a fundamental domain for Γ\H. However, Θ(2) and E(3) are automorphic
functions on the metaplectic group; that is, Θ(2)(γz) = κ2(γ)Θ(2)(z) and E(3)(γz, s) =
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κ3(γ)E(3)(z, s), where κn denotes the nth order Kubota symbol. Performing a substitution,
the above integral becomes∫∫

D

Θ(2)(z)E(3)(z, s)
∑

γ∈Γ∞\Γ

κ6(γ)=(γ(z))2wdµ =
∫∫
D

Θ(2)(z)E(3)(z, s)E(6)(z, w)dµ.

Now unfolding the Eisenstein series E(3)(z, s),∫∫
D

Θ(2)(z)E(3)(z, s)E(6)(z, w)dµ =
∫∫
D

Θ(2)(z)E(6)(z, w)
∑

γ∈Γ∞\Γ

κ3(γ)=(γ(z))2sdµ

=
∫∫
D

∑
γ∈Γ∞\Γ

Θ(2)(γz)E(6)(γz, w)

· κ2(γ)κ6(γ)κ3(γ)=(γ(z))2sdµ

=
∑

γ∈Γ∞\Γ

∫∫
γ(D)

Θ(2)(z)E(6)(z, w)y2sdµ

=
∫ ∞

0

∫ 1

0
Θ(2)(z)E(6)(z, w)y2sdµ

=
∫ ∞

0

∫ 1

0

∑
m,m′

τ2(m)Ā(6)
m′ (s)(Nm

′)w−1/2

(Nm)1/2(Nm′)1/2

· exp((m−m′)x)y2sWθ(|m| y)WE6(
∣∣m′∣∣ y)dxdy

y3

=
∫ ∞

0

∑
m

τ2(m)Ā(6)
m (s)(Nm)w−1/2

(Nm)1/2(Nm)1/2
y2s

·Wθ(|m| y)WE6(|m| y)
dy

y3

As before, letting y = |m|−1 y′, we have∑
m

G6(m2, d)
Nm2s−2w+1/2Nd2w−1/2

∫ ∞

0
y2s−2Wθ(y)WE6(y)

dy

y

. Tracing back along this long string of equalities among integrals, we can equate the
arithmetic parts of the convolution so that, for the respective L-series,∑

m

G6(m2, d)
Nm2s−2w+1/2Nd2w−1/2

=
∑
m

G3(m2, d)
Nm2w−2s+1/2Nd2s−1/2

Finally, letting S = 2s − 2w + 1/2 and W = 2w − 1/2, then W + S − 1/2 = 2s − 1/2 and
1−S = 2w− 2s+1/2. Substituting this change of variables into the above gives the result.

3.5 Limits at Infinity and the Coefficients of Q(w, m, n)

We have exhausted all of the limiting methods associated to functional equations in s1
and s2. In this section, we will apply these techniques to the series Z1 with the order of
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summation reversed. Recall that it takes form

Z1(s1, s2, w) =
∑

m,n∈OK
m,n≡1 (3)
(mn,6)=1

L(w,χmn0
ψ2)ψ1(mn)Q(w,m, n)
Nms1Nns2

Remember that mn0 denotes the cube-free part of the product of integers mn. This
object inherits a natural functional equation as w → 1−w from the L-series with argument
w in the numerator. Accordingly, the above should be equal to

∑
m,n∈OK
m,n≡1 (3)

L(1− w,χmn0
ψ̄2)G(1,mn1)G(1,mn2)G(ψ2)ψ̄2(mn2)Q(w,m, n)

Nms1Nns2Nmn1/2−w
1 Nmn1/2−w

2

(3.17)

Just as we tried in the case of functional equations in the s1 and s2 variables, we want
to attempt to relate this to some ideal Dirichlet series with additional functional equations.
Such a perfect series would determine the coefficients of Q and thus complete Z(s1, s2, w)
so that exact transformation properties hold. To find this object, we again rely on the
intuition provided by the square-free integers. If the above was summed over m,n which
were square-free, then neglecting bad primes and congruence conditions, we would have:∑

m,n

L(1− w,χmn)G(1,mn)
Nms1+w−1/2Nns2+w−1/2

=
∑
m,n,d

χmn(d)G(1,mn)
Nms1+w−1/2Nns2+w−1/2Nd1−w (3.18)

The ideal object associated to the above should similarly be described in terms of the
variables (s1 + w − 1/2, s2 + w − 1/2, 1− w), but we can perform a change of variables on
(3.18) with si 7→ si + w − 1/2 and w 7→ 1 − w (since this transformation is an involution)
so that the ideal object is expressed in terms of (s1, s2, w). Under the square-free heuristic,
we now have Z1(s1 + w − 1/2, s2 + w − 1/2, 1− w) =∑

m,n,d

χmn(d)G(1,mn)
Nms1Nns2Ndw

=
∑
m,n,d

G(d,mn)
Nms1Nns2Ndw

if (d,mn) = 1 for all m,n, d

Recall that we defined the resulting Dirichlet series as Z3(s1, s2, w) in (3.3). Then
Z3(s1, s2, w) contains a cubic Gauss sum in the numerator and its cube-free part is essentially
the Mellin transform of a Rankin-Selberg convolution of an ordinary (non-metaplectic)
Eisenstein series with a GL(2) automorphic form. More explicitly, we have

Z3(s1, s2, w) =
∑
d,m,n

G3(d,mn)
NdwNms1Nns2

(writing M = mn) =
∑
d,M

G3(d,M)σs1−s2(M)
NdwNms1

(more symmetrically) =
∑
d,M

χd(M)G3(1,M)σs1−s2(M)NM (s1−s2)/2

NM (s1+s2)/2

From this final incarnation, we see that the numerator is realized as a Rankin-Selberg convo-
lution of a twisted cubic theta function and a non-metaplectic Eisenstein series E(z, (s1−s2+
1)/2). This object has aGL(4) functional equation as si → 1−si so that w → w+2s1+2s2−2
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and poles at 2si−1/2 = 1/2+1/3 according to the usual Fourier analysis which transforms
the argument of the Eisenstein series.

Simply taking this to be the definition of the Z1(s1, s2, w) under the transformation
with w 7→ 1 − w turns out to be too simple to provide us with the rest of the necessary
functional equations. However, in taking the limit as <(w) → ∞, we reduce to a much
simpler object. Here it is reasonable to assume that the Dirichlet series suggested by the
square-free heuristic yields the correct definition. Let us assume this is the case.

Now taking the limit as Re(w) →∞ in the square-free case, all terms associated to d’s
with Nd > 1 vanish, and we are left with

lim
<(w)→∞

∑
m,n,d

χmn(d)G(1,mn)
Nms1Nns2Ndw

=
∑
m,n

G(1,mn)
Nms1Nns2

.

According to the above discussion, the appropriate generalization of this series to a sum
over all integers is a Rankin-Selberg convolution of an untwisted cubic theta function and
an Eisenstein series. We take this to be the ideal object and we require that it is equal to
(3.17) under the involution (s1, s2, w) 7→ (s1 + w − 1/2, s2 + w − 1/2, 1 − w). That is, we
must find coefficients of Q(w,m, n) so that

lim
Re(w)→∞

∑
m,n

L(w,χmn0
ψ̄2)G(1,mn1)G(1,mn2)ψ̄2(mn2)Q(1− w,m, n)

Nms1Nns2Nmnw−1/2
2 Nmn3w−3/2

3

=
∑
m,n

τ3(mn)
Nms1Nns2

(3.19)
where τ3(m) denotes the mth Fourier coefficient of the cubic theta function.

We want to take the limit of the left-hand side of (3.19) above. Recall that Q(w,m, n)
was expressed as

Q(w,m, n) =
∏

pβ ||M3

∑
l

bl(m,n, pβ)Np−lw =
∑
f |M∞

3

bf (m,n,M3)Nf−w

where mn = M0M
3
3 with M0 square-free. The notation above also implicitly states that

β = ordp(mn3) = ordp(M3). Further, define β2 = ordp(mn2) ∈ {0, 1}. We refrain from
indexing the β by p to streamline the notation. We may now rewrite the left-hand side of
(3.19) as:

lim
Re(w)→∞

∑
m,n

χmn0
(d))G(1,mn1)G(1,mn2)G(ψ2)ψ̄2(mn2)

∏
pβ ||M3

∑
l bl(m,n, p

β)Np−l+lw

Nms1Nns2Nmnw−1/2
2 Nmn3w−3/2

3 Ndw

Hence, the terms that survive in the limit will be those which have Nd = 1 and are
also associated to bl(m,n, pβ) with l − 3β − β2 = 0. Indeed, if l − 3β − β2 < 0, then these
terms go to 0 in the limit. If l − 3β − β2 > 0, then the object does not converge. This
immediately implies that if our correction factor is to produce a coherent theory, we must
have bl(m,n, pβ) = 0 for all l > 3β + β2. Now our (3.19) reads:

∑
m,n

G(1,mn1)G(1,mn2)G(ψ2)ψ̄2(mn2)
Nms1Nns2

∏
pβ ||M3

b3β(m,n, pβ)Np(−3β−β2)/2 =
∑
m,n

τ3(mn)
Nms1Nns2

To finish, we need an explicit determination of the right-hand side. To determine the
coefficient b3β(m,n, pβ), we can fix a prime p with m and n chosen so that ordp(mn3) =
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ordp(M3) = β. But τ3(mn), the fourier coefficient of the cubic theta function on the field
K = Q(

√
−3), has the following transformation properties:

τ3(mp2) = 0, τ3(mp) = G(m, p)τ3(m), τ3(mp3) = Np1/2τ3(m)

This implies that if p|mn2, then the right-hand side of our equation is 0, while G(1,mn2)
is non-zero, so b3β+1 = 0. If p 6 |mn2, then

∑
m,n

G(1,mn)
Nms1Nns2

=
∑
m,n

G(1,mn1)Npβ/2

Nms1Nns2
.

Cancelling common factors on both sides leaves:

b3β(m,n, pβ)Np−3β/2 = Npβ/2

And so,
b3β(m,n, pβ) = Np2β

This completes the method of taking limits as we have exhausted all possible natural func-
tional equations of the initial object Z(s1, s2, w).

3.6 A Summary of Assumptions on the Correction Factor

We need to show that correction factors exist which satisfy all of the necessary properties to
guarantee exact functional equations. To close the chapter, we now summarize the collection
of assumptions we have placed on these Dirichlet polynomials P (s1, s2, d) and Q(w,m, n).

Assumption 2. The Dirichlet polynomials P (s1, s2, d;ψ1, ψ1) and Q(w,m, n;ψ2) should
satisfy the following properties:

• They are finite, Eulerian Dirichlet polynomials depending only on the indicated quan-
tities.

• P (s1, s2, d) = P (s2, s1, d) and Q(w,m, n) = Q(w, n,m).

• P (s1, s2, d) = 1 if d is square-free.

• Q(w,m, n) = 1 if mn is square-free.

• They can be chosen so that the interchange equality (3.1)=(3.2) is satisfied.

• They can be chosen so that Z3, Z4, Z5 and Z6, defined according to (3.3)-(3.6), satisfy
additional functional equations into themselves.

• If we expand P and Q as Euler products of form

P (s1, s2, d) =
∏
pα||d3

∑
i,j

ai,j(d0, p
α)Np−is1−js2

and
Q(w,m, n) =

∏
pβ ||M3

∑
l

bl(m,n, pβ)Np−lw
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then the coefficients ai,j and bl should agree with the coefficients determined by the
limiting methods. In total, these are

a
(α)
i,0 (d0, p) = a

(α)
0,i (d0, p) =


1 if i = 0, α ≥ 0
−χd0(p)ψ1(p) if i = 1, α > 0
0 otherwise

and

a
(α)
3α,i(d0, p) =


Np3α − Np3α−1, if p - d0, i = 3α/2
0 if p - d0, i 6= 3α/2
Np3α if p|d1, i = 3α/2,
0 if p|d1, i 6= 3α/2.

If α even and p|d2, a
(α)
3α+1,i(d0, p) = 0 for all i. If α is odd, then

a
(α)
3α,i(d0, p) =


χ̄d0(p)ψ̄1(p)Np3α if p - d2, i = (3α+ 1)/2
−χd0(p)ψ1(p)Np3α−1 if p - d2, i = (3α− 1)/2
0 if p - d2, i 6= (3α+ 1)/2, (3α− 1)/2

If α is odd and p|d2,

a
(α)
3α+1,i(d0, p) =

{
Np3α+1 if p|d2, i = (3α+ 1)/2
0 if p|d2, i 6= (3α+ 1)/2.

and

b3β(m,n, pβ) = Np2β if p - mn2, for any choice of m,n with ordp(mn) = β.

b3β+1(m,n, pβ) = 0 if p|mn2, for any choice of m,n with ordp(mn) = β.



Chapter 4

Preparing to Interchange the
Order of Summation

4.1 Restrictions on Coefficients from Interchanging Summa-
tion

Now that we have determined information about the correction factors imposed by func-
tional equations in the variables si and w, we want to examine the effects of the interchange
inequality on the form of the correction coefficients for both P (s1, s2; d) and Q(w;m,n).

Recall that Z1(s1, s2, w) took the form∑
d∈OK
d≡1 (3)
(d,6)=1

L6(s1, χd0ψ1)L6(s2, χd0ψ1)ψ2(d)P (s1, s2, d)
Ndw

But since the correction factor can be expanded as

P (s1, s2, d) =
∏
pα||d3
pα2 ||d2

∑
i,j

ai,j(d0, p
α)Np−is1−js2 =

∑
e1e2|(d2d3)∞

ae1,e2(d0, d
3
3)Ne

−s1
1 Ne−s22 ,

we may rewrite Z1 as

Z1(s1, s2, w) =
∑

m,n,d∈OK
m,n,d≡1 (3)
(mnd,6)=1

χd0(mn)ψ1(mn)ψ2(d)
Nms1Nns2Ndw

∑
e1e2|(d2d3)∞

ae1,e2(d0, d
3
3)Ne

−s1
1 Ne−s22

=
∑

M,N∈OK
M,N≡1 (3)
(MN,6)=1

∑
d≡1 (3)
me1=M
ne2=N

ei|(d2d3)∞

χd0(mn)ψ1(mn)ψ2(d)ae1,e2(d)
NM s1NN s2Ndw

(4.1)

where, in the last step, we have combined all contributions associated to the variables s1
and s2. Note that if (d,MN) = 1, then e1 = e2 = 1 since we require e1e2|(d2d3)∞, so in
particular, ae1,e2(d) = a1,1(d) = 1 for all such d. Motivated by this reordering, in what

42
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follows we will renormalize the correction coefficients according to the following definition.
Define ãe1,e2(d) by

ae1,e2(d)
def= χd0(e1e2)ψ1(e1e2)ãe1,e2(d).

Note that for all of the coefficients we have determined (compare, for example, Assumption
2 which concludes Chapter 3), the renormalized coefficients ãe1,e2(d) are real-valued. This
further suggests that such a definition is natural. Incorporating this notation into (4.1), we
have ∑

M,N∈OK
M,N≡1 (3)
(MN,6)=1

∑
d≡1 (3)
me1=M
ne2=N

ei|(d2d3)∞

χd0(MN)ψ1(MN)ψ2(d)ãe1,e2(d)
NM s1NN s2Ndw

(4.2)

Moreover, if (d,MN) = 1, then χd0(MN) = χMN0
(d) by cubic reciprocity, where MN0

denotes the cube-free part of the product MN . Reinterpreting the sum over all integers d
as a sum over integers d relatively prime to MN multiplied by all possible powers of divisors
of MN , we can rewrite the above (4.2) as

∑
M,N≡1 (3)
(MN,6)=1

∑
d≡1 (3)

(d,MN)=1

χMN0
(d)ψ2(d)

NM s1NN s2Ndw
∏
p

pk1 ||M
pk2 ||N

∑
α≥0

α=α1+2α2+3α3

χpα1+2α2 (MN)ψ1(MN)ψ2(pα)
Np−αw

·
∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α3)
c1,c2(p

α)

Performing this sum over d such that (d,MN) = 1, we have Z1(s1, s2, w) =

∑
M,N∈OK
M,N≡1 (3)
(MN,6)=1

L3MN (w,χMN0
ψ2)

NM s1NN s2

∏
p

pk1 ||M
pk2 ||N

∑
α≥0

α=α1+2α2+3α3

χpα1+2α2 (MN)ψ1(MN)ψ2(pα)
Np−αw

·
∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α3)
c1,c2(p

α) (4.3)

where L3MN (w,χMN0
) denotes the L-series with Euler factors corresponding to p|3MN

removed. Compare this with the form of Z1(s1, s2, w) with the order of summation reversed.
With the outer sum over m and n, we defined the Dirichlet series Z1(s1, s2, w) =∑

m,n∈OK
m,n≡1 (3)
(mn,6)=1

L6(w,χmn0
ψ2)Q(w,m, n)

Nms1Nns2
=
∑
m,n

L6(w,χmn0
ψ2)

Nms1Nns2
∏

pβ ||M3

∑
l≥0

bl(m,n, pβ)Np−lw

If we abuse the previous notation slightly, and substitute M = m and N = n from the
formulation of Z1(s1, s2, w) in (4.3), we obtain the similar looking∑
m,n∈OK
m,n≡1 (3)
(mn,6)=1

L3mn(w,χmn0
ψ2)

Nms1Nns2
∏
p

pk1 ||m
pk2 ||n

∑
α≥0

α=α1+2α2+3α3

χpα1+2α2 (mn)ψ1(mn)ψ2(pα)
Np−αw

∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α3)
c1,c2(p

α)
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=
∑
m,n

L6(w,χmn0
ψ2)

Nms1Nns2
∏
p

pk1 ||m
pk2 ||n

[
1−

χmn0
(p)ψ2(p)
Npw

]
·

∑
α≥0

α=α1+2α2+3α3

χpα1+2α2 (mn)ψ1(mn)ψ2(pα)
Np−αw

∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α3)
c1,c2(p

α)

by adding back in the missing Euler factors corresponding to primes p|mn. This implies
that, in order for the interchange equality hold, for any choice of m,n with pk1 |m and pk2 |n,

∑
l

bl(m,n, pβ)Np−lw =
[
1−

χmn0
(p)ψ2(p)
Npw

] ∑
α≥0

α=α1+2α2+3α3

χpα1+2α2 (mn)ψ1(mn)ψ2(pα)
Np−αw

∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α3)
c1,c2(p

α) (4.4)

We now exploit our previous investigations of the coefficients bl(m,n; pβ). Recall that
in the previous chapter, we determined that

b3β(m,n; pβ) = Np2β, bl(m,n; pβ) = 0 if l > 3β, for any choice of m,n

According to the latter result, the contribution from the right-hand side of (4.4) at Np−lw
must be 0 for l > 3β + β2.

If k1+k2 6≡ 0 (3), then p|mn0, so the inverse of the Euler factor above is trivial. Then, in
this case, our condition on the vanishing of the bl implies that for fixed α = α1 + 2α2 + 3α3

with α > 3β3,

χpα1+2α2 (mn)ψ1(mn)ψ2(pα)
∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α3)
c1,c2(p

α) = 0 if α > 3β3 (4.5)

If instead k1 + k2 ≡ 0 (3), then this inverse of an Euler factor may appear non-trivially.
Fix an α > 3β3 with α = α1 + 2α2 + 3α3 and α − 1 = γ1 + 2γ2 + 3γ3. (We have been
forced to introduce notation for the decompositions of both α and α − 1 since they may
change depending on the residue class of r mod 3.) Then by determining the contribution
to Np−αw on the right-hand side of (4.4), we have:

χpα1+α2 (mn)ψ1(mn)ψ2(pα)
∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α)
c1,c2(p

α) −

χmn0
(p)ψ2(p)χpγ1+2γ2 (mn)ψ1(mn)ψ2(pα−1) ·

∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3t3+t2

ã(α−1)
c1,c2 (pα−1) = 0.
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Note in particular that the cubic characters attached to each sum match identically. Fac-
toring these from both terms, we obtain

χpα1+α2 (mn)ψ1(mn)ψ2(pα)


∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α)
c1,c2(p

α) −
∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3t3+t2

ã(α−1)
c1,c2 (pα−1)

 = 0.

(4.6)
The characters ψi appearing in (4.5) and (4.6) will always be non-zero as our primes are
congruent to 1 mod 3. However, since p|mn, then if either α1 or α2 6= 0, these identities
(4.5) and (4.6) are trivial. But if α ≡ 0 (3), then our two identities reduce to the combined
result, for fixed α = 3α3 > 3β3 and any fixed k1, k2 > 0,

∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3α3+α2

ã(α)
c1,c2(p

α) =


∑
c1,c2

c1≤k1,c2≤k2
0≤c1,c2≤3t3+t2

ã(α−1)
c1,c2 (pα−1) if k1 + k2 ≡ 0 (3)

0 if k1 + k2 6≡ 0 (3)

(4.7)

These sums, as written with their large list of restrictions, are rather unwieldy. With a
little work, we can determine necessary conditions which are much simpler to comprehend.
As usual, this will depend on the residue of k1 + k2 mod 3 and we break our analysis into
cases accordingly. Suppose first that k1 + k2 ≡ 0 (3). Then using the above equality (4.7)
when α = 3α3 > k1 + k2 = 3β3, we have∑

c1,c2≥0
c1≤k1,c2≤k2

ã(α)
c1,c2(p

α) =
∑

c1,c2≥0
c1≤k1,c2≤k2

ã(α−1)
c1,c2 (pα−1) (4.8)

where the last condition on the sums in (4.7) is redundant in this case, and hence omitted.
But if k1 +k2 ≡ 0 (3), then for pk1 ||m and pk2−1||n, we are in the simpler case of (4.7) where∑

c1,c2≥0
c1≤k1,c2≤k2−1

ã(α)
c1,c2(p

α) = 0 since 3α3 > 3β3 and k1 + k2 − 1 ≡ 2 (3).

