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Abstract

We extend the theory of “Weyl group multiple Dirichlet series” to root
systems of type C. These are Dirichlet series in several complex variables with
analytic continuation and functional equations isomorphic to the associated
Weyl group. They conjecturally come from the Fourier-Whittaker coefficients
of minimal parabolic Eisenstein series on a metaplectic cover of SO(2r+1). We
give a construction for an infinite family of Dirichlet series in several variables
with the above conjectured analytic properties, using bases for certain highest
weight representations of Sp(2r) parametrized by Gelfand-Tsetlin patterns.
We then prove portions of this conjecture in two important special cases. One
case uses the Casselman-Shalika formula for unramified principal series and
a deformation of the Weyl character formula of Hamel and King. The other
relates our definition to an alternate description of multiple Dirichlet series
proposed by Brubaker, Bump, and Friedberg.

1 Introduction

Let Φ be a reduced root system of rank r. “Weyl group multiple Dirichlet series”
(associated to Φ) are Dirichlet series in r complex variables which initially converge
on a cone in Cr, possess analytic continuation to a meromorphic function on the whole
complex space, and satisfy functional equations whose action on Cr is isomorphic to
the Weyl group of Φ.

For various choices of Φ and a positive integer n, infinite families of Weyl group
multiple Dirichlet series defined over any number field F containing the 2nth roots
of unity were introduced in [7], [11], [15], and [16]. The coefficients of these Dirich-
let series are intimately related to the nth power reciprocity law in F . It is further
expected that these families are related to metaplectic Eisenstein series as follows.
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If one considers the split, semisimple, simply connected algebraic group G over F
whose Langlands L-group has root system Φ, then it is conjectured that the fami-
lies of multiple Dirichlet series associated to Φ are precisely the Fourier-Whittaker
coefficients of minimal parabolic Eisenstein series on the n-fold metaplectic cover
of G.

In light of this suggested relationship with Eisenstein series, one should be able to
provide definitions of multiple Dirichlet series for any reduced root system Φ and any
positive integer n having the desired analytic properties. However a satisfactory the-
ory of such Dirichlet series, linked to metaplectic Eisenstein series, has only recently
emerged for type A. This paper improves the current theory by extending some
of the corresponding results to non-simply laced root systems, particularly those of
type C. After reviewing several definitions below, the remainder of this introduction
will be devoted to a brief account of the previously known results about Weyl group
multiple Dirichlet series cited above, followed by a discussion of the main results of
this paper.

For any reduced root system Φ of rank r, the basic shape of the Weyl group
multiple Dirichlet series can be described uniformly in terms of quantities attached
to the root system. Given a number field F containing the 2nth roots of unity and a
finite set of places S of F (chosen with certain restrictions described in Section 2.2),
let OS denote the ring of S-integers in F and O×S the units in this ring. Then to
any r-tuple of non-zero OS integers m = (m1, . . . ,mr), we associate a “Weyl group
multiple Dirichlet series” in r complex variables of the form

ZΨ(s1, . . . , sr;m1, . . . ,mr) = ZΨ(s; m) =
∑

c=(c1,...,cr)∈(OS/O×S )r

H(n)(c; m)Ψ(c)

|c1|2s1 · · · |cr|2sr
(1)

where H(n)(c; m) is an arithmetically interesting function to be defined, Ψ(c) is taken
from a finite-dimensional complex vector space defined precisely in Section 2.3 and
guarantees the numerator of our series is well-defined up to O×S units, and |ci| = |ci|S
denotes the norm of the integer ci as a product of local norms in FS =

∏
v∈S Fv.

The coefficients H(n)(c; m) are not multiplicative, but nearly so and (as we will
demonstrate in (17) and (19) of Section 2.4) can nevertheless be reconstructed from
coefficients of the form

H(n)(pk; pl) := H(n)(pk1 , . . . , pkr ; pl1 , . . . , plr) (2)

where p is a fixed prime in OS and ki = ordp(ci), li = ordp(mi).
There are two approaches to defining these prime-power contributions. In [15]

and [16], Chinta and Gunnells use a remarkable action of the Weyl group to define
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the coefficients in (2) as an average over elements of the Weyl group for any root
system Φ and any integer n ≥ 1, from which functional equations and analytic
continuation of the series Z follow. By contrast, in [11], for Φ of type A and any
n ≥ 1, Brubaker, Bump, and Friedberg define the prime-power coefficients as a sum
over basis vectors in a highest weight representation associated to the fixed r-tuple l
in (2). They subsequently prove functional equations and analytic continuation for
the multiple Dirichlet series via intricate combinatorial arguments in [8] and [9].
More recently, the definition in [11] has been shown to match a simpler definition
for the prime power coefficients offered in [7] that applies for any root system Φ,
but only for n sufficiently large depending on Φ and l (see (41) for the precise
inequality). It is therefore natural to ask whether a definition for the prime power
coefficients (2) in the mold of [11] (i.e. expressible as a sum over basis vectors of
highest weight representations) exists for every root system Φ, so that the resulting
multiple Dirichlet series possesses good analytic properties (continuation, functional
equations) for any n ≥ 1, and which matches the definition in [7] for n sufficiently
large.

In the case of Φ of type C, the above discussion leads to the following conjecture:

Conjecture 1. For Φ = Cr for any r and for n odd, the Dirichlet series ZΨ(s; m) de-
scribed in (1) above, with coefficients of the form H(n)(pk; pl) as defined in Section 3,
has the following properties:

I. ZΨ(s; m) possesses analytic continuation to a meromorphic function on Cr

and satisfies a group of functional equations isomorphic to W (Sp(2r)), the
Weyl group of Sp(2r), of the form (24) where the W action on Cr is as given
in (21).

II. ZΨ(s; m) is the Whittaker coefficient of a minimal parabolic Eisenstein series
on an n-fold metaplectic cover of SO2r+1(FS).

Note that part II of the conjecture would imply part I according to the gen-
eral Langlands-Selberg theory of Eisenstein series extended to metaplectic covers as
in [23]. In practice, other methods to prove part I have resulted in sharp estimates
for the scattering matrix involved in the functional equations that would be difficult
to obtain from the general theory (see, for example, [6]).

In this paper, we make progress toward this general conjecture in certain special
cases. In particular, we prove the following two results (which we restate more
precisely in the later sections once careful definitions have been given).

Theorem 1. For n sufficiently large (as given in (41)), ZΨ(s; m) matches the mul-
tiple Dirichlet series defined in [7] for the root system Φ = Cr. Therefore, for such
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odd n, the multiple Dirichlet series possess the analytic properties cited in part I of
Conjecture 1.

Theorem 2. For n = 1, ZΨ(s; m) is a multiplicative function whose prime power
coefficients match those of the Casselman-Shalika formula for Sp(2r), hence agreeing
with the minimal parabolic (non-metaplectic) Eisenstein series for SO2r+1(FS). This
gives both parts of Conjecture 1 for n = 1.

These theorems parallel those for root systems of type A proved in [11] and [7].
Theorem 2 is proved using a combinatorial identity of Hamel and King [19]. The
proof of Theorem 1 is also combinatorial and is proved by developing connections
between the Weyl group and Gelfand-Tsetlin patterns (henceforth GT -patterns),
which parametrize basis vectors for highest weight representations of Sp(2r,C), the
Langlands dual group of SO(2r + 1).

As remarked above, the analogue of Conjecture 1 is known for type A for any
n ≥ 1. A combinatorial proof of the type A analogue of part I using only rank 1
Eisenstein series is completed in [8] and [9]. The proof there makes critical use of
the outer automorphism of the Dynkin diagram for type A, so a simple mimicking
of the proof techniques to obtain results for type C is not possible. However, given
any fixed m and fixed n, one can in practice confirm the functional equations with
a finite amount of checking (see, for example, [1] for the details of this argument in
a small rank example).

The type A analogue of part II of Conjecture 1 is proved in [10] by computing the
Fourier-Whittaker coefficients of Eisenstein series directly by inducing from succes-
sive maximal parabolics. The result is essentially a complicated recursion involving
exponential sums and lower rank Eisenstein series. Then one checks the definition
given in [11] satisfies the recursion. We expect a similar approach may be possible
in type C as well, and this will be the subject of future work. Note that such an
approach depends critically on having a proposed solution to satisfy the recursion,
so the methods of this paper are a necessary first step.

The precise definition of the prime-power coefficients (2) for type C are somewhat
complicated, so we have chosen to postpone the definition until Section 3. As alluded
to earlier, coefficients H(n)(pk; pl)) will be described in terms of basis vectors for
heighest weight representations of Sp(2r) with highest weight corresponding to l. As
noted in Remark 2 of Section 3, the definition produces Gauss sums which encode
subtle information about Kashiwara raising/lowering operators in the crystal graph
associated to the highest weight representation. As such, this paper offers the first
evidence that mysterious connections between automorphic forms and representation
theory of quantum groups may hold in much greater generality, persisting beyond the
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type A theory in [9], [10] and [11]. These connections may not be properly understood
until a general solution to our problem for all root systems Φ is obtained.

Finally, the results of this paper give infinite classes of Dirichlet series with an-
alytic continuation. One can then use standard Tauberian techniques to extract
mean-value estimates for families of number-theoretic quantities appearing in the
numerator of the series (or the numerator of polar residues of the series). For the
n-cover of Ar, this method yielded the mean-value results of [13] (r = 5, n = 2)
and [4] (r = 3, n = 3). It would be interesting to explore similar results in type C
(remembering that our conjecture may be verified for any given example with n, r,
and m fixed with only a finite amount of checking, as sketched in [1]).

We are grateful to Dan Bump, Gautam Chinta, Sol Friedberg, and Paul Gunnells
for sharing drafts of manuscripts in progress and for numerous illuminating math-
ematical conversations. This work was partially supported by NSF grants DMS-
0502730 (Beineke), and DMS-0702438 and DMS-0652529 (Brubaker).

2 Definition of the Multiple Dirichlet Series

In this section, we present general notation for root systems and the corresponding
Weyl group multiple Dirichlet series.

