18.01A Practice Final Exam 120 minutes

$$\int_0^\infty e^{-x^2/2} dx = \sqrt{\frac{\pi}{2}}$$

Poisson random variable: $P(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots, \text{ mean } m.$ Exponential density function: $f(x) = \frac{1}{m} e^{-x/m}, \text{ mean } m$

Normal density function: (mean *m*, standard deviation σ): $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-((x-m)/\sigma)^2/2}$ Standard normal density function $\phi(z)$ is the above f(z), with $m = 0, \sigma = 1$.

Table of values for $\Phi(Z)$, $Z \ge 0$: the distribution function for $\phi(z)$.2 .3 z: 0 .1 .4 .5.6 .7 .8 .9 .5000.5398.5793.6179.6554.6915.7257.7580.7881.8159 $\Phi(z)$: 1.01.1 1.21.31.41.51.61.71.81.9z: .8413 .8643 .8849 .9032 .9192 .9332 .9452 .9554 .9641 .9713 $\Phi(z)$: 2.02.12.22.32.42.52.62.72.82.93.0z: $\Phi(z)$: .9772 .9821 .9861 .9893 .9918 .9938 .9953 .9965 .9974 .9981 .9987

1. (15) a) Evaluate
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{\sin 2x}$$
.

b) Let
$$f(x) = \frac{x}{\ln x}$$
, $g(x) = \int_2^x \frac{dx}{\ln x}$. Show $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$.

2. (15) Evaluate the integral $\int_0^1 x\sqrt{1-x^4} \, dx$, by making the change of variable $x^2 = \sin u$.

3. (10) Evaluate $\int x \sin x \, dx$.

4. (10) Write as a sum of simpler fractions: $\frac{3x^2+1}{(x^2+1)(x-1)}$.

5. (10) If $F(x) = \int_0^x \sqrt{1+u^4} \, du$, express the value of $\int_2^6 \sqrt{16+t^4} \, dt$ in terms of values of F(x).

6. (15) A circular point has the shape of the bottom half of an ellipsoid, formed by rotating the ellipse $\left(\frac{x}{10}\right)^2 + y^2 = 1$ about the *y*-axis (*not* the *x*-axis).

It is filled with algae, whose density $\delta = 1 + y$ (in gms/cubic meter) varies with y (it's highest near the surface y = 0, where there is most sunlight, and 0 at the bottom).

Find the total mass of algae in the pond.

(Alternatively, for 10 points find the volume of the pond, by setting up and evaluating a definite integral.)

7. (10) After a practice shooting session at an MIT PhysEd class in pistol, examination of a circular target of radius 100 cm showed the density $\delta(r)$ of bullet holes (holes/cm²) depended only on the distance r from the center.

If this density was given by $\delta = \frac{1}{1+r^2}$, how many shots were fired at the target? Give an "exact" answer, then estimate this number to the nearest multiple of 25.

8. (10) For which values of k does
$$\int_{1}^{\infty} \frac{dx}{x^k \sqrt{x+1}}$$
 converge? (Indicate reason.)

9. (20) Tell whether each of the following converges (absolutely or conditionally?) or diverges, indicating reason.

a)
$$\sum_{1}^{\infty} \frac{n^2}{\sqrt{n^5 + 1}}$$
 b) $\sum_{1}^{\infty} \frac{(-1)^n}{\sqrt{n^5 + 1}}$

10. (10) Find the radius of convergence of $\sum_{1}^{\infty} \frac{x^n}{2^{2n}\sqrt{n}}$, showing work.

11. (10) Find the first three non-zero terms in the Taylor series around 0 for $\frac{\sin t}{1+t}$. (Strong suggestion: Use algebraic methods.)

12. (10) Find the sum $f(x) = \sum_{0}^{\infty} \frac{x^{2n+1}}{2n+1}$ by first differentiating the series.

13. (15:5,10) A continuous probability density on the interval $0 \le x \le 1$ is given by $f(x) = Ax^2(1-x)$, where A is a constant.

- a) Show that A = 12.
- b) The mean of f(x) is .6; find its standard deviation σ . (If you can't do this, for 6 points show its mean is .6 .)

14. (15) John Barrymore playing Hamlet used to forget his lines twice a night. On any given night, was he more likely to forget more often than that or less often than that? (Calculate both probabilities, and use $e^2 = 7.4$).

15. (10) A 911 operator finds that the average waiting time between calls is 20 minutes, but needs to be away for 5 minutes. What's the probability an incoming call will be missed? (Estimate to two significant figures, showing work; no calculators.)

16. (15: 5,10) Assume aphids (tiny harmless bugs) are distributed on broccoli with a normal probability density, having mean 200 and standard deviation 20 (aphids/pound).

a) What fraction of a truckload of broccoli would contain over 240 aphids/pound? (Show work or reasoning.)

b) Under pressure from the Farm Lobby, the Dept. of Agriculture agrees to allow 99% of the trucked broccoli to be sold. How many aphids/pound should it announce as the legal upper limit for the aphid count per pound?

(If necessary, make a rough interpolation mentally in the table.)