Using this relation on both sides of the above equality (4.8) to remove these terms, we are
left with ∑

c1
0≤c1≤k1

ã
(α)
c1,k2

(pα) =
∑
c1

0≤c1≤k1

ã(α−1)
c1,c2 (pα−1) (4.9)

for 3α3 > k1 + k2. Moreover, the cases pk1−1||m and pk2 ||n and pk1−1||m and pk2−1||n have
similarly simple stability relations where sums of correction coefficients are 0. Comparing
the relation from each case using (4.7) yields:∑

c1≤k1−1

ã
(α)
c1,k2

(pα) = 0 for α = 3α3 > 3β3

Removing these terms from the previous equality (4.9) at last yields the desired result that,
for a fixed choice of d with p 6 |d0, a

(α)
k1,k2

(pα) = a
(α−1)
k1,k2

(pα−1) for all α = 3α3 > 3β3 when
k1 + k2 ≡ 0 (3).
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In fact, this information tells us something about all the correction coefficients regardless
of their residue class mod 3. Proceeding inductively, consider the case where k1 + k2 = 1.
The coefficients included in such a sum must be 0 according to the stability relation. But
we know the coefficient of weight 0 (that is, coefficients corresponding to choices of k1, k2

such that k1 + k2 = 0) is stable, so similarly coefficients of weight 1 (i.e. k1 + k2 = 1) must
be stable. Similarly for weight 2, the coefficients sum to 0 and the same principle holds. In
fact, it is clear that it will hold for all weights 3k+1 and 3k+2 and since all the previous
coefficients are inductively stable, then the fact that the sum of these coefficients is 0 proves
the induction hypothesis needed to show stability for all coefficients.

We now repeat this process in the case where 3α3 = 3β3 = k1 + k2. In this case, we
know from taking the limit at infinity of the w variable that b3β(m,n; pβ) = Np2β. Since
k1 + k2 ≡ 0 (3) in this case, then from interchanging the order of summation, we have the
relation, for k1 + k2 = 3β3 = α so that the analogue of (4.6) has trivial cubic characters,∑

c1,c2≥0
c1≤k1,c2≤k2

ã(β3)
c1,c2(p

3β3)−
∑

c1,c2≥0
c1≤k1,c2≤k2

ã(β3−1)
c1,c2 (p3β3−1) = Np2β3 (4.10)

Just as before, the case where pk1−1||m and pk2 ||n has k1 + k2 − 1 ≡ 2 (3) so it satisfies
the simpler relation that the sum of twisted correction coefficients is 0. Subtracting these
terms from (4.10) by the identical method to the above gives a much simpler relation.

a
(β3)
k1,k2

(p3β3)− a
(β3−1)
k1,k2

(pβ−1) = p2β3

We must ensure that these conditions are satisfied when we make our determination of
the ai,j in the subsequent chapter. If they are satisfied, then we are guaranteed that the bl
vanish for large enough l which shows that our correction factor Q(w;m,n) is finite. Lastly,
we need to ensure that the size of the bl are not so large as to affect the convergence of
the entire object Z2(s1, s2, w) and the convergence of the new object given by an additional
functional equation with w 7→ 1−w performed on Z2. This is the goal of the next section.

4.2 Growth Conditions on the Polynomial Q(w; m, n)

By determining bounds on the size of the correction coefficients with respect to the power
of primes dividing m and n, we will achieve two important ends. First, we will be able
to show that the convergence of the correction polynomial does not interfere with the
determination of a region of absolute convergence for the entire object Z1(s1, s2, w). That
is, the growth estimates on the L-series are the limiting factors which determine the region of
absolute convergence. Second, we will obtain enough control over the object Z3(s1, s2, w) =
Z1(s1+w−1/2, s2+w−1/2, 1−w) to obtain an additional functional equation Z3(s1, s2, w) →
Z3(1− s1, 1− s2, w+2s1 +2s2− 4) which extends the region of analytic continuation! This
is detailed in Chapter 5.

Our intuition on the correct bound for the size of the coefficients again comes from
taking the limit as <(w) → ∞ and <(si) → ∞. In taking the limit in the variable s1, we
found that the coefficient of largest size is the one associated to the highest non-vanishing
power of p−w, namely b3β3(1, n; pβ) = p2β3 . Similarly, taking the limit in s2, we determined
the largest coefficient is b3β(m, 1; pβ) = p2β . Then taking the limit in w, we found that
b3β3(m,n; pβ) = p2β3 independent of the choice of m,n such that ordp(mn) = 3β3. This
leads us to conjecture that the largest coefficient for any choice of m and n might similarly
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be b3β3(m,n; pβ). We take this as an assumption and determine the consequences for the
correction coefficients of P (s1, s2, d).

Assumption 3. Given a fixed β = ordp(mn), we have for any such m and n,∣∣∣bl(m,n; pβ)
∣∣∣ << p2l for all l.

where the implied constant is independent of β and l.

Note that the assumption is already known for l ≥ 3β according to the limiting methods
of the previous chapter. There we found b3β(m,n; pβ) = Np2β3 and bl(m,n; pβ) = 0 for
l > 3β3 and any choice of m and n. Hence we only need to guarantee this assumption for
0 < l < 3β3. But using (4.4), and repeating our simple trick of subtracting and adding the
contributions of similar terms, we find that for any choice of m,n with pk1 ||m and pk2 ||n,
k1, k2 > 0, and any l > 0,

bl(m,n; pβ)− bl(m,n/p; pβ−1)− bl(m/p, n; pβ−1) + bl(m/p, n/p; pβ−2) = ã
(l)
k1,k2

(pl)

Hence, our assumption will follow from a simple inductive argument if we can show that
for any value of k1 and k2, ∣∣∣ã(l)

k1,k2
(pl)
∣∣∣ << Np2l for all l. (4.11)

4.3 Summary of Necessary Conditions on Correction Coeffi-
cients

We now collect all of the assumptions we have made on the form of the correction factors
P and Q and their coefficients. This is the final revision to such a collection and each will
be demonstrated in the following chapter.

Assumption 4. The Dirichlet polynomials P (s1, s2, d;ψ1, ψ1) and Q(w,m, n;ψ2) should
satisfy the following properties:

• They are finite, Eulerian Dirichlet polynomials depending only on the indicated quan-
tities.

• P (s1, s2, d) = P (s2, s1, d) and Q(w,m, n) = Q(w, n,m).

• P (s1, s2, d) = 1 if d is square-free.

• Q(w,m, n) = 1 if mn is square-free.

• They can be chosen so that the interchange equality (3.1)=(3.2) is satisfied.

• They can be chosen so that Z3, Z4, Z5 and Z6, defined according to (3.3)-(3.6), satisfy
additional functional equations into themselves.

• If we expand P and Q as Euler products of form

P (s1, s2, d) =
∏
pα||d3

∑
i,j

ai,j(d0, p
α)Np−is1−js2
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and
Q(w,m, n) =

∏
pβ ||M3

∑
l

bl(m,n, pβ)Np−lw

then the coefficients ai,j and bl should agree with the coefficients determined by the
limiting methods.

• For fixed α = 3α3 > 3β3 and any fixed k1, k2 > 0, the normalized correction coefficients
ã

(α)
c1,c2(pα) of P (s1, s2, d) satisfy (4.7).

• The normalized correction coeffients satisfy a mild growth hypothesis. Precisely, for
any value of k1, k2 > 0, ∣∣∣ã(l)

k1,k2
(pl)
∣∣∣ << Np2l for all l.

where the implied constant is independent of l.



Chapter 5

The “Ideal Object” Approach

5.1 Polynomial Combinations of Double Dirichlet Series

5.1.1 An Improved Definition for Z4(s1, s2, w)

As we saw in (3.4) in Chapter 3, the heuristic obtained from sums of square-free integers
for the functional equation (s1, s2, w) 7→ (1− s1, s2, w + s1 − 1/2) suggests that

Z1(1− s1, s2, w + s1 − 1/2) def= Z4(s1, s2, w) =
∑
m,n,d

G(mn2, d)
Nms1Nns2Ndw

.

But this failed because it does not lead to symmetric contributions to the correction factor
P (s1, s2, d). However, the suggested series does possess the desired functional equation
Z4(s1, s2, w) → Z4(s1 +w− 1/2, s2 + 2w− 1, 1−w). We would like to determine a function
of three complex variables which retains this functional equation but also defines a correction
polynomial which satisfies the required properties of the previous sections.

Because the correction polynomial P (s1, s2, d) is Eulerian, we can restrict our attention
to powers of Np−s1 or Np−s2 in Z4(s1, s2, w) and still obtain complete information about the
a

(α3)
i,j (d0, p) which comprise the Dirichlet polynomial P . Even in this special case, the form

suggested by our previous heuristic is not consistent with our required properties. That is,

Z4(s1, w; pk) := [ Np−ks2 coefficient of Z4(s1, s2, w) ] 6=∑
m,d

G(mp2k, d)ψ̄1(mp2k)ψ2(d)
Nms1Ndw

def= D4(s1, w; p2k)

since it again fails to give symmetric contributions for the ai,j .
In order to satisfy the functional equation (s1, s2, w) 7→ (s1 +w−1/2, s2 +2w−1, 1−w),

the terms in Z4(s1, w; pk) must satisfy

Z4(s1, w; pk)Np−ks2 = Z4(s1 + w − 1/2, 1− w; pk)Np−ks2−2kw+k.

Our basic assumption, which motivates the collection of functions we consider, is that there
aren’t very many objects which possess this functional equation. In fact, the only such
functions with the correct transformation properties indicated above should take form:

2k∑
l=0

Rl(s1, w; 2k)D(s1, w; p2k−l) =
2k∑
l=0

Rl(s1, w; 2k)
∑

m,d≡1 (3)
(md,6)=1

G(mp2k−l, d)ψ̄1(mp2k−l)ψ2(d)
Nms1Ndw

49
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where the Rl(s1, w; 2k) are finite Dirichlet polynomials in Np−s1 and Np−w with the property

Rl(s1, w; 2k) = Npl/2−lwRl(s1 + w − 1/2, 1− w).

Note that the transformation condition on each of the Rl(s1, w) immediately implies the
desired transformation property for Z4(s1, w; k). A further hypothesis on the Dirichlet poly-
nomials Rl(s1, s2, w) guarantees that such combinations are especially nice: all monomials
Np−is1−jw occurring in Rl(s1, w; 2k) must have i ≤ j. We will discuss the ramifications of
this assumption in later sections.

In short, we have just proposed that the correct definition for Z4(s1, s2, w) is only a
slight generalization of the one suggested by the square-free heuristics and still possesses all
the essential characteristics. With this in mind, we will spend the rest of the chapter trying
to prove the following result:

Theorem 5.1 (Main Theorem, Version 1). For every value of k ≥ 0, there exists a
finite collection of finite Dirichlet polynomials Rl(s1, w; 2k) for l = 0, . . . , 2k, satisfying the
properties:

1) Rl(s1, w; 2k) = Npl/2−lwRl(s1 + w − 1/2, 1− w), and
2) All monomials Np−is1−jw occurring in Rl(s1, w; 2k) must have i ≤ j

so that the definition

Z4(s1, w; pk)
def
=

2k∑
l=0

Rl(s1, w; 2k)D(s1, w; p2k−l)

defines a consistent set of correction coefficients a(α3)
i,j (d0, p) of P (s1, s2, d) such that the

following properties hold:
1) The correction factor is a finite, Eulerian Dirichlet polynomial
2) The correction factor is symmetric in the variables s1 and s2.
3) The correction factor is trivial if d is cube-free. More specifically, each Euler factor

at the prime p depends on the divisibility of d by powers of p3.
4) The values of the coefficients agree with those determined by the method of taking

variables to infinity.
5) Large collections of the ai,j sum to 0 according to (4.7).
6) The coefficients ai,j satisfy mild growth conditions according to (4.11).

We will begin the proof of this theorem in the next section. While the current statement
of the theorem strongly reflects the thinking process used to obtain it, it is quite difficult to
conceptualize a strategy for its proof. To conclude this section, we will work to simplify this
statement into an equivalent but more combinatorial claim and prove several supporting
lemmas which describe basic constraints on the form of these linear combinations.

5.1.2 Deconstructing D4(s1, w; pl)

We begin this process with a more careful description of the decomposition of a generic
Gauss sum object D4(s1, w; pl). Again, we’ll want to use the method of decomposing the
series according to the primes dividing d. This follows identically to the previous decom-
position of D(s1, w) used in the method of taking variables to infinity. The only difference
is the analysis at the distinguished prime p, so we begin our decomposition of D4(s1, w; pl)
with this.
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Proposition 5.2. The p-th Euler factor of the series D4(s1, w; pl) as a Dirichlet series in
d (called the p-part of D4(s1, w; pl)) is given by the following cases. First, if p - d0, then the
p-part takes the form:

χ̄d0(p
l)ψ̄(pl)L(p)(s1, χ̄d0ψ̄1) +∑

0<3α3≤l
χ̄d0(p

l)ψ̄1(pl)L(p)(s1, χ̄d0ψ̄1)(Np3α3/2 − Np3α3/2−1)Np−3α3w+

∑
3α3>l

L(p)(s1, χ̄d0ψ̄1)
(
Np3α3/2−(3α3−l)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1−3α3w

)
If p|d1, then the p-part of the series is∑

3α3≥l
Np3α3/2−(3α3−l)s1

If p|d2, then the p-part of the series is

ψ̄1(p)
∑

3α3+1≥l
Np3α3/2−(3α3+1−l)s1

Proof: Pick and fix a value of d0. As a first case, suppose that p - d0. Then write d = p3α3d′

with (p, d′) = 1 and similarly, write m = pγm′ with (p,m′) = 1. Then

D4(s1, w; pl) =
∑

m,d∈OK
m,d≡1 (3)
(md,6)=1

G(plm, d)ψ̄1(mpl)ψ2(d)
Nms1Ndw

=
∑
m′,d′

α3,γ≥0

G(pl+γ(m′), p3α3d′)ψ̄1(pγ+lm′)ψ2(d)
(Nm′)s1(Nd′)wNpγs1+3α3w

(5.1)

But

G(pl+γ(m′), p3α3d′) =
g(pl+γ(m′), p3α3d′)√

Np3α3Nd′
=
g(pl+γ(m′), d′)√

Nd′
g(pl+γ(m′), p3α3)√

Np3α3
=

= χ̄d0(p
l+γ)

g(m′, d′)√
Nd′

g(pl+γ , p3α3)√
Np3α3

=
χ̄d0(p

l+γ)√
Np3α3

G(m′, d′)
g(pl+γ , p3α3)√

Np3α3

Then we may rewrite the above (5.1) as

D4(s1, w; pl) =
∑

m′,d′≡1 (3)
(m′d′,6p)=1

G(m′, d′)ψ̄1(m′)ψ2(d)
(Nm′)s1(Nd′)w

∑
α3≥0

∑
γ≥0

χ̄d0(p
l+γ)ψ̄1(pl+γ)

Npγs1+3α3w

g(pl+γ , p3α3)√
Np3α3


But we know that

g(pl+γ , p3α3) =


φ(p3α3), if l + γ ≥ 3α3

−Np3α3−1, if l + γ = 3α3 − 1, α3 > 0
0, otherwise
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so we can evaluate the bracketed sum above according to a similar case method. That is,

summing the geometric sum, we obtain
∑
γ≥0

χ̄d0(p
l+γ)ψ̄1(pl+γ)

Npγs1+3α3w

g(pl+γ , p3α3)√
Np3α3

=

=


χ̄d0(p

l)ψ̄1(pl)L(p)(s1, χ̄d0ψ̄1)
φ(p3α3 )√

Np3α3
Np−3α3w if l ≥ 3α3

L(p)(s1, χ̄d0ψ̄1)
φ(p3α3 )√

Np3α3
Np−(3α3−l)s1−3α3w−

χ̄d0(p
3α3−1)ψ̄1(p3α3−1)Np3α3−1√

Np3α3
Np−(3α3−1−l)s1−3α3w if l < 3α3

where L(p)(s1, χ̄d0ψ̄1) denotes the pth Euler factor of the indicated L-series. By removing
this factor from both terms in the latter case l < 3α3, we have some cancellation which
leads to the somewhat simpler looking cases for our sum:

∑
γ≥0

χ̄d0(p
l+γ)ψ̄1(pl+γ)

Npγs1+3α3w

g(pl+γ , p3α3)√
Np3α3

= L(p)(s1, χ̄d0ψ̄1) ·

·


χ̄d0(p

l)ψ̄1(pl) if α3 = 0
χ̄d0(p

l)ψ̄1(pl)(Np3α3/2 − Np3α3/2−1)Np−3α3w if l ≥ 3α3

(Np3α3/2−(3α3−l)s1 − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1))Np−3α3w if l < 3α3

Substituting this into the above equation for D(s2, w; pl) gives the result in the case p - d0.
If, instead, p|d1, then we may write d = p3α3+1d′ and m = pγm′ as before. Then

G(pl+γm′, p3α3+1d′) =
g(pl+γm′, p3α3+1d′)√

Np3α3+1Nd′
= 0 unless l + γ = 3α3.

In this case,

G(pl+γm′, p3α3+1d′) =
g(p3α3m′, p3α3+1d′)√

Np3α3+1Nd′
= Np3α3/2 g(m

′, pd′)√
NpNd′

= Np3α3/2G(m′, pd′)

Hence, substituting this into the original series, we have

∑
m,d≡1 (3)
(md,6)=1

G(plm, d)ψ̄1(plm)ψ2(d)
Nms1Ndw

=
∑
m′,d′

(m′d′,6p)=1

G(m′, pd′)ψ̄1(m′)ψ2(pd′)
(Nm′)s1(NpNd′)w

∑
3α3≥l

Np3α3/2−(3α3−l)s1

Lastly, if p|d2, then write d = p3α3+2d′ and m = pγm′. Then G(pl+γm′, p3α3+2d′) = 0
unless l + γ = 3α3 + 1. In this case,

G(pl+γm′, p3α3+2d′) =
g(p3α3+1m′, p3α3+2d′)√

Np3α3+2Nd′

=
g(p3α3+1m′, p3α3+2)√

Np3α3+2

g(p3α3+1m′, d′)√
Nd′

χd′(p2)χ̄p(d
′)

= Np3α3/2 g(m
′, p)√
Np

χ̄d′(p)
g(m′, d′)√

Nd′
χd′(p2)χ̄p(d

′)

= Np3α3/2G(m′, p)G(m′, d′) (using cubic reciprocity)
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Now substituting this result into the original series, we get

∑
m,d≡1 (3)
(md,6)=1

G(plm, d)ψ̄1(plm)ψ2(d)
Nms1Ndw

=

∑
m′,d′

(m′d′,6p)=1

G(m′, d′)G(m′, p)ψ̄1(m′)ψ̄1(p)ψ2(d′p2)
(Nm′)s1(Np2Nd′)w

∑
3α3+1≥l

Np3α3/2−(3α3+1−l)s1 .

Note that the p-part of this series is precisely the one given in the statement of the propo-
sition, and the result follows.

5.1.3 The Coefficient of Np−ks2 in Z4(s1, s2, w)

Recall that our goal in the previously stated theorem was to find an appropriately chosen
linear combination of Dirichlet polynomials Rl(s1, w; 2k) and series containing Gauss sums
D4(s1, w; p2k−l) so that the definition

Z4(s1, w; pk) def=
2k∑
l=0

Rl(s1, w; 2k)D(s1, w; p2k−l)

leads to well-behaved correction coefficients of P (s1, s2, d). Now that we know the general
form of terms arising from D4(s1, w; pl) for any choice of l, we turn to a careful investigation
of the other side of this definition: the coefficient of Np−ks2 in Z4(s1, s2, w). As we discovered
earlier in (3.11), the expanded form of Z4(s1, s2, w) is

∑
d,m,n∈OK
d,m,n≡1 (3)
(dmn,6)=1

χ̄d0(mn
2)ψ̄1(m)ψ1(n)ψ2(d)G(χd1)G(χ̄d2)ψ̄1(d2)

∏
pα||d3
p-d2

[
a

(α3)
3α,0Np

−3α/2 + · · ·
]

Nms1Nns2Ndw
·

·
∏
pα||d3
p|d2

[
a

(α3)
3α+1,0Np

−3α/2−1/2 + a
(α3)
3α,0Np

−3α/2+1/2−s1 + · · ·
]

(5.2)

Using this form, we’d like to determine the terms which contribute to the coefficient of
Np−ks2 for a distinguished prime p. Note that this immediately implies that n is a power
of p.
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Grouping all such terms we have, for p - d2, Z4(s1, s2, w) =

∑
d,m≡1 (3)
(dm,6)=1

χ̄d0(m)ψ̄1(m)ψ2(d)ψ̄1(d2)G(1, d1)G(1, d2)
Nms1Ndw

∏
qα3 ||d3
q-d2
q 6=p

[
a

(α3)
3α3,0

Nq−3α3/2 + · · ·

· · ·+ a
(α3)
0,0 Nq3α3/2

] ∏
qα3 ||d3
q|d2
q 6=p

[
a

(α3)
3α3+1,0Nq

−3α3/2−1/2 + · · ·+ a
(α3)
3α3,0

Nq3α3/2+1/2−(3α3+1)s1 + · · ·
]

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1 (5.3)

If p|d2, we have the very similar looking expression for Z4(s1, s2, w):

∑
d,m≡1 (3)
(dm,6)=1

χ̄d0(m)ψ̄1(m)ψ2(d)ψ̄1(d2)G(1, d1)G(1, d2)
Nms1Ndw

∏
qα3 ||d3
q-d2
q 6=p

[
a

(α3)
3α3,0

Nq−3α3/2 + · · ·

· · ·+ a
(α3)
0,0 Nq3α3/2

] ∏
qα3 ||d3
q|d2
q 6=p

[
a

(α3)
3α3+1,0Nq

−3α3/2−1/2 + · · ·+ a
(α3)
3α3,0

Nq3α3/2+1/2−(3α3+1)s1
]

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2−1/2+(3α3+1−i)−(3α3+1−i)s1 .

Notice that the sum over d and m is precisely the series we investigated in taking the limit
as <(s2) → ∞ and all of the products over primes q 6= p similarly involve the identical
correction coefficients and associated Dirichlet monomials. But as we argued in Chapter 3,
we know by comparison with the two-variable situation that this should just be D(s1, w; 1)
where the sum is taken over integers relatively prime to p. Hence, in the case where p - d0,
we may rewrite the above (5.3) as

∑
m,d≡1 (3)
(md,6p)=1

G(m, d)ψ̄1(m)ψ2(d)
ms1dw

L(p)(s1, χ̄d0ψ̄1)

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1−3α3w

A similar rewriting can be done for the cases p|d1 and p|d2. Now recall, for example, that
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in the case where p - d0, the series D4(s1, w; pl) could be rewritten as∑
m,d≡1 (3)
(md,6p)=1

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

[
χ̄d0(p

l)ψ̄1(pl)L(p)(s1, χ̄d0ψ̄1)+

∑
0<3α3≤l

χ̄d0(p
l)ψ̄1(pl)L(p)(s1, χ̄d0ψ̄1)(Np3α3/2 − Np3α3/2−1)Np−3α3w+

∑
3α3>l

L(p)(s1, χ̄d0ψ̄1)
(
Np3α3/2−(3α3−l)s1−3α3w−

χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1−3α3w
)]

Then, in the case where p - d0, the desired equality

Z4(s1, w; pk) =
2k∑
l=0

Rl(s1, w; 2k)D(s1, w; p2k−l)

is equivalent to the following relation, after cancelling common terms on both sides.