2.1 Root Systems

Let Φ be a reduced root system contained in V , a real vector space of dimension r.
The dual vector space V ∨ contains a root system Φ∨ in bijection with Φ, where the
bijection switches long and short roots. If we write the dual pairing

V × V ∨ −→ R : (x, y) 7→ B(x, y), (3)

then B(α, α∨) = 2. Moreover, the simple reflection σα : V → V corresponding to α
is given by

σα(x) = x−B(x, α∨)α.

Note that σα preserves Φ. Similarly, we define σα∨ : V ∨ → V ∨ by σα∨(x) = x −
B(α, x)α∨ with σα∨(Φ∨) = Φ∨.

For our purposes, without loss of generality, we may take Φ to be irreducible (i.e.,
there do not exist orthogonal subspaces Φ1,Φ2 with Φ1 ∪ Φ2 = Φ). Then set 〈·, ·〉
to be the Euclidean inner product on V and ||α|| =

√
〈α, α〉 the Euclidean norm,

where we normalize so that 2〈α, β〉 and ||α||2 are integral for all α, β ∈ Φ. With this
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notation,

σα(β) = β − 2〈β, α〉
〈α, α〉

α for any α, β ∈ Φ (4)

We partition Φ into positive roots Φ+ and negative roots Φ− and let ∆ =
{α1, . . . , αr} ⊂ Φ+ denote the subset of simple positive roots. Further, we will
denote the fundamental dominant weights by εi for i = 1, . . . , r satisfying

2〈εi, αj〉
〈αj, αj〉

= δij δij : Kronecker delta. (5)

Any dominant weight λ is expressible in terms of the εi, and a distinguished role in
the theory is played by the Weyl vector ρ, defined by

ρ =
1

2

∑
α∈Φ+

α =
r∑
i=1

εi. (6)

2.2 Algebraic Preliminaries

In keeping with the foundations used in previous papers (cf. [6] and [7]) on Weyl
group multiple Dirichlet series, we choose to define our Dirichlet series as indexed by
integers rather than ideals. By using this approach, the coefficients of the Dirichlet
series will closely resemble classical exponential sums, but some care needs to be
taken to ensure the resulting series remains well-defined up to units.

To this end, we require the following definitions. Given a fixed positive odd
integer n, let F be a number field containing the 2nth roots of unity, and let S be
a finite set of places containing all ramified places over Q, all archimedean places,
and enough additional places so that the ring of S-integers OS is a principal ideal
domain. Recall that the OS integers are defined as

OS = {a ∈ F | a ∈ Ov ∀v 6∈ S} ,

and can be embedded diagonally in

FS =
∏
v∈S

Fv.

There exists a pairing

(·, ·)S : F×S × F
×
S −→ µn defined by (a, b)S =

∏
v∈S

(a, b)v,
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where the (a, b)v are local Hilbert symbols associated to n and v.
Further, to any a ∈ OS and any ideal b ∈ OS, we may associate the nth power

residue symbol
(
a
b

)
n

as follows. For prime ideals p, the expression
(
a
p

)
n

is the unique

nth root of unity satisfying the congruence(
a

p

)
n

≡ a(N(p)−1)/n (mod p).

We then extend the symbol to arbitrary ideals b by multiplicativity, with the con-
vention that the symbol is 0 whenever a and b are not relatively prime. Since OS is
a principal ideal domain by assumption, we will write(a

b

)
n

=
(a

b

)
n

for b = bOS

and often drop the subscript n on the symbol when the power is understood from
context.

Then if a, b are coprime integers in OS, we have the nth power reciprocity law
(cf. [24], Thm. 6.8.3) (a

b

)
= (b, a)S

(
b

a

)
(7)

which, in particular, implies that if ε ∈ O×S and b ∈ OS, then(ε
b

)
= (b, ε)S.

Finally, for a positive integer t and a, c ∈ OS with c 6= 0, we define the Gauss
sum gt(a, c) as follows. First, choose a non-trivial additive character ψ of FS trivial
on the OS integers (cf. [3] for details). Then the nth-power Gauss sum is given by

gt(a, c) =
∑

d mod c

(
d

c

)t
n

ψ

(
ad

c

)
, (8)

where we have suppressed the dependence on n in the notation on the left. The
Gauss sum gt is not multiplicative, but rather satisfies

gt(a, cc
′) =

( c
c′

)t
n

(
c′

c

)t
n

gt(a, c)gt(a, c
′) (9)

for any relatively prime pair c, c′ ∈ OS.

7



2.3 Kubota’s Rank 1 Dirichlet series

Many of the definitions for Weyl group multiple Dirichlet series are natural extensions
of those from the rank 1 case, so we begin with a brief description of these.

A subgroup Ω ⊂ F×S is said to be isotropic if (a, b)S = 1 for all a, b ∈ Ω. In
particular, Ω = OS(F×S )n is isotropic (where (F×S )n denotes the nth powers in F×S ).
Let Mt(Ω) be the space of functions Ψ : F×S −→ C that satisfy the transformation
property

Ψ(εc) = (c, ε)−tS Ψ(c) for any ε ∈ Ω, c ∈ F×S . (10)

For Ψ ∈Mt(Ω), consider the following generalization of Kubota’s Dirichlet series:

Dt(s,Ψ, a) =
∑

0 6=c∈Os/O×s

gt(a, c)Ψ(c)

|c|2s
. (11)

Here |c| is the order of OS/cOS, gt(a, c) is as in (8) and the term gt(a, c)Ψ(c)|c|−2s is
independent of the choice of representative c, modulo S-units. Standard estimates for
Gauss sums show that the series is convergent if R(s) > 3

4
. Our functional equation

computations will hinge on the functional equation for this Kubota Dirichlet series.
Before stating this result, we require some additional notation. Let

Gn(s) = (2π)−2(n−1)sn2ns

n−2∏
j=1

Γ

(
2s− 1 +

j

n

)
. (12)

In view of the multiplication formula for the Gamma function, we may also write

Gn(s) = (2π)−(n−1)(2s−1) Γ(n(2s− 1))

Γ(2s− 1)
.

Let
D∗t (s,Ψ, a) = Gm(s)[F :Q]/2ζF (2ms−m+ 1)Dt(s,Ψ, a), (13)

where m = n/ gcd(n, t), 1
2
[F : Q] is the number of archimedean places of the totally

complex field F , and ζF is the Dedekind zeta function of F .
If v ∈ Sfin let qv denote the cardinality of the residue class field Ov/Pv, where

Ov is the local ring in Fv and Pv is its prime ideal. By an S-Dirichlet polynomial we
mean a polynomial in q−sv as v runs through the finite number of places in Sfin. If
Ψ ∈Mt(Ω) and η ∈ F×S , denote

Ψ̃η(c) = (η, c)S Ψ(c−1η−1). (14)

Then we have the following result (Theorem 1 in [7]), which follows from the work
of Brubaker and Bump [3].
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Theorem (Brubaker-Bump). Let Ψ ∈ Mt(Ω) and a ∈ OS. Let m = n/ gcd(n, t).
Then D∗t (s,Ψ, a) has meromorphic continuation to all s, analytic except possibly at
s = 1

2
± 1

2m
, where it might have simple poles. There exist S-Dirichlet polynomials

P t
η(s) depending only on the image of η in F×S /(F

×
S )n such that

D∗t (s,Ψ, a) = |a|1−2s
∑

η∈F×S /(F
×
S )n

P t
aη(s)D∗t (1− s, Ψ̃η, a). (15)

This result, based on ideas of Kubota [20], relies on the theory of Eisenstein series.
The case t = 1 is handled in [3]; the general case follows as discussed in the proof of
Proposition 5.2 of [6]. Notably, the factor |a|1−2s is independent of the value of t.

2.4 The form of higher rank multiple Dirichlet series

We now begin explicitly defining the multiple Dirichlet series, retaining our previous
notation. By analogy with the rank 1 definition in (10), given an isotropic sub-
group Ω, let M(Ωr) be the space of functions Ψ : (F×S )r −→ C that satisfy the
transformation property

Ψ(εc) =

(
r∏
i=1

(εi, ci)
||αi||2
S

∏
i<j

(εi, cj)
2〈αi,αj〉
S

)
Ψ(c) (16)

for all ε = (ε1, . . . , εr) ∈ Ωr and all c = (c1, . . . , cr) ∈ (F×S )r.
Recall from the introduction that, given a reduced root system Φ of fixed rank

r, an integer n ≥ 1, m ∈ OrS, and Ψ ∈ M(Ωr), we consider a function of r complex
variables s = (s1, . . . , sr) ∈ Cr of the form

ZΨ(s1, . . . , sr;m1, . . . ,mr) = ZΨ(s; m) =
∑

c=(c1,...,cr)∈(OS/O×S )r

H(n)(c; m)Ψ(c)

|c1|2s1 · · · |cr|2sr
.

The function H(n)(c; m) carries the main arithmetic content. It is not defined as
a multiplicative function, but rather a “twisted multiplicative” function. For us, this
means that for S-integer vectors c, c′ ∈ (OS/O×S )r with gcd(c1 · · · cr, c′1 · · · c′r) = 1,

H(n)(c1c
′
1, . . . , crc

′
r; m) = µ(c, c′)H(n)(c; m)H(n)(c′; m) (17)

where µ(c, c′) is an nth root of unity depending on c, c′. It is given precisely by

µ(c, c′) =
r∏
i=1

(
ci
c′i

)||αi||2
n

(
c′i
ci

)||αi||2
n

∏
i<j

(
ci
c′j

)2〈αi,αj〉

n

(
c′i
cj

)2〈αi,αj〉

n

(18)
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where
( ·
·

)
n

is the nth power residue symbol defined in Section 2.2. Note that in the
special case Φ = A1, the twisted multiplicativity in (17) and (18) agrees with the
identity for Gauss sums in (9) in accordance with the numerator for the rank one
case given in (11).

