Graph Orientations and Linear Extensions.

Benjamin Iriarte.

Department of Mathematics, MIT.

FPSAC 2014, July 1, 2014.
Acyclic Orientation of a Graph.

Definition:

An acyclic orientation of a simple undirected graph $G = G(V, E)$ is an orientation of its edges with no induced directed cycles.

Acyclic orientations from labelings of V:

i. If $|V| = n$, label V (bijectively) with elements of the totally ordered set n and orient E accordingly: All acyclic orientations of G can be obtained in this way.

ii. Any given acyclic orientation of $G = G(V, E)$ induces a partial order on V, and a linear extension of one such poset recovers the corresponding orientation as in i.
Main Problem.

Problem:
Given an underlying simple graph \(G = G(V, E) \), each acyclic orientation of \(G \) induces a partial order on \(V \):

a. Which of these posets has the maximal number of linear extensions?

b. If \(|V| = n \), given a uniformly chosen random bijective labeling of \(V \) with \(n \), what is the most likely acyclic orientation of \(G \) so obtained?

We call this problem the **Main Problem for** \(G \), and the combinatorial statistic of interest is denoted by \(\varepsilon(G) \).

Complexity of Enumeration:
Counting the number of linear extensions of an arbitrary poset is \(\#P \)-complete (Brightwell and Winkler (1991)).
Bipartite Graphs and Odd Cycles.

A simple combinatorial algorithm provides the answer for bipartite graphs:

(B.I.) Optimal orientations of bipartite graphs have no directed 2-paths.

Proof Idea: Start with an arbitrary acyclic orientation + linear extension, and transform injectively the linear extension into a labeling with no induced directed 2-paths.
Bipartite Graphs and Odd Cycles.

... and similarly for odd cycles:

(B.I.) Optimal Orientations have exactly one directed 2-path.

Proof Idea: Start with an arbitrary acyclic orientation + linear extension, fix a directed 2-path, and transform injectively the linear extension into a labeling with one 2-dipath.
Connections to Theory.

- Stachowiak (1988) obtained the same result for bipartite graphs using poset theory (More on this later).
- Analogous combinatorial algorithms seem difficult to find for general graphs.
- Geometry of polytopes and poset theory provide better insight.

\[\mathbb{R}^n \] with euclidean topology and standard basis \(\{e_j\}_{j \in [n]} \):

1. For \(J \subseteq [n] \), \(e_J := \sum_{j \in J} e_j \) and \(e_{\emptyset} := 0 \).
2. For \(x \in \mathbb{R}^n \), \(x_J := \sum_{j \in J} x_j \) and \(x_{\emptyset} := 0 \).
Definition: (Stanley (1986))

Given a partial order \(P \) on \([n]\), the order polytope of \(P \) is defined as:

\[
\mathcal{O}(P) := \{ x \in \mathbb{R}^n : 0 \leq x_i \leq 1 \text{ and } x_j \leq x_k \text{ whenever } j \leq_P k, \forall \ i, j, k \in [n] \}.
\]

The chain polytope of \(P \) is defined as:

\[
\mathcal{C}(P) := \{ x \in \mathbb{R}^n : x_i \geq 0, \forall \ i \in [n] \text{ and } x_C \leq 1 \text{ whenever } C \text{ is a chain in } P \}.
\]
Results About Polytopes.

Definition: (Stanley (1986))

Given a poset P on $[n]$, **Stanley’s transfer map**

$\phi : O(P) \rightarrow C(P)$ is the function given by:

$$\phi(x)_i := \begin{cases}
 x_i - \max_{j \leq_P i} x_j & \text{if } i \text{ is not minimal in } P, \\
 x_i & \text{if } i \text{ is minimal in } P.
\end{cases}$$

Theorem: (Stanley (1986))

For a poset P on $[n]$:

1. Linear extensions of poset P give a triangulation of $O(P)$ with simplices of equal volume $\frac{1}{n!}$, so $\text{Vol}(O(P)) = \frac{e(P)}{n!}$.