∑
α3≥0

Np−3α3w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1

=
2k∑
l=0

Rl(s1, w; 2k)
[
χ̄d0(p

2k−l)ψ̄1(p2k−l) +∑
0<3α3≤2k−l

χ̄d0(p
2k−l)ψ̄1(p2k−l)(Np3α3/2 − Np3α3/2−1)Np−3α3w +

∑
3α3>2k−l

(
Np3α3/2−(3α3−l)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1−3α3w

)
Following the identical procedure and making the same corresponding cancellations

in the cases p|d1 and p|d2, we arrive at a completely combinatorial equivalent version of
Theorem 2.

Theorem 5.3 (Main Theorem, Version 2). Let p be a fixed prime. Then for every
k ≥ 0, there exists a choice of finite Dirichlet polynomials Rl(s1, w; 2k) for 0 ≤ l ≤ 2k in
the variables Np−s1 and Np−w, with Rl(s1, w; 2k) = Npl/2−lwRl(s1 + w − 1/2, 1 − w), so
that, if p - d0,

∑
α3≥0

Np−3α3w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1

=
2k∑
l=0

Rl(s1, w; 2k)
[
χ̄d0(p

2k−l)ψ̄1(p2k−l) +∑
0<3α3≤2k−l

χ̄d0(p
2k−l)ψ̄1(p2k−l)(Np3α3/2 − Np3α3/2−1)Np−3α3w +

∑
3α3>2k−l

(
Np3α3/2−(3α3−l)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1−3α3w

)
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if p|d1, then

∑
α3≥0

Np−(3α3+1)w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1 =

=
2k∑
l=0

Rl(s1, w; 2k)

 ∑
3α3≥2k−l

Np3α3/2−(3α3−(2k−l))s1−(3α3+1)w


and if p|d2, then

∑
α3≥0

Np−3α3w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2−1/2+(3α3+1−i)−(3α3+1−i)s1 =

=
2k∑
l=0

Rl(s1, w; 2k)

 ∑
3α3+1≥l

Np3α3/2−(3α3+1−(2k−l))s1−(3α3+2)w


define a consistent set of correction coefficients a

(α3)
i,j (d0, p) of P (s1, s2, d) such that the

following properties hold:
1) The correction factor is a finite, Eulerian Dirichlet polynomial
2) The correction factor is symmetric in the variables s1 and s2.
3) The correction factor is trivial if d is cube-free. More specifically, each Euler factor

at the prime p depends on the divisibility of d by powers of p3.
4) The values of the coefficients agree with those determined by the method of taking

variables to infinity.
5) Large collections of the ai,j sum to 0 according to (4.7).
6) The coefficients ai,j satisfy mild growth conditions according to (4.11).

We have now reduced the main theorem of the chapter to a purely combinatorial question
about a finite induction of certain finite Dirichlet polynomials Rl(s1, w; 2k).

5.1.4 Lemmas on the Form of the Dirichlet Polynomials

These lemmas will further restrict the form of the Dirichlet Polynomials Rl(s1, w; 2k) used
in proving the Main Theorem according to the properties we wish them to satisfy.

Lemma 5.4 (Congruence Property). The Dirichlet multipliers Rl(s1, w; 2k) used to
define the correction coefficients of P (s1, s2, d) must only contain powers of Np−w which are
congruent to 0 mod 3.

Proof: The Dirichlet polynomials must be chosen to solve for the correction coefficients
in the pth Euler factor coming from Z4(s1, w; pk). These contributions are listed in the
statement of the Main Theorem above. The only terms involving Np−w in Z4(s1, w; pk)
are of form Np−(3α3+ε)w where ε = ordp(d0). Hence, the Dirichlet polynomials Rl(s1, w; 2k)
must be chosen so that the only those powers of Np−w appear on the right-hand side. Since
each Dirichlet polynomial Rl is associated to a distinct set of monomials in Np−s1 and
Np−w, this immediately implies that there can be no nontrivial power of Np−w occurring in
Rl which is not congruent to ε mod 3, else it would appear on the left-hand side.
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Lemma 5.5 (Transformation Property). Suppose that we have a Dirichlet polynomial
of form

Rl(s1, w; 2k) = cmNp−js2−3mw + · · ·+ cMNp−js2−3Mw

for some fixed j > 0. Then Rl(s1, w; 2k) = Np(1/2−w)[j−3(M+m)]Rl(s1 +w − 1/2, 1−w; 2k).

This will follow from an easy formula describing how each of the multipliers transform
under (s1, w) 7→ (s1 +w− 1/2, 1−w). Note that since powers of Np−js1 remain fixed under
this transformation, we must only check that for each Rl(s1, w), terms of a fixed Np−js2
transform into each other up to a power of Np1/2−w. Hence, in conjunction with the previ-
ous result, this lemma applies in full generality to the Dirichlet polynomials Rl(s1, w; 2k).

Proof: Suppose, for a given fixed j > 0, that Np−3mw is the smallest occurring power
of Np−w in Rl(s1, w; 2k) and Np−3Mw is the largest such power. Then, under the transfor-
mation (s1, w) 7→ (s1 + w − 1/2, 1− w), the terms

cmNp−js1−3mw + · · ·+ cMNp−js1−3Mw −→
cmNp(j/2−3m)−js1−(j−3m)w + · · ·+ cMNp(j/2−3M)−js1−(j−3M)w

In particular, if this Dirichlet polynomial is to transform into itself up to a power of Np1/2−w,
then the largest negative power of Np−w on the right-hand side must transform into the
largest negative power on the left-hand side. Hence, the term cmNp(j/2−3m)−js1−(j−3m)w

must be taken to cMNp−js1−3Mw by a power of Np1/2−w. Equating these, we find that this
factor must be Np(1/2−w)[j−3(M+m)].

As an immediate corollary, any single term clNp−js2−lw with j > 0 and cl 6= 0 appear-
ing in the Dirichlet polynomial implies that the entire polynomial transforms by at least
Np(j−(l+3))/2−(j−(l+3))w. Note that the transformation property also provides a relation
between cm and cM , though we will not be concerned with that here.

The previous lemma gave an indication of how the transformation property for the
Dirichlet polynomial restricts the possible choices for Rl(s1, w; 2k), since each such Rl must
transform by Npl(1/2−w). In the above notation, this means that m,M, and j must sat-
isfy 3M + 3m − j = l. The following lemma shows how the other required property of
Rl(s1, w; 2k), namely the condition that each monomial Np−is1−jw has i ≤ j, places restric-
tions on the form of the coefficients of the correction factor P (s1, s2, d).

Lemma 5.6 (Stability over α3). Suppose that the correction coefficients of P (s1, s2, d)
are defined by a choice of Dirichlet polynomials Rl(s1, w; 2k) according to the Main Theorem.
Given an integer k > 0, then for any i, r > 0, we have

a
(α3)
i,k (d0, p) = a

(α3+r)
i,k (d0, p) if 3α3 > 2k
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Proof: Recall that, according to the Main Theorem, we have for p - d0,

∑
α3≥0

Np−3α3w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1

=
2k∑
l=0

Rl(s1, w; 2k)

χ̄d0(pl) +
∑

0<3α3≤2k−l
χ̄d0(p

l)(Np3α3/2 − Np3α3/2−1)Np−3α3w+

∑
3α3>2k−l

(
Np3α3/2−(3α3−l)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1−3α3w

) (5.4)

Similar but far simpler equalities hold for p|d1 and p|d2. The lemma will follow from showing
that the value of

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j =

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3+r)
i,j

for any r > 0 whenever 3α3 > 2k. We do this by studying the right-hand side of the above
equality. Pick any value β with 3β > 2k. Then contributions on the right-hand side to
Np−3βw come from products of monomials Np−is1−3λw in Rl(s1, w; 2k) with bracketed terms
involving Np−3γw such that λ+γ = β. We want to show that 3γ > 2k−l; this will guarantee
that the contribution from the bracketed terms in (5.4) comes from the final sum. But the
appearance of the monomial Np−is1−3λw implies that Rl transforms by at least Np−3λw.
Indeed, since i < 3k for all appearing monomials Np−is1−3kw, then writing down the list of
terms in Rl including Np−is1 we have

c(i,m, l)Np−is1−3mw + · · ·+ c(i, λ, l)Np−is1−3λw + · · ·+ c(i,M, l)Np−is1−3Mw

with m ≤ λ ≤ M , and the c(i, r, l) constants depending on the indicated quantities. Ac-
cording to the transformation property, this transforms by Np−(3M+3m−i)w ≥ Np−3λw since
i ≤ m. So Rl transforms by at least Np−3λw. But then 3λ ≤ l since Rl transforms by Np−lw
by definition. Putting this all together, we have 3γ = 3β−3λ ≥ 3β− l > 2k− l. In short, all
contributions of bracketed terms to Np−3βw come from the sum over 3γ > 2k − l. Writing
down the total contribution to Np−3βw from the right-hand side, we have∑

γ+λ=β

∑
i

c(i, λ, l)Np−is1−3λw

︸ ︷︷ ︸
coming from Rl(s1, w; 2k)[

Np3γ/2−(3γ−(2k−l))s1−3γw − χd0(p)ψ1(p)Np3γ/2−1−(3γ−1−(2k−l))s1−3γw
]

︸ ︷︷ ︸
coming from the sum over 3γ > 2k − l from bracketed terms

where c(i, λ, l) is the constant from Rl associated to the indicated monomial. For any fixed
power of Np−s1 , we have a finite number of terms contributing to, say, Np−(3β−i)s1−3βw for
any i. This set of terms, according to the equality in the Main Theorem, should correspond
to terms on the left-hand side of form:

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)a

(β)
i,j Np−3β/2+(3β−i)−(3β−i)s1−3βw
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To finish the argument in this case, note that the contribution to Np−3(β+1)w on the right-
hand side comes from products of terms including the very same

∑
i c(i, λ, l)Np−is1−3λw from

Rl but now paired with Np−3(γ+1)w from the bracketed sums. (The Dirichlet polynomials
can’t contain a power of Np−3(β+1)w since this would transform by at least Np−3(β+1)w and
we chose β > 2k.) Hence, all terms contributing to Np−3(β+1)w from Rl are in one-to-one
correspondence with terms of Rl contributing to Np−3βw. However, to add to a total of
Np−3(β+1)w, the contribution from Rl must now be paired with bracketed terms containing
Np−3(γ+1)w. So the total contribution to Np−3(β+1)w on the right-hand side is now just
expressed as∑

γ+λ=β

∑
i

c(i, λ, l)Np−is1−3λw

︸ ︷︷ ︸
coming from Rl(s1, w; 2k)

·

[
Np(3γ+3)/2−(3γ+3−(2k−l))s1−3(γ+1)w− χd0(p)ψ1(p)Np(3γ+3)/2−1−(3γ+3−1−(2k−l))s1−3(γ+1)w

]
︸ ︷︷ ︸

coming from the sum over 3(γ + 1) > 2k − l

Now it is clear that, comparing contributions at β and β + 1, terms in this finite
sum with associated monomial Np−(3β+3−i)s1−3(β+1)w are the same as those associated to
Np−(3β−i)s1−3βw, but with an additional factor of Np3/2. In the case of β + 1, the equality
in the Main Theorem gives terms on the left-hand side of form

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)a

(β+1)
i,j Np−3(β+1)/2+(3β+3−i)−(3β+3−i)s1−3(β+1)w

Comparing the terms on the left-hand side at β, we see that the identical coefficients appear
with an associated monomial that also differs by a factor of Np3/2. Hence the contribution
to

k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)a

(β+1)
i,j

is stable from β to β + 1. Since the same argument would show a stable contribution if
k were replaced by k − 1, then the ai,k coefficient must also be stable in this case. This
completes the case where p|d0.

Rather than repeat this argument for the cases p|d1 and p|d2, we merely note that
the same procedure can be identically carried out provided that we can guarantee that all
contributions from the right-hand side’s bracketed terms come from the sums with 3α3 ≥
2k− l and 3α3 + 1 ≥ 2k− l, respectively. But all the other coefficients are 0 in these cases,
so this condition is automatically satisfied and the claims follow by identical argument to
the above.

5.2 Proving the Existence of a Consistent Set of Correction
Coefficients

5.2.1 Outline of the Method

The object of this chapter is to determine a natural definition for Z4(s1, w; pk), the coef-
ficient of Np−ks2 in Z4(s1, s2, w). As previously discussed, we want this series to satisfy
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the transformation property Z4(s1, w; pk) = Z4(s1 + w − 1/2, 1 − w; pk)pk−2kw, since this
will lead to a simple proof that Z4(s1, s2, w) = Z4(s1 + w − 1/2, s2 + 2w − 1, 1 − w). Our
investigations in the earlier sections led us to conjecture that taking the definition

Z4(s1, w; pk) =
2k∑
l=0

Rl(s1, w; 2k)D(s1, w; p2k−l) =
2k∑
l=0

Rl(s1, w; 2k)
∑
m,d

G(mp2k−l, d)
Nms1Ndw

for appropriately chosen Dirichlet polynomials Rl(s1, w; 2k) would produce such a series
with all the necessary properties. After analyzing both sides of this definition, we reduced
this conjecture to the existence of a finite set of Dirichlet polynomials Rl(s1, w; 2k) so that a
given set of equations can be solved in a consistent way. We stated this as the Main Theorem;
its proof is the sole goal of this section. We restate the theorem here as a reminder.

Theorem 5.7 (Main Theorem). Let p be a fixed prime. Then for every k ≥ 0, there
exists a choice of finite Dirichlet polynomials Rl(s1, w; 2k) for 0 ≤ l ≤ 2k in the variables
Np−s1 and Np−w, with Rl(s1, w; 2k) = Npl/2−lwRl(s1 +w−1/2, 1−w), so that the definition

Z4(s1, w; pk) =
2k∑
l=0

Rl(s1, w; 2k)D(s1, w; p2k−l) =
2k∑
l=0

Rl(s1, w; 2k)
∑
m,d

G(mp2k−l, d)
Nms1Ndw

,

or equivalently, the definition according to the following case method: if p|d0,

∑
α3≥0

Np−3α3w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1

=
2k∑
l=0

Rl(s1, w; 2k)
[
χ̄d0(p

2k−l)ψ̄1(p2k−l) +∑
0<3α3≤2k−l

χ̄d0(p
2k−l)ψ̄1(p2k−l)(Np3α3/2 − Np3α3/2−1)Np−3α3w +

∑
3α3>2k−l

(
Np3α3/2−(3α3−l)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1−l)s1−3α3w

)
if p|d1, then

∑
α3≥0

Np−(3α3+1)w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2+(3α3−i)−(3α3−i)s1 =

=
2k∑
l=0

Rl(s1, w; 2k)

 ∑
3α3≥2k−l

Np3α3/2−(3α3−(2k−l))s1−(3α3+1)w


and if p|d2, then

∑
α3≥0

Np−3α3w
k∑
j=0

χ̄d0(p
2k−2j)ψ1(pk−j)

∑
i

a
(α3)
i,j Np−3α3/2−1/2+(3α3+1−i)−(3α3+1−i)s1 =

=
2k∑
l=0

Rl(s1, w; 2k)

 ∑
3α3+1≥l

Np3α3/2−(3α3+1−(2k−l))s1−(3α3+2)w


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defines a consistent set of correction coefficients a(α3)
i,j (d0, p) of P (s1, s2, d) such that the

following properties hold:
1) The correction factor is a finite, Eulerian Dirichlet polynomial
2) The correction factor is symmetric in the variables s1 and s2.
3) The correction factor is trivial if d is cube-free. More specifically, each Euler factor

at the prime p depends on the divisibility of d by powers of p3.
4) The values of the coefficients agree with those determined by the method of taking

variables to infinity.
5) Large collections of the ai,j sum to 0 according to (4.7).
6) The coefficients ai,j satisfy mild growth conditions according to (4.11).

Both formulations of the theorem will be useful to us: we want to remember that the
structure of the right-hand side is largely dictated by the presence of the series containing
Gauss sums, but also that this ultimately reduces to a finite set of terms corresponding to
any choice of d and corresponding α3. Before settling on this definition of Z4(s1, w; pk), we
attempted to show that the series∑

m,d

G(mp2k, d)
Nms1Ndw

= Z4(s1, w; pk)

as was suggested by the square-free heuristic. In our new notation, this would mean that
R0(s1, w; 2k) = 1 for all k and Rl(s1, w; 2k) = 0 for all l 6= 0. As we remarked earlier, there
were immediate problems with this. However, the assumption that R0(s1, w; 2k) = 1 seems
reasonable and we make this more precise in the following discussion.

Assumption 5. Keeping all of the previous notation as before, so that Rl(s1, w; 2k) denotes
a finite Dirichlet polynomial with specified transformation property, which serves to define
the coefficients of the correction factor P (s1, s2, d). Then R0(s1, w; 2k) = 1.

Justification: We know from the transformation property, together with the assumption
that all monomials take form Np−is1−jw with i ≤ j, that the value of R0(s1, w; 2k) must
be a constant. However, we don’t know that it is non-zero. If we take R0(s1, w; 2k) = 1,
what does this imply about the coefficients a(α3)

i,j (d0, p)? Choose α3 to be the largest integer
such that 2k ≥ 3α3. Then referring again to the terms involved in the equality of the
Main Theorem, for p - d0 we have a right-hand side contribution from the l = 0 term of
χ̄d0(p

2k)ψ̄1(p2k)(Np3α3/2−Np3α3/2−1)Np−3α3w. Comparing this with the left-hand side, this
implies that

k∑
j=0

χ̄d0(p
2k−2j)ψ̄1(p2k−2j)a(α3)

3α3,j
Np−3α3/2 = χ̄d0(p

2k)ψ̄1(p2k)(Np3α3/2 − Np3α3/2−1).

Recall that by taking the <(s1) →∞, we found that

a
(α3)
3α3,j

(d0, p) =


Np3α3 − Np3α3−1 if α3 is even, j = 3α3/2.
χ̄d0(p)ψ̄1(p)Np3α3 if α3 is odd, j = (3α3 + 1)/2.
−χd0(p)ψ1(p)Np3α3−1 if α3 is odd, j = (3α3 − 1)/2.
0 otherwise.

Substituting these values into the left-hand side reveals a perfect match of character values
and powers of primes for both even and odd α3. One can show that no other single choice
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of Rl(s1, w; 2k) and attached Dirichlet series will provide the same data, but it is difficult
to rule out the possibility of a complex combination of them. Ultimately, this is of no
concern to us. The important point is that, because all of the right-hand side contributions
from choosing R0(s1, w; 2k) = 1 are known to occur on the left-hand side, then setting
R0(s1, w; 2k) = 1 is a viable choice which will reduce our work when we try to find a
consistent determination of the ai,j according to the choice of these Dirichlet polynomials.

5.2.2 Proof of the Main Theorem

We are now ready to show that appropriate choices for the rest of the Dirichlet polynomials
Rl(s1, w; 2k) for l > 0 exist.

Proof of the Main Theorem: First note that since the contributions on the right-hand
side of our definition are all determined locally for each prime p and will contain a finite list
of terms for each α3 provided that Rl(s1, w; 2k) is finite for each l. Hence, the correction
factor determined by this process with automatically be finite and Eulerian, satisfying the
first property.

The collection of a(α3)
i,j (d0, p) determined by the choice of Rl(s1, w; 2k) will be consistent

provided that we can prove the following inductive step. We must show that the coefficients
determined by the Np−ks2 coefficient (i.e. the choices of Rl(s1, w; 2k) for l = 0, . . . , 2k)
agree with the coefficients determined by the Np−(k+1)s2 coefficient (i.e. the choices of
Rl(s1, w; 2k + 2) for l = 0, . . . , 2k + 2.)

Suppose that we have a consistent set of coefficients determined by the choices of
Rl(s1, w; 2t) for t ≤ k. According to the definition in the Main Theorem, these Rl(s1, w; 2t)
will determine the coefficients a(α3)

i,j (d0, p) for j ≤ k and any i, α3 > 0. Further, if we re-

quire that the a(α3)
i,j (d0, p) are symmetric in i and j, then we have in fact determined all

a
(α3)
i,j (d0, p) with either i or j ≤ k. Now let’s look more closely at the implied conditions on
Rl(s1, w; 2k + 2).

According to the equality in the main theorem, the sum total of terms of the form
Np−(3α3−i)s1−3α3w on the right-hand side (in the coefficient of Np−(k+1)s2)) should corre-
spond to the set of terms

k+1∑
j=0

χ̄d0(p
2k−2j)ψ̄1(p2k−2j)a(α3)

i,j (d0, p)Np−3α3/2+(3α3−i)

on the left-hand side. If i > k, then this list of terms includes the previously undetermined
coefficient a(α3)

i,k+1(d0, p) (note this is the only term in the list which is previously undeter-
mined since we require symmetry in the indexes i and j), so the right-hand side need not
conform to any prescribed value in these cases. However, for i ≤ k, this is not the case.
For all such terms Np−(3α3−i)s1−3α3w, the left-hand side has been completely inductively
determined so we must ensure that terms on the right-hand side appropriately agree with
these values.

At first glance, this appears quite difficult since we must have agreement over all values of
α3. However, according to the lemma on stability in α3, the Np−(k+1)s2 coefficient produces
coefficients which are stable with respect to α3 whenever 3α3 > 2k+2. Moreover, the sums
of correction factor coefficients we are trying to agree with, a(α3)

i,j (d0, p) with i or j ≤ k, are
stable for 3α3 > 2k. Hence, if we agree with contributions from the left-hand side for these
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terms up to the smallest α3 such that 3α3 > 2k+ 2, then we are done, since the right-hand
side will be forced by its structure to produce the correct stable values of a(α3)

i,j (d0, p) for all
α3 ever after.

In short, our conclusion is that we have a consistent determination of Dirichlet polyno-
mials Rl(s1, w; 2k+2) which produces a correction factor symmetric in the variables s1 and
s2 if we can correct for the previously determined terms associated to Np−(3α3−i)s1−3α3w

for 3α3 ≤ 2k + 2 and 0 < i ≤ k. Our plan is to do this by induction on i. That is, we
correct for all of the terms containing Np−(3α3−i)s1 without worrying about the effect on
terms containing Np−(3α3−(i+1))s1 .