Remark 1. We often think of twisted multiplicativity as the appropriate general-
ization of multiplicativity for the metaplectic group. In particular, for n = 1 we
reduce to the usual multiplicativity on relatively prime coefficients. Moreover, many
of the global properties of the Dirichlet series follow (upon careful analysis of the
twisted multiplicativity and associated Hilbert symbols) from local properties, e.g.
functional equations as in [6] and [7]. For more on this perspective, see [17].

Note that the transformation property of functions in M(Ωr) in (16) above is
motivated by the identity

H(n)(εc; m)Ψ(εc) = H(n)(c; m)Ψ(c) for all ε ∈ OrS, c,m ∈ (F×S )r.

The proof can be verified using the nth power reciprocity law from Section 2.2.
Now, given any m,m′, c ∈ OrS with gcd(m′1 · · ·m′r, c1 · · · cr) = 1, we let

H(n)(c;m1m
′
1, . . . ,mrm

′
r) =

r∏
i=1

(
m′i
ci

)−||αi||2
n

H(n)(c; m). (19)

The definitions in (17) and (19) imply that it is enough to specify the coefficients
H(n)(pk1 , . . . , pkr ; pl1 , · · · , plr) for any fixed prime p with li = ordp(mi) in order to
completely determine H(n)(c; m) for any pair of S-integer vectors m and c. These
prime-power coefficients are described in terms of data from highest-weight repre-
sentations associated to (l1, · · · , lr) and will be given precisely in Section 3.

2.5 Weyl group actions

In order to precisely state a functional equation for the Weyl group multiple Dirichlet
series, we require an action of the Weyl group W of Φ on the complex parameters
(s1, . . . , sr). This arises from the linear action of W , realized as the group generated
by the simple reflections σα∨ , on V ∨. From the perspective of Dirichlet series, it
is more natural to consider this action shifted by ρ∨, half the sum of the positive
co-roots. Then each w ∈ W induces a transformation V ∨C = V ∨ ⊗ C → V ∨C (still
denoted by w) if we require that

B(wα,w(s)− 1

2
ρ∨) = B(α, s− 1

2
ρ∨).
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We introduce coordinates on V ∨C using simple roots ∆ = {α1, . . . , αr} as follows.
Define an isomorphism V ∨C → Cr by

s 7→ (s1, s2, . . . , sr) si = B(αi, s). (20)

This action allows us to identify V ∨C with Cr, and so the complex variables si that
appear in the definition of the multiple Dirichlet series may be regarded as coordi-
nates in either space. It is convenient to describe this action more explicitly in terms
of the si and it suffices to consider simple reflections which generate W . Using the
action of the simple reflection σαi on the root system Φ given in (4) in conjunction
with (20) above gives the following:

Proposition 1. The action of σαi on s = (s1, . . . , sr) defined implicitly in (20) is
given by

sj 7→ sj −
2〈αj, αi〉
〈αi, αi〉

(
si −

1

2

)
j = 1, . . . , r. (21)

In particular, σαi : si 7→ 1− si.

2.6 Normalizing factors and functional equations

The multiple Dirichlet series must also be normalized using Gamma and zeta factors
in order to state precise functional equations. Let

n(α) =
n

gcd(n, ||α||2)
, α ∈ Φ+.

For example, if Φ = Cr and we normalize short roots to have length 1, this implies
that n(α) = n unless α is a long root and n even (in which case n(α) = n/2). By
analogy with the zeta factor appearing in (13), for any α ∈ Φ+, let

ζα(s) = ζ

(
1 + 2n(α)B(α, s− 1

2
ρ∨)

)
where ζ is the Dedekind zeta function attached to the number field F . Further,
for Gn(s) as in (12), we may define

Gα(s) = Gn(α)

(
1

2
+B(α, s− 1

2
ρ∨)

)
. (22)

Then for any m ∈ OrS, the normalized multiple Dirichlet series is given by

Z∗Ψ(s; m) =

[ ∏
α∈Φ+

Gα(s)ζα(s)

]
ZΨ(s,m). (23)
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By considering the product over all positive roots, we guarantee that the other
zeta and Gamma factors are permuted for each simple reflection σi ∈ W , and hence
for all elements of the Weyl group.

Given any fixed n, m and root system Φ, we seek to exhibit a definition for
H(n)(c; m) (or equivalently, given twisted multiplicativity, a definition of H at prime-
power coefficients) such that Z∗Ψ(s; m) satisfies functional equations of the form:

Z∗Ψ(s; m) = |mi|1−2siZ∗σiΨ(σis; m) (24)

for all simple reflections σi ∈ W . Here, σis is as in (21) and the function σiΨ, which
essentially keeps track of the rather complicated scattering matrix in this functional
equation, is defined as in (37) of [7]. As noted in Section 7 of [7], given functional
equations of this type, one can obtain analytic continuation to a meromorphic func-
tion of Cr with an explicit description of polar hyperplanes.

3 Definition of the Prime-Power Coefficients

In this section, we give a precise definition of the coefficients H(n)(pk; pl) needed to
complete the description of the multiple Dirichlet series for root systems of type Cr
and n odd. All the previous definitions are stated in sufficient generality for appli-
cation to multiple Dirichlet series for any reduced root system Φ and any positive
integer n. Only the prime power coefficients require specialization to our particular
root system Φ = Cr, though this remains somewhat complicated. We summarize the
definition at the end of the section.

The vector l = (l1, l2, . . . , lr) appearing in H(n)(pk; pl) can be associated to a
dominant integral element for Sp2r(C) of the form

λ = (l1 + l2 + · · ·+ lr, . . . , l1 + l2, l1). (25)

The contributions to H(n)(pk; pl) will then be parametrized by basis vectors of the
highest weight representation of highest weight λ+ ρ, where ρ is the Weyl vector for
Cr defined in (6), so that

λ+ ρ = (l1 + l2 + · · ·+ lr + r, . . . , l1 + l2 + 2, l1 + 1) =: (Lr, · · · , L1). (26)

In [11], prime-power coefficients for multiple Dirichlet series of type A were attached
to Gelfand-Tsetlin patterns, which parametrize highest weight vectors for SLr+1(C)
(cf. [18]). Here, we use an analogous basis for the symplectic group, according to
branching rules given by Zhelobenko in [27]. We will continue to refer to the objects
comprising this basis as Gelfand-Tsetlin patterns, or GT -patterns.
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More precisely, a GT -pattern P has the form

P =

a0,1 a0,2 · · · a0,r

b1,1 b1,2 · · · b1,r−1 b1,r

a1,2 · · · a1,r

. . . . . .
...

ar−1,r

br,r

(27)

where the ai,j, bi,j are non-negative integers and the rows of the pattern interleave.
That is, for all ai,j, bi,j in the pattern P above,

min(ai−1,j, ai,j) ≥ bi,j ≥ max(ai−1,j+1, ai,j+1)

and
min(bi+1,j−1, bi,j−1) ≥ ai,j ≥ max(bi+1,j, bi,j).

The set of all patterns with top row (a0,1, . . . , a0,r) = (Lr, . . . , L1) form a basis for
the highest weight representation with highest weight λ+ ρ. Hence, we will consider
GT -patterns with top row (Lr, . . . , L1) as in (26), and refer to this set of patterns as
GT (λ+ ρ).

The contributions to each H(n)(pk; pl) with both k and l fixed come from a single
weight space corresponding to k = (k1, . . . , kr) in the highest weight representa-
tion λ + ρ corresponding to l. We first describe how to associate a weight vector to
each GT -pattern. Let

sa(i) :=
r∑

m=i+1

ai,m and sb(i) :=
r∑

m=i

bi,m (28)

be the row sums for the respective rows of a’s and b’s in P . (Here we understand that
sa(r) = 0 corresponds to an empty sum.) Then define the weight vector wt(P ) =
(wt1(P ), . . . ,wtr(P )) by

wti = wti(P ) = sa(r − i)− 2sb(r + 1− i) + sa(r + 1− i), i = 1, . . . , r. (29)

Note that as the weights are generated in turn, we begin at the bottom of the
pattern P and work our way up to the top. Our prime power coefficients will then
be supported at (pk1 , . . . , pkr) with

ki =
r∑
j=i

(wtj +Lj) , i = 1, . . . , r − 1, kr = wtr +Lr, (30)

13



so that in particular, the ki are non-negative integers.
In terms of the GT -pattern P , the reader may check that we have

k(P ) = (k1(P ), k2(P ), . . . , kr(P )) with

k1(P ) = sa(0)−
r∑

m=1

(sb(m)− sa(m))

ki(P ) = sa(0)− 2
r+1−i∑
m=1

(sb(m)− sa(m))− sa(r + 1− i) +
r+1−i∑
m=1

a0,m

(31)

for 1 < i ≤ r. Then we define

H(n)(pk; pl) = H(n)(pk1 , . . . , pkr ; pl1 , . . . , plr) =
∑

P∈GT (λ+ρ)
k(P )=(k1,...,kr)

G(P ) (32)

where the sum is over all GT -patterns P with top row (Lr, . . . , L1) as in (26) sat-
isfying the condition k(P ) = (k1, . . . , kr) and G(P ) is a weighting function whose
definition depends on the following elementary quantities.

To each pattern P , define the corresponding data:

vi,j =

j∑
m=i

(ai−1,m − bi,m) , wi,j =
r∑

m=j

(ai,m − bi,m) , ui,j = vi,r + wi,j, (33)

where we understand the entries ai,j or bi,j to be 0 if they do not appear in the
pattern P .