2. ϕ is a continuous bijective map, linear and unimodular on each simplex of the same triangulation of $O(P)$, so $\text{Vol}(C(P)) = \frac{e(P)}{n!}$.
Results About Polytopes.

Definition:

Given a simple undirected graph $G = G([n], E)$, the **stable polytope** $\text{STAB}(G)$ of G is the full dimensional polytope in \mathbb{R}^n obtained as the convex hull of all vectors e_I, where I is a stable (a.k.a. independent) set of G.

Observations:

- **a.** Vertices of $\mathcal{O}(P)$ are given by the indicator vectors of the order filters of P.
- **b.** Vertices of $\mathcal{C}(P)$ are given by the indicator vectors of the antichains of P, hence the **Main Problem for** G is equivalent to finding the chain polytope of maximal volume contained in $\text{STAB}(G)$.
- **c.** ϕ^{-1} maps every antichain A of P to its induced order filter A^\vee.
- **d.** Both $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are subpolytopes of the n-dimensional hypercube. As P ranges over all acyclic orientations of a graph G, $\mathcal{O}(P)$'s give a subdivision of the hypercube.
Example of Stanley’s Theory on a 2-path Graph.
Comparability Graphs.

Definition:

A **comparability graph** is a simple undirected graph $G = G([n], E)$ for which there exists a partial order P on $[n]$ under which two different vertices $i, j \in [n]$ are comparable in P if and only if $\{i, j\} \in E$. All induced acyclic orientations of G induced by such posets (at least two) are called **transitive orientations of G**.

Relation to other families of graphs:

i. Comparability graphs are perfectly orderable graphs, hence perfect.

ii. Complete graphs, bipartite graphs, complements of interval graphs, permutation graphs, cographs, and trivially perfect graphs, are all comparability graphs.

Motivations:

a. Poset theory, perfect graph theory.

b. Data-mining, correlation or causality analyses.
Comparability Graphs.

Key Observations:

For $G = G([n], E)$ a comparability graph:

i. Number of transitive orientations of G depends on modular decomposition of G (Gallai et al. (2001)).

ii. If poset P on $[n]$ is obtained from an acyclic orientation of G, then $C(P) = \text{STAB}(G)$ precisely when P is transitive.

A Comparability Invariant:

If two posets P and Q have isomorphic comparability graphs, then $e(P) = e(Q)$.
Comparability Graphs and Geometry.

Theorem: (B.I.)

Let G be a comparability graph. Then, the acyclic orientations of G whose poset has the maximal number of linear extensions are exactly the transitive orientations of G.

Geometrical Proof:

Any other acyclic orientation induces a poset whose set of antichains is strictly contained in the set of independent sets of G, and this gives a strict containment of chain polytopes.
Comparability Graphs and Poset Theory.

Proposition: (Edelman et al. (1989), B.I.)

Let P be a partial order on $[n]$. If A is an antichain of P, then:

$$e(P) \geq \sum_{i \in A} e(P \setminus i),$$

where $P \setminus i$ denotes the induced subposet of P on $[n] \setminus i$.

Similarly, if S is a cutset of P, then:

$$e(P) \leq \sum_{i \in S} e(P \setminus i).$$

Moreover, if $J \subseteq [n]$ is either a cutset or an antichain of P, then

$$e(P) = \sum_{i \in J} e(P \setminus i)$$

if and only if J is both an antichain and a cutset of P.
Comparability Graphs and Poset Theory.

Proof Example:

A recursive approach resemblant of the classic recursion to compute chromatic polynomials leads to network flows:

Hasse diagram of poset P on $[5]$

Linear extensions, $e(P) = 8$

12345
21345
12354
21354
23145
23154
12534
21534
Theorem: (B.I.)

Let G be a comparability graph. Then, the acyclic orientations of G whose poset has the maximal number of linear extensions are exactly the transitive orientations of G.

Poset-Theoretical Proof:

Every induced subgraph of G is a comparability graph and, moreover, the restriction of any transitive orientation of G to any induced subgraph is also transitive. Hence, we can use induction and the Proposition.