We do the case i = 1 to begin. Then we need to match all of the potential left-hand
side contributions to Np−(3α3−1)s1−3α3w for all α3 > 0. These terms occur in the form:

∑
α3>0

k∑
j=0

χ̄d0(p
2k−2j)ψ̄1(p2k−2j)a(α3)

1,j (d0, p)Np−3α3/2+(3α3−1)−(3α3−1)s1−3α3w

But we know that, in general, the coefficients of a(α3)
i,j (d0, p) are stable in α3 for 3α3 >

2 min{i, j}. Moreover, a(α3)
1,j (d0, p) = 0 if j > 3 and

k∑
j=0

χ̄d0(p
2k−2j)ψ̄1(p2k−2j)a(α3)

1,j (d0, p) = 0

if k ≥ 3 and α3 ≥ 1, by our previous assumptions. Hence, we only need to correct for this
term if α3 = 1 and k = 1, 2. If k = 2, then we take the contribution from the left-hand
side, call it c(i, α3, 2k)Np−(3α3−i)s1−3α3w = c(1, 1, 4)Np−2s1−3w and match it on the right-
hand side using c(1, 1, 4)Np−2s1−3wD(s1, w; 1) which possesses the correct transformation
property at k = 2 and gives the correct stable contribution for every α3 ever after. The
case k = 1 is more of a problem. No terms have a transformation small enough to be added
to a Dirichlet polynomial. Instead, we will show in the examples of the subsequent section
that we do not need to correct for these terms.

We pick and fix a value i and find potential contributions from the left-hand side to
Np−(3α3−i)s1 whenever α3 ≤ 2k+5. In general, we know that these terms occur in the form:

∑
α3>0

k+1∑
j=0

χ̄d0(p
2(k+1)−2j)ψ̄1(p2(k+1)−2j)a(α3)

i,j (d0, p)Np−3α3/2+(3α3−i)−(3α3−i)s1−3α3w

But we know that, in general, the coefficients of a(α3)
i,j (d0, p) are stable in α3 for 3α3 >

2 min{i, j}. So, in particular, these coefficients in the above sum are stable in α3 for 3α3 >
2i. If α3 is such that 3α3 ≤ 2i, then we look to add a term to the right-hand side of
form c(i, α3, 2k + 2)Np−(3α3−i)s1−3α3w for some constant c. If such a term occurred alone
in one of the Dirichlet polynomials, it would transform by 6α3 − (3α3 − i) = 3α3 + i.
If 3α3 + i ≤ 2k + 2 then this is a legitimate transformation size to occur in a Dirichlet
polynomial and we may add the term to the appropriate series containing a Gauss sum
as c(i, α3, 2k + 2)Np−(3α3−i)s1−3α3wD4(s1, w; p2k+2−(3α3+i)). The terms generated by this
addition on the right-hand side obviously include the desired term. All subsequent terms
produced by this addition have higher values of α3 and correspond to terms Np−(3α3−r)s1

with r > i.
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However, it may be the case that even though 3α3 ≤ 2i and i ≤ k, we still have
3α3 + i > 2k + 2, in which case we need to work a little harder to correct the missing
term. In general, the class of terms we may add to a Dirichlet polynomial containing
Np−(3α3−i)s1−3α3w take the form

Np−(3α3−i)s1(cmNp−3mw + · · ·+ cMNp−3Mw)

for some appropriately chosen coefficients cm, . . . , cM , with m ≤ α3 ≤M , and 3α3−i ≤ 3m.
Such a collection of terms transforms by 3M + 3m − (3α3 − i). This is minimized when
M = α3 and 3m chosen as close to 3α3 − i as possible, so that 3m− (3α3 − i) ≤ 2. In this
case, the set of terms transforms by 3α3 +2 ≤ 2i+2 ≤ 2k+2. So there is always some such
collection of terms which can be attached to a series containing Gauss sums. Precisely, for
any such collection of terms which transforms by less than 2k + 3, it should look like

Np−(3α3−i)s1
[
c(i, α3, 2k + 2)Np−3/2(α3−m)−3mw + · · ·+ c(i, α3, 2k + 2)Np−3α3w + · · ·

· · ·+ c(i, α3, 2k + 2)Np3/2(M−α3)−3Mw
]
D(s1, w; p2k+2−(3M+3m−(3α3−i)))

where c(i, α3, 2k + 2) is the coefficient of the left-hand side term Np−(3α3−i)s1−3α3w for
which we are trying to correct and the other monomials have corresponding coefficients to
guarantee that the terms transform into itself. Unfortunately, in adding this term, we have
introduced some lower order terms which are jeopardizing the validity of our induction. To
fix this problem, if m < α3, then also add the following term to the right-hand side:

− Np−(3α3−i)s1
[
c(i, α3, 2k + 2)Np−3/2(α3−m)−3mw + · · ·

· · · +c(i, α3, 2k + 2)Np−3/2−3(α3−1)w
]
D(s1, w; p2k+2−(3α3−3+3m−(3α3−i)))

Notice we have simply removed the top terms from previous terms in the Dirichlet polyno-
mial. This has the effect of reducing the transformation property by 3(M −α3 + 1), so it is
associated to a Gauss sum series with prime power correspondingly shifted by 3(M−α3+1).

Lastly, we must check that when α3 is chosen to be the smallest integer such that
3α3 > 2i (that is, the smallest value of α3 for which we have stability ever after), we can
similarly correct for terms appearing on the left-hand side. In this case, 2i < 3α3 ≤ 2i+ 3.
Again, we can perform the same type of addition of terms as in the previous case, but only
if 3α3 + 3m − (3α3 − i) ≤ 2k + 2. Note that we can find the minimum transformation of
such terms according to the following case method:

minimum size of transformation = 3α3 + 3m− (3α3 − i) =


2i+ 2 if i ≡ 1(3)
2i+ 3 if i ≡ 0(3)
2i+ 4 if i ≡ 2(3)

Since we know that i ≤ k, this gives us a means for correcting left-hand side contributions
for all i excepting i = k in the cases where i ≡ 0, 2(3).

However, we do want to be careful in selecting these additional monomials so that the
corrected value gives a stable collection of correction coefficients at every α3 ever after. To
ensure this, consider the collection of terms added to one of the Rl(s1, w; 2k + 2) which
corrects for ai,j at a fixed i. This set of terms should contain c(3α3)Np−(3α3−i)s1−3α3w for
some appropriately chosen constant c(3α3). If this collection of terms transforms by less
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than 2k then it will be associated to a Gauss sum series D4(s1, w; pk) with k ≥ 3 and hence,
will not produce the stable set of terms we want. Then add a collection of terms containing
c(3α3)Np3/2−(3α3+3−i)s1−(3α3+3)w, that is, Np3/2−3s1−3w · { previously used term }. This
will give the appropriate stable contribution for ai,j at α3 + 1 and the collection of terms
transforms by at least 3 more than the previous collection. Repeat this process until α3 is
so large that this transforms by at least 2k. Then the following final additions, covering
all possible cases, give the desired stability in α3 for the ai,j . Suppose that the collection
of terms added to an Rl contains the desired term Np−(3α3−i)s1−3α3w and transforms by
at least 2k. Then to guarantee stability in the ai,j for all successive α3, add the following
terms: [

c(m)Np−(3α3−i)s1−3mw + · · ·+ c(3α3)Np−(3α3−i)s1−3α3w
]
G(m, d)

if transforming by 2k + 2,[
c(m)Np−(3α3−i−2)s1−3mw + · · ·+ c(3α3)Np−(3α3−i−2)s1−(3α3−3)w

]
G(mp3, d)−[

c(m)Np−(3α3−i−5)s1−3mw + · · ·+ c(3α3)Np−(3α3−i−5)s1−(3α3−6)w
]
G(mp6, d)

if transforming by 2k + 1, and[
c(m)Np−(3α3−i)s1−3mw + · · ·+ c(3α3)Np3/2−(3α3−i)s1−3α3w

]
G(p2m, d)

if transforming by 2k.
In the last remaining case, where i = k and k ≡ 0, 2(3), these terms can be corrected

for by a similar addition and subtraction of similar terms as above. Matching the transfor-
mations appropriately, then we have the result. This completes the induction.

Notice that we have satisfied all the desired properties, since the decision by the previous
lemma to fix R0(s1, w; 2k) = 1 for all k, together with the base case of the induction,
guarantee that our inductive process will always agree with the coefficients determined by
methods of taking variables to infinity. They also give the appropriate stability conditions
by construction. In particular, if α3 = 0, this forces all coefficients to vanish except for
a0,0 = 1 in this case. Hence, the correction factors are trivial if d is cube-free. Moreover, by
appropriately choosing the first undetermined coefficient in each step of the induction, we
can guarantee that the coefficients sum to zero in precisely the appropriate range according
to the stability of the Gauss sum for 3α3 > 2k. Such a choice is further consistent with
the mild growth hypothesis by simple induction. The fact that the Dirichlet polynomial
combinations lead to additional functional equations for Z4, Z5, and Z6 will be the topic of
the next chapter. The astute reader will now notice that all of the conditions of Assumption
4 have been verified.

5.3 Examples: Computing the Polynomials Rl(s1, w; 2k) for
Small k

The previous section gave a proof that there exist combinations of Dirichlet polynomials
Rl(s1, w; p2k) and Dirichlet series D4(s1, w; p2k−l) for l = 0, . . . , 2k which define each prime
power coefficient Np−ks2 of Z4(s1, w; pk). The combinatorics involved are difficult to grasp
in such generality and it is rather spectacular to see the fully realized Dirichlet polynomials
actually occurring in practice. For these reasons, we will compute several examples for
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small k, remarking at both the coefficients they determine and the relative uniqueness of
the process as we compute each case.
Case 0: k=0. For this case, we want to find the coefficient of 1−s2 in Z4(s1, s2, w).
According to our set-up, this should be

R0(s1, w; p2k)D4(s1, w; p2k) = R0(s1, w; 1)D4(s1, w; 1)

for some appropriately chosen Dirichlet polynomial R0. Recall that for each such Dirichlet
polynomial, we required Rl(s1, w; p2k) = Rl(s1 + w − 1/2, 1 − w; p2k)Npl/2−lw. So in our
case, we must have

R0(s1, w; 1) = R0(s1 + w − 1/2, 1− w; 1)

which immediately implies that R0 must be constant. This constant must be 1 in order
to satisfy the desired properties of the correction factor, including triviality for cube-free
integers among others.

Of course, we already knew this must be the case since the coefficient of 1−s2 was al-
ready determined by letting <(s2) → ∞ in Section 3.2.2. There we determined that the

ideal object should be
∑

m,d≡1 (3)
(md,6)=1

G(m, d)ψ̄1(m)ψ2(d)
Nms1Ndw

. But this is just D4(s1, w; 1) in our

current notation.

Case 1: k=1. Here we seek the coefficient of Np−s2 in Z4(s1, s2, w). Translating into
a statement about Dirichlet combinations, we want to find polynomials R0, R1 and R2 so
that

2∑
l=0

Rl(s1, w; p2)D4(s1, w; p2−l)

agrees with the correction coefficients determined in the case k = 0.
Again, R0 must be a constant. Moreover, according to the transformation requirement,

R1(s1, w; p2) = R1(s1 + w − 1/2, 1− w; p2)Np1/2−w

and
R2(s1, w; p2) = R2(s1 + w − 1/2, 1− w; p2)Np1−2w.

But by Lemma 9, since terms of Rl(s1, w; p2k) are known to contain only those powers of
Np−w congruent to 0 mod 3, then there are no Dirichlet polynomials R1 and R2 which
satisfy the transformations above. All such Dirichlet polynomials transform by a larger
power of Np−w. R0 must then be 1 to satisfy the required properties. So, in summary,
R0(s1, w; p2) = 1 and R1(s1, w; p2) = R2(s1, w; p2) = 0.

Does this provide a definition of correction coefficients which agree with those deter-
mined by the case k = 0?

To answer this question, we need to refer to earlier propositions in the chapter citing
the form of D4(s1, w; p2), particularly with respect to the Euler factor in the correction
term corresponding to the distinguished prime p. We also need to recall the combinatorial
dictionary between such factors and the corresponding correction coefficients.
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According to Proposition 6.5, for example in the case of p - d0, the pth Euler factor of
the correction polynomial coming from D4(s1, w; p2) is

χ̄d0(p
2)ψ̄1(p2) if α3 = 0.

Np3α3/2−(3α3−2)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−3)s1−3α3w if α3 ≥ 1.

Following Theorem 8, this should be equal to terms coming from the coefficient of Np−s2
coming from Z4(s1, s2, w). For each α3 ≥ 0, we have terms associated to Np−3α3w of form

1∑
j=0

χ̄d0(p
2−2j)ψ̄1(p2−2j)

∑
i

a
(α3)
i,j (d0, p)Np−3α3/2+(3α3−i)−(3α3−i)s1 =

=
∑
i

[
χ̄d0(p

2)ψ̄1(p2)a(α3)
i,0 (d0, p) + a

(α3)
i,1 (d0, p)

]
Np−3α3/2+(3α3−i)−(3α3−i)s1

Comparing the two sides of this equality, we have by matching coefficients of Np−s1 ,[
χ̄d0(p

2)ψ̄1(p2)a(α3)
0,0 (d0, p) + a

(α3)
0,1 (d0, p)

]
= χ̄d0(p

2)ψ̄1(p2) if α3 = 0,[
χ̄d0(p

2)ψ̄1(p2)a(α3)
2,0 (d0, p) + a

(α3)
2,1 (d0, p)

]
= Np2 if α3 ≥ 1,[

χ̄d0(p
2)ψ̄1(p2)a(α3)

3,0 (d0, p) + a
(α3)
3,1 (d0, p)

]
= −χd0(p)ψ1(p)Np2 if α3 ≥ 1,[

χ̄d0(p
2)ψ̄1(p2)a(α3)

i,0 (d0, p) + a
(α3)
i,1 (d0, p)

]
= 0 in all other cases of i, α3.

The only pair of coefficients determined by the previous case (k = 0), is[
χ̄d0(p

2)ψ̄1(p2)a(α3)
0,0 (d0, p) + a

(α3)
0,1 (d0, p)

]
.

But a(α3)
0,0 (d0, p) = 1 for all α3. Hence for α3 = 0, this implies a(0)

0,1(d0, p) = 0 and for

α3 ≥ 1, a(α3)
0,1 (d0, p) = −χd0(p)ψ1(p). The important point is that this agrees with the

determination of a(α3)
1,0 (d0, p) = −χd0(p)ψ1(p) from the case k = 0. Since all other occurring

pairs of coefficients contain at least one undetermined coefficient, we need not worry about
consistency in these cases.

Thus far, we have seen that the Dirichlet polynomials agree with our original proposed
definition of

Z4(s1, s2, w) =
∑
m,n,d

G(mn2, d)ψ̄1(mn2)ψ2(d)
Nms1Nns2Ndw

inherited from the square-free heuristic. The next case will show this is not the correct
object and that non-trivial Dirichlet polynomials can occur.

Case 2: k=2. We want to determine the coefficient of Np−2s2 in Z4(s1, s2, w). Again,
according to our earlier results, this means we must find Dirichlet polynomials R0, . . . , R4,
so that

4∑
l=0

Rl(s1, w; p4)D4(s1, w; p4−l)
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agrees with the correction coefficients determined in the cases k = 0 and k = 1. In our
analysis of the k = 1 case, we determined that R0 is always constant, and R1 and R2 must
always be 0. Remember that, according to the required transformation property,

R3(s1, w; p4) = R3(s1 + w − 1/2, 1− w; p4)Np3/2−3w

and
R4(s1, w; p4) = R4(s1 + w − 1/2, 1− w; p4)Np2−4w.

Then no term involving Np−6w can occur in either polynomial as it immediately implies the
transformed series differs by at least Np3−6w. One can check that this restricts R3 and R4

to the following.

R3(s1, w; p4) = c1(1 + Np3/2−3w) + c2Np−3s1−3w for any constants c1 and c2,
R4(s1, w; p4) = c3Np−2s1−3w for any choice of constant c3.

Writing R0 = c0 for any constant c0, our task is now to solve for the undetermined constants
c0, . . . , c3. To find these values, we need to again refer back to the relevant propositions ear-
lier in the chapter, remembering that Ri is associated to the Dirichlet series D4(s1, w; p4−i).

By Proposition 6.5, in the case p - d0,

D4(s1, w; p4) =

=


χ̄d0(p

4)ψ̄1(p4) if α3 = 0,
χ̄d0(p

4)ψ̄1(p4)(Np3/2 − Np3/2−1) if α3 = 1,
Np3α3/2−(3α3−4)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−5)s1−3α3w if α3 ≥ 2.

D4(s1, w; p) =

=

{
χ̄d0(p)ψ̄1(p) if α3 = 0,
Np3α3/2−(3α3−1)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−2)s1−3α3w if α3 ≥ 1.

D4(s1, w; 1) =

=

{
1 if α3 = 0,
Np3α3/2−(3α3)s1−3α3w − χd0(p)ψ1(p)Np3α3/2−1−(3α3−1)s1−3α3w if α3 ≥ 1.

Following Theorem 5.3, this should be equal to terms coming from the coefficient of
Np−2s2 coming from Z4(s1, s2, w). For each α3 ≥ 0, we have terms associated to Np−3α3w

of form

2∑
j=0

χ̄d0(p
4−2j)ψ̄1(p4−2j)

∑
i

a
(α3)
i,j (d0, p)Np−3α3/2+(3α3−i)−(3α3−i)s1 =

∑
i

[
χ̄d0(p

4)ψ̄1(p4)a(α3)
i,0 (d0, p) + χ̄d0(p

2)ψ̄1(p2)a(α3)
i,1 (d0, p) + a

(α3)
i,2 (d0, p)

]
Np−3α3/2+(3α3−i)−(3α3−i)s1
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Comparing the above terms with the proposed combination of Dirichlet polynomials and
Dirichlet series, we have by matching coefficients of 1−s1 at α3 = 0,

χ̄d0(p
4)ψ̄1(p4)a(0)

0,0(d0, p) + χ̄d0(p
2)ψ̄1(p2)a(0)

0,1(d0, p) + a
(0)
0,2(d0, p) =

c0χ̄d0(p
4)ψ̄1(p4) + c1χ̄d0(p)ψ̄1(p)

But we have already determined the left-hand side coefficients by the case k = 0. From
this, we know a

(0)
0,0 = 1 and a

(0)
1,0 = a

(0)
2,0 = 0 in this case. This reduces the above equality to

simply:
χ̄d0(p

4)ψ̄1(p4) = c0χ̄d0(p
4)ψ̄1(p4) + c1χ̄d0(p)ψ̄1(p)

This implies c0 = 1 and c1 = 0, since the ci are constants independent of the choice of d0. To
solve for c2 (where we now know R3(s1, w; p4) = c2Np−3s1−3w) and c3 (where R4(s1, w; p4) =
c3Np−2s1−3w), we should examine the terms on both sides which are coefficients of Np−3s1−3w

and Np−2s1−3w, respectively.
For the coefficient of Np−3s1−3w, we have[
χ̄d0(p

4)ψ̄1(p4)a(1)
0,0(d0, p) + χ̄d0(p

2)ψ̄1(p2)a(1)
0,1(d0, p) + a

(1)
0,2(d0, p)

]
Np3/2 = χ̄d0(p)ψ̄1(p)(c2)

as no other combination of Dirichlet series and Dirichlet polynomials produces a term
containing Np−3s1−3w. Again, we have determined all the correction coefficients on the left-
hand side from the case k = 0. We know a

(1)
0,0 = 1, a(1)

0,1 = −χd0(p)ψ1(p) = −χ̄d0(p2)ψ̄1(p2),

and a
(1)
0,2 = 0. Substituting these values, we see that the left-hand side is 0, so c2 = 0 as

well.
The last coefficient to check is Np−2s1−3w, which will determine c3 and complete the

case k = 2. Comparing contributions, we have[
χ̄d0(p

4)ψ̄1(p4)a(1)
1,0(d0, p) + χ̄d0(p

2)ψ̄1(p2)a(1)
1,1(d0, p) + a

(1)
1,2(d0, p)

]
Np1/2 = c3

as no other combination of Dirichlet series and Dirichlet polynomials produces a term
containing Np−2s1−3w. However, we’ve determined all of the correction coefficients on
the left-hand side by the case k = 1. There, we found that a(1)

1,0(d0, p) = −χd0(p)ψ1(p),

a
(1)
1,1(d0, p) = χ̄d0(p)ψ̄1(p), and a

(1)
1,2(d0, p) = Np2 (remembering that ai,j = aj,i). Substitut-

ing into the left-hand side, we are left with Np5/2 = c3. In summary, we have just determined
that the coefficient of Np−2s2 in Z4(s1, s2, w),

Z4(s1, w; p2) = D4(s1, w; p4) + Np5/2−2s1−3wD4(s1, w; p).

We leave it to the reader to check that this does indeed agree with all previous determina-
tions of the correction factor, noting that we have already checked many of these conditions.



Chapter 6

Functional Equations and Analytic
Continuation

6.1 Overview

We have worked hard to guarantee the existence of Dirichlet polynomials which lead to
a definition of the correction polynomial P (s1, s2, d) possessing many desirable properties.
Now we are ready to reap the rewards. We first show that the form of Z4(s1, s2, w) as a col-
lection of series containing Gauss sums leads to a functional equation into itself. Exploiting
the symmetry in the variables s1 and s2, we can show a very similar result using the trans-
formation in the s2 variable. Most importantly, we will also show that the the definition
of Z4(s1, s2, w) leads to a definition of Z6(s1, s2, w) which has a functional equation into
itself. It is this last functional equation which will provide a continuation of Z1(s1, s2, w)
to a half-space. Finally, we show that our original assumptions forced by the interchange
equality give an additional functional equation. This provides a continuation to a slightly
larger region, and this will be sufficient for our moment information in the final chapter.