Remark 2. The integers ui,j and vi,j have representation theoretic meaning in terms
of Kashiwara raising and lowering operators in the crystal graph associated to the
highest weight representation of highest weight λ + ρ for Uq(sp(2r)), the quantized
universal enveloping algebra of the Lie algebra sp(2r). See Littelmann [21] for de-
tails, particularly Corollary 2 of Section 6. See also [9] and [10] for a more complete
description in crystal language, focusing mainly on type A. We find this interpreta-
tion quite striking in light of the connection to Whittaker models on the metaplectic
group. Ultimately, this can be seen as another instance of connections between quan-
tum groups and principal series representations in the spirit of [22]. This is not a
perspective we emphasize here, but this potentially exciting connection to past work
is worth further exploration.
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To each entry bi,j in P , we associate

γb(i, j) =


gδjr+1(pvi,j−1, pvi,j) if bi,j = ai−1,j+1,

φ(pvi,j) if ai−1,j < bi,j < ai−1,j+1, n|vi,j · (δjr + 1),

0 if ai−1,j < bi,j < ai−1,j+1, n - vi,j · (δjr + 1),

qvi,j if bi,j = ai−1,j,

(34)

where gt(p
α, pβ) is an nth-power Gauss sum as in (8), φ(pa) denotes the Euler phi

function for OS/paOS, q = |OS/pOS| and δjr is the Kronecker delta function. We
note these cases may be somewhat reduced, using elementary properties of Gauss
sums, to

γb(i, j) =

{
qvi,j if bi,j = ai−1,j,

gδjr+1(pvi,j+bi,j−ai−1,j+1−1, pvi,j) else.
(35)

To each entry ai,j in P , with i ≥ 1, we may associate

γa(i, j) =


g1(pui,j−1, pui,j) if ai,j = bi,j−1,

φ(pui,j) if bi,j < ai,j < bi,j−1, n|ui,j,
0 if bi,j < ai,j < bi,j−1, n - ui,j,
qui,j if ai,j = bi,j,

(36)

which can similarly be compacted to

γa(i, j) =

{
qui,j if ai,j = bi,j,

g1(pui,j−ai,j+bi,j−1−1, pui,j) else.
(37)

We introduce terminology to describe relationships between elements in a pattern P :

Definition 1. A GT -pattern P is minimal at bi,j if bi,j = ai−1,j. It is maximal at
bi,j if 1 ≤ j < r and bi,j = ai−1,j+1, or if bi,r = 0. If none of these equalities holds,
we say P is generic at bi,j.

Likewise, P is minimal at ai,j if ai,j = bi,j, and maximal at ai,j if ai,j = bi,j−1. If
neither equality holds, we say P is generic at ai,j.

Definition 2. A GT -pattern P is strict if its entries are strictly decreasing across
each horizontal row.

We then define the coefficients

G(P ) =

{∏
1≤i≤j≤r γa(i, j)γb(i, j) if P is strict,

0 otherwise,
(38)
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where we again understand γa(r, r) to be 1 since ar,r is not in the pattern P . Com-
bining these definitions, we obtain a definition of the prime-power coefficients in the
series as summarized below.

Definition 3 (Summary of definitions for H). Given any prime p, define

H(n)(pk; pl) =
∑

P∈GT (λ+ρ)
k(P )=k

G(P ) (39)

where the sum is over all GT -patterns with top row corresponding to λ + ρ and row
sums fixed according to (31), and G(P ) is given as in (38) above with γa(i, j) and
γb(i, j) of (37) and (35), resp., defined in terms of vi,j and ui,j in (33).

Note that in the right-hand side of (39), we have suppressed the dependence on n.
This is appropriate since the expressions in (35) and (37) are given in terms of Gauss
sums, which are defined uniformly for all n.

The coefficients H(n)(c; m) appearing in (1) are now implicitly defined by (39)
together with the twisted multiplicativity given in (17) and (19). The resulting mul-
tiple Dirichlet series ZΨ(s; m) is initially absolutely convergent for <(si) sufficiently
large. Indeed, if a pattern P has weight k = (k1, . . . , kr), then |G(P )| < qk1+···+kr

and the number of patterns in a given weight space is bounded as a function of m
corresponding to the highest weight vector.

4 Comparison in the Stable Case

We now compare our multiple Dirichlet series, having pth-power coefficients as defined
in (39), with the multiple Dirichlet series defined for arbitrary root systems Φ in [7],
when n is sufficiently large. In this section, we determine the necessary lower bound
on n explicitly, according to a stability assumption introduced in [6]. With this lower
bound, we can then prove that for n odd, the two prescriptions agree.

To this end, let m = (m1, . . . ,mr) be a fixed r-tuple of non-zero OS integers. To
any fixed prime p in OS, set li = ordp(mi) for i = 1, . . . , r. Then define λp as in (25),
so that in terms of the fundamental dominant weights εi, we have

λp =
r∑
i=1

liεi.

Then we may define the function dλp on the set of positive roots Φ+ by

dλp(α) =
2 〈λp + ρ, α〉
〈α, α〉

. (40)
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For ease of computation in the results that follow, we choose to normalize the inner
product 〈 , 〉 so that ‖α‖2 = 〈α, α〉 = 1 if α is a short root, while ‖α‖2 = 2 if α is a
long root.
Stability Assumption. Let α =

∑r
i=1 tiαi be the largest positive root in the partial

ordering for Φ. Then for every prime p, we require that the positive integer n satisfies

n ≥ gcd(n, ‖α‖2) · dλp(α) = gcd(n, ‖α‖2) ·
r∑
i=1

ti(li + 1). (41)

When the Stability Assumption holds, we say we are “in the stable case.” Note this
is well-defined since li = 0 for all i = 1, . . . , r for all but finitely many primes p. For
the remainder of this section, we work with a fixed prime p, and so write λ in place
of λp when no confusion can arise.

For Φ = Cr, we let α1 denote the long simple root, so that the largest positive
root is α1 +

∑r
i=2 2αi. Moreover if n is odd, the condition (41) becomes

n ≥ l1 + 1 +
r∑
i=2

2(li + 1). (42)

For any w ∈ W (Φ), define the set Φw = {α ∈ Φ+ | w(α) ∈ Φ−}. Following [6]
and [7], the pth-power coefficients of the multiple Dirichlet series in the stable case
are given by

H
(n)
st (pk1 , · · · , pkr ; pl1 , · · · , plr) =

∏
α∈Φw

g‖α‖2(p
dλ(α)−1, pdλ(α)), (43)

where the dependence on n occurs only in the nth power residue symbol in the Gauss
sums. In [7], it was established that the above definition H

(n)
st (pk; pl) produces a Weyl

group multiple Dirichlet series Z∗(s,m) with analytic continuation and functional
equations (of the form in Conjecture 1) provided the Stability Assumption on n holds.
The proof works for any reduced root system Φ. In this section, we demonstrate that
our definition H(n)(pk; pl) in terms of GT -patterns as in (39) matches that in (43)
for n satisfying the Stability Assumption as in (41).

Definition 4. Given a GT -pattern P ∈ GT (λ + ρ), and G(P ) defined as in (38),
then P is said to be stable if G(P ) 6= 0 for some (odd) n satisfying the Stability
Assumption as in (41).

As we will see in the following result, if P is stable for one such n, then G(P ) is
non-zero for all n satisfying (41). These are the relevant patterns we must consider

in establishing the equivalence of the two definitions H
(n)
st (pk; pl) and H(n)(pk; pl) in

the stable case, and we begin by characterizing all such patterns.
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Proposition 2. A pattern P ∈ GT (λ + ρ) is stable if and only if, in each pair of
rows in P with index i (that is, pattern entries {bi,j, ai,j}rj=i), the ordered set

{bi,i, bi,i+1, . . . , bi,r, ai,r, ai,r−1, . . . , ai,i+1}

has an initial string in which all elements are minimal (as in Definition 1) and all
remaining elements are maximal.

Proof. If any element ai,j or bi,j in the pattern P is neither maximal nor minimal, i.e.
is “generic” in the sense of Definition 1, then γa(i, j) (or γb(i, j), resp.) is non-zero
if and only if n|ui,j according to (36) (or n|vi,j(δjr + 1) according to (34), resp.).
But one readily checks that n is precisely chosen in the Stability Condition so that
n > maxi,j{ui,j, (δjr+1)vi,j} and hence neither divisibility condition can be satisfied.
Therefore all entries of any stable P must be maximal or minimal. The additional
necessary condition that P be strict (as in Definition 2) so that G(P ) is not always
zero according to (38) guarantees that neighboring entries in the ordered set can
never be of the form (maximal,minimal), which gives the result.

Note that the number of stable patterns P is thus 2rr! = |W (Cr)|, the order of
the Weyl group of Cr.

4.1 Action of W on Euclidean space

In demonstrating the equality of the two prime-power descriptions, we found it nec-
essary to use an explicit coordinatization of the the root system embedded in Rr;
it would be desirable to find a coordinate-free proof. Let ei be the standard basis
vector (1 in ith component, 0 elsewhere) in Rr. We choose the following coordinates
for the simple roots of Cr:

α1 = 2e1, α2 = e2 − e1, . . . , αr = er − er−1. (44)

Consider an element w ∈ W (Cr), the Weyl group of Cr. As an action on Rr,
this group is generated by all permutations σ of the basis vectors e1, . . . , er and all
reflections ei 7→ −ei for i = 1, . . . , r. Thus we may describe the action explicitly
using ε

(i)
w ∈ {+1,−1} for i = 1, 2, . . . , r so that

w(t1, t2, . . . , tr) = (ε(1)
w tσ−1(1) , ε

(2)
w tσ−1(2) , . . . , ε

(r)
w tσ−1(r)). (45)

In the following proposition, we associate a unique Weyl group element w with
each GT -pattern P that is stable. In this result, and in the remainder of this section,
it will be convenient to refer to the rows of P beginning at the bottom rather than
the top. We will therefore discuss rows ar−i, for 1 ≤ i ≤ r, for instance.
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Proposition 3. Let P be a stable strict GT -pattern with top row Lr Lr−1 · · · L1,
hence with associated dominant weight vector λ =

∑r
i=1 `iεi. Let non-negative inte-

gers k1(P ), . . . , kr(P ) be defined as in (31), and let kr+1(P ) = 0. Then there exists
a unique element w ∈ W (Cr) such that

λ+ ρ− w(λ+ ρ) = (2k1 − k2, k2 − k3, . . . , kr−1 − kr, kr) =
r∑
i=1

kiαi (46)

In fact, for i = 2, . . . , r,

ki+1 − ki + Li = −wti = ε(i)
w Lσ−1(i), (47)

where Lσ−1(i) is the unique element in row ar−i that is not in row ar+1−i, and the
weight coordinate wti is as in (29). Similarly,

k2 − 2k1 + L1 = −wt1 = ε(1)
w Lσ−1(1), (48)

where Lσ−1(1) is the unique element in row ar−1 that is not in row ar.