Note to Proof: Since both the set of minimal and maximal elements of a poset are antichain cutsets, Stachowiak (1988) had resolved the case of bipartite graphs using an analogous inductive technique.

Odd cycles and other pathological cases:

The same idea allows us to re-obtain the result for odd cycles and for other (rather restrictive) families of graphs.
Proposition: (B.I.)

Let $G = G([n], E)$ be a comparability graph. For $J \subseteq [n]$, let $G \backslash J$ be the induced subgraph of G on vertex set $[n] \setminus J$. Then:

$$\varepsilon(G) \geq \frac{1}{\chi(G)} \cdot \sum_{\sigma \in \mathfrak{S}_n} \frac{1}{\prod_{i=1}^{n-1} \chi(G \backslash \sigma[i])},$$

where \mathfrak{S}_n denotes the symmetric group on $[n]$ and χ denotes the chromatic number of the graph.

Corollary: (B.I.)

Let $G = G([n], E)$ be a simple graph with chromatic number $k := \chi(G)$. Then:

$$\varepsilon(G) \geq \frac{n!}{k^{n-k} k!}.$$
Further Enumerative Results.

Proposition: (B.I.)

Let $G = G([n], E)$ be a simple graph and \overline{G} its complement graph. Then:

$$\varepsilon(G) \leq (-1)^n \chi(\overline{G}, -1),$$

where $\chi(\overline{G}, \lambda)$ denotes the chromatic polynomial of \overline{G}. Equality is attained if and only if G is a complete p-partite graph, with $1 \leq p \leq n$.

Statistical behavior of $\varepsilon(G)$ for general simple graphs:

- In general, upper and lower bounds for $\varepsilon(G)$ are too far apart and $\varepsilon(G)$ seems unlikely to behave well (exponential approximation).
- **Idea:** Consider instead $\log_2 \varepsilon(G)$.
- Are there any tight concentration results for the statistic $\log_2 \varepsilon(G)$ when $G \sim G_{n,p}$, $0 < p < 1$?
Random Graphs.

Theorem: (B.I.)

Let $G \sim G_{n,p}$ with $0 < p < 1$, $b = \frac{1}{1-p}$. Then, almost surely:

$$\log_2 \varepsilon(G) \sim \mathbb{E}[\log_2 \varepsilon(G)] \sim n \log_2 (2 \log_b n - 2 \log_b \log_b n).$$

Proof Idea:

Consider a random graph $G \sim G_{n,p}$ and let $n \to \infty$. Color G with a minimal number of colors $k := \chi(G)$. Then:

$$\log_2 \varepsilon(G) \geq k \log_2 \lfloor n/k \rfloor!.$$

From Kahn and Kim (1995) we obtain:

$$n(\log_2 n - H(G)) \geq \log_2 \varepsilon(G),$$

where $H(G)$ is the graph entropy.

Lastly, from Bollobás (1988) and McDiarmid (1990)'s theorem for $\chi(G)$, and applying both Azuma's and Jensen's inequalities, we obtain the desired result.
From here, we can obtain an exponential approximation to the volume of the stable polytope of “most” graphs:

Corollary: (B.I.)

Let $G \sim G_{n,p}$ with $0 < p < 1$, $b = \frac{1}{1-p}$ and $s = 2 \log_b n - 2 \log_b \log_b n$. Then, almost surely:

$$\frac{s^n}{n!} \cdot \left(\frac{1}{e}\right)^n \leq \text{Vol}(\text{STAB}(G)) \leq \frac{s^n}{n!} \cdot \kappa^{n/s},$$

where $\kappa = 2 \left(\frac{e}{2}\right)^{2/(\log_2 b)}$.

Stable Polytopes.
Graphical Arrangements.