6.2 Functional Equations Related to s1 7→ 1− s1

Recall that Z1(s1, s2, w) contains L-series with arguments s1 and s2 in the numerator,
and so it should inherit a natural functional equation as each of these variables si 7→
1− si. To further elucidate this property, we defined Z1(s1, s2, w) according to the equality
Z1(s1, s2, w) = Z4(1 − s1, s2, w + s1 − 1/2), where Z4(s1, s2, w) is defined implicitly by its
value at each of the prime powered coefficients Np−ks2 for any prime p and any k ≥ 0.
We use the notation Z4(s1, w; pk) to denote this coefficient. In the previous chapter, we
showed that for any fixed prime p and non-negative integer k, there exists a set of Dirichlet
polynomials Rl(s1, w; 2k) such that Rl(s1, w; 2k) = Npl/2−lwRl(1− s1, w+ s1− 1/2; 2k) and

Z4(s1, w; pk) = D4(s1, w; p2k) +
2k∑
l=1

Rl(s1, w; 2k)D4(s1, w; p2k−l)

so that the resulting Z1(s1, s2, w) has correction coefficients with all the required properties.
Here D4(s1, w; pr) denotes the Dirichlet series

D4(s1, w; pr) =
∑
m,d

G(mpr, d)ψ̄1(mpr)ψ2(d)
NdwNms1
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with G(m, d), the usual normalized cubic Gauss sum of modulus d.

6.2.1 Reformulating Results of S. J. Patterson

According to Patterson (cf. [P]), the inner sum taken over integers d has a functional
equation as w → 1−w. We now formulate this precisely, translating from his results to our
notation. Let

D(w, µm) = ζK(3w − 1/2)
∑

d≡1 (3)

G(µm, d)
Ndw

= ζK(3w − 1/2)
∑

d≡1 (3)

G(m, d)ψ(d)
Ndw

where ψ corresponds to µ = µ(ψ) as in our Definition 5 of Chapter 2. Further define

D∗(w, µm) = (2π)−2wΓ(w + 1/6)Γ(w − 1/6)D(w, µm).

Then Patterson shows that

D∗(w, µm) = (1− 33/2−3w)(1− 33w−5/2)−137/2−9w(Nm)1/2−w[
D∗
∞(1− w, µm) +D∗(1− w, µm)(e(µm) + e(−µm) + 2 · 33/2−3w)

]
(6.1)

where

D∗
∞(w, µm) =

∑
2≤b≤5+ord1−ω(µ)

a=0,1,2

3b(1/2−w)

(
ωa(1− ω)b

m

)
γ(a, b, µ)D∗(w,ωa(1− ω)bµm)

and the γ(a, b, µ) are explicit constants given in [23]. Translating back to our set-up, we
may write

D∗
∞(w, µm) =

∑
ψ∈Ψ

φ1(w,ψ, µ)ψ(m)D∗(w, µ(ψ)µm)

where the φ1(w,ψ, µ) are related to the γ(a, b, µ) via (6.1) in the natural way where the
constants φ1(w,ψ, µ) << 1 for w with <(w) bounded. Substituting this into (6.1), we obtain
the stream-lined functional equation

D∗(w, µm)=(1−33/2−3w)(1−33w−5/2)−1(Nm)1/2−w
∑
ψ∈Ψ

φ2(w,ψ, µ)ψ(m)D∗(1−w, µ(ψ)µm)

(6.2)
where the constants φ2(w,ψ, µ) are slight variants of the φ1(w,ψ, µ) according to (6.1) and
similarly satisfy φ2(w,ψ, µ) << 1 for w with <(w) bounded.

We note that a similar result can be obtained for the Dirichlet series summed over
d relatively prime to 6. However this adds additional Euler factors corresponding to the
primary prime (−2) which further complicates the notation. Since we will not be concerned
with the precise formulation of this functional equation (but rather the one for Z6 into
itself), we will carry out the functional equation for the series summed over all d ≡ 1 (3)
and refer the reader to [11] for a precise formulation of the Euler factors corresponding to
additional bad primes.
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6.2.2 A Functional Equation for the Prime Power Coefficients

Now we must show that (6.2) implies that each of the series D4(s1, w; pr) has functional
equation roughly of the form

D4(s1, w; pr) → D4(s1 + w − 1/2, 1− w; pr)Npr/2−rw.

Because these functional equations permute the additional twists ψi, we will now introduce
them into the notation for D4 to emphasize the dependence on the ψi’s. Write

D4(s1, w; pr, ψ1, ψ2)
def= D4(s1, w; pr) =

∑
m,d

G(mpr, d)ψ̄1(mpr)ψ2(d)
Nms1Ndw

We will further define

D∗
4(s1, w; pr, ψ1, ψ2)

def= (2π)−2s1−w+1/2Γ(s1)Γ(s1 + w − 1/2)

·
∑

m≡1 (3)

D∗(w, µ(ψ2)m)ψ̄1(mpr)
Nms1

= ΓD4(s1, w)ζ∗K(3w − 1/2)
∑
m,d

G(mpr, d)ψ̄1(mpr)ψ2(d)
Nms1Ndw

= ΓD4(s1, w)ζ∗K(3w − 1/2)D4(s1, w; pr, ψ1, ψ2) (6.3)

with

ΓD4(s1, w) def= (2π)−2s1−w+1/2Γ(s1)Γ(s1 + w − 1/2)(2π)−2wΓ(w + 1/6)Γ(w − 1/6).

Moreover, define

Z∗4 (s1, w; pk, ψ1, ψ2)
def= ΓD4(s1, w)ζ∗K(3w − 1/2)Z4(s1, w; pk, ψ1, ψ2) (6.4)

=
2k∑
l=0

Rl(s1, w; p2k)D∗
4(s1, w; p2k−l, ψ1, ψ2)

Using this newly defined notation, we want to show the following result.

Proposition 6.1. Keeping all of the notation as above,

Z∗4 (s1, w; pk, ψ1, ψ2) =
∑
ψ∈Ψ

Z4(s1 + w − 1/2, 1− w; pk, ψ1ψ̄, ψ2ψ)Npk−2kw (6.5)

Proof: Applying the functional equation (6.2), we have the above (6.3) equal to

(2π)−2s1−w+1/2Γ(s1)Γ(s1 + w − 1/2)(1− 33/2−3w)(1− 33w−5/2)−1∑
ψ∈Ψ

φ2(w,ψ, µ(ψ2))
∑

m≡1 (3)

D∗(1− w, µ(ψ2)µ(ψ)m)ψ(mpr)ψ̄1(mpr)Npr/2−rwNm1/2−w

Nms1

So we have at last shown that

D∗
4(s1, w; pr, ψ1, ψ2) = ΓD4(s1, w)ζ∗K(3w − 1/2)D4(s1, w; pr, ψ1, ψ2)
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=
∑
ψ∈Ψ

φ2(w,ψ, µ(ψ2))D∗
4(s1 + w − 1/2, 1− w; pr, ψ1ψ̄, ψ2ψ)Npr/2−rw

Moreover, we have engineered the Rl(s1, w; p2k) so that

Rl(s1, w; p2k) = Rl(s1 + w − 1/2, 1− w; p2k)Npl/2−lw

and each Rl(s1, w; p2k) is paired with D4(s1, w; p2k−l, ψ1, ψ2). In total, we have

Rl(s1, w; p2k)D∗
4(s1, w; p2k−l, ψ1, ψ2) = Rl(s1+w−1/2, 1−w; p2k)Npl/2−lw∑

ψ∈Ψ

φ2(w,ψ, µ(ψ2))D∗
4(s1 + w − 1/2, 1− w; p2k−l, ψ1ψ̄, ψ2ψ)Np(2k−l)/2−(2k−l)w

= Rl(s1 + w − 1/2, 1− w; p2k)∑
ψ∈Ψ

φ2(w,ψ, µ(ψ2))D∗
4(s1 + w − 1/2, 1− w; p2k−l, ψ1ψ̄, ψ2ψ)Npk−2kw

Since Z4(s1, w; pk) is built from a finite sum of these combinations of Dirichlet polynomials
and Dirichlet series, we must have

Z4(s1, w; pk, ψ1, ψ2) →
∑
ψ∈Ψ

φ2(w,ψ, µ(ψ2))Z4(s1 + w − 1/2, 1− w; pk, ψ1ψ̄, ψ2ψ)Npk−2kw

(6.6)
where the above is an equality upon adding the Gamma factors ΓD4(s1, w)ζ∗K(3w − 1/2)
previously defined.

6.2.3 A Global Functional Equation for Z4(s1, s2, w)

To determine a functional equation for the entire series Z4(s1, s2, w), it suffices to show the
analogue of (6.5) for any arbitrary integer N ,

Z4(s1, w;N,ψ1, ψ2) →
∑
ψ∈Ψ

Z4(s1 + w − 1/2, 1− w;N,ψ1ψ̄, ψ2ψ)NN1−2w.

Indeed, if this is true, then regarding Z4(s1, s2, w) as a sum over N of form

Z4(s1, s2, w) =
∑

N≡1 (3)

Z4(s1, w;N)
NN s2

,

the global functional equation

Z4(s1, s2, w;ψ1, ψ2) →
∑
ψ∈Ψ

Z4(s1 + w − 1/2, s2 + 2w − 1, 1− w;ψ1ψ̄, ψ2ψ)

follows. We record this formally in the following result.

Proposition 6.2. Define the completed Dirichlet series associated to Z4(s1, s2, w) by

Z∗4 (s1, s2, w;ψ1, ψ2)
def
= (2π)−2s2−2w+1Γ(s2)Γ(s2 + 2w − 1)

∑
N≡1 (3)

Z∗4 (s1, w;N)
NN s2

.

Then there exists a functional equation

Z∗4 (s1, s2, w;ψ1, ψ2) =
∑
ψ∈Ψ

Z∗4 (s1 + w − 1/2, s2 + 2w − 1, 1− w;ψ1ψ̄, ψ2ψ). (6.7)
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Proof: Recall that by transforming Z1(s1, s2, w) under (s1, s2, w) → (1−s1, s2, w+s1−1/2)
we obtain Z4(s1, s2, w) =

∑
d,m,n∈OK
d,m,n≡1 (3)

χ̄d0(mn
2)ψ̄1(m)ψ1(n)ψ2(d)G(χd1)G(χ̄d2)ψ̄1(d2)

∏
pα||d3
p-d2

[
a

(α)
3α,0Np

−3α/2 + · · ·
]

Nms1Nns2Ndw
·

·
∏
pα||d3
p|d2

[
a

(α)
3α+1,0Np

−3α/2−1/2 + a
(α)
3α,0Np

−3α/2+1/2−s1 + · · ·
]

(6.8)

We want to find the coefficient of NN−s2 (noting that additional terms with exponent s2
occur in the correction factor), for an arbitrary integer N . Suppose N = pk11 · · · pkr

r . Then
the coefficient of NN−s2 in Z4(s1, s2, w) is

∑
d

χ̄d0(m)ψ̄1(m)ψ̄1(d2)G(1, d1)G(1, d2)
ms1dw

[
k1∑
l=0

χ̄d0(p
2(k1−l)
1 )ψ̄1(p2(k1−l))

∑
i

a
(α)
i,l (d0, p1)Np

−3α/2+(3α−i)−(3α−i)s1
1

]
· · ·

[
kr∑
l=0

χ̄d0(p
2(kr−l)
r )ψ̄1(p2(kr−l))·

∑
i

a
(α)
i,l (d0, pr)Np−3α/2+(3α−i)−(3α−i)s1

r

] ∏
qα||d3
q-d2N

[
a

(α)
3α,0Nq

−3α/2 + · · ·+ a
(α)
0,0 Nq3α/2−3αs1

]
·

∏
qα||d3
q|d2
q-N

[
a

(α)
3α+1,0Nq

−3α/2−1/2 + · · ·+ a
(α)
0,0 Nq3α/2+1/2−(3α−1)s1

]

But we know that each of the bracketed terms corresponding to primes p dividing N sat-
isfy the equality written in the second version of the main theorem of Section 5.1.3. In
abbreviated form, it reads

k∑
l=0

χ̄d0(p
2(k−l))ψ̄1(p2(k−l))

∑
i

a
(α)
i,l (d0, p)Np−3α/2+(3α−i)−(3α−i)s1 =

2k∑
l=0

Rl(s1, w; 2k)
[
p-part of D4(s1, w; p2k−l)

]
From this identity, it is clear that the NN−s2 coefficient of Z4(s1, s2, w) is

Z4(s1, w;N) =
k1∑
l1=0

· · ·
kr∑
lr=0

Rl1(s1, w; pk11 ) · · ·Rlr(s1, w; pkr
r )D4(s1, w; p2k1−l1

1 · · · p2kr−lr
r )

where N = pk11 · · · pkr
r . We simply take all possible products of Dirichlet polynomials

Rl(s1, w; p2k) occurring in the coefficients of the primes p dividing N . Then decomposing
the Gauss sum series D4(s1, w; p2k1−l1

1 · · · p2kr−lr
r ), we have exactly the desired contribution
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for each prime divisor p2k−l. For those primes q not dividing N , D4(s1, w; p2k1−l1
1 · · · p2kr−lr

r )
behaves just like D4(s1, w; 1) and we see that our product terms associated to these primes
q in the above expression are identical to those from the method of taking variables to
infinity, which (as shown in Section 3.3.2) come from precisely D4(s1, w; 1). Now ap-
plying the functional equations of the previous section to Dirichlet series with numerator
D4(s1, w; p2k1−l1

1 · · · p2kr−lr
r , ψ1, ψ2), it is further clear that, given the transformation prop-

erty of each of the Dirichlet polynomials Rl,

Z4(s1, w;N,ψ1, ψ2) →
∑
ψ∈Ψ

Z4(s1 + w − 1/2, 1− w;N,ψ1ψ̄, ψ2ψ)NN1−2w.

Moreover, according to our definition in the statement of the proposition,

Z∗4 (s1, s2, w;ψ1, ψ2)
def= (2π)−2s2−2w+1Γ(s2)Γ(s2 + 2w − 1)

∑
N≡1 (3)

Z∗4 (s1, w;N)
NN s2

,

the global functional equation

Z∗4 (s1, s2, w;ψ1, ψ2) =
∑
ψ∈Ψ

Z∗4 (s1 + w − 1/2, s2 + 2w − 1, 1− w;ψ1ψ̄, ψ2ψ) (6.9)

follows.

6.3 Functional Equations Related to s2 7→ 1− s2

In the previous section, we showed that using the natural functional equation s1 → 1− s1
for the L-series L(s1, χd0) in Z1(s1, s2, w) leads to a definition of Z1(s1, s2, w) = Z4(1 −
s1, s2, w+ s1 − 1/2) where Z4(s1, s2, w), in turn, possesses a functional equation into itself.
Now that we have fixed a definition of Z1(s1, s2, w) by choosing Dirichlet polynomials which
determine the form of Z4(s1, w; pk), we now explore the consequences for the other natural
functional equation s2 → 1− s2 associated to the other L-series occurring in the numerator
of Z1(s1, s2, w). Recall that we defined Z5(s1, s2, w) according to

Z5(s1, s2, w) def= Z1(s1, 1− s2, w + s2 − 1/2)

Because the a(α)
i,j (d0, p) which comprise the correction factor P (s1, s2, d) are symmetric in

the indices i and j, the original object

Z1(s1, s2, w) =
∑

d≡1 (3)

L(s1, χd0ψ1)L(s2, χd0ψ1)ψ2(d)P (s1, s2, d)
Ndw

retains its symmetry in s1 and s2. Then we may similarly define the Np−ks1 coefficient of
Z5 according to

Z5(s2, w; pk) = D(s2, w; p2k) +
2k∑
l=1

Rl(s2, w; 2k)D(s2, w; p2k−l)

where all of the earlier notation has been preserved in the above equation and the Dirichlet
polynomials Rl(s2, w; 2k) are exactly those polynomials chosen to satisfy

Z4(s1, w; pk) = D(s1, w; p2k) +
2k∑
l=1

Rl(s1, w; 2k)D(s1, w; p2k−l).
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Then repeating the arguments in the previous sections’ Proposition 6.1 and Proposition 6.2
with the roles of s1 and s2 interchanged, we may obtain the analogue of (6.7) for Z5. Again,
introducing ψi’s into the notation to emphasize the dependence of the functional equation
on the choice of the ψi, we have that

Z5(s1, s2, w;ψ1, ψ2) →
∑
ψ∈Ψ

φ2(w,ψ, µ)Z5(s1 + 2w − 1, s2 + w − 1/2, 1− w;ψ1ψ̄, ψ2ψ),

where the constants φ2(w,ψ, µ) are slight variants of the φ1(w,ψ, µ) according to (6.1) and
similarly satisfy φ2(w,ψ, µ) << 1 for w with <(w) bounded. Again, we can make the above
an equality by adding the analogous Gamma factors so that

Z∗5 (s1, s2, w) def= ΓD4(s2, w)ζ∗K(3w − 1/2)Z5(s1, s2, w).

6.4 Functional Equations Related to (s1, s2) 7→ (1− s1, 1− s2)

Just as in the previous sections, we recall the definition a new object according to the
transformation of L-series in the numerator of Z1(s1, s2, w). In Section 3.1 we defined
Z6(s1, s2, w) according to

Z1(1− s1, 1− s2, w + s1 + s2 − 1) def= Z6(s1, s2, w)

Recall that from the square-free heuristics of Chapter 1, we find

Z1(s1, s2, w) ≈
∑
d

L(s1, χd)L(s2, χd)
Ndw

=
∑
d

L(1− s1, χ̄d)L(1− s2, χ̄d)Nd1−s1−s2G2
3(1, d)

Ndw

(by Hasse-Davenport relation) =
∑
m,n,d

G6(m2n2, d)
Nm1−s1Nn1−s2Ndw+s1+s2−1

Then we have

Z6(s1, s2, w) def= Z1(1− s1, 1− s2, w + s1 + s2 − 1) ≈
∑
m,n,d

G6(m2n2, d)
Nms1Nns2Ndw

For fixed m and n, the inner sum of the above Dirichlet series taken over integers d is
the Fourier coefficient of a metaplectic Eisenstein series on the six-fold cover of GL(2).
Accordingly, it should have a functional equation roughly of the form

Z6(s1, s2, w) → Z6(s1 + 2w − 1, s2 + 2w − 1, 1− w)

Unlike the previous section, in which Z5(s1, s2, w) inherited the anticipated functional equa-
tion into itself almost immediately from the definition of Z4(s1, s2, w), we will have to do
significantly more work to realize the functional equation of Z6 into itself. In Section 3.1,
we mentioned that defining

Z6(s1, s2, w) =
∑
d

G6(m2n2, d)
Nm1−s1Nn1−s2Ndw+s1+s2−1

where d ranges over all integers

leads to a determination of the correction factors which does not provide an analytic con-
tinuation to the whole plane, and worse, is inconsistent with the definition of Z4(s1, s2, w)
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we have offered above. Based on the definition of Z4(s1, s2, w), we might expect that par-
ticular combinations of Dirichlet polynomials and Dirichlet series similar to those used to
define Z4 would provide a definition of Z6(s1, s2, w) which possesses the appropriate ad-
ditional functional equation. For any such potential combination, we must check that it
is consistent with our previous definition of Z4(s1, s2, w). Then we are guaranteed that
the correction coefficients are consistently defined and will thus retain the desired list of
properties. As before, we reduce this to a question of combinatorics. To formulate these
questions, we will need a careful analysis of our original series under the transformation
(s1, s2, w) 7→ (1 − s1, 1 − s2, w + s1 + s2 − 1). First, we make the above assertions more
precise.

6.4.1 Formulating the Consistency Claim

We want to show the following claim.

Theorem 6.3. There exist Dirichlet polynomials Tl(s2, w; p2k) satisfying the transformation
property Tl(s2, w; p2k) = Tl(s2+2w−1, 1−w; p2k)Npl−2lw such that the coefficient of Np−ks1
in Z6, Z6(s2, w; pk), takes form

Z6(s2, w; pk) =
k∑
l=0

Tl(s2, w; p2k)D6(s2, w; p2(k−l)),

where D6(s2, w; p2(k−l)) is defined by

D6(s2, w; p2k) =
∑

n,d≡1 (3)

G6(p2kn2, d)ψ̄1(p2kn2)ψ2(d)
Nns2Ndw

.

It requires some explanation to determine exactly what needs to be shown to prove this
theorem. We defined Z1(s1, s2, w) according to the relation

Z1(1− s1, s2, w + s1 − 1/2) = Z4(s1, s2, w)

and then subsequently defined Z6(s1, s2, w) by the relation

Z6(s1, s2, w) = Z1(1− s1, 1− s2, w + s1 + s2 − 1).

Then by definition, we have the relation

Z6(s1, s2, w) = Z4(s1, 1− s2, w + s2 − 1/2).

There is ambiguity in the definition of Z4 and Z6 according to transformations of Z1

because the correction factors have not been determined. However, once we assert a form
for Z4, we need to guarantee that Z6 has a definition which gives the same correction
coefficients and still possesses an additional functional equation into itself.

In a previous section of this chapter, we showed that

Z4(s1, s2, w) =
∑

N≡1 (3)

 ∑
m,d,c,l
c l=N2

Rl(s1, w;N)G(cm, d)ψ̄1(cm)ψ2(d)
Nms1Ndw

NN−s2
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This was equivalent to showing that the coefficient of Np−k2s2 in Z4(s1, s2, w), for any prime
p and any positive integer k2, satisfies

Z4(s1, w; pk2) =
2k2∑
l2=0

Rl2(s1, w; p2k2)D4(s1, w; p2k2−l2)

Expanding these Dirichlet polynomials into a more explicit form, we may rewrite our series
Z4(s1, w; pk2) as

2k2∑
l2=0

∑
l1

Vl1
+vl1

−l1=l2

cl1,l2

[
Np3vl1

/2−3vl1
w + · · ·+ Np3Vl1

/2−3Vl1
w
]

Np−l1s1D4(s1, w; p2k2−l2)

Then, in particular, the coefficient of Np−k1s1−k2s2 must have p-part equal to the p-part of

Z4(w; pk1 , pk2) =
2k2∑
l2=0

k1∑
l1=0

Vl1
+vl1

−l1=l2

cl1,l2

[
Np3vl1

/2−3vl1
w + · · ·+ Np3Vl1

/2−3Vl1
w
]

· D4(w; p2k2−l2+k1−l1)

These are finite sums so we may reorder the terms according to fixed powers of Np−k1s1
rather than Np−k2s2 . Hence, the p-part of the above must be equal to the p-part of
Z4(s2, w; pk1) =

=
k1∑
l1=0

∑
l2

Vl1
+vl1

−l2=l1

cl1,l2

[
Np3vl1

/2−3vl1
w + · · ·+ Np3Vl1

/2−3Vl1
w
]

Np−l2s2D4(s2, w; pk1−l1)

Note these pieces of the Dirichlet polynomials in s2 satisfy the correct transformation prop-
erty to that each of the terms corresponding to D4(s2, w; pk1−l1) transform by Np−l1w. This
shows that there is a collection of Dirichlet polynomials Sl(s2, w;M) so that

Z4(s1, s2, w) =
∑

M≡1 (3)

 ∑
n,d,c,l
c l=M

Sl(s2, w;M)G(cn2, d)ψ̄1(cn2)ψ2(d)
Nns2Ndw

NM−s1

since each of the prime pieces which determine the correction coefficients match the prime
power contributions of Z4(s1, w; pk). This new formulation of Z4(s1, s2, w) behaves well
under the transformation (s1, s2, w) 7→ (s1, 1 − s2, w + s2 − 1/2). Now it is clear that we
need only show that there is a choice of Dirichlet polynomials Tl(s2, w; p2k) as in the theorem
so that

Z6(s2, w; pk) def=
k∑
l=0

Tl(s2, w; p2k)D6(s2, w; p2(k−l)) (6.10)

=
k∑
l=0
n,d

Sl(1− s2, w + s2 − 1/2; pk)G(pk−ln2, d)ψ̄1(pk−ln2)ψ2(d)
Nn1−s2Ndw+s2−1/2

We can then stitch these sums together, just as we did for Z4(s1, s2, w) in the previous
section, to obtain a complete object Z6(s1, s2, w) which possesses the correct functional
equation into itself.
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6.4.2 Analysis of D6(s2, w; p2k)

In order to prove our claim, we need to analyze both components of the above equation
(6.10). We first analyze the left-hand side by interchanging the order of summation in

D6(s2, w; p2k) =
∑

n,d≡1 (3)

G6(p2kn2, d)ψ̄1(pkn)ψ2(d)
Nns2Ndw

.