Proof. The definitions for ρ and λ give λ+ρ = (L1, . . . , Lr) in Euclidean coordinates.
We compute the coordinates of (λ+ ρ)−

∑r
i=1 kiαi, using (31). This gives

L1 + k2 − 2k1 = −[sa(r − 1)− 2sb(r) + sa(r)] = −wt1 (49)

and similarly, for i = 2, . . . , r,

Li + ki+1 − ki = −[sa(r − i)− 2sb(r + 1− i) + sa(r + 1− i)] = −wti, (50)

so that

λ+ ρ−
r∑
i=1

kiαi = −(wt1,wt2, . . . ,wtr). (51)

Each pattern P has a unique weight vector. Since P is a stable pattern, it is easy
to see that the ith weight consists of the unique entry that is in row ar−i but not in
row ar+1−i, with a negative sign if this entry is present in row br+1−i, or a positive
sign if not. Thus the weight vector is simply a permutation of the entries in the top
row, with a choice of sign in each entry. We may find a unique w (whose action is
described above), for which

w(λ+ ρ) = (ε(1)
w Lσ−1(1), . . . , ε

(r)
w Lσ−1(r)) = − (wt1, wt2, . . . , wtr). (52)

Thus Lσ−1(i) is the unique element in row ar−i that is not present in row ar+1−i.

19



Corollary 1. Let P be a stable strict GT -pattern with top row Lr Lr−1 · · · L1. For
1 ≤ i ≤ r, the set of elements in row ar−i satisfies the following:

{ar−i,r+1−i , ar−i,r+2−i , . . . , ar−i,r} = {Lσ−1(i) , Lσ−1(i−1) , . . . , Lσ−1(1)} (53)

Proof. From Proposition 3, Lσ−1(j) is the unique element in row ar−j that is not in
row ar+1−j. Working downwards, we eliminate these elements for j = i, i+ 1, . . . , r,
in order to reach row ar−j. Therefore, we are left with the remaining set.

4.2 Agreement of the multiple Dirichlet series

Theorem 1. Let Φ = Cr and choose a positive integer n such that the Stability
Assumption (41) holds.

(i) Let P be a stable strict GT -pattern, and let G(P ) be the product of Gauss sums
defined in (38) in Section 2. Let w be the Weyl group element associated to P
as in Proposition 3. Then

G(P ) =
∏
α∈Φw

g‖α‖2(p
dλ(α)−1, pdλ(α)),

matching the definition given in (43), with dλ(α) as defined in (40).

(ii) Hst(c1, · · · , cr;m1, · · ·mr) = H(n)(c1, · · · , cr;m1, · · ·mr).

That is, the Weyl group multiple Dirichlet series in the twisted stable case is identical
to the series defined by the Gelfand-Tsetlin description for n sufficiently large.

Remark 3. Our main conjecture presented in the introduction states that n should
be odd. In fact, the proof of the above theorem works for any n satisfying the
Stability Assumption, regardless of parity. However, we believe this is an artifact of
the relative combinatorial simplicity of the “stable” coefficients and one expects a
distinctly different combinatorial recipe than the one presented in this paper to hold
uniformly for all even n.

Proof. It is clear that part (i) implies part (ii), since both coefficients are obtained
from their prime-power parts by means of twisted multiplicativity.

In proving part (i), let P be the GT -pattern with top row Lr Lr−1 · · ·L1 associated
to w by Proposition 3. We first note that since P is stable, we have ui,j = 0 if P is
minimal at ai,j, and vi,j = 0 if P is minimal at bi,j. Thus

G(P ) =
∏

ai,j maximal

g1(pui,j−1, pui,j)
∏

bi,j maximal

gδjr+1(pvi,j−1, pvi,j),
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It suffices to show that the set of Gauss sum exponents ui,j and vi,j at maximal
entries in P coincides with the set of dλ(α) as α runs over Φw. (In fact, we show a
slightly sharper statement, which matches Gauss sum exponents at maximal entries
in pairs of rows of P with values of dλ(α) as α runs over certain subsets of Φw.)

The number of maximal elements in a pair of rows br+1−i and ar+1−i is described
in the next result. First, we say that (i, j) is an i-inversion for w−1 if j < i and
σ−1(j) > σ−1(i). The number of these pairs, as well as the number of those for
which the inequality is preserved rather than inverted, will play an important role
in counting Gauss sums. To this end, we define the following quantities

invi(w
−1) = #{(i, j) | σ−1(j) > σ−1(i) and j < i},

pri(w
−1) = #{(i, j) | σ−1(j) < σ−1(i) and j < i}.

(54)

Proposition 4. Let P be a stable strict GT -pattern with top row Lr Lr−1 · · · L1,
and let w ∈ W be the Weyl group element associated to P as in Proposition 3. Let
invi(w) and pri(w) be as defined in (54), and let mi(P ) denote the number of maximal
entries in rows br+1−i and ar+1−i together. Then,

mi(P ) =

{
invi(w

−1) if ε
(i)
w = +1,

i+ pri(w
−1) if ε

(i)
w = −1.

(55)

Proof. Recall from our means of associating w to P that ε
(i)
w is opposite in sign

from the ith Gelfand-Tsetlin weight. Consider row br+1−i together with the rows
immediately above and below:

ar−i,r+1−i ar−1,r+2−i · · · · · · ar−i,r
br+1−i,r+1−i · · · · · · br+1−i,r

ar+1−i,r+2−i · · · · · · ar+1−i,r

Suppose ε
(i)
w = +1, so Lσ−1(i) is missing from row ar+1−i but present in row

br+1−i. Then there are no maximal entries in row br+1−i, and mi maximal entries in
row ar+1−i, so

br+1−i,r+j−i = ar−i,r+j−i for 1 ≤ j ≤ i, (56)

and

ar+1−i,r+(j+1)−i =

{
br+1−i,r+j−i for 1 ≤ j ≤ mi,

br+1−i,r+(j+1)−i for mi + 1 ≤ j ≤ i.
(57)

Moreover, the entry Lσ−1(i) in row br+1−i marks the switch from maximal to minimal
as we move from left to right in row ar+1−i. That is, all entries in row ar+1−i to the
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left of Lσ−1(i) are maximal, while all those to the right are minimal. By Lemma 1,
row ar+1−i consists of the elements in the set {Lσ−1(j) | j < i}. Since the rows of P
are strictly decreasing, this means the maximal entries in row ar+1−i are given by

{Lσ−1(j) | j < i and σ−1(j) > σ−1(i)}

This set clearly has order invi(w
−1).

Now suppose ε
(i)
w = −1, so that Lσ−1(i) is missing from both row ar+1−i and row

br+1−i. Then all entries in row ar+1−i are maximal, and the last mi− i+ 1 entries in
row br+1−i are maximal, so

ar+1−i,r+(j+1)−i = br+1−i,r+j−i, for 1 ≤ j ≤ i− 1, (58)

and

br+1−i,r+j−i =


ar−i,r+j−i for 1 ≤ j ≤ 2i− 1−mi,

ar−i,r+(j+1)−i for 2i−mi ≤ j ≤ i− 1,

0 for j = i.

(59)

The entry Lσ−1(i) in row ar−i marks the switch from minimal to maximal as we move
to the right in row br+1−i. That is, all entries below and to the left of Lσ−1(i) are
minimal, while those below and to the right are maximal. Since rows br+1−i and
ar+1−i are identical, the entries of row br+1−i are {Lσ−1(j) | j < i}, by Lemma 1.
Moreover, since rows are strictly decreasing, the maximal entries in row br+1−i are
given by

{Lσ−1(j) | j < i and σ−1(j) < σ−1(i)} ∪ {0}
This set has order pri(w

−1) + 1. Counting maximal entries in both rows, we obtain
mi = (i− 1) + pri(w

−1) + 1 = i+ pri(w
−1).

Next, we establish a finer characterization of Φw = {α ∈ Φ+ | w(α) ∈ Φ−}.
For Φ = Cr, the roots in Φ+ take different forms; the positive long roots are 2e` for
1 ≤ ` ≤ r, while the positive short roots are em ± e` for 1 ≤ ` < m ≤ r. We will
express Φw as a disjoint union of subsets indexed by i ∈ {1, 2, . . . , r}. To this end,
let i be fixed, and let j be any positive integer such that j < i. Consider positive
roots of the following three types:

Type L : αi,w := 2eσ−1(i).

Type S+ : α+
i,j,w := eσ−1(j) + eσ−1(i).

Type S− : α−i,j,w :=

{
eσ−1(j) − eσ−1(i) if σ−1(j) > σ−1(i),

eσ−1(i) − eσ−1(j) if σ−1(j) < σ−1(i).
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Clearly we encounter each positive root exactly once as i and j vary as indicated.
Let Φ

(i)
w ⊆ Φw denote the set of all αi,w, α+

i,j,w, α−i,j,w belonging to Φw. The following

lemma completely characterizes Φ
(i)
w .

Lemma 1. Let i ∈ {1, 2, . . . , r} be fixed, let j be any positive integer with j < i, and

let Φ
(i)
w be as defined above. Then

(1) αi,w ∈ Φ
(i)
w if and only if ε

(i)
w = −1.

(2) α−i,j,w ∈ Φ
(i)
w if and only if σ−1(j) < σ−1(i) and ε

(i)
w = −1, or σ−1(j) > σ−1(i)

and ε
(i)
w = +1.

(3) α+
i,j,w ∈ Φ

(i)
w if and only if ε

(i)
w = −1.

Consequently, |Φ(i)
w | = mi(P ), as defined in Proposition 4.

Proof. As defined in (45), w acts on a basis vector e` simply as w(e`) = ε
(`)
w eσ(`),

and this action extends linearly to each of the roots. Part (1) is immediate from the
definition of Φw.

For part (2), if σ−1(j) < σ−1(i) then w(α−i,j,w) = ε
(i)
w ei − ε(j)

w ej. If ε
(i)
w = +1, then

since j < i, we have w(α−i,j,w) ∈ Φ+ regardless of the value of ε
(j)
w . Thus α−i,j,w /∈ Φ

(i)
w .