Definition:

For a simple undirected graph $G = G([n], E)$, the *graphical arrangement* of G is the central hyperplane arrangement in \mathbb{R}^n given by:

$$A_G := \{ x \in \mathbb{R}^n : x_i - x_j = 0 \text{ for all } \{i, j\} \in E \}.$$
Observations:

i. The complete fan in \(\mathbb{R}^n \) given by \(A_G \) is combinatorially dual to the **graphical zonotope of** \(G \):

\[
\mathcal{Z}(G) := \sum_{\{i,j\} \in E} [e_i - e_j, e_j - e_i].
\]

ii. Regions of the graphical arrangement \(A_G \) with \(G = G([n], E) \) are in bijection with acyclic orientations of \(G \), and correspond to vertices of \(\mathcal{Z}(G) \).
Fractional Volumes.

Definition: (Klivans and Swartz (2011))

Given a central hyperplane arrangement \mathcal{H} in \mathbb{R}^n, the **fractional volume** of a region \mathcal{R} of \mathcal{H} is the quantity:

$$\text{Vol}^\circ (\mathcal{R}) = \frac{\text{Vol}(B^n \cap \mathcal{R})}{\text{Vol}(B^n)},$$

where B^n is the unit n-dimensional ball in \mathbb{R}^n.

Proposition: (B.I., but more folklore)

Let $G = G([n], E)$ be a simple graph with graphical arrangement \mathcal{A}_G. If \mathcal{R} is a region of \mathcal{A}_G and P is its corresponding partial order on $[n]$, then:

$$\text{Vol}^\circ (\mathcal{R}) = \frac{e(P)}{n!}.$$

A possible connection:

Since \mathcal{A}_G and $\mathcal{Z}(G)$ are combinatorially dual, can we use $\mathcal{Z}(G)$ to obtain information about the region of \mathcal{A}_G with largest fractional volume?
Lemma: (B.I.)

Given a simple graph $G = G([n], E)$ and an acyclic orientation O of its edges, the vertex x^O of $\mathcal{Z}(G)$ corresponding to O is coordinate-wise described via:

$$x_i^O = \text{indeg}(i) - \text{outdeg}(i),$$

where $\text{indeg}(\cdot)$ and $\text{outdeg}(\cdot)$ are calculated in O. Furthermore:

$$\frac{1}{2} \|x^O\|_2^2 = \frac{1}{2} \sum_{i \in [n]} \left(\text{indeg}(i) - \text{outdeg}(i)\right)^2 = \text{(expression)}.$$
Two optimization problems.

Proposition: (B.I.)

- Let $G = G([n], E)$ be a simple graph with $E = \{E_1, \ldots, E_m\}$. Choose an orientation of G and let Q be the corresponding $n \times m$ incidence matrix. Consider the two quadratic programs:

$$\max_{x \in [-1,1]^m} x^T Q^T Qx, \quad (\text{Problem } P_1)$$

and

$$\max_{x \in [-1,1]^n} x^T QQ^T x = x^T Lx, \quad (\text{Problem } P_2)$$

where L is the combinatorial Laplacian of G.

- Then, Problem P_1 solves maximal-norm vertex of $Z(G)$, and Problem P_2 solves max-cut for G.

- Furthermore, if G is a comparability graph or an odd cycle, then Problem P_1 solves the Main Problem for G.
Main Problem.
Introduction.
Results.

Largest eigenvalue of the combinatorial Laplacian.

An interesting relaxation:

- For a general graph G, Problem P_1 and Problem P_2 are difficult problems. Consider instead the mutual relaxation:

$$\max_{x \in \mathbb{R}^n, ||x||_2 = 1} x^T L x,$$

(Problem Q)

where L is the combinatorial Laplacian of G.

- Then, Problem Q asks to describe the eigenspace of L corresponding to the largest eigenvalue.

Theorem: (B.I.)

1. Let $G = G([n], E)$ be a comparability graph with combinatorial Laplacian L, largest eigenvalue λ_{max} and associated eigenspace $E_{\lambda_{\text{max}}}$. Then, labeling vertices of G with eigenvectors in $E_{\lambda_{\text{max}}}$ and orienting edges accordingly, we obtain precisely Gallai’s modular decomposition theory for G.

2. For a general simple graph G, a similar result holds.
Thank you.

- Richard Stanley, Carly Klivans, Tanya Khovanova, Federico Ardila, Diego Cifuentes.
- Full details in arxiv.org/abs/1405.4880