In its current form, we can see the functional equation as w 7→ 1 − w by thinking of this
series as an outer sum over n so the inner sum over d looks like the (p2kn2)th Fourier
coefficient of a metaplectic Eisenstein series. But we want to compare this series to Z4 via
Z1. Interchanging the order of summation so that the outer sum is over d, we will see L-
series coming from D6(s2, w; p2k) and this will provide the link. We have already analyzed
the series D6(s2, w; 1) in Chapter 3 when taking limits of variables at infinity. As we have
seen before, the analysis of D6(s2, w; p2k) will only differ at the prime p.

Proposition 6.4. Fix a positive integer k. Then the series D6(s2, w; p2k) takes on the
following forms according to the residue class of ordp(d) mod 6.

D6(s2, w; p2k) =
∑
d

d=d0d33

G6(1, d1)G6(1, d2)L(s2, χ̄d0ψ̄1)ψ̄1(d2)ψ2(d1d
2
2)

(Nd1d2)w

·
∏

q prime
qαq ||d3
q 6=p

[
same product terms as

those coming from D6(s2, w; 1)

]
·



∑
λ

2k<6λ

φ(p3λ)Np−(6λ−2k)s2/2−6λw) +
∑
λ

2k≥6λ

χ̄d0(p
k)ψ̄1(pk)φ(p3λ)Np−6λw if ordp(d) ≡ 0 (6)

∑
λ

3λ≥k

Np3λ−(3λ−k)s2−6λw if ordp(d) ≡ 1 (6)

∑
λ

3λ+1≥k

χ̄d0(p)ψ̄1(p)Np3λ+1−(3λ+1−k)s2−(6λ+3)w
[
1− χ̄d0(p)ψ̄1(p)Np−s2

]
if ordp(d) ≡ 3 (6)

∑
λ

3λ+2≥k

Np3λ+2−(3λ+2−k)s2−(6λ+4)w if ordp(d) ≡ 5 (6)

0 otherwise.

Proof: Pick and fix a value of d0. Suppose p - d0 with ordp(d) even. Then write
d = p6λd′ with (p, d′) = 1 and n = pγn′ with (p, n′) = 1. So

D6(s2, w; p2k) =
∑

n,d≡1 (3)

G6(p2k+2γ(n′)2, p6λd′)ψ̄1(pk+γn′)ψ2(d′)
(Nn′)s2(Nd′)wNpγs2+6λw

But

G6(p2k+2γ(n′)2, p6λd′) =
g6(p2k+2γ(n′)2, p6λd′)√

Np6λNd′
=
g6(p2k+2γ(n′)2, d′)√

Nd′
g6(p2k+2γ(n′)2, p6λ)√

Np6λ

= χ̄d0(p
2k+2γ)G6((n′)2, d′)

g6(p2k+2γ , p6λ)√
Np6λ
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where χd0 still denotes the familiar cubic character. Then we may write

D6(s2, w; p2k) =
∑
n,d

G6((n′)2, d′)ψ̄1(n′)ψ2(d′)
(Nn′)s2(Nd′)w

·
∑
λ≥0

∑
γ≥0

χ̄d0(p
k+γ)ψ̄1(pk+γ)g6(p2k+2γ , p6λ)√

Np6λ
Np−γs2−6λw

We know, moreover, that

g6(p2k+2γ , p6λ) =


φ(p6λ), if 2k + 2γ ≥ 6λ
−Np6λ−1, if 2k + 2γ = 6λ− 1
0, otherwise

where the middle case is evidently empty according to parity. Then we may evaluate the
innermost sum according to the following case method:

∑
γ

χ̄d0(p
k+γ)ψ̄1(pk+γ)g6(p2k+2γ , p6λ)√

Np6λ
Np−γs2−6λw =

=

{
φ(p3λ)χ̄d0(p

k)ψ̄1(pk)L(p)(s2, χ̄d0ψ̄1)Np−6λw, if 2k ≥ 6λ
φ(p3λ)L(p)(s2, χ̄d0ψ̄1)Np−(6λ−2k)s2/2−6λw), if 2k < 6λ

Bringing all of this analysis together, we have that for p - d0 with ordp(d) even,

D6(s2, w; p2k) =
∑
n,d

G6((n′)2, d′)ψ̄1(n′)ψ2(d′)
(Nn′)s2(Nd′)w

L(p)(s2, χ̄d0ψ̄1)

∑
λ≥0

 ∑
k

2k<6λ

φ(p3λ)Np−(6λ−2k)s2/2−6λw) +
∑
k

2k≥6λ

χ̄d0(p
k)ψ̄1(pk)φ(p3λ)Np−6λw


This completes the first case depending on the divisibility of d0. Suppose now that p|d1.
Write d = p6λ+1d′ with (p, d′) = 1 and n = pγn′ with (p, n′) = 1. Then

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1
λ,γ≥0

G6(p2k+2γ(n′)2, p6λ+1d′)ψ̄1(pk+γn′)ψ2(pd′)
(Nn′)s2(Nd′)wNpγs2+(6λ+1)w

But
G6(p2k+2γ(n′)2, p6λ+1d′) = 0 unless 2k + 2γ = 6λ

If this is the case, then we have

G6(p2k+2γ(n′)2, p6λ+1d′) =
g6(p6λ(n′)2, p6λ+1d′)√

Np6λ+1Nd′

=
Np6λ√
Np6λ

g6((n′)2, pd′)√
NpNd′

= Np3λG6((n′)2, pd′)
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Then

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1

G6((n′)2, pd′)ψ̄1(n′)ψ2(pd′)
(Nn′)s2(NpNd′)w

∑
λ

3λ≥k

Np3λ−(3λ−k)s2−6λw

Suppose instead that p - d0 but that we may write d = p6λ+3d′ with (p, d′) = 1 and n = pγn′

with (p, n′) = 1. Then

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1
λ,γ≥0

G6(p2k+2γ(n′)2, p6λ+3d′)ψ̄1(pk+γn′)ψ2(d′)
(Nn′)s2(Nd′)wNpγs2+(6λ+3)w

But

G6(p2k+2γ(n′)2, p6λ+3d′) = 0 unless 2k + 2γ = 6λ+ 2 (i.e. γ = 3λ+ 1− k)

If this is the case, then we have

G6(p2k+2γ(n′)2, p6λ+3d′) =
g6(p6λ+2(n′)2, p6λ+3d′)√

Np6λ+3Nd′
=

= χ̄d0(p
2)
g6(p6λ+2(n′)2, p6λ+3)√

Np6λ+3

g6(p6λ+2(n′)2, d′)√
Nd′

= χd0(p)
Np6λ+2√
Np6λ+2

g6((n′)2, d′)√
Nd′

g2((n′)2, p)√
Np

= χd0(p)Np
3λ+1G6((n′)2, d′)

Then

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1

G6((n′)2, d′)ψ̄1(pn′)ψ2(d)
(Nn′)s2(Np3Nd′)w

∑
λ

3λ+1≥k

Np3λ+1−(3λ+1−k)s2−6λw

Anticipating the removal of an Euler factor of a cubic L-series from the above sum, we may
rewrite this as

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1

G6((n′)2, d′)ψ̄1(n′)ψ2(d′)
(Nn′)s2(Nd′)w

L(p)(s2, χ̄d0ψ̄1)

∑
λ

3λ+1≥k

χ̄d0(p)ψ̄1(p)Np3λ+1−(3λ+1−k)s2−(6λ+3)w
[
1− χ̄d0(p)ψ̄1(p)Np−s2

]

Suppose lastly that p|d2 and that we may write d = p6λ+5d′ with (p, d′) = 1 and n = pγn′

with (p, n′) = 1. Then

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1
λ,γ≥0

G6(p2k+2γ(n′)2, p6λ+5d′)ψ̄1(pk+γn′)ψ2(p2d′)
(Nn′)s2(Nd′)wNpγs2+(6λ+5)w
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But

G6(p2k+2γ(n′)2, p6λ+5d′) = 0 unless 2k + 2γ = 6λ+ 4 (i.e. γ = 3λ+ 2− k)

If this is the case, then we have

G6(p2k+2γ(n′)2, p6λ+5d′) =
g6(p6λ+4(n′)2, p6λ+5d′)√

Np6λ+5Nd′

= χ
(6)
d′ (p5)χ̄(6)

p (d′)
g6(p6λ+4(n′)2, p6λ+5)√

Np6λ+5

g6(p6λ+4(n′)2, d′)√
Nd′

= χ̄
(6)
d0

(p4)χ(6)
d′ (p5)χ̄(6)

p (d′)
p6λ+4√
Np6λ+4

g6((n′)2, d′)√
Nd′

g2((n′)2, p)√
Np

= Np3λ+2G6((n′)2, p)G6((n′)2, d′)

where the superscripts (6) denote a sixth order character. Then

D6(s2, w; p2k) =
∑
n′,d′

(n′d′,p)=1

G6((n′)2, p)G6((n′)2, d′)ψ̄1(p2n′)ψ2(p2d′)
(Nn′)s2(Np5Nd′)w

·
∑
λ

3λ+2≥k

Np3λ+2−(3λ+2−k)s2−6λw

Note that this completes our case analysis, since all other cases involve an integer d with
ordp(d) even and ordp(d) 6≡ 0 (6), so there is no choice of n so that the Gauss sum
G6(p2kn2, d) is non-trivial. It is clear that, according to the rules for decomposing Gauss
sums, the analysis at all other primes q 6= p yields the same finite collection of terms as
D6(s2, w; 1).

6.4.3 Analysis of D4(s2, w; p2k)

Now we want to do the identical procedure on the Gauss sum series coming from the Np−ks1
coefficient of Z4(s1, s2, w). Rather than state the results of this process at the outset, we
launch headlong into the argument and summarize our findings at the end of the section.

Pick and fix a value of d0. As a first case, suppose that p - d0. Then write d = p3αd′

with (p, d′) = 1 and similarly, write n = pγn′ with (p, n′) = 1. Then

D4(s2, w; pk) =
∑
n,d

G(pkn2, d)ψ̄1(pkn2)ψ2(d)
Nns2Ndw

=
∑
n′,d′

α,γ≥0

G(pk+2γ(n′)2, p3αd′)ψ̄1(pk+2γ(n′)2)
(Nn′)s2(Nd′)wNpγs2+3αw

(6.11)
But

G(pk+2γ(n′)2, p3αd′) =
g(pk+2γ(n′)2, p3αd′)√

Np3αNd′
=
g(pk+2γ(n′)2, d′)√

d′
g(pk+2γ(n′)2, p3α)√

Np3α
=

= χ̄d0(p
k+2γ)

g((n′)2, d′)√
Nd′

g(pk+2γ , p3α)√
Np3α

=
χ̄d0(p

k+2γ)√
Np3α

G((n′)2, d′)
g(pk+2γ , p3α)√

Np3α
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Then we may rewrite the above (6.11) as

D(s2, w; pk) =
∑
n′,d′

(n′d′,p)=1

G((n′)2, d′)ψ̄1((n′)2)ψ2(d′)
(Nn′)s2(Nd′)w

∑
α≥0

∑
γ≥0

χ̄d0(p
k+2γ)ψ̄1(pk+2γ)
Npγs2+3αw

g(pk+2γ , p3α)√
Np3α


Since

g(pk+2γ , p3α) =


1, if α = 0
φ(p3α), if k + 2α ≥ 3α
−Np3α−1, if k + 2γ = 3α− 1, α > 0
0, otherwise

this reduces to

D(s2, w; pk) =
∑
n′,d′

(n′d′,p)=1

G((n′)2, d′)
(Nn′)s2(Nd′)w

∑
γ≥0

χ̄d0(p
k+2γ)ψ̄1(pk+2γ)

Npγs2
+

+
∑
α≥1

 ∑
k+2γ≥3α

χ̄d0(p
k+2γ)ψ̄1(pk+2γ)
Npγs2+3αw

φ(p3α)√
Np3α

− Np3α−1√
Np3α

χ̄d0(p
(3α−1))ψ̄1(p(3α−1))

Np(3α−1−k)s2/2+3αw)

 (6.12)

where the last term only occurs if 3α− k− 1/2 is a positive integer. This is best expressed
as a series of cases depending on the choice of α and k. That is, if α > 0, ∑

k+2γ≥3α

χ̄d0(p
k+2γ)ψ̄1(pk+2γ)
Npγs2+3αw

φ(p3α)√
Np3α

− Np3α−1√
Np3α

χ̄d0(p
(3α−1))ψ̄1(p(3α−1))

Np(3α−1−k)s2/2+3αw)

 =

=



φ(p3α)√
Np3α

χ̄d0(p
k)ψ̄1(pk)L(p)(s2, χd0ψ1), if k ≥ 3α

φ(p3α)√
Np3α

Np−(3α−k)s2/2L(p)(s2, χd0ψ1), if 3α− k even
φ(p3α)√

Np3α
χ̄d0(p)ψ1(p)Np−(3α+1−k)s2/2L(p)(s2, χd0ψ1) −

Np3α−1√
Np3α

χd0(p)ψ1(p)Np−(3α−1−k)s2/2, if 3α− k odd

Note that in the last of the three cases, where 3α− k is odd, we may extract the pth Euler
factor of the L-series from both terms to obtain

L(p)(s2, χd0ψ1)
[
Np3α/2χ̄d0(p)ψ̄1(p)Np−(3α+1−k)s2/2 − Np3α/2−1χd0(p)ψ1(p)Np−(3α−1−k)s2/2

]
.

Putting this all back together again we have

D(s2, w; pk) =
∑
n′,d′

(n′d′,p)=1

G((n′)2, d′)ψ1(n′)ψ2(d′)
(Nn′)s2(Nd′)w

L(p)(s2, χd0ψ1)

∑
α≥0

F (s2; p, k, α)
Np3αw


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where

F (s2; p, k, α) =



φ(p3α)√
Np3α

χ̄d0(p
k)ψ̄1(pk), if k ≥ 3α

φ(p3α)√
Np3α

Np−(3α−k)s2/2, if 3α− k even

Np3α/2χ̄d0(p)ψ̄1(p)Np−(3α+1−k)s2/2 −
Np3α/2−1χd0(p)ψ1(p)Np−(3α−1−k)s2/2, if 3α− k odd

If instead p|d1, then we may write d = p3α+1d′ with (p, d′) = 1 and let n = pγn′ with
(p, n′) = 1. Then

D4(s2, w; pk) =
∑
n,d

G(pkn2, d)ψ̄1(pkn2)ψ2(d)
Nns2Ndw

=
∑
n′,d′

α,γ≥0

G(pk+2γ(n′)2, p3α+1d′)ψ̄1(pk+2γ(n′)2)ψ2(pd′)
(Nn′)s2(Nd′)wNpγs2+(3α+1)w

But
G(pk+2γ(n′)2, p3α+1d′) = 0 unless γ = (3α− k)/2 with γ integral

If we can choose such a γ, then

D4(s2, w; pk) =
∑
n′,d′

α≥0

G(p3α(n′)2, p3α+1d′)ψ1(n′)ψ2(pd′)
(Nn′)s2(Nd′)wNp(3α−k)s2/2+(3α+1)w

=
∑
n′,d′

G((n′)2, pd′)ψ1(n′)ψ2(pd′)
(Nn′)s2(NpNd′)w

∑
α

3α≥k

Np3α/2−(3α−k)s2/2−3αw

Finally, if p|d2, then we may write d = p3α+2d′ with (p, d′) = 1 and again let n = pγn′

with (p, n′) = 1. Then

D4(s2, w; pk) =
∑
n,d

G(pkn2, d)ψ1(pkn2)ψ2(d)
Nns2Ndw

=

∑
n′,d′

α,γ≥0

G(pk+2γ(n′)2, p3α+2d′)ψ̄1(pk+2γ(n′)2)ψ2(p2d′)
(Nn′)s2(Nd′)wNpγs2+(3α+2)w

But
G(pk+2γ(n′)2, p3α+2d′) = 0 unless γ = (3α+ 1− k)/2 with γ integral

If we can choose such a γ, then

D4(s2, w; pk) =
∑
n′,d′

α≥0

G(p3α+1(n′)2, p3α+2d′)ψ̄1(p(n′)2)ψ2(p2d′)
(Nn′)s2(Nd′)wNp(3α+1−k)s2/2+(3α+2)w

=
∑
n′,d′

G((n′)2, pd′)G((n′)2, p)ψ̄1(p(n′)2)ψ2(p2d′)
(Nn′)s2(Np2Nd′)w

·
∑
α

3α≥k

Np(3α+1)/2−(3α+1−k)s2/2−3αw
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Incorporating our previous decomposition of the remaining series in each case (from the
arguments used in taking limits of variables at infinity), we have shown:

Proposition 6.5. Fix a positive integer k. The series D4(s2, w; pk) takes on the following
forms according to the residue class of ordp(d) mod 3 and the parity of k.

D4(s2, w; pk) =
∑
d

d=d0d33

G(1, d1)G(1.d2)L(s2, χd0ψ1)ψ̄1(d2)ψ2(d1d2)
(Nd1d2)w

·

·
∏

q prime
qαq ||d3
q 6=p

[
same product terms as

those coming from D4(s2, w; 1)

]
·

·



∑
α≥0

F (s2; p, k, α)
Np3αw

if ordp(d) ≡ 0 (3)∑
α

3α≥k

Np3α/2−(3α−k)s2/2−3αw if ordp(d) ≡ 1 (3), 3α− k even

∑
α

3α+1≥k

Np(3α+1)/2−(3α+1−k)s2/2−(3α+1)w if ordp(d) ≡ 2 (3), 3α− k odd

where

F (s2; p, k, α) =



φ(p3α)√
Np3α

χ̄d0(p
k)ψ̄1(pk), if k ≥ 3α

φ(p3α)√
Np3α

Np−(3α−k)s2/2, if 3α− k even

Np3α/2χ̄d0(p)ψ̄1(p)Np−(3α+1−k)s2/2

−Np3α/2−1χd0(p)ψ1(p)Np−(3α−1−k)s2/2, if 3α− k odd

Recalling the key equality of Theorem 6.3, we want to ultimately compare series involv-
ing D6(s2, w; p2r) for various powers of r with series involving D4(1− s2, w + s2 − 1/2; pr)
for various r. To this end, we perform the transformation of variables (s2, w) 7→ (1−s2, w+
s2 − 1/2) on the form of D4 listed above.

Proposition 6.6. For a fixed positive integer k, the series D4(1−s2, w+s2−1/2; pk) takes
on the following forms according to the residue class of ordp(d) mod 3 and the parity of k.
First, if k is even, we have

D4(1− s2, w + s2 − 1/2; pk) =
∑
d

d=d0d33

G6(1, d1)G6(1.d2)L(s2, χ̄d0ψ̄1)
(Nd1d2)w

∏
q prime
qαq ||d3
q 6=p

[
same product terms as

D4(1− s2, w + s2 − 1/2; 1)

]
ζ(p)(6w + 3s2 − 3) ·

·


∑
α≥0

F̃ (1− s2; p, k, α)
Np3α(w+s2−1/2)

if ordp(d) ≡ 0 (3)

Np3j1+k/2−(3j1+k/2)s2−6j1w if ordp(d) ≡ 1 (3), j1 = bk6c
Np3j2+k/2−(3j2+k/2)s2−6j2w if ordp(d) ≡ 2 (3), j2 = bk−4

6 c

(6.13)
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where ζ(p)
K (6w + 3s2 − 3) denotes the pth Euler factor of the indicated zeta function and

∑
α≥0

F̃ (1− s2; p, k, α)
Np3α(w+s2−1/2)

=
∑
α

3α<k

φ(p3α)√
Np3α

χ̄d0(p
k)ψ̄1(pk)

[
1− Np3−3s2−6w

]
Np3α/2−3αs2−3αw+

φ(p3j1)Npk/2−(3j1+k/2)s2−6j1w
[
1− Np2−3s2−6w

]
+

Np3j2+k/2−(3j2+k/2)s2−6j2wχ̄d0(p)ψ̄1(p)
[
1− χ̄d0(p)ψ̄1(p)Np−s2

]
(6.14)

with j1 = bk6c and j2 = bk−4
6 c. If instead, k is odd, we have

D4(1− s2, w + s2 − 1/2; pk) =
∑
d

d=d0d33

G6(1, d1)G6(1.d2)L(s2, χ̄d0ψ̄1)ψ̄1(d2)ψ2(d1d
2
2)

(Nd1d2)w

∏
q prime
qαq ||d3
q 6=p

[
same product terms as

D4(1− s2, w + s2 − 1/2; 1)

]
ζ
(p)
K (6w + 3s2 − 3) ·

·


∑
α≥0

F̃ (1− s2; p, k, α)
Np3α(w+s2−1/2)

if ordp(d) ≡ 0 (3)

Np3j1+k/2−(3j1+k/2)s2−6j1w if ordp(d) ≡ 1 (3), j1 = bk−3
6 c

Np3j2+k/2−(3j2+k/2)s2−6j2w if ordp(d) ≡ 2 (3), j2 = bk−1
6 c

(6.15)

Proof: We will limit ourselves to the case where k is even, as the odd case follows by
identical methods. From the previous proposition, we have that

D4(s2, w; pk) =
∑
d

d=d0d33

G(1, d1)G(1, d2)L(s2, χd0ψ1)ψ̄1(d2)ψ2(d1d
2
2)

(Nd1d2)w
·

·


∏

q prime
qαq ||d3
q 6=p

[
same product terms as

D4(s2, w; 1)

] ·

[
terms corresp. to
disting. prime p

]

Performing the translation on the sum over d0, we have

D4(1− s2, w + s2 − 1/2; pk) =
∑
d

d=d0d33

G(1, d1)G(1, d2)L(1− s2, χd0ψ1)ψ̄1(d2)ψ2(d1d
2
2)

(Nd1d2)w+s2−1/2

→
∑
d

d=d0d33

G(1, d1)2G(1, d2)2L(s2, χ̄d0ψ̄1)ψ̄1(d2)ψ2(d1d
2
2)(Nd1d2)s2−1/2

(Nd1d2)w+s2−1/2

by the functional equation for the cubic L-series. The above can be made exact by introduc-
ing the appropriate Gamma factors, but we omit them here to reduce notation. Canceling
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common factors and using the Hasse-Davenport relation (introduced in Section 2.2), this
reduces to ∑

d
d=d0d33

G6(1, d1)G6(1, d2)L(s2, χ̄d0ψ̄1)ψ̄1(d2)ψ2(d1d
2
2)

(Nd1d2)w

Now on the level of correction factors, we simply transform those corresponding to primes
q 6= p. For those terms corresponding to the prime p, it is evident from the previous
proposition that each case depending on α and k contains a geometric sum from which we
can factor the zeta Euler factor ζ(p)

K (6w+ 3s2− 3). Doing this in the case for k even leaves:
∑
α≥0

F̃ (s2; p, k, α)
Np3αw

if ordp(d) ≡ 0 (3)

Np6j1/2−(6j1−k)s2/2−6j1w if ordp(d) ≡ 1 (3), j1 = bk6c
Np6j2/2−(6j2−k)s2/2−6j2w if ordp(d) ≡ 2 (3), j2 = bk−4

6 c

where

∑
α≥0

F̃ (s2; p, k, α)
Np3αw

=
∑
α

3α<k

φ(p3α)√
Np3α

χ̄d0(p
k)ψ̄1(pk)

[
1− Np3−3s2−6w

]
Np−3αw+

φ(p3j1)Np−(6j1−k)s2/2−6j1w
[
1− Np2−3s2−6w

]
+

Np3j2−(6j2−k)s2/2−6j2wχ̄d0(p)ψ̄1(p)
[
1− χ̄d0(p)ψ̄1(p)Np−(1−s2)

]
(6.16)

But the Euler factor has variables fixed by the translation (s2, w) 7→ (1− s2, w+ s2 − 1/2).
So simply substituting the appropriate variable changes in the above case analysis gives the
result.