Similarly, if ε
(i)
w = −1, then since j < i, we have w(α−i,j,w) ∈ Φ− regardless of the

value of ε
(j)
w . Thus α−i,j,w ∈ Φ

(i)
w .

On the other hand, if σ−1(j) > σ−1(i) then w(α−i,j,w) = ε
(j)
w ej−ε(i)

w ei. Considering

the cases ε
(i)
w = +1,−1 in turn, we find that regardless of the value of ε

(j)
w , we have

w(α−i,j,w) ∈ Φ
(i)
w if and only if ε

(i)
w = +1.

For part (3), we have w(α+
i,j,w) = ε

(j)
w ej + ε

(i)
w ei. Using a similar argument, we

see that independently of the value of ε
(j)
w , w(α+

i,j,w) is a negative root when ε
(i)
w is

negative, and a positive root otherwise.

Finally, we count elements in Φ
(i)
w . If ε

(i)
w = +1, the conditions yield invi(w

−1)
elements of type S−, and zero elements of types L and S+. On the other hand, if
ε

(i)
w = −1, there is one element of type L, i − 1 elements of type S+, and pri(w

−1)

elements of type S−. In either case, |Φ(i)
w | = mi(P ).

For each of the roots in Φ
(i)
w , we compute the corresponding dλ (as defined in

(40)) below.

Lemma 2. With the notation as above, we have
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(1) dλ(αi,w) = Lσ−1(i).

(2) dλ(α
−
i,j,w) =

{
Lσ−1(j) − Lσ−1(i) if σ−1(j) > σ−1(i),

Lσ−1(i) − Lσ−1(j) if σ−1(j) < σ−1(i).

(3) dλ(α
+
i,j,w) = Lσ−1(j) + Lσ−1(i).

Proof. First, we compute dλ(αi,w) = dλ(2eσ−1(i)). Using (44), we have

αi,w = α1 +

σ−1(i)∑
k=2

2αk, (60)

where we regard the sum to be 0 if σ−1(i) = 1. Since 〈αi,w, αi,w〉 = 〈α1, α1〉 = 2 and
〈αk, αk〉 = 1 for k = 2, . . . , r, we have

dλ(αi,w) =
2 〈λ+ ρ, αi,w〉
〈αi,w, αi,w〉

=
r∑

m=1

(lm + 1)

σ−1(i)∑
k=1

2 〈εm, αk〉
〈αk, αk〉

= Lσ−1(i) (61)

Next, we compute dλ(α
−
i,j,w) = dλ(eσ−1(i) − eσ−1(j)) if σ−1(j) < σ−1(i). (The

computations if σ−1(j) > σ−1(i) are analogous.) In this case, (44) gives

α−i,j,w =

σ−1(i)∑
k=σ−1(j)+1

αk, (62)

where the sum is nonempty as σ−1(j) < σ−1(i). Since
〈
α−i,j,w, α

−
i,j,w

〉
= 1, we have

dλ(α
−
i,j,w) =

r∑
m=1

(lm + 1)

σ−1(i)∑
k=σ−1(j)+1

2 〈εm, αk〉
〈αk, αk〉

= Lσ−1(i) − Lσ−1(j) (63)

Finally, we compute dλ(α
+
i,j,w) = dλ(eσ−1(i) + eσ−1(j)). Here, (44) gives

α+
i,j,w = α1 +

σ−1(j)∑
k=2

2αk +

σ−1(i)∑
k=σ−1(j)+1

αk, (64)

where the first sum is 0 if σ−1(j) = 1. Since
〈
α+
i,j,w, α

+
i,j,w

〉
= 1 as well, we have

dλ(α
+
i,j,w) =

r∑
m=1

(lm + 1)

σ−1(j)∑
k=1

4 〈εm, αk〉
〈αk, αk〉

+

σ−1(i)∑
k=σ−1(j)+1

2 〈εm, αk〉
〈αk, αk〉

 = Lσ−1(i) + Lσ−1(j)

(65)
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Now let Di = {dλ(α) | α ∈ Φ
(i)
w }. By Lemmas 1 and 2, we see that

if ε
(i)
w = +1, then

Di = {Lσ−1(j) − Lσ−1(i) | j < i and σ−1(j) > σ−1(i)}, (66)

while if ε
(i)
w = −1, then

Di = {Lσ−1(i)} ∪ {Lσ−1(j) + Lσ−1(i) | j < i}
∪ {Lσ−1(i) − Lσ−1(j) | j < i and σ−1(j) < σ−1(i)}.

(67)

Now we examine the Gauss sums obtained from the GT -pattern P with top row
Lr Lr−1 · · · L1 associated to w. Suppose there are mi = mi(P ) maximal entries in
rows br+1−i and ar+1−i combined. First, suppose there are no maximal entries in row
br+1−i. Then the first mi entries in row ar+1−i (reading from the left) are maximal.
Since there are i − 1 entries in row ar+1−i, in this case we have mi < i. We may
apply equations (56) and (57) to compute the sums defining uk,` and vk,`. These
sums telescope, and we have

vr+1−i , r+j−i = 0, for 1 ≤ j ≤ i− 1,

ur+1−i , r+(j+1)−i =

{
0, for mi + 1 ≤ j ≤ i,

ar−i , r+j−i − br+1−i , r+(mi+1)−i, for 1 ≤ j ≤ mi.

By Proposition 3, br+1−i , r+(mi+1)−i = Lσ−1(i), so to compute ur+1−i , r+(j+1)−i as j
varies, we must determine the set of values for ar−i , r+j−i with 1 ≤ j ≤ mi. Recall
that by Lemma 1, the entries in row ar−i are given by

{Lσ−1(j) | 1 ≤ j ≤ i} (68)

Since the rows are strictly decreasing, the entries appearing to the left of
ar−1 , r+(mi+1)−i = Lσ−1(i) have an index greater than σ−1(i). That is,

{ar−i , r+j−i | 1 ≤ j ≤ mi} = {Lσ−1(j) | j < i and σ−1(j) > σ−1(i)} (69)

Thus the nonzero Gauss sum exponents for rows br+1−i and ar+1−i are given by
ur+1−i , r+(j+1)−i = Lσ−1(j) − Lσ−1(i) with j < i and σ−1(j) > σ−1(i). Finally, note

that ε
(i)
w = +1, since there are no maximal entries in row br+1−i in this case. Thus

our set of nonzero Gauss sum exponents matches the set Di as given in (66).
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Second, suppose there are maximal entries in row br+1−i. Consequently, all entries
in row ar+1−i are maximal, so there are ni := mi−i+1 maximal entries in row br+1−i.
We may apply equations (58) and (59) to compute the sums defining uk,` and vk,`.
These sums telescope, and we have

vr+1−i , r+j−i =


0, for 1 ≤ j ≤ i− ni,
ar−i , r+1−ni − ar−i , r+(j+1)−i, for i+ 1− ni ≤ j ≤ i− 1

ar−i , r+1−ni for j = i

ur+1−i , r+(j+1)−i = ar−i , r+1−ni + ar+1−i , r+(j+1)−i, for 1 ≤ j ≤ i− 1.

By Proposition 3, ar+1−i , r+1−ni = Lσ−1(i), and thus vr+1−i ,r = Lσ−1(i). To compute
the remaining exponents vr+1−i , r+j−i as j varies, we again appeal to (68). Since the
rows are strictly decreasing, the entries appearing to the right of Lσ−1(i) in row ar−1

must have an index smaller than σ−1(i). That is,

{ar−i , r+(j+1)−i | i+1−ni ≤ j ≤ i−1} = {Lσ−1(j) | j < i and σ−1(i) > σ−1(j)} (70)

Thus vr+1−i , r+j−i = Lσ−1(i) − Lσ−1(j) with i+ 1− ni ≤ j < i and σ−1(i) > σ−1(j).

To compute the exponents ur+1−i , r+(j+1)−i, we note that by Lemma 1, the entries
in row ar+1−i are the Lσ−1(j) for which 1 ≤ j ≤ i − 1. Thus ur+1−i , r+(j+1)−i =

Lσ−1(i) +Lσ−1(j) with | 1 ≤ j ≤ i− 1. Finally, we note that ε
(i)
w = −1, since there are

maximal entries in row br+1−i. Combining the cases above, we see that we match the
set Di given in (67).

This completes the proof of Theorem 1.

5 Comparison with the Casselman-Shalika formula

The main focus of this section is the proof of Theorem 2, using a generating function
identity given by Hamel and King [19]. This identity may be regarded as a defor-
mation of the Weyl character formula for Sp(2r), though it is stated in the language
of symplectic, shifted tableaux (whose definition we will recall in this section) so we
postpone the precise formulation. Recall that our multiple Dirichlet series take the
form

ZΨ(s; m) =
∑

c=(c1,...,cr)∈(OS/O×S )r

H(n)(c; m)Ψ(c)

|c1|2s1 · · · |cr|2sr
.

In brief, we show that for n = 1 our formulas for the prime power supported con-
tributions of ZΨ(s,m) match one side of Hamel and King’s identity, while the other
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side of the identity is given in terms of a character of a highest weight representation
for Sp(2r). By combining the Casselman-Shalika formula with Hamel and King’s
result, we will establish Theorem 2.

5.1 Specialization of the multiple Dirichlet series for n = 1

Many aspects of the definition ZΨ are greatly simplified when n = 1. First, we may
take Ψ to be constant, since the Hilbert symbols appearing in the definition (16)
are trivial for n = 1. Moreover, the coefficients H(n)(c; m) for n = 1 are perfectly
multiplicative in both c and m. That is, according to (18) we have

H(1)(c · c′; m) = H(1)(c; m)H(1)(c′; m) when gcd(c1 · · · cr, c′1 · · · c′r) = 1

and according to (19) we have

H(1)(c; m ·m′) = H(1)(c; m) when gcd(m′1 · · ·m′r, c1 · · · cr) = 1.