6.4.4 Proving the Existence Theorem for Z6(s1, s2, w)

At last, we have all the ingredients necessary to prove our theorem. We restate it in its
equivalent form here for clarity.

Theorem 6.7. There exist Dirichlet polynomials Tl(s2, w; p2k) satisfying the transformation
property Tl(s2, w; p2k) = Tl(s2+2w−1, 1−w; p2k)Npl−2lw such that the coefficient of Np−ks1
in Z6, Z6(s2, w; pk), takes form

Z6(s2, w; pk) =
k∑
l=0

Tl(s2, w; p2k)D6(s2, w; p2(k−l))

=
k∑
l=0
n,d

Sl(1− s2, w + s2 − 1/2; pk)G(pk−ln2, d)ψ̄1(pk−ln2)ψ2(d)
Nn1−s2Ndw+s2−1/2

Proof: From the previous analysis of both D6(s2, w; pr) and D4(1− s2, w+ s2− 1/2; pr) in
the preceding sections, we see that the two sides of this equation are identical up to a finite
number of terms corresponding to the distinguished prime p. Indeed, comparing the results
from Proposition 6.4 and Proposition 6.6, we find that the sums over cube-free integers
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d0 match. Further, comparing the contributions over primes q 6= p in Proposition 6.4 and
Proposition 6.6, they correspond to the correction terms D6(s2, w; 1) and D4(1 − s2, w +
s2 − 1/2; 1) respectively. But translating from Z1(s1, s2, w), we find that

D6(s2, w; 1) =
Pp(1− s1, 1− s2, d)
(Nd2d3

3)w+s1+s2−1
= D4(1− s2, w + s2 − 1/2).

These contributions are equal according to the Rankin-Selberg argument of Section 3.4
(remembering that the correction coefficients are symmetric in s1 and s2, so the argument
applies here as well). Moreover, note that the Euler factor for the zeta function ζ(6w+3s2−
3) in Proposition 6.6 can similarly be removed from D6 according to the cases listed in the
proposition. This Euler factor is fixed by the transformation (s2, w) 7→ (1−s2, w+s2−1/2)!
Now comparing the list of finite terms that remain, the number of independent variables
on the left-hand side corresponding to choices of coefficients of the Tl exactly match the
number of equations given by the right-hand side according to choices of Sl, and the range
of prime powers p−s2 and p−w are the same for D4 and D6, so a solution exists. We note
that it may not be unique according to degenerate conditions among the equations, but we
only need to guarantee its existence here.

Corollary 6.8. Let Z6(s2, w; pk), the coefficient of Np−ks1 in Z6(s1, s2, w), be defined ac-
cording to the previous theorem. Then

Z6(s1, s2, w) = Z4(1− s1, 1− s2, w + s1 + s2 − 1)

Proof. First note that we may write

Z6(s1, s2, w) =
∑

M≡1 (3)

Z6(s2, w;M)
NM s1

where

Z6(s2, w;M) =
k1∑
l1=0

· · ·
kr∑
lr=0

Tl1(s2, w; p2k1
1 ) · · ·Tlr(s2, w; p2kr

r )D6(s2, w; p2k1−2l1
1 · · · p2kr−2lr

r )

for any M = pk11 · · · pkr
r . We simply take all possible products of Dirichlet polynomi-

als Tl(s2, w; p2k) occurring in the coefficients of the primes p dividing N . This follows
by an identical argument to Proposition 6.2. Then decomposing the Gauss sum series
D6(s2, w; p2k1−2l1

1 · · · p2kr−2lr
r ), we have exactly the desired contribution for each prime divi-

sor p2k−2l. For those primes q not dividing M , then D6(s2, w; p2k1−2l1
1 · · · p2kr−2lr

r ) behaves
just like D6(s2, w; 1) and we see that our product terms associated to these primes q in
the above expression are identical to those from the method of taking variables to infinity.
We have a similar formulation for Z4(1 − s1, 1 − s2, w + s1 + s2 − 1) by combining terms
according to the case method of Proposition 6.6. Then decomposing according to primes
dividing d, it is clear that the result is a collection of factors which agree by comparing a
finite number of distinguished prime powers according to the previous theorem.
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6.4.5 The Additional Functional Equation for Z6(s1, s2, w)

In Section 6.2.1, we reformulated results of Patterson which led to an additional functional
equation for Z4(s1, s2, w) as a series built from Fourier coefficients of metaplectic Eisenstein
series. Here, we again have a series Z6(s1, s2, w) built out of such Fourier coefficients. This
Dirichlet series is built out of Fourier coefficients of metaplectic Eisenstein series now on
the six-fold cover of GL(2). For this, we can use the work of Kazhdan and Patterson in
[17], which generalizes the previously cited [23], to obtain a functional equation roughly of
the form

Z6(s1, s2, w;ψ1, ψ2) →
∑
ψ∈Ψ

Z6(s1 + 2w − 1, s2 + 2w − 1, 1− w;ψ1ψ, ψ̄2ψ).

Define
D6(w, νn) def= ζK(6w − 2)

∑
d≡1 (3)
(d,6)=1

G(νn, d)
Ndw

where ν = ν(ψ) as in our Definition 2.6. Further define

D∗
6(w, νn) = (2π)−5wΓ(w − 1/3)Γ(w − 1/6)Γ(w)Γ(w + 1/6)Γ(w + 1/3)D6(w, νm).

Then according to [17], Corollary II.2.4, translated into our notation by [11] in Section 2 of
their paper, we have a functional equation for D∗

6(w, νn
2) as w 7→ 1− w as follows.

D∗
6(w, νn) = (1− 33−6w)(1− 43−6w)(1− 36w−3)−1(1− 46w−3)−1(Nn)1−2w∑

ψ∈Ψ

φ(w,ψ, ν)ψ(m)D∗
6(1− w, ν(ψ)νm2)

for constants φ(w,ψ, ν) << 1 for w with <(w) bounded.
Then we may write our two-variable series D6(s2, w; p2r, ψ1, ψ2) in terms of these series

studied by Kazhdan and Patterson.

D∗
6(s2, w; p2r, ψ1, ψ2) = (2π)−2s2−2w+1Γ(s2)Γ(s2 + 2w − 1)∑

n≡1 (3)
(n,6)=1

D∗
6(w, ν(ψ2)n2p2r)ψ1(n2p2r)

Nns2

so that we may write

Z∗6 (s2, w; p2k, ψ1, ψ2) =
k∑
l=0

Tl(s2, w; p2kD∗
6(s2, w; p2(k−l))

Now applying the identical methods used in Section 6.2.2 and Section 6.2.3 to our series
Z6 composed of combinations of Dirichlet polynomials and Dirichlet series of the same
essential form as D6 above, we have the following result.

Proposition 6.9. Let

Z∗6 (s1, s2, w;ψ1, ψ2) = (2π)−2s1−2w+1Γ(s1)Γ(s1 + 2w − 1)
∑

n≡1 (3)

Z∗6 (s2, w;m2, ψ1, ψ2)
Nms1
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Then Z∗6 (s1, s2, w;ψ1, ψ2) satisfies the functional equation

Z∗6 (s1, s2, w;ψ1, ψ2) =
∑
ψ∈Ψ

φ(w,ψ, ν)Z∗6 (s1 + 2w − 1, s2 + 2w − 1, 1− w;ψ1ψ, ψ̄2ψ)

for constants φ(w,ψ, ν) << 1 for w with <(w) bounded.

6.5 Functional Equations Related to w 7→ 1− w

In the previous sections, we have been considering functional equations for Z1(s1, s2, w)
when expressed in the form

Z1(s1, s2, w) =
∑
d∈OK
d≡1 (3)

L(s1, χd0ψ1)L(s2, χd0ψ1)ψ2(d)P (s1, s2, d)
Ndw

,

We now consider the form of Z1(s1, s2, w) upon interchanging the order of summation:∑
m,n∈OK
m,n≡1 (3)

L(w,χmn0
ψ2)ψ1(mn)Q(w,m, n)
Nms1Nns2

Here, as noted previously, the natural functional equation comes from transforming w 7→
1 − w in the L-series in the numerator. Using the functional equation for the L-series, we
have

Z1(s1, s2, w) =
∑

m,n≡1 (3)

L(1− w,χmn0
ψ̄2)G(1,mn1)G(1,mn2)ψ̄2(mn2)ψ1(mn)Q(w,m, n)

Nms1Nns2Nmn1/2−w
1 Nmn1/2−w

2

(6.17)
so if we define Z3(s1, s2, w) according to the relation

Z3(s1, s2, w) = Z1(s1 + w − 1/2, s2 + w − 1/2, 1− w)

then from (6.17)

Z3(s1, s2, w) =
∑

m,n≡1 (3)

L(w,χmn0
ψ̄2)G(1,mn1)G(1,mn2)ψ̄2(mn2)ψ1(mn)Q(1− w;m,n)

Nms1Nns2(Nmn2Nmn3
3)w−1/2

where m,n range over all integers. If we instead use the square-free heuristic (where all
integers are both square-free and pairwise relatively prime, and we neglect the characters
ψi) in an attempt to detect additional functional equations, we may write

Z3(s1, s2, w) =
∑
m,n

L(w,χmn)G(1,mn)
Nms1Nns2

=
∑
m,n

χmn(d)G(1,mn)
NdwNms1Nns2

.

Writing M = mn and taking a sum over divisors of M , this becomes

∑
m,n

χM (d)G(1,M)
∑
n|M

Nns1−s2

NM s1Ndw
=
∑
m,n

χM (d)τ(M)σs1−s2(M)
NM s1Ndw
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where σs1−s2(M) is the usual divisor sum with indicated variable. In more symmetric form,
we may write this as

Z3(s1, s2, w) =
∑
m,n

χM (d)τ(M)σs1−s2(M)NM (s1−s2)/2

NM (s1+s2)/2Ndw
.

This shows that, for square-free integers, the numerator is realized as a Rankin-Selberg
convolution of a twisted cubic theta function and a (non-metaplectic) Eisenstein series.
This series has an additional functional equation into itself; it reads

Z3(s1, s2, w) = Z3(1− s1, 1− s2, w + 2s1 + 2s2 − 2).

We would like to show this functional equation for the full object Z3(s1, s2, w) summed over
all integers (rather than just the square-free integers). Unfortunately, an exact functional
equation would require significant additional information about the correction coefficients
of Q(w;m,n). We need to guarantee that such coefficients are compatible with a definition
of Z3 in terms of Dirichlet series similar to the square-free object above which possess
the desired functional equation. This can be done by methods similar to those used in
exhibiting a Z6 functional equation from the definition of Z4 done in the previous section.
To execute this, however, we would have to follow the definition of Z4 back to Z1, then
through the interchange of summation, and over to Z3 using the transformation w 7→ 1−w.
This is a difficult bit of combinatorics. Fortunately, we only need an (inexact) asymmetrical
functional equation for the purpose of analytic continuation (as we will make clear in the
next section).

6.5.1 An Asymmetric Functional Equation

Recall that in the previous section, our careful transformation of Z1(s1, s2, w) under

(s1, s2, w) 7→ (s1 + w − 1/2, s2 + w − 1/2, 1− w)

resulted in a series Z3 defined by

Z3(s1, s2, w) =
∑

m,n∈OK
m,n≡1 (3)

L(w,χmn0
ψ̄2)G(1,mn1)G(1,mn2)ψ̄2(mn2)ψ1(mn)Q(1− w;m,n)

Nms1Nns2(Nmn2Nmn3
3)w−1/2

where m,n range over all integers. Note further that the correction factor Q(w;m,n) took
form

Q(w;m,n) =
∏

pβ3 ||mn3

β3∑
l=0

b(pl,m, n)Np−lw.

Hence rewriting this as a sum over divisors R of mn3, we have

Q(1− w;m,n)
(Nmn2Nmn3

3)w−1/2
=

∑
R|mn3

3mn2

b(R,m, n)NR−1+w(Nmn2Nmn3
3)

1/2−w

=
∑

R|mn3
3mn2

b(R,m, n)NR−1/2

(Nmn2Nmn3
3/NR)w−1/2
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Reinserting this into the form of Z3(s1, s2, w), we now have

Z3(s1, s2, w) =
∑
m,n,R

R|mn3
3mn2

L(w,χmn0
ψ̄2)G(1,mn1)G(1,mn2)ψ̄2(mn2)ψ1(mn)b(R;m,n)NR−1/2

Nms1Nns2(Nmn2Nmn3
3/NR)w−1/2

If we further simplify with an eye toward the square-free heuristic, we can write mn = M
so that mn1mn

2
2mn

3
3 = M1M

2
2M

3
3 . Z3 can now be written

Z3(s1, s2, w) =
∑
M,R,d
R|M3

3M2

mn=M

χ̄M0(d)ψ̄2(d)G(1,M1)G(1,M2)ψ̄2(mn2)ψ1(mn)
NdwNM s1(NM2NM3

3 /NR)w−1/2

∑
n|M

b(R;M/n, n)NR−1/2Nns1−s2

Anticipating a functional equation in s1 and s2, we want to reorder this series as an outer
Dirichlet series in w and an inner series in s1 and s2 with the desired form. Then set
D = dM2M

3
3 /R and sum over all integers D and all M1 from M = M1M

2
2M

3
3 . Separate

the inner sum into a sum over (M,D) = 1 and a sum over M |D∞. If (M2M3, D) = 1, then
R = M2M

3
3 . But we know from previous investigation that b(M2M

3
3 ,m, n) = 0 if M2 is non-

trivial (cf. Chapter 1). So M2 = 1 in this case and R = M3
3 . Moreover, b(M3

3 ,m, n) = NM2
3

for any choice of m and n, so that b(M3
3 ,m, n)NR−1/2 = NM1/2

3 . This leaves Z3(s1, s2, w) =

∑
D

D=dM2M3
3 /R

ψ̄2(d)
NDw

∑
M |D∞
R|M3

3M2

mn=M

[
χ̄M1(d)G(1,M1)χM2(d)G(1,M2)ψ̄2(M2)ψ1(M)

NM s1

∑
n|M

b(R;M/n, n)NR−1/2Nns1−s2

 ∑
(M,D)=1
mn=M

χ̄D0(M1)ψ1(M)G(1,M1)M
1/2
3

∑
n|M=M1M3

3

ns1−s2

(M1M3
3 )s1

(6.18)
since (d,M1) = 1 so that χ̄M1(d) = χ̄d(M1) = χ̄D(M1) = χ̄D0(M1). For the inner sum, using
the notation σi(M) =

∑
n|m Nni, noting that G(1,M1)NM

1/2
3 is precisely the M th Fourier

coefficient τ3(M) of the cubic theta function, and also symmetrizing the denominator with
respect to s1 and s2, we have

∑
D

D=dM2M3
3 /R

ψ̄2(d)
NDw

∑
M |D∞
R|M3

3M2

mn=M

[
χ̄M1(d)G(1,M1)χM2(d)G(1,M2)ψ̄2(M2)ψ1(M)

NM s1

∑
n|M

b(R;M/n, n)NR−1/2Nns1−s2

 ∑
(M,D)=1
mn=M

χD0
(M)ψ1(M)τ3(M)σs1−s2(M)NM

s2−s1
2

NM
s1+s2

2

(6.19)



93

The inner sum can now be viewed as an (imprimitive) Rankin-Selberg convolution of a
twisted cubic theta function and an ordinary (non-metaplectic) Eisenstein series. (Recall
that the ordinary Eisenstein series defined on a congruence subgroup of GL(2) has divisor
sums as Fourier coefficients.) Precisely stated, the Eisenstein series is E(z, (s1− s2 + 1)/2).
The primitive convolution of this form has functional equation

L(
s1 + s2

2
, E ×Θ3 ⊗ χ̄D0ψ1) → L(1− s1 + s2

2
, E ×Θ3 ⊗ χ̄D0ψ1)ND2−2s1−2s2

0

It is now more evident that, in order to achieve a perfect functional equation, we would
ultimately need to realize the entire Dirichlet series above in terms of the Rankin-Selberg
convolution. As mentioned in the previous section, this requires a more detailed knowledge
of the correction coefficients b(R;M/n, n) coming from the polynomial Q(w;m,n), which
can be obtained with significant effort using an existence argument. Instead, we perform the
functional equation on the inner sum (after adding in missing Euler factors) and estimate
the size of the rest of the series to obtain convergence estimates. These will be sufficient for
our applications.

Adding in the missing Euler factors in the convolution to the inner sum of (6.19), we
obtain

∑
D

D=dM2M3
3 /R

ψ̄2(d)
NDw

∑
M |D∞
R|M3

3M2

mn=M

[
χ̄M1(d)G(1,M1)χM2(d)G(1,M2)ψ̄2(M2)ψ1(M)

NM s1

∑
n|M

b(R;M/n, n)NR−1/2Nns1−s2

 ∑
M

mn=M

χ̄D0(M)ψ1(M)τ3(M)σs1−s2(M)NM
s2−s1

2

NM
s1+s2

2

·
∏
p|D3

∑
β≥0

χ̄D0(p)ψ̄1(p)Npβ/2σs1−s2(p3β)Np3β
s2−s1

2

Np3β
s1+s2

2

−1

(6.20)

where the inner sum is now over all integers M , indicating that the convolution is indeed
primitive. We leave the series in this form here and note its convergence properties in
section 9, where we complete the final step of the continuation.

6.6 Domains of Convergence

In this section, we prepare for the analytic continuation via functional equations by deter-
mining domains of convergence for the Dirichlet series discussed previously, but now cleared
of all poles. Then we can apply convexity results to appropriately holomorphic functions.

Anticipating the collection of functional equations we will employ to obtain the contin-
uation, we set

Γ1(s1, s2, w) def= (2π)−8s1−8s2−8w+6Γ(s1)Γ(s2)Γ(w + s1 + s2 − 4/3)Γ(w + s1 + s2 − 7/6)
Γ(w + s1 + s2 − 1)Γ(w + s1 + s2 − 5/6)Γ(w + s1 + s2 − 2/3)

Γ(s1 + w − 1/2)Γ(s2 + w − 1/2)Γ(w)
Λ(3w + 3s1 − 2)Λ(3w + 3s2 − 2)Λ(3s1 + 3s2 + 6w − 5)Λ(6w + 6s1 + 6s2 − 8)
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where
Λ(s) = (2π)−sΓ(s)ζK(s)

and further define
Z∗1 (s1, s2, w) def= Γ1(s1, s2, w)Z1(s1, s2, w)

This accounts for all of the normalizing zeta factors used to cancel natural poles in defining
our Dirichlet series Z3, Z4, Z5 and Z6 and the image of their arguments under the involutions
we plan to use. We are now ready to proceed with the continuation.

First, our bounds on the size of the correction coefficients of P (s1, s2, d) show that the
series

∑
d3

P (s1,s2,d)
Nd3w

3
converges for <(w) > 2/3 so the convergence of Z1(s1, s2, w) is limited

by bounds on the L-series rather than the correction factor. Using the usual upper bounds
for L(s, χd0ψ1) obtained by the functional equation s 7→ 1 − s and Phragmen-Lindelöf
convexity in twisted aspect, we have that the function

s1(1− s1)s2(1− s2)Z1 ∗ (s1, s2, w)

converges absolutely (and uniformly on compact subsets) in the region given by

<(s1) ≥ 1, <(s2) ≥ 1, <(w) > 1;
0 ≤ <(s1) < 1, 0 ≤ <(s2) < 1, <(w) > 2−<(s1)/2−<(s2)/2;

<(s1) < 0, <(s2) < 0, <(w) > 2−<(s1)−<(s2);

This we obtain by applying both functional equations for the L-series in s1 and s2. Ad-
ditional regions of convergence can be obtained by taking the union of the above domain
with that obtained from convexity and functional equations in one variable, but this is not
the most expeditious path to a complete continuation, so we omit them here.

Interchanging the order of summation for Z1(s1, s2, w), the analogous estimates on the
size of the correction coefficients of Q(w;m,n) show that the series

∑
mn3

Q(w;m,n)

Nm3s1
3 Nn3s2

3

con-

verges for <(s1) > 2/3 and <(s2) > 2/3. Hence the convergence of Z1(s1, s2, w) is limited
by bounds on the L-series in w. Repeating the method above, we find that

w(1− w)Z1 ∗ (s1, s2, w)

converges absolutely (and uniformly on compact subsets) in the region given by

<(s1) > 1, <(s2) > 1, <(w) ≥ 1;
<(s1) + <(w)/2 > 3/2, <(s2) + <(w)/2 > 3/2, 0 ≤ <(w) < 1;
<(s1) + <(w) > 3/2, <(s2) + <(w) > 3/2, <(w) < 0;

Combining this information, we have that

s1(1− s1)s2(1− s2)w(1− w)Γ1(s1, s2, w)Z1(s1, s2, w)

is a holomorphic function absolutely convergent on the union of these two domains. (We
obtain the analytic continuation to the union since these regions intersect in the domain
given by <(s1),<(s2),<(w) > 1.)

Similarly, the Dirichlet series Z6(s1, s2, w) contains a 6th order Gauss sum which appears
as a Fourier coefficient of an Eisenstein series on the six-fold cover of GL(2). This series
was investigated by Patterson [23] and subsequently by Kazhdan-Patterson [17]. Again, by
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estimates on the size of the correction coefficients, the domain of convergence is restricted
by the bound on the series involving Gauss sums. According to Kazhdan-Patterson, these
bounds imply that the series (w − 2/3)(w − 4/3)Z6(s1, s2, w) converges absolutely (and
uniformly on compact subsets) in the region given by

<(s1) > 1, <(s2) > 1, <(w) ≥ 1;
<(s1) + <(w) > 2, <(s2) + <(w) > 2, 0 ≤ <(w) < 1;
<(s1) + 2<(w) > 2, <(s2) + 2<(w) > 2, <(w) < 0;

Before interchanging the order of summation to obtain Gauss sums, we had a realization of
Z6(s1, s2, w) as a Dirichlet series containing products of L-series. Then using the functional
equation of these L-series again, together with Phragmen-Lindelöf convexity, shows that the
function s1(s1 − 1)s2(s2 − 1)Z6(s1, s2, w) converges absolutely (and uniformly on compact
subsets) in the region given by

<(s1) ≥ 1, <(s2) ≥ 1, <(w) > 1;
0 ≤ <(s1) < 1, 0 ≤ <(s2) < 1, <(w) > 2−<(s1)/2−<(s2)/2;

<(s1) < 0, <(s2) < 0, <(w) > 2−<(s1)−<(s2);

Again, we can continue the holomorphic function

s1(s1 − 1)s2(s2 − 1)(w − 2/3)(w − 4/3)Z6(s1, s2, w)

to the union of these two domains.

6.7 Analytic Continuation to a Half-Plane

Our ultimate goal is a continuation of the function to all of complex three-space. Because of
the difficulty of visualizing these domains in three-space (and even as tube domains drawn
in terms of their real parts in real three-space), we will perform our arguments in the plane
spanned by the lines s1 − s2 = 0, w = 0 and s1 = s2 = 0. In this section, we show that
the convexity estimates of the previous section, upon mapping them between Z1 and Z6

via functional equation, yield a half-plane contained in this plane. Because the functional
equations and domains of convergence are symmetric in s1 and s2 for Z1 and Z6, this poses
no real difficulty. Now thinking of the analytic function on the half-plane as a function of
two variables, s1 = s2 = s and w, any extension of this region has a convex hull equal to
the entire space. By a convexity theorem of several complex variables (see Hormander),
this guarantees an analytic continuation of our function to the whole plane. Once this is
achieved, any additional region of continuation into either half-space cut by the plane will
similarly give a convex hull in three-space which is the entire half-space. Showing this for
each half-space gives a continuation to the entire plane.

Here we take a first step toward this by continuing the function Z1(s, w), defined by
Z1(s1, s2, w) setting s1 = s2, to a half plane. Then by the convexity estimates in the
previous section, we have that

s2(1− s)2w(1− w)Z1(s, w)
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converges absolutely in the region given by

<(s) + <(w) > 3/2, <(w) < 0;
<(s) + <(w)/2 > 3/2, 0 ≤ <(w) < 1;

<(s) ≥ 1, <(w) > 1;
0 ≤ <(s) < 1, <(w) > 2−<(s);

<(s1) < 0, <(w) > 2− 2<(s);

As indicated in the figure below, the convex hull of this region is given according to the
following boundary lines:

{(s, w) | <(w) > max(2− 2<(s), 2− 4/3<(s), 3/2−<(s))}

Similarly define Z6(s, w) by setting s1 = s2 in Z6(s1, s2, w). From our earlier convexity
estimates on Z6(s1, s2, w), we have that

s2(s− 1)2(w − 2/3)(w − 4/3)Z6(s, w)

converges absolutely in the region given by

<(s) + 2<(w) > 2, <(w) < 0;
<(s) + <(w) > 2, 0 ≤ <(w) < 1;

<(s) ≥ 1, <(w) > 1;
0 ≤ <(s) < 1, <(w) > 2−<(s);

<(s) < 0, <(w) > 2− 2<(s);

Since all of our functional equations are linear combinations, we can determine the result
of applying A : Z1 → Z6 by determining the image under A of any two collinear points on
the piece-wise linear boundary. Here A : (s, w) 7→ (1− s, w + 2s− 1). Then

(−1, 4) → (2, 1), (0, 2) → (1, 1),
(3/2, 0) → (−1/2, 2), (5/2,−1) → (−3/2, 3)

Now we take the resulting points and the boundary defined by the lines between them and
map them under B : Z6 → Z6 where B is given by B : (s, w) 7→ (s + 2w − 1, 1 − w). This
gives

(2, 1) → (3, 0), (1, 1) → (2, 0),
(−1/2, 2) → (5/2,−1), (−3/2, 3) → (7/2,−2)

Because the function Z1 converges on the above region, the function Z6(s, w) converges
on the union of the original region from convexity and the two transformed regions under
the functional equation. The convex hull of this region is the set of points describing a
half-plane:

{(s, w) | <(w) > 3/2−<(s)}

Because this line is fixed by the transformation A, we have the identical half-plane of
absolute convergence for the function Z(s, w).
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6.8 Completing the Continuation

Recall that after manipulating Z1(s1 + w − 1/2, s2 + w − 1/2, 1 − w) def= Z3(s1, s2, w) we
ended up with the equation (6.19). We recopy this below but now under the assumption
that s1 = s2 = s (that is, we restrict to the plane s1 = s2 according to our strategy for
continuing Z1).

∑
D

D=dM2M3
3 /R

ψ̄2(d)
NDw

∑
M |D∞
R|M3

3M2

mn=M

[
χ̄M1(d)G(1,M1)χM2(d)G(1,M2)ψ̄2(M2)ψ1(M)

NM s1

∑
n|M

b(R;M/n, n)NR−1/2Nns1−s2

L(s,E ×Θ3 ⊗ χ̄D0ψ1)

·
∏
p|D3

∑
β≥0

χ̄D0(p)ψ̄1(p)Npβ/2σs1−s2(p3β)Np3β
s2−s1

2

Np3β
s1+s2

2

−1

(6.21)

We want to find the domain of convergence for this series upon taking absolute values.
Since the divisor function σ0(N) has growth bounded by NN ε for any ε > 0, then the
geometric sums in the product converge for <(s) > 1/3. Taking absolute values on the
middle sum reduces this to ∑

M |D∞
R|M3

3M2

mn=M

∑
n|M

b(R;M/n, n)NR−1/2

NM s

Using our convergence assumption on the coefficients b(R;M/n, n) first stated at the end of
Chapter 4 and proven via the existence argument in Chapter 5, we have that the coefficients
b(R;M/n, n)NR−1/2 << NM2(NM3)−1/2 = NM1/2, so this sum will converge for values of
s such that <(s) > 1/2.

Finally, the L-series L(s,E×Θ3⊗ χ̄D0ψ1) converges absolutely for <(s) > 7/6 according
to a trivial estimate on the size of the Fourier coefficient of the cubic theta function. Recall
this L-series satisfied the functional equation

L(s,E ×Θ3 ⊗ χ̄D0ψ1) → L(1− s,E ×Θ3 ⊗ χ̄D0ψ1)ND2−4s
0

Then according to the Phragmen-Lindelöf convexity bound, we have a continuation in s such
that the growth in ND0 in the vertical strip −1/6 < <(s) < 7/6 is bounded by ND7/3−2s

0 .
This implies that the entire multiple Dirichlet series Z3(s1, s2, w) converges absolutely in
the region given by

<(s) > 7/6,<(w) > 1; 1/2 < <(s) ≤ 7/6,<(w) + 2<(s) > 10/3.

From the functional equations between Z1 and Z6, we were able to obtain a region of
convergence in the plane s1 = s2 = s which extended to the half-plane <(w) + <(s) > 3/2.
Now using the functional equation Z1(s + w − 1/2, 1 − w) = Z3(s, w) according to the
definition of Z3, convergence for Z1 in the half-plane <(w)+<(s) > 3/2 implies convergence
for Z3 in the half-plane <(s) > 1. This overlaps the region given above, so now taking the
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convex hull of their union, we have an analytic continuation for Z3(s1, s2, w) up to the
half-plane <(s) > 1/2. Applying the functional equation one more time from Z3(s, w) to
Z1(s, w) gives a continuation of Z1(s, w) up to the half-plane <(w) + <(s) > 1.

Now using the fact that Z1(s1, s2, w), as a function of three-variables, converges abso-
lutely for <(s1) ≥ 1,<(s2) ≥ 1,<(w) > 1, the two-variable estimates immediately give a
continuation to the convex hull of the region bounded by the half-spaces <(w) + <(s1) >
1,<(s2) > 1 and <(w) + <(s2) > 1,<(s1) > 1.

6.9 The Determination of Polar Planes

Because Z1, using either order of summation, contains L-series in the numerator with
arguments s1 and s2 or w, then it has poles whenever any of these arguments take the
value 0 or 1. Now we need to apply all of the functional equations of Z1 into itself used to
obtain the continuation. If we reflect these polar planes at si = 0, si = 1, w = 0 and w = 1
according to these transformations, then we will determine all the poles associated to the
poles coming from L-series in the numerator of Z1(s1, s2, w). Recall that we presented the
diagram earlier:

Z1(s1, s2, w)

interchange

oo (1−s1,1−s2,w+s1+s2−1) // Z6(s1, s2, w) (s1+2w−1,s2+2w−1,1−w)
xx

Z1(s1, s2, w) oo (s1+w−1/2,s2+w−1/2,1−w) // Z3(s1, s2, w) (1−s1,1−s2,w+2s1+2s2−2)ff

But Z6 contains a sixth order Gauss sum in the numerator, so its cube-free part is
essentially the Dirichlet series associated to an Eisenstein series on the 6-fold cover of GL(2).
That is, the numerator roughly took the form G(m2n2, d). Thus according to the Selberg
theory, as a sum over integers d, it has a functional equation as w → 1 − w and poles at
w = 1/2 + 1/6 (cf. [13]). Similarly, Z3 contains a cubic Gauss sum in the numerator and
its cube-free part is essentially the Mellin transform of a Rankin-Selberg convolution of a
twisted cubic theta function and a non-metaplectic Eisenstein series E(z, (s1 − s2 + 1)/2).
As mentioned previously, this object has a GL(4) functional equation as si → 1− si so that
w → w + 2s1 + 2s2 − 2 and poles at 2si − 1/2 = 1/2 + 1/3 according to the usual Fourier
analysis which transforms the argument of the Eisenstein series. In total, our functional
equations used to obtain the continuation are given by the transformations:

A : Z1(s1, s2, w) → Z6(1− s1, 1− s2, w + s1 + s2 − 1),
B : Z6(s1, s2, w) → Z6(s1 + 2w − 1, s2 + 2w − 1, 1− w),

C : Z1(s1, s2, w) → Z3(s1 + w − 1/2, s2 + w − 1/2, 1− w),
D : Z3(s1, s2, w) → Z3(1− s1, 1− s2, w + 2s1 + 2s2 − 2).

Each of these transformations is an involution. This implies that the total collection of func-
tional equations of Z1 into itself is described by the set of transformations {ABA,ABACDC,
ABACDCABA, . . .} and {CDC,CDCABA,CDCABACDC, . . .}. This produces the fol-
lowing list of functional equations from Z1 into Z1.

(s1, s2, w) −→ (s1 + 2s2 + 2w − 2, 2s1 + s2 + 2w − 2,−2s1 − 2s2 − 3w + 4)
(s1, s2, w) −→ (1− s1, 1− s2, 1− w)
(s1, s2, w) −→ (3− s1 − 2s2 − 2w, 3− 2s1 − s2 − 2w,−3 + 2s1 + 2s2 + 3w)
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Applying this set of functional equations to the polar planes si = 0, 1 and w = 0, 1 (the
poles associated to Z1 in its original form with L-series in the numerator) produces the first
twelve poles in our list in theorem 1. That is, we obtain the polar planes

s1 = 1, s1 = 0, s1 + 2s2 + 2w − 3 = 0, s1 + 2s2 + 2w − 2 = 0,
s2 = 1, s2 = 0, 2s1 + s2 + 2w − 3 = 0, 2s1 + s2 + 2w − 2 = 0,
w = 1, w = 0, 2s1 + 2s2 + 3w − 3 = 0, 2s1 + 2s2 + 3w − 4 = 0,

We can similarly generate all of the functional equations of Z6. They are given by the
sets of transformations {B,BACDCA, . . .} and {ACDCA,ACDCAB, . . .}. This yields
transformations which all take w → 1 − w. Z6 now has both the original polar plane
w = 2/3 and 1 − w = 2/3. These polar planes translate to polar planes of Z1 via the
involution A taking w → w + s1 + s2 − 1, producing the pair of planes:

w + s1 + s2 − 5/3 = 0, w + s1 + s2 − 4/3 = 0.

Lastly, Z3 functional equations into itself are given by the sets {C,CDABAD, . . .} and
{DABAD,DABADC, . . .} and all take si → 1 − si. Then the polar planes are given by
si = 2/3 and 1 − si = 2/3 and translated to Z1 by the involution C taking si → 1 − si.
This produces the final four planes in our original list in Theorem 1. That is, we obtain the
polar planes:

w + s1 − 7/6 = 0, w + s1 − 5/6 = 0,
w + s2 − 7/6 = 0, w + s2 − 5/6 = 0.

Because we did not explicitly require the use of the functional equations involving Z4

and Z5, the natural polar planes coming from these objects must, in fact, not appear as
poles of the object Z1(s1, s2, w). Letting Λ(s) = (2π)−sΓ(s)ζK(s), we obtain the following
theorem:

Theorem 6.10. Let K = Q(
√
−3) with ring of integers OK . Given an integer d ∈ OK ,

write d = d1d
2
2d

3
3 with d1 and d2 cube-free. Let χd0 = χd1χ̄d2 denote the product of cubic

residue characters with conductor d1d2. Let ψ1 and ψ2 be primitive cubic characters of a
fixed conductor N |9. Define the function

Z1(s1, s2, w;ψ1, ψ2) =
∑
d∈OK
d≡1 (3)

L(s1, χd0ψ1)L(s2, χd0ψ1)ψ2(d)P (s1, s2; d, ψ1)
Ndw

where P (s1, s2; d, ψ1) is a certain finite, Eulerian Dirichlet polynomial in two variables s1
and s2 depending only on the indicated quantities. Then defining

Z∗1 (s1, s2, w;ψ1, ψ2)
def
= Γ1(s1, s2, w)Z1(s1, s2, w;ψ1, ψ2)

where

Γ1(s1, s2, w)
def
= (2π)−8s1−8s2−8w+6Γ(s1)Γ(s2)Γ(w + s1 + s2 − 4/3)Γ(w + s1 + s2 − 7/6)
Γ(w + s1 + s2 − 1)Γ(w + s1 + s2 − 5/6)Γ(w + s1 + s2 − 2/3)

Γ(s1 + w − 1/2)Γ(s2 + w − 1/2)Γ(w)
Λ(3w + 3s1 − 2)Λ(3w + 3s2 − 2)Λ(3s1 + 3s2 + 6w − 5)Λ(6w + 6s1 + 6s2 − 8),
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Z∗1 (s1, s2, w;ψ1, ψ2) has a meromorphic continuation to a region of C3 containing the point
(1/2, 1/2, 1/2).

Moreover, the function Z1(s1, s2, w; 1, 1) is analytic in this region except for the following
18 polar planes:

s1 = 1, s1 = 0, s1 + 2s2 + 2w − 3 = 0, s1 + 2s2 + 2w − 2 = 0,
s2 = 1, s2 = 0, 2s1 + s2 + 2w − 3 = 0, 2s1 + s2 + 2w − 2 = 0,
w = 1, w = 0, 2s1 + 2s2 + 3w − 3 = 0, 2s1 + 2s2 + 3w − 4 = 0,

w + s1 + s2 − 5/3 = 0, w + s1 + s2 − 4/3 = 0,
w + s1 − 7/6 = 0, w + s1 − 5/6 = 0,
w + s2 − 7/6 = 0, w + s2 − 5/6 = 0.



Chapter 7

Mean-Value Estimates for L-series

To finish, we offer one application of the resulting continuation. By specializing to the line
(1/2, 1/2, w), we can count poles of Z(1/2, 1/2, w) according to values of w. Then inserting
this function of one variable into an integral transform, we get mean-value estimates using
contour integration.

Proposition 7.1. Let σ > 0 be a positive real number. Then

F (x) =
1

2πi

∫ σ+i∞

σ−i∞
Γ(w)xwdw = e−1/x

where Γ(w) denotes the usual Gamma function.

Proof: The result follows from a simple exercise in contour integration, showing that
the Gamma function and e−1/x are inverse Mellin transforms of each other. Given any value
for x, then moving the line of integration to the left to the line <(w) = −R and taking the
limit, the integral along the line <(w) = −R goes to 0 according to the damping of the
Gamma function and we pick up poles at each of the negative integers from the Gamma
function and the residue there is given by

x−kResz=−kΓ(z) =
(−1)kx−k

k!
.

Then summing over all such negative integers k, we obtain e−1/x and the result follows.

It follows that

1
2πi

∫ 2+i∞

2−i∞
Z1(1/2, 1/2, w)Γ(w)xwdw =

∑
d≡1 (3)

L(1/2, χd0)
2P (1/2, 1/2, d) e−Nd/x

since

1
2πi

∫ 2+i∞

2−i∞
Z1(1/2, 1/2, w)Γ(w)xwdw =

1
2πi

∫ 2+i∞

2−i∞

∑
d≡1 (3)

L(1/2, χd0)
2P (1/2, 1/2, d)Γ(w)

( x

Nd

)w
dw

and |Z1(1/2, 1/2, w)| << |t|k for some k. (The latter assertion can be seen by a Phragmen-
Lindelöf convexity argument similar to the one used in the previous chapter together with
arguments given in Proposition 4.11 of [7].)
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Now moving the line of integration to <(w) = 1/2 + ε, we need to account for any
poles with 1/2 < <(w) < 2. Recall that we determined that Z1(s1, s2, w) is analytic for
these points (1/2, 1/2, w) except for points occurring on the polar planes. They satisfied
the equations:

s1 = 1, s1 = 0, s1 + 2s2 + 2w − 3 = 0, s1 + 2s2 + 2w − 2 = 0,
s2 = 1, s2 = 0, 2s1 + s2 + 2w − 3 = 0, 2s1 + s2 + 2w − 2 = 0,
w = 1, w = 0, 2s1 + 2s2 + 3w − 3 = 0, 2s1 + 2s2 + 3w − 4 = 0,

w + s1 + s2 − 5/3 = 0, w + s1 + s2 − 4/3 = 0,
w + s1 − 7/6 = 0, w + s1 − 5/6 = 0,
w + s2 − 7/6 = 0, w + s2 − 5/6 = 0.

We now want to find the planes containing points with s1 = s2 = 1/2. The planes s1 =
0, s1 = 1, s2 = 0, and s2 = 1 are the only planes which do not include such a point
(1/2, 1/2, w). This leaves 14 remaining planes and one can check that they have w values

{1, 3/4 (2 times), 2/3 (4 times), 1/3 (4 times), 1/4 (2 times), 0}

Values of w which occur more than once indicate the pole may be non-simple at (1/2, 1/2, w).
Estimating the integral on the line <(w) = 1/2 + ε, we find that

1
2πi

∫ 1/2+ε+i∞

1/2+ε−i∞
Z1(1/2, 1/2, w)Γ(w)xwdw << x1/2+ε,

since Z1(1/2, 1/2, w) has polynomial growth in t along this line which is damped by the
Gamma function so that our growth estimates depend solely on the size of x.

The poles contribute c1x+ c2x
3/4 log x+ c3x

3/4 + c4x
2/3F (log x) where c1, c2, c3, and c4

are explicitly computable constants according to the residue of the associated poles and F
is an explicit monic polynomial of degree 3 with real coefficients depending on the precise
form of the correction factor. Hence we have shown the following:

Theorem 7.2. According to the contour integration methods above,∑
d≡1 (3)

L(1/2, χd0)
2P (1/2, 1/2, d)e−Nd/X = c1X + c2X

3/4 + c3X
2/3F (logX) +O(X1/2+ε)

where c1, c2, and c3 are explicit constants with c1, c2 non-zero and F (X) is a polynomial
with deg(F ) ≤ 3.
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[8] W. Duke, On Multiple Saliè Sums, Proc. AMS 114, Number 3 (1992), 623–625.

[9] B. Fisher and S. Friedberg, Double Dirichlet series over function fields, Compositio
Math., To appear.

[10] —————, Sums of twisted GL(2) L-functions over function fields, Duke Math J., To
appear.

[11] S. Friedberg, J. Hoffstein, and D. Lieman, Double Dirichlet series and the n-th order
twists of Hecke L-series, To appear.

[12] D. Goldfeld and J. Hoffstein, Eisenstein series of 1/2-integral weight and the mean
value of real Dirichlet L-series, Inventiones Math. 80 (1985), 185–208.

[13] J. Hoffstein, Eisenstein series and theta functions on the metaplectic group, Theta
functions: from the classical to the modern, CRM Proc. Lect. Notes 1 (M. Ram Murty,
ed.), American Mathematical Society, Providence, RI, (1993), pp. 65–104.
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