Hence the global definition of ZΨ(s; m) for fixed m is easily recovered from its prime
power supported contributions as follows:

ZΨ(s; m) =
∏
p∈OS

 ∑
k=(k1,...,kr)

H(1)(pk; pl)

|p|2k1s1 · · · |p|2krsr

 , (71)

with l = (l1, · · · , lr) given by ordp(mi) = li for i = 1, . . . , r. Note that the sum on
the right-hand side runs over the finite number of vectors k for which H(n)(pk; pl)
has non-zero support for fixed l according to (39).

We now simplify our formulas for H(n)(pk; pl) when n = 1. As before, we set
q = |OS/pOS|. With definitions as given in (34) and (36), let

γ̃a(i, j) := q−ui,jγa(i, j), and γ̃b(i, j) := q−vi,jγb(i, j).

Then by analogy with the definitions (38) and (39), define

G̃(P ) :=
∏

1≤i≤j≤r

γ̃a(i, j)γ̃b(i, j),

and
H̃(1)(pk; pl) = H̃(1)(pk1 , . . . , pkr ; pl1 , . . . , plr) :=

∑
k(P )=(k1,...,kr)

G̃(P ),
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where again the sum is taken over GT -patterns P with fixed top row (Lr, · · · , L1) as
in (26). By elementary properties of Gauss sums, when n = 1 we have, for a strict
GT -pattern P ,

γ̃a(i, j) =


1 if P is minimal at ai,j,

1− 1
q

if P is generic at ai,j,

−1
q

if P is maximal at ai,j,

(72)

recalling the language of Definition 1 and similarly,

γ̃b(i, j) =


1 if P is minimal at bi,j,

1− 1
q

if P is generic at ai,j,

−1
q

if P is maximal at bi,j.

(73)

Note that when P is generic at ai,j (resp. bi,j), the condition n | ui,j (resp. n | vi,j)
is trivially satisfied, since n = 1.

We claim that
H(1)(pk; pl) = H̃(1)(pk; pl) qk1+···+kr . (74)

This equality follows from the definitions of H(1)(pk; pl) and H̃(1)(pk; pl), after match-
ing powers of q on each side by applying the following combinatorial lemma.

Lemma 3. For each GT -pattern P ,

r∑
i=1

ki(P ) =
r∑
i=1

[
r∑
j=i

vi,j +
r∑

j=i+1

ui,j

]
. (75)

Proof. We proceed by expanding each side in terms of the entries ai,j and bi,j in the
GT -pattern P , using the definitions above. Applying (31), we have

r∑
i=1

ki(P ) =

[
r sa(0) +

r−1∑
m=1

sa(m) +
r∑
i=2

r+1−i∑
m=1

(2 sa(m) + a0,m)−
r∑
i=2

sa(r + 1− i)

]

−

[
r∑

m=1

sb(m) +
r∑
i=2

r+1−i∑
m=i

2 sb(m)

]
.

Since
∑r

i=2 sa(r+ 1− i) =
∑r−1

m=1 sa(m), the corresponding terms in the first bracket
cancel. After interchanging order of summation and evaluating sums over i, we
obtain

r∑
i=1

ki(P ) = r sa(0)+
r∑

m=1

(r−m) a0,m+
r−1∑
m=1

2(r−m) sa(m)−
r∑

m=1

(1+2(r−m)) sb(m).
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Finally, applying (28) and combining the first two terms, we conclude that

r∑
i=1

ki(P ) =
r∑

m=1

(2r−m) a0,m +
r−1∑
m=1

r∑
`=m+1

2(r−m) am,`−
r∑

m=1

r∑
`=m

(1 + 2(r−m)) bm,`.

(76)
On the other hand, from (33), after recombining terms we have

r∑
i=1

[
r∑
j=i

vi,j +
r∑

j=i+1

ui,j

]
= −

r∑
i=1

[
bi,i +

r∑
j=i+1

(
bi,j + 2

r∑
m=i

bi,m

)]

+
r∑
i=1

[
ai−1,i +

r∑
j=i+1

( j∑
m=i

2 ai−1,m +
r∑

m=j+1

ai−1,m +
r∑

m=j

ai,m

)]
.

After interchanging order of summation and evaluating sums on j, this equals

r∑
i=1

[
(1 + 2(r − i)) ai−1,i +

r∑
m=i+1

(2r + 1− (i+m)) ai−1,m +
r∑

m=i+1

(m− i) ai,m

]

−
r∑
i=1

r∑
m=i

(1 + 2(r − i)) bi,m.

The i = 1 terms from the the bracket’s first two summands give
∑r

m=1(2r−m) a0,m,
the first term in (76). After reindexing, the remaining terms in the bracket give∑r−1

i=1

∑r
m=i+1 2(r − i) ai,m. Relabeling indices where needed gives the result.

We now manipulate the prime-power supported contributions to the multiple
Dirichlet series as in (71). Setting yi = |p|−2si for i = 1, . . . , r and using (74), we
have ∑

k=(k1,...,kr)

H(1)(pk1 , . . . , pkr)

|p|2k1s1 · · · |p|2krsr
=

∑
k=(k1,...,kr)

H̃(1)(pk1 , . . . , pkr) (qy1)k1 · · · (qyr)kr . (77)

After making the following change of variables:

qy1 7→ x2
1, qy2 7→ x−1

1 x2, . . . qyr 7→ x−1
r−1xr,

the right-hand side of (77) becomes∑
(k1,...,kr)

H̃(1)(pk1 , . . . , pkr)x2k1
1 (x−1

1 x2)k2 · · · (x−1
r−1xr)

kr .
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By the relationship between the ki -coordinates and the weight coordinates wti given
in (30), this is just

xL1
1 · · ·xLrr

∑
(k1,...,kr)

H̃(1)(pk1 , . . . , pkr)xwt1
1 · · ·xwtr

r ,

where the Li relate to li as in (26). Finally, letting

gen(P ) = #{generic entries in P}, and max(P ) = #{maximal entries in P}

and using the simplifications for n = 1 in (72) and (73) for H̃(1) in terms of G̃(P ),
then ∑

k=(k1,...,kr)

H(1)(pk1 , . . . , pkr)

|p|2k1s1 · · · |p|2krsr

= xL1
1 · · ·xLrr

∑
(k1,...,kr)

(
−1

q

)max(P )(
1− 1

q

)gen(P )

xwt1
1 · · · xwtr

r , (78)

with the xi’s given in terms of |p|−2si by the composition of the above changes of
variables. The right-hand side of (78) is now amenable to comparison with the
identity of Hamel and King.

5.2 Symplectic Shifted Tableaux

In order to state the main theorem of Hamel and King ([19]), we must first introduce
some additional terminology. To each strict GT -pattern P , we may associate an
Sp(2r)-standard shifted tableau of shape λ+ρ. (Below, we follow Hamel and King [19],
specializing Definition 2.5 to our circumstances.) We consider the partition µ of λ+ρ,
whose parts are given by µi = l1 + · · · li+r− i+1, for i = 1, . . . , r. (These are simply
the entries in the top row of λ+ρ.) Such a partition defines a shifted Young diagram
constructed as follows: |µ| boxes are arranged in r rows of lengths µ1, µ2, . . . , µr, and
the rows are left-adjusted along a diagonal line. For instance, if µ = (7, 4, 2, 1), then
our tableau has shape

It remains to define how the tableau is to be filled. The alphabet will consist of
the set A = {1, 2, . . . , r} ∪ {1, 2, . . . r}, with ordering 1 < 1 < 2 < 2 < · · · < r < r.
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We place an entry from A in each of the boxes of the tableau so that the entries
are: (1) weakly increasing from left to right across each row and from top to bottom
down each column, and (2) strictly increasing from top-left to bottom-right along
each diagonal.

An explicit correspondence between Sp(2r)-standard shifted tableaux and strict
GT -patterns is given in Definition 5.2 of [19]. Below we describe the prescription for
determining SP , the tableau corresponding to a given GT -pattern P , with notation
as in (27).

1. For j = i, . . . , r, the entries ai−1,j of P count, respectively, the number of boxes
in the (j − i+ 1)st row of SP whose entries are less than or equal to the value
r − i+ 1.

2. For j = i, . . . , r, the entries bi,j of P count, respectively, the number of boxes
in the (j − i+ 1)st row of SP whose entries are less than or equal to the value
r − i+ 1.

An example of this bijection is given in Figure 1.

9 6 5 3 2
7 6 5 3 2

7 5 4 2
5 4 3 1

5 3 1
4 2 1

4 2
3 2

3
1

←→

1 1 1 2 3 4 4 5 5
2 2 3 4 4 5

3 4 4 4 5
4 4 5

5 5

Figure 1: The bijection between GT -patterns and symplectic shifted tableaux.

Moreover, we associate the following statistics to any symplectic shifted tableau S:

1. wt(S) = (wt1(S),wt2(S), . . . ,wtr(S)), where wti(S) = # (i entries) - # (i
entries).

2. conk(S) is the number of connected components of the ribbon strip of S con-
sisting of all the entries k.

3. rowk(S) is the number of rows of S containing an entry k, and similarly rowk(S)
is the number of rows of S containing an entry k.
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4. str(S) is the total number of connected components of all ribbon strips of S.

5. bar(S) is the total number of barred entries in S.

6. hgt(S) =
r∑

k=1

(rowk(S)− conk(S)− rowk(S)).

It is easy to see that the weights associated with the tableaux SP are identical to the
previously-defined weights associated with the pattern P .

The main result of Hamel and King [19] (cf. Theorem 1.2) is the following identity:

Theorem (Hamel-King). Let λ be a partition into at most r parts, and let ρ =
(r, r − 1, . . . , 1). Then defining

DSp(2r)(x; t) =
r∏
i=1

xr−i+1
i

r∏
i=1

(1 + tx−2
i )

∏
1≤i<j≤r

(1 + tx−1
i xj)(1 + tx−1

i x−1
j ), (79)

and letting spλ(x1, . . . , xr) be the character of the highest weight representation of
Sp(2r) with highest weight λ, we have

DSp(2r)(x; t)spλ(x; t) =
∑

S∈ST λ+ρ(Sp(2r))

thgt(S)+2 bar(S)(1 + t)str(S)−rxwt(S) (80)

where ST λ+ρ(Sp(2r)) denotes the set of all Sp(2r)-standard shifted tableaux of shape
λ+ ρ.

We now show that the right-hand side of (80) may be expressed in terms of
the right-hand side of (78), leading to an expression for the generating function for
H(pk1 , . . . , pkr) in terms of a symplectic character. First, we require a suitable change
of variables, in order to interpret the statistics in the exponents of (80). Put xi → txi
for each i = 1, . . . , r, which introduces a factor of t

P
wti(S) on the right-hand side.

From the definition of wt(S) and the correspondence with P , we see that

r∑
i=1

wti(S) =
r(r + 1)

2
− 2 bar(S) +

r∑
i=1

(r − i+ 1)li. (81)

Moreover, it is a simple exercise to show that

spλ(tx; t) = t
P

(r−i+1)li spλ(x), (82)
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so that (79) becomes

DSp(2r)(tx; t)spλ(x) =
∑

S∈ST λ+ρ(Sp(2r))

thgt(S)+r(r+1)/2(1 + t)str(S)−rxwt(S). (83)

The following lemma relates the exponents in this equation back to our GT -
pattern P and the statistics of (78).

Lemma 4. Let P be a strict GT -pattern of rank r and SP its associated standard
shifted tableau. Then we have the following relationships:

(a) gen(P ) = str(SP )− r,

(b) max(P ) = hgt(SP ) + r(r+1)
2

.

This is stated without proof implicitly in Corollary 5.3 in [19], using slightly
different notation. The proof is elementary, but we include it in the next section
for completeness. Assuming the lemma, letting t = −1

q
in (83), and using (78) with

|p| = q we see that∑
(k1,...,kr)

H(pk1 , . . . , pkr)q−2k1s1 · · · q−2krsr

= xL1
1 · · ·xLrr DSp(2r)(−x1/q, . . . ,−xr/q;−1/q) spλ(x1, . . . , xr), (84)

with the identification

q1−2s1 = x2
1, q1−2s2 = x−1

1 x2, . . . q1−2sr = x−1
r−1xr. (85)

One checks by induction on the rank r, that with xi assigned as above,

x1x
2
2 · · ·xrrDSp(2r)(−x1/q, . . . ,−xr/q;−1/q) =

∏
α∈Φ+

(
1− q−(1+2B(α,s− 1

2
ρ∨))
)

with B(α, s − 1
2
ρ∨) as defined in (3). Moving this product to the left-hand side of

(84), we may rewrite our above equality as

∏
α∈Φ+

(
1− q−(1+2B(α,s− 1

2
ρ∨))
)−1 ∑

(k1,...,kr)

H(pk1 , . . . , pkr)q−2k1s1 · · · q−2krsr

= xL1−1
1 · · · xLr−rr spλ(x1, . . . , xr). (86)
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Note that the terms in the product are precisely the Euler factors for the normalizing
zeta factors of Z∗Ψ(s; m) defined in (23) for the case n = 1. Hence, the terms on
the left-hand side of the above equality constitute the complete set of terms in the
multiple Dirichlet series Z∗Ψ(s; m) supported at monomials of the form |p|−k1s1−···−krsr .
Finally, we can state our second main result.

Theorem 2. Let m = (m1, . . . ,mr) ∈ OS with mi non-zero for all i. For each prime
p ∈ OS, let ordp(mi) = li. Let H(n)(pk1 , . . . , pkr ; pl1 , . . . , plr) with n = 1 be defined as
in Section 5.1. Then the resulting multiple Dirichlet series Z∗Ψ(s; m) agrees with the
(m1, . . . ,mr)

th Fourier-Whittaker coefficient of a minimal parabolic Eisenstein series
on SO2r+1(FS).

Proof. In the case n = 1, the multiple Dirichlet series Z∗Ψ(s; m) is Eulerian. Indeed,
the power residue symbols used in the definition of twisted multiplicativity in (17)
and (19) are all trivial. Hence it suffices to check that the Euler factors for Z∗Ψ match
those of the corresponding minimal parabolic Eisenstein series at each prime p ∈ OS.

The Euler factors for the minimal parabolic Eisenstein series can be computed
using the Casselman-Shalika formula, Theorem 5.4 in [12]. We briefly recall the
form of this expression for a split, reductive group G over a local field Fv with usual
Iwasawa decomposition G = ANK = BK. Let χ be an unramified character of the
split maximal torus A and consider the induced representation indGB(χ). Given an
unramified additive character ψ of the unipotent N−(Fv), opposite the unipotent N
of B, we have an associated Whittaker functional

Wψ(φ) =

∫
N−(Fv)

φ(n)ψ(n)dn where φ(ank) := χ(a)δB(a)1/2 (87)

is the normalized spherical vector with δB is the modular quasicharacter. The asso-
ciated Whittaker function is given by settingWφ(g) := W (gφ), and is determined by
its value on π−λ for λ ∈ X∗, the coweight lattice and π a uniformizer for Fv. Then
the Casselman-Shalika formula states that Wφ(π−λ) = 0 unless λ is dominant, in
which case

δB(π−λ)1/2Wφ(π−λ) =

( ∏
α∈Φ+

(1− q−1t−α
∨
)

)
chλ(t) (88)

where chλ is the character of the irreducible representation of the Langlands dual
group G∨ with highest weight λ and t denotes a diagonal representative of the
semisimple conjugacy class in G∨ associated to indGB(χ) by Langlands via the Satake
isomorphism (see [2] for details). In the special case G = SO(2r + 1), for relations
with the above multiple Dirichlet series, we determine t = (x1, . . . , xr) according to
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(85) where |π|−1
v = q. Since G∨ = Sp(2r) in this case, the character chλ(t) in (88) is

just spλ(x1, . . . , xr) as in the right-hand side of (86). Note further that the product
over positive roots in (88) matches the Euler factors for the normalizing zeta factors
of Z∗Ψ appearing on the left-hand side of (86).

While the Casselman-Shalika formula is stated for principal series over a local
field, because the global Whittaker coefficient is Eulerian, there is no obstacle to
obtaining the analogous global result for FS from the local result via passage to the
adele group. Moreover, the minimal parabolic Eisenstein series Whittaker functional∫

N(A)/N(F )

Eφ(ng)ψm(n)dn =

∫
N(A)/N(F )

∑
γ∈B(F )\G(F )

φ(γng)ψm(n)dn

can be shown to match the integral in (87) with ψ = ψm by the usual Bruhat
decomposition for G(F ) and a standard unfolding argument.

Hence according to (86), the Euler factor for Z∗Ψ(s; m) matches that of the Fourier-
Whittaker coefficient except possibly up to a monomial in the |p|−2si with i = 1, . . . , r.
This disparity arises from the fact that the Whittaker functions in the Casselman-
Shalika formula are normalized by the modular quasicharacter δ

1/2
B , whereas our

multiple Dirichlet series should correspond to unnormalized Whittaker coefficients
in accordance with the functional equations σi as in (21) sending si 7→ 1−si. Hence,
to check that the right-hand side of (86) exactly matches the unnormalized Whittaker
coefficient of the Eisenstein series, it suffices to verify that

xL1−1
1 · · · xLr−rr spλ(x1, . . . , xr)

satisfies a local functional equation σj given in (21) as Dirichlet polynomials in |p|−2si

for i = 1, . . . , r.

5.3 Proof of Lemma 4

Proof. For part (a) of the lemma, we induct on the rank. When r = 2, there are
at most six connected components among all the ribbon strips of SP , since 1 and 1
may only appear in the top row. Moreover, since P is strict there must be at least
two connected components. Thus 0 ≤ str(SP ) − 2 ≤ 4. At each of the four entries
in P below the top row. one shows that if the given entry is generic, it increases the
count str(SP ) by 1.

Suppose that for a GT -pattern of rank r− 1, each of the r2 entries below the top
row increases the count str(P ) by 1. Then consider a GT -pattern P of rank r, and
consider the collection of entries ai,j, bi,j below the double line. These entries control
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the number of connected components consisting of 1’s, 1’s, . . . r − 1’s, and r − 1’s
in P , in precisely the same way as the full collection of entries below the top row in a
pattern of rank r−1. Thus inductively, for each generic entry ai,j with 2 ≤ i ≤ r−1,
3 ≤ j ≤ r or bi,j with 2 ≤ i, j ≤ r, the count str(P ) is increased by 1. Finally, for
i = 1, one easily checks that the value of str(SP ) is increased by 1 for every generic
a1,j or b1,j.

For (b), we first establish the correct range for hgt(SP ) + r(r+1)
2

. For each k, it is
clear that 0 ≤ rowk(SP )−conk(SP ) ≤ k−1 and 0 ≤ rowk(SP ) ≤ k. Combining these

inequalities and summing over k, we have 0 ≤ hgt(SP ) + r(r+1)
2
≤ r2. We proceed

by showing that each of the maximal entries increases the count hgt(S) by 1. The
cases are as follows.

1. If ai,j is maximal, then ai,j = bi,j−1, hence there are no r + 1− i entries in
row j − i of the tableau. This decreases

∑r
k=1 rowk(SP ) by 1, hence increasing

hgt(SP ) by 1.

2. If bi,r is maximal, then bi,r = 0, which implies there are no r + 1− i entries in
row r − i+ 1. This similarly increases hgt(SP ) by 1.

3. If bi,j is maximal with 1 ≤ j ≤ r − 1, then bi,j = ai−1,j+1. Since P is a strict
pattern, it must follow that bi,j < ai−1,j and bi,j+1 < ai−1,j+1. By these strict
inequalities, there are (r + 1 − i)’s in both row j + 1 − i and row j + 2 − i.
However, by the equality defining bi,j as maximal, the (r+ 1− i)’s in these two
rows form one connected component. (See, for instance, the 4 component in
the example in Figure 1.) This decreases

∑r
k=1 conk(SP ) by 1, hence increasing

hgt(SP ) by 1